上海中考复习(专题四)函数填空,选择
- 格式:doc
- 大小:696.00 KB
- 文档页数:6
上海市各区中考数学复习考点强化练习:填空题【含答案】宝山区、嘉定区二、填空题(本大题共12题,每题4分,满分48分) 7.计算:=4 ▲ .8.一种细菌的半径是00000419.0米,用科学记数法把它表示为 ▲ 米. 9. 因式分解:=-x x 42 ▲ . 10.不等式组⎩⎨⎧>+≤-063,01x x 的解集是 ▲ .11.在一个不透明的布袋中装有2个白球、8个红球和5个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是 ▲ . 12.方程23=+x 的根是 ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为xy 120=.如果近似眼镜镜片的焦距3.0=x 米,那么近视眼镜的度数y 为 ▲ . 14.数据1、2、3、3、6的方差是 ▲ .15.在△ABC 中,点D 是边BC 的中点,=,=,那么= ▲ (用、表示). 16.如图1,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,5:2:=DE DF ,BD EF ⊥,那么=∠ADB tan ▲ .17.如图2,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么AOC ∠度数为 ▲ 度. 18.如图3,在△ABC 中,5==AC AB ,6=BC ,点D 在边AB 上,且︒=∠90BDC .如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点1D ,那么线段1DD 的长为 ▲ .OAC图2A BCD图3B ACD F图17. 2 8. 64.1910-⨯ 9. (4)x x - 10. 21x -<≤ 11.1312. 1x = 13. 400 14. 2.8 15. 2a b +16. 2 17. 120° 18. 4225长宁区二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ .16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用a 、b 表示=DB ▲ .第14题图 ABCDE F第15题图A17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.崇明区二、填空题(本大题共12题,每题4分,满分48分) 7.因式分解:29x -= ▲ .8.不等式组1023x x x -<⎧⎨+>⎩的解集是 ▲ .9.函数12y x =-的定义域是 ▲ . 10.方程13x +=的解是 ▲ .11.已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为18,那么袋子中共有 ▲ 个球.12.如果关于x 的方程240x x k +-=有两个相等的实数根,那么实数k 的值是 ▲ . 13.如果将抛物线221y x x =+-向上平移,使它经过点(1,3)A ,那么所得新抛物线的表达式是▲ .14.某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,A B C D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B 的作品数为 ▲ .第18题图ABCD(第14题图)15.已知梯形ABCD ,AD BC ∥,2BC AD =,如果AB a =,AC b =,那么DA = ▲ . (用,a b 表示).16.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG 、GH 上,如果4AB =,那么CH 的长为 ▲ .17.在矩形ABCD 中,5AB =,12BC =,点E 是边AB 上一点(不与A 、B 重合),以点A 为圆心,AE为半径作A ⊙,如果C ⊙与A ⊙外切,那么C ⊙的半径r 的取值范围是 ▲ .18.如图,ABC △中,90BAC ∠=︒,6AB =,8AC =,点D 是BC 的中点,将ABD △沿AD 翻折得到AED △,联结CE ,那么线段CE 的长等于 ▲ .二、填空题:(本大题共12题,每题4分,满分48分)7.(3)(3)x x +-; 8.31x -<<; 9.2x ≠; 10.8x =; 11.24; 12.4-; 13.22y x x =+; 14.48; 15.1122a b -; 16.623-; 17.813r <<; 18.145. 奉贤区 7.计算:=-aa 211 . 8.如果822=-b a ,且4=+b a ,那么b a -的值是 . 9.方程242=-x 的根是 . 10.已知反比例函数)0(≠=k xky ,在其图像所在的每个象限内,y 的值随x 的值增大而减 小,那么它的图像所在的象限是第 象限.11.如果将抛物线22y x =平移,使平移后的抛物线顶点坐标为(1,2),那么所得新抛物线的表达式是 .(第16题图)HDCIFBAGE (第18题图)DCBAE12.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有 本.13.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是. 14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的 (填百分数) . 15.如图4,在梯形ABCD 中,AD //BC ,BC=2AD ,E 、F 分别是边AD 、BC 的中点,设a AD =, =,那么等于 (结果用、的线性组合表示). 16.如果一个矩形的面积是40,两条对角线夹角的正切值是34,那么它的一条对角线长是 . 17.已知正方形ABCD ,AB =1,分别以点A 、C 为圆心画圆,如果点B 在圆A 外,且圆A与圆C 外切,那么圆C 的半径长r 的取值范围是 .18.如图5,将△ABC 的边AB 绕着点A 顺时针旋转)900(︒<<︒αα得到AB ’,边AC 绕着点A 逆时针旋转)900(︒<<︒ββ得到AC ’,联结B ′C ′.当︒=+90βα时,我们称△A B ′C ′ 是△ABC 的“双旋三角形”.如果等边△ABC 的边长为a ,那么它的“双旋三角形”的面积是 (用含a 的代数式表示).二、填空题: 7、12a ; 8、2; 9、4; 10、一三; 11、22(1)2y x =-+; 12、28; 13、38; 14、28%; 15、12a b +; 16、10; 17212r << 18、214a黄浦区 721-= . 8.因式分解:212x x --= .9.方程125x x +=+的解是 .图4A B DFE C810 24 30 0.5 1 1.5 2 2.5 3 时间(小时)图3人数 BC图5AB ′C ′10.不等式组1203130 2xx⎧->⎪⎪⎨⎪-≤⎪⎩的解集是 .11.已知点P位于第三象限内,且点P到两坐标轴的距离分别为2和4,若反比例函数图像经过点P,则该反比例函数的解析式为.12.如果一次函数的图像经过第一、二、四象限,那么其函数值y随自变量x的值的增大而.(填“增大”或“减小”)13.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是.14.已知平行四边形相邻两个内角相差40°,则该平行四边形中较小内角的度数是.15.半径为1的圆的内接正三角形的边长为.16.如图,点D、E分别为△ABC边CA、CB上的点,已知DE∥AB,且DE经过△ABC的重心,设CA a=,CB b=,则DE=.(用a、b表示)17.如图,在四边形ABCD中,902624ABC ADC AC BD∠=∠=︒==,,,M、N分别是AC、BD的中点,则线段MN的长为.18.如图,将矩形ABCD沿对角线AC折叠,使点B翻折到点E处,如果DE∶AC=1∶3,那么AD∶AB= .二、填空题:(本大题共12题,每题4分,满分48分)721; 8.()()34x x+-; 9.2; 10.166x<≤;11.8yx=; 12.减小; 13.124; 14.70;153 16.2233b a-.; 17.5; 182∶1.金山区7.因式分解:2a a-=▲ .8.函数2y x =-的定义域是 ▲ .9.方程21xx =-的解是 ▲ . 10.一次函数2y x =-+的图像不经过第 ▲ 象限.11.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷这枚骰子,向上一面出现的点数是素数的概率是 ▲ . 12.如果关于x 的一元二次方程240x x k -+=有两个不相等的实数根,那么k 的取值范围是 ▲ .13.如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于 ▲ . 14.空气质量指数,简称AQI ,如果AQI 在0~50空 气质量类别为优,在51~100空气质量类别为良, 在101~150空气质量类别为轻度污染,按照某市最 近一段时间的AQI 画出的频数分布直方图如图3 所示,已知每天的AQI 都是整数,那么空气质量 类别为优和良的天数占总天数的百分比为 ▲ %. 15.一辆汽车在坡度为1:2.4的斜坡上向上行驶130米,那么这辆汽车的高度上升了 ▲ 米.16.如果一个正多边形的中心角等于30°,那么这个正多边形的边数是 ▲ . 17.如果两圆的半径之比为3:2,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d 的的取值范围是 ▲ .18.如图4,Rt △ABC 中,∠C =90°,AC =6,BC =8,D 是AB 的中点,P 是直线BC 上一点,把△BDP 沿PD 所在的直线翻折后,点B 落在点Q 处,如果QD ⊥BC , 那么点P 和点B 间的距离等于 ▲ .二.填空题:(本大题共12题,满分48分)7.()1a a -; 8.2x ≥; 9.2x =; 10.三; 11.12; 12.4k <; 13.4; 14.80; 15.50; 16.12; 17.3d 15<<; 18.52或10.静安区10 14 6 天数图350.5 100.5 150.5A图4D二、填空题:(本大题共12题,每题4分,满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.32)2(a a ⋅ = ▲ .8.分解因式:=+-xy y x 4)(2▲ .9.方程组⎩⎨⎧=-=+62,3x y y x 的解是 ▲ .10.如果4-x x 有意义,那么x 的取值范围是 ▲ .11.如果函数x a y 12--=(a 为常数)的图像上有两点),1(1y 、),31(2y ,那么函数值1y ▲ 2y .(填“<”、“=”或“>”)12.为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了200株的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值) 高度(cm ) 40~45 45~50 50~55 55~60 60~65 65~70 频数334222244336试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为 ▲ 株.13.从1,2,3,4,5,6,7,8,9中任取一个数,这个数即是奇数又是素数的概率是 ▲ .14.如图,在△ABC 中,点G 是重心,过点G 作DE ∥BC ,分别交AB 、AC 于点D 、E .已知b CB a AB ==, ,那么AE = ▲ .(用向量表示). 15.如图,已知⊙O 中,直径AB 平分弦CD ,且交CD 于点E , 如果OE =BE ,那么弦CD 所对的圆心角是 ▲ 度.16.已知正多边形的边长为a ,且它的一个外角是其内角的一半,那么此正多边形的边心距是 ▲ .(用含字母a 的代数式表示). 17.在平面直角坐标系中,如果对任意一点(a ,b ),规定两种变换:),(),(b a b a f --=,),(),(a b b a g -=,那么[]=-)2,1(f g ▲ .18.等腰△ABC 中,AB =AC ,它的外接圆⊙O 半径为1,如果线段OB 绕点O 旋转90°后可与线段OC 重合,那么∠ABC 的余切值是 ▲ .7、54a . 8、2)(y x +. 9、⎩⎨⎧=-=41y x . 10、x > 4. 11、>. 12、960.ABE DCG·第14题图ACE第15题图· EO13、31. 14、3232-. 15、120. 16、a 23. 17、(2,1). 18、12±. 闵行区二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:21+2-= ▲ .8.在实数范围内分解因式:243x -= ▲ . 9211x -的解是 ▲ .10.已知关于x 的方程230x x m --=没有实数根,那么m 的取值范围是 ▲ .11.已知直线(0)y kx b k =+≠与直线13y x =-平行,且截距为5,那么这条直线的解析式为 ▲ .12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小杰过马路时,恰巧是绿灯的概率是 ▲ .13.已知一个40个数据的样本,把它分成6组,第一组到第四组的频数分别是10、5、7、6,第五组的频率是0.1,那么第六组的频数是 ▲ .14.如图,已知在矩形ABCD 中,点E 在边AD 上,且AE = 2ED .设BA a =,BC b =,那么CE = ▲ (用a 、b 的式子表示).15.如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足1a 与2a 互为相反数,1b 与2b 相等,1c 与2c 互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数232y x x =-+-的“亚旋转函数”为 ▲ .16.如果正n 边形的中心角为2α,边长为5,那么它的边心距为 ▲ .(用锐角α的三角比表示) 17.如图,一辆小汽车在公路l 上由东向西行驶,已知测速探头M 到公路l 的距离MN 为9米,测得此车从点A 行驶到点B 所用的时间为0.6秒,并测得点A 的俯角为30o,点B 的俯角为60o.那么此车从A 到B 的平均速度为 ▲ 米/秒.3 1.7322 1.414) 18.在直角梯形ABCD 中,AB // CD ,∠DAB = 90o,AB = 12,DC = 7,5cos 13ABC ∠=,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD = ▲ .二、填空题:(本大题共12题,每题4分,满分48分)ABDC(第14题图)E ABD C(第18题图)AMN (第17题图)l7.5; 8.23)(23)x x +-(; 9.1x =; 10.94m <-; 11.153y x =-+; 12.512; 13.8; 14.13a b -; 15.2132y x x =+-; 16.5cot 2α(或52tan α); 17.17.3; 18.12212-. 普陀区7.计算:xy x 3122⋅= ▲ . 8.方程32x x =+的根是 ▲ .9.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是 ▲ .10.用换元法解方程312122=+-+x x x x 时,如果设y xx =+21,那么原方程化成以y 为“元”的方程是 ▲ . 11.已知正比例函数的图像经过点M (2-)、),(11y x A 、),(22y x B ,如果21x x <,那么1y ▲ 2y .(填“>”、“=”、“<”)12.已知二次函数的图像开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式: ▲ .(只需写出一个)13.如果一个多边形的内角和是720,那么这个多边形的边有 ▲ 条.14.如果将“概率”的英文单词 probability 中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b 的概率是 ▲ .15.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图3所示,从中可知出境游东南亚 地区的游客约有 ▲ 万人.16. 如图4,在梯形ABCD 中,BC AD //,AD BC 3=,点E 、F 分别是边AB 、CD 的中点.设a AD =,b DC =,那么向量EC 用向量a 、b 表示是 ▲ .17. 如图5,矩形ABCD 中,如果以AB 为直径的⊙O 沿着BC 滚动一周,点B 恰好与点C 重合,那么ABBC 的值等于 ▲ .(结果保留两位小数) yCADEFDO A A东南亚欧美澳新16%港澳台 15%韩日11% 其他13% 图318. 如图6,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(22).将△ABC 沿x 轴向左平移得到△111A B C ,点1B 落在函数6y x =-的图像上.如果此时四边形11AA C C 的面积等于552,那么点1C 的坐标是 ▲ .二、填空题:(本大题共12题,每题4分,满分48分)青浦区7.计算:32()=a a ÷- ▲ . 8.因式分解:24=a a - ▲ . 9.函数3y x +的定义域是 ▲ .010.不等式组1020.x x +≥⎧⎨->⎩,的整数解是 ▲ .11.关于x 的方程=2(1)ax x a +≠的解是 ▲ . 12.抛物线2(3)+1y x =-的顶点坐标是 ▲ .13.掷一枚材质均匀的骰子,掷得的点数为合数的概率是 ▲ .14.如果点1P (2,1y )、2P (3,2y )在抛物线2+2y x x =-上,那么1y ▲ 2y .(填“>”、 “<”或 “=”) 15.如图2,已知在平行四边形ABCD 中,E 是边AB 的中点,F 在边AD 上,且AF ︰FD=2︰1,如果AB a =,BC b =,那么EF = ▲ .16.如图3,如果两个相似多边形任意一组对应顶点P 、P '所在的直线都经过同一点O ,且有(0)OP k OP k '=⋅≠,那么我们把这样的两个多边形叫位似多边形,点O 叫做位似中心.已知ABC ∆与A B C '''∆是关于点O 的位似三角形,3OA OA '=,则ABC ∆与A B C '''∆的周长之比是 ▲ .17.如图4,在△ABC 中,BC=7,AC =32,tan 1C =,点P 为AB 边上一动点(点P 不与点B 重合),以7.323x y ; 8. 3x =;9. 810027.4⨯ ; 10. 32=-yy ; 11.>;12. 2y x =等;13.6; 14.112; 15.315; 16.b a212+;17.3.14;18.(5-211).点P 为圆心,PB 为半径画圆,如果点C 在圆外,那么PB 的取值范围是 ▲ . 18.已知,在Rt △ABC 中,∠C =90°,AC =9, BC =12,点D 、E 分别在边AC 、BC 上,且CD ︰CE =3︰4.将△CDE 绕点D 顺时针旋转,当点C 落在线段DE 上的点F 处时,BF恰好是∠ABC 的平分线,此时线段CD 的长是 ▲ .二、填空题:7.a ; 8.()4-a a ; 9.3≥-x ; 10.101、、-; 11. 21-a ; 12.(3,1); 13.13; 14.>; 15.2132-b a ; 16.1︰3; 17.3508<<PB ; 18.6.松江区7.因式分解:34a a - = ▲ . 8.方程2x x +=的根是 ▲ . 9.函数32x y x-=的定义域是 ▲ . 10.已知方程240x x m -+=有两个不相等的实数根,则m 的取值范围是 ▲ . 11.把抛物线22y x =-向左平移1个单位,则平移后抛物线的表达式为 ▲ . 12.函数y kx b =+的图像如图所示,则当0y <时,x 的取值范围是 ▲ .13.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,随机投掷这枚骰子,那么向上一面的点数为合数的概率是 ▲ .14.某区有4000名学生参加学业水平测试,从中随机抽取500名,对测试成绩进行了统计,统计结果见下表: 成绩(x ) x <6060≤x <7070≤x <8080≤x <90 90≤x ≤100 人数155978140208那么根据上述数据可以估计该区这次参加学业水平测试成绩小于60分的有 ▲ 人.15. 如图,在△ABC 中,D 是AB 的中点,E 是AC 上一点,且AE =2EC ,如果AB a =,AC b =,那么DE =▲ .(用a 、b 表示).图3 ABCDE F图2图4POP'16.一个正n 边形的一个内角等于它的中心角的2倍,则n =▲ .17.平面直角坐标系xoy 中,若抛物线2y ax =上的两点A 、B 满足OA =OB ,且1tan 2OAB ∠=,则称线段AB 为该抛物线的通径.那么抛物线212y x =的通径长为 ▲ . 18.如图,已知平行四边形ABCD 中,AC =BC ,∠ACB =45°,将三角形ABC 沿着AC 翻折,点B 落在点E 处,联结DE ,那么DEAC的值为 ▲ . 二、填空题:(本大题共12题,每题4分,满分48分)7. (2)(2)a a a +-; 8. 2x =; 9. 0x ≠; 10. 4m <; 11.22(1)y x =-+; 12. 1x <-; 13. 13; 14. 120; 15. 1223a b -+;21 . 徐汇区 7. 函数12y x =-的定义域是 8. 在实数范围内分解因式:22x y y -= 9. 32x -=的解是 10. 不等式组2672x x -≥⎧⎨+>-⎩的解集是11. 已知点1(,)A a y 、2(,)B b y 在反比例函数3y x=的图像上,如果0a b <<,那么1y 与2y 的大小关系是1y 2y12. 抛物线2242y x x =+-的顶点坐标是13. 四张背面完全相同的卡片上分别写有0.392227四个实数,如果将卡片字面 朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为14. 在ABC ∆中,点D 在边BC 上,且:1:2BD DC =,如果设AB a =,AC b =,那么BD 等于 (结果用a 、b 的线性组合表示)ACDE (第15题图)B-1xy(第12题图)(第18题图)A DCB15. 如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm )整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm ~175cm 之间的人数约有 人16. 已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是17. 从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在ABC ∆中,1DB =,2BC =,CD 是ABC ∆的完美分割线,且ACD ∆是以CD 为底边的等腰三角形,则CD 的长为18. 如图,在Rt ABC ∆中,90C ∠=︒,5AB =,3BC =,点P 、Q 分别在边BC 、AC 上,PQ ∥AB ,把PCQ ∆绕点P 旋转得到PDE ∆(点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分BAC ∠,则CP 的长为二. 填空题7. 2x ≠ 8. (2)(2)y x x -+ 9. 7x = 10. 93x -<≤- 11. > 12. (1,4)-- 13.3414. 1133b a -15. 72 16. 1或7 17. 3218. 2 杨浦区二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7、计算: 8、当时,化简:=9、函数 中,自变量x 的取值范围是10、如果反比例函数 的图像经过点的值等于11、三人中至少有两人性别相同的概率是 12、25位同学10秒钟跳绳的成绩汇总如下表:人数 1 2 3 4 5 10次数15 8 25 10 17 20那么跳绳次数的中位数是13、李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是14、四边形ABCD中,向量=15、若正n边形的内角和为1400,则边数n为16、如图3,△ABC中,∠A=800,∠B=400,BC的垂直平分线交AB于点D,联结DC,如果AD=2,BD=6那么△ADC的周长为17、如图4,正△ABC的边长为2,点A、B的半径为的圆上,点C在圆内,将正△ABC绕点A逆时针旋转,当点C第一次落在圆上时,旋转角的正切值是18、当关于X的一元二次方程有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”,如果关于X的一元二次方程是“倍根方程”,那么m的值为。
上海市2024年中考数学模拟练习卷3(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列运算正确的是()A =B .3412a a a ⋅=C .()222ab a b -=-D .()32628a a -=-2.(本题4分)当使用换元法解方程2()2(3011x x x x --=++时,若设1x y x =+,则原方程可变形为()A .2230y y ++=B .2230y y -+=C .2230y y +-=D .2230y y --=3.(本题4分)下列说法正确的是()A .函数2y x =的图象是过原点的射线B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<,y 随x 增大而增大D .函数23y x =-,y 随x 增大而减小4.(本题4分)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.根据统计图,下列结论正确的是()A .甲的射靶成绩的平均数大于乙的射靶成绩的平均数B .甲的射靶成绩比乙的射靶成绩稳定C .甲的射靶成绩比乙的射靶成绩好些D .在射靶上,甲比乙更有潜力5.(本题4分)如图,依次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,添加的条件不正确的是()A .90FEH ∠=︒B .AC BD =C .EG FH =D .AC BD⊥6.(本题4分)如图,已知等腰梯形ABCD ,AB ∥CD ,AD =BC ,AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论:①BD ∥EF ;②∠AEF =2∠BAC ;③AD =DF ;④AC =CE +EF .其中错误的结论有()A .0个B .1个C .2个D .3个第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2116x -=.8.(本题4分)计算:211x x x x +=--.9.(本题40的解是.10.(本题4分)函数y =的定义域是.11.(本题4分)若关于x 的一元二次方程()25220k x x --+=无实数根,则整数k 的最小值为.12.(本题4分)一个不透明的袋子中装有12个白球、9个黄球和若干个黑球,它们除颜色外,完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.4,则可判断袋子中黑球的个数为.13.(本题4分)如果一个正多边形的中心角为72°,则该正多边形的对角线条数为.14.(本题4分)下面是三位同学对某个二次函数的描述.甲:图象的形状、开口方向与22y x =的相同;乙:顶点在x 轴上;丙:对称轴是=1x -请写出这个二次函数解析式的一般式:.15.(本题4分)如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 交于点O ,14AOD BOC S S =△△.设AD a = ,AB b = ,则AO = .(用含a 、b的式子表示)16.(本题4分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,被调查的学生中骑车的有21人,则下列四种说法:①被调查的学生有60人;②被调查的学生中,步行的有27人;③被调查的学生中,骑车上学的学生比乘车上学的学生多20人;④扇形图中,乘车部分所对应的圆心角为54︒.其中正确的说法有.(填写序号)17.(本题4分)如图,在Rt ABC △中,90C ∠=︒,35A ∠=︒,点O 在边AC 上,且2OA OC =,将OA 绕着点O 逆时针旋转,点A 落在ABC 的一条边上的点D 处,那么旋转角AOD ∠的度数是.18.(本题4分)如图,在平面直角坐标系中,有7个半径为1的小圆拼在一起,下面一行的4个小圆都与x 轴相切,上面一行的3个小圆都在下一行右边3个小圆的正上方,且相邻两个小圆只有一个公共点,从左往右数,y 轴过第2列两个小圆的圆心,点P 是第3列两个小圆的公共点.若过点P 有一条直线平分这7个小圆的面积,则该直线的函数表达式是.三、解答题(共78分)19.(本题6分)计算:(1)|2|123--(2))103120231|32|85-⎛⎫-++- ⎪⎝⎭20.(本题8分)解不等式组:213132514x x x x+-⎧≥⎪⎨⎪-<+⎩.21.(本题10分)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若55,sin 25AF ABD =∠=O 的半径.22.(本题12分)在一次实验中,小李把一根弹簧的上端固定,在其下端悬挂质量为x kg 的物体,如图所示,弹簧的长度y (cm )与所挂物体的质量x (kg )的几组对应值如下表:(1)当所挂物体的质量为4kg 时,弹簧长______cm ;不挂重物时弹簧长_____cm ;(2)写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)当弹簧长度为36cm 时,求所挂物体的质量.23.(本题12分)如左图,为探究一类矩形ABCD 的性质,小明在BC 边上取一点E ,连接DE ,经探究发现:当DE 平分ADC ∠时,将ABE 沿AE 折叠至AFE △,点F 恰好落在DE 上,据此解决下列问题:(1)求证:AFD DCE ≌△△;(2)如图,延长CF 交AE 于点G ,交AB 于点H .①求证:··EF DF GF CF =;②求:GE GC 的值24.(本题14分)已知在平面直角坐标系xOy 中,拋物线212y x bx c =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点()02C ,,点P 是该抛物线在第一象限内一点,联结,,AP BC AP 与线段BC 相交于点F .(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC 交于点E ,如果点F 与点E 重合,求点P 的坐标;(3)过点P 作PG x ⊥轴,垂足为点,G PG 与线段BC 交于点H ,如果PF PH =,求线段PH 的长度.25.(本题16分)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)在旋转过程中,①连接BE 与DG ,结合图1,探究线段BE 与DG 的数量关系______,线段BE 与DG 的位置关系______;②连接BE 与CF ,结合图2,试探究线段BE 与CF 的数量关系,并说明理由.(2)在旋转过程中,连接CF ,取CF 中点M ,①连接BM GM 、,结合图3,试探究BM 与GM 的关系,并说明理由;②将正方形AEFG 绕点A 旋转一周,若3,2AB AE ==,请直接写出点M 在这个过程中的运动路径长______.参考答案第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列运算正确的是()A =B .3412a a a ⋅=C .()222ab a b -=-D .()32628a a -=-2.(本题4分)当使用换元法解方程2()2(3011x x x x --=++时,若设1x y x =+,则原方程可变形为()A .2230y y ++=B .2230y y -+=C .2230y y +-=D .2230y y --=3.(本题4分)下列说法正确的是()A .函数2y x =的图象是过原点的射线B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<,y 随x 增大而增大D .函数23y x =-,y 随x 增大而减小【答案】C 【分析】根据一次函数的图象与性质、反比例函数的图象与性质逐项判断即可得.4.(本题4分)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.根据统计图,下列结论正确的是()A.甲的射靶成绩的平均数大于乙的射靶成绩的平均数B.甲的射靶成绩比乙的射靶成绩稳定C.甲的射靶成绩比乙的射靶成绩好些D.在射靶上,甲比乙更有潜力5.(本题4分)如图,依次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,添加的条件不正确的是()A .90FEH ∠=︒B .AC BD =C .EG FH =D .AC BD⊥依题意,,FG DB EH ∥∥∴,EH FG EF GH ∥∥,EH∴四边形EFGH 是平行四边形,A.添加90FEH ∠=︒,则四边形EFGH 为矩形,故该选不符合题意;B.添加AC BD =,可得四边形EFGH 为菱形,符合题意;C.添加EG FH =,可得四边形EFGH 为矩形,故该选不符合题意;D.添加AC BD ⊥,则EF FG ⊥,可得四边形EFGH 为矩形,故该选不符合题意;故选:B .【点评】本题考查了三角形中位线的性质,平行四边形的性质与判定,菱形的判定,矩形的判定,掌握矩形的判定定理是解题的关键.6.(本题4分)如图,已知等腰梯形ABCD ,AB ∥CD ,AD =BC ,AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论:①BD ∥EF ;②∠AEF =2∠BAC ;③AD =DF ;④AC =CE +EF .其中错误的结论有()A .0个B .1个C .2个D .3个【答案】A 【分析】根据等腰梯形的性质结合全等三角形的判定与性质、平行线的判定与性质、等腰三角形的判定、三角形的外角性质、三角形的中位线等知识进行逐个判断解答即可.【解析】解:∵四边形ABCD 是等腰梯形,∴AC =BD ,又AD =BC 、AB =AB ,∴△ABC ≌△BAD (SSS ),∴∠BAC =∠ABD ,∠ADB =∠BCA ,又AC ⊥BC ,∴OA =OB ,OC =OD ,∠ADB =∠BCA =90°即BD ⊥AD ,∵EF ⊥AD ,∴BD ∥EF ,故①正确;∴∠AEF =∠AOD =∠BAC +∠ABD ,∴∠AEF =2∠BAC ,故②正确;∵BE ⊥AB ,∴∠BAC +∠AEB =∠ABD +∠OBE =90°,∴∠AEB =∠OBE ,∴OB =OE ,∴AO =OE ,又OD ∥EF ,∴AD =DF ,故③正确;∴EF =2OD =2OC ,∵OA =OE =OC +CE ,∴AC =OA +OC =OC +CE +OC =2OC +CE =EF +CE ,故④正确,综上,正确的结论有4个,即错误的结论有0个,故选:A .【点评】本题考查等腰梯形的性质、全等三角形的判定与性质、平行线的判定与性质、等腰三角形的判定、三角形的外角性质、三角形的中位线性质等知识,熟练掌握相关知识的联系与运用是解答的关键.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2116x -=.8.(本题4分)计算:11x x x x +=.9.(本题40的解是.【答案】无解【分析】先把无理方程转化成有理方程,求出方程的解,再进行检验即可.【解析】解:两边平方得:()()540x x --=,解得:15=x ,24x =,2x 的定义域是.11.(本题4分)若关于x 的一元二次方程()25220k x x --+=无实数根,则整数k 的最小值为.12.(本题4分)一个不透明的袋子中装有12个白球、9个黄球和若干个黑球,它们除颜色外,完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.4,则可判断袋子中黑球的个数为.13.(本题4分)如果一个正多边形的中心角为72°,则该正多边形的对角线条数为.14.(本题4分)下面是三位同学对某个二次函数的描述.甲:图象的形状、开口方向与22y x =的相同;乙:顶点在x 轴上;丙:对称轴是=1x -请写出这个二次函数解析式的一般式:.【答案】2242y x x =++【分析】根据已知条件知,此二次函数解析式为()2y a x h =-,且2a =,1h =-,据此可得;【解析】解:设函数解析式为()2y a x h =-,根据题意得,2,1a h ==-,二次函数解析式是:()221y x =+()2221x x =++2242x x =++,故答案为:2242y x x =++.【点评】本题主要考查待定系数法求二次函数解析式,解题的关键是掌握二次函数的图象和性质及其解析式的形式.15.(本题4分)如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 交于点O ,14AOD BOC S S =△△.设AD a = ,AB b =,则AO = .(用含a 、b 的式子表示)16.(本题4分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,被调查的学生中骑车的有21人,则下列四种说法:①被调查的学生有60人;②被调查的学生中,步行的有27人;③被调查的学生中,骑车上学的学生比乘车上学的学生多20人;④扇形图中,乘车部分所对应的圆心角为54︒.其中正确的说法有.(填写序号)【答案】①②④【分析】利用骑车的人数除以其所占的百分比求出调查的总人数,再求出步行所占的百分比,利用总人数乘以步行所占的百分比求得步行的人数,然后利用乘车所占的百分比乘以总人数求得乘车的人数,再与骑车的人数相比即可,最后利用乘车所占的百分比乘以360︒即可求得乘车所对应的圆心角.【解析】解:由题意可得,参与调查的总人数为:2135%60÷=(人),故①正确;∵步行所占的百分比为:135%15%5%=45%---,∴步行的人数为:6045%=27⨯(人),故②正确;∵乘车的人数为:15%60=9⨯(人),21912-=(人),∴骑车上学的学生比乘车上学的学生多12人,故③错误,乘车部分所对应的圆心角为:15%36054⨯︒=︒,故④正确,故答案为:①②④.【点评】本题考查扇形统计图,熟练掌握频数除以总人数等于其所占的百分比,求圆心角的方法是解题的关键.17.(本题4分)如图,在Rt ABC △中,90C ∠=︒,35A ∠=︒,点O 在边AC 上,且2OA OC =,将OA 绕着点O 逆时针旋转,点A 落在ABC 的一条边上的点D 处,那么旋转角AOD ∠的度数是.【答案】110︒或120︒【分析】分类讨论:当点D 在AB 上,根据等边对等角和三角形内角和即可求得;当点D 在BC 上,根据30度所对的直角边是斜边的一半和三角形的外角性质即可求得.【解析】当点D 在AB 上,如图:∵AO OD =,∴35A ADO ∠=∠=︒,∴1803535110AOD ∠=︒-︒-︒︒=,当点D 在BC 上,如图:∵2AO OD OC ==,∴30ODC ∠=︒,∴9030120AOD ∠=︒+︒=︒,故答案为:110︒或120︒【点评】本题考查旋转的性质,等边对等角,三角形内角和,30度角的直角三角形性质,三角形的外角性质,解题的关键是分类讨论思想的运用.18.(本题4分)如图,在平面直角坐标系中,有7个半径为1的小圆拼在一起,下面一行的4个小圆都与x 轴相切,上面一行的3个小圆都在下一行右边3个小圆的正上方,且相邻两个小圆只有一个公共点,从左往右数,y 轴过第2列两个小圆的圆心,点P 是第3列两个小圆的公共点.若过点P 有一条直线平分这7个小圆的面积,则该直线的函数表达式是.∵右边6个小圆关于点P中心对称,直线y经过点∴直线y平分右边6个小圆的面积,∵直线y经过左边小圆的圆心,∴直线y平分⊙N的面积,∴直线y平分7个小圆的面积,NF⊥x轴,GO⊥x轴,则NF∥GO,【点评】本题考查了中心对称图形的特征,直线和圆的位置关系,圆和圆的位置关系,一次函数解析式;掌握中心对称图形的特征是解题关键.三、解答题(共78分)19.(本题6分)计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭20.(本题8分)解不等式组:32514x x+-⎧≥⎪⎨⎪-<+.解不等式②得:2x >-,∴不等式组的解集为21x -<≤.【点评】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.21.(本题10分)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若5,sin 2AF ABD =∠=O 的半径.22.(本题12分)在一次实验中,小李把一根弹簧的上端固定,在其下端悬挂质量为x kg 的物体,如图所示,弹簧的长度y (cm )与所挂物体的质量x (kg )的几组对应值如下表:(1)当所挂物体的质量为4kg 时,弹簧长______cm ;不挂重物时弹簧长_____cm ;(2)写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)当弹簧长度为36cm 时,求所挂物体的质量.【答案】(1)24;18(2)182y x=+(3)9【分析】(1)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,即可直接得出答案;(2)由表格可知,所挂物体的质量每增加1kg ,弹簧的长度就会增加2cm ,据此即可写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)把36y =代入(2)中函数关系式即可解答.【解析】(1)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,可知:当所挂物体的质量为4kg 时,弹簧长24cm ;不挂重物时弹簧长18cm ;故答案是24;18;(2)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,可知所挂物体的质量每增加1kg ,弹簧的长度就会增加2cm ,∴182y x =+.故答案是182y x =+;(3)当36y =时,18236x +=,∴9x =.即当弹簧长度为36cm 时,求所挂物体的质量为9kg .【点评】本题主要考查了一次函数的应用,解答本题的关键在于熟读题意,分析表格中的数据之间的数量关系,求出弹簧长度与所挂物体质量之间的函数关系式.23.(本题12分)如左图,为探究一类矩形ABCD 的性质,小明在BC 边上取一点E ,连接DE ,经探究发现:当DE 平分ADC ∠时,将ABE 沿AE 折叠至AFE △,点F 恰好落在DE 上,据此解决下列问题:(1)求证:AFD DCE ≌△△;(2)如图,延长CF 交AE 于点G ,交AB 于点H .①求证:··EF DF GF CF =;②求:GE GC 的值24.(本题14分)已知在平面直角坐标系xOy 中,拋物线22y x bxc =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点()02C ,,点P 是该抛物线在第一象限内一点,联结,,AP BC AP 与线段BC 相交于点F .(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC 交于点E ,如果点F 与点E 重合,求点P 的坐标;(3)过点P 作PG x ⊥轴,垂足为点,G PG 与线段BC 交于点H ,如果PF PH =,求线段PH 的长度.设213(,2)22P t t t -++,则1(,2)2H t t -+,2122PH t t ∴=-+,设直线AP 的解析式为11y k x b =+,∴11211013222k b k t b t t -+=⎧⎪⎨+=-++⎪⎩,25.(本题16分)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)在旋转过程中,①连接BE与DG,结合图1,探究线段BE与DG的数量关系______,线段BE与DG的位置关系______;②连接BE 与CF ,结合图2,试探究线段BE 与CF 的数量关系,并说明理由.(2)在旋转过程中,连接CF ,取CF 中点M ,①连接BM GM 、,结合图3,试探究BM 与GM 的关系,并说明理由;②将正方形AEFG 绕点A 旋转一周,若3,2AB AE ==,请直接写出点M 在这个过程中的运动路径长______.∵点M为CF的中点,试卷31。
函数选填压轴题(含一次函数、二次函数、反比例函数等综合问题)目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)一次函数、二次函数、反比例函数在中考选择题、填空题考场中是热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分.1.从考点频率看,一次函数、二次函数、反比例函数图象和性质是高频考点、必考点,所以必须提高对函数图象和性质理解和掌握的能力.2.从题型角度看,以选择题、填空题最后一题为主,分值3分左右,着实不少!易错点一 反比例函数求K 值未考虑图象所在的象限【例1】(2024·湖南长沙·三模)如图,点M 是反比例函数(0)ky x x=<图像上的一点,过点M 作MN x ⊥轴于点N ,点P 在y 轴上.若MNP △的面积是3,则k = .【答案】6−【分析】本题考查反比例函数k 值的几何意义,连接OM ,根据平行线间的距离处处相等,得到2MONMPNkSS==,结合双曲线过第二象限,求出k 值即可.【详解】解:连接OM ,∵MN x ⊥, ∴MN OP ∥, ∴3MONMPNSS==,∵点M 是反比例函数(0)ky x x =<图像上的一点,∴32k =, ∴6k =,∵双曲线过第二象限, ∴6k =−; 故答案为:6−.【例2】 (2024·安徽合肥·一模)如图,已知反比例函数ky x=(0k <)的图象经过Rt OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若AOC 的面积为9,则k 的值为 .【答案】6−【分析】本题考查的是反比例函数图象与性质,设2,2AB a OB b ==,则()2,2A b a −,()2,C b m −,结合图象经过Rt OAB 斜边OA 的中点D ,得到(),D b a −,根据点D ,点C 都在ky x =图象上,得到2k bm ba =−=−,得到2a m =,继而得到13222AC AB CB a a a =−=−=,结合AOC 的面积为9,得到132922a b ⨯⨯=,计算得6ab =,解答即可.【详解】设2,2AB a OB b ==,则()2,2A b a −,()2,C b m −,∵图象经过Rt OAB 斜边OA 的中点D , ∴(),D b a −,∵点D ,点C 都在ky x =图象上,∴2k bm ba =−=−, ∴2a m =,∴13222AC AB CB a a a=−=−=, ∵AOC 的面积为9, ∴132922a b ⨯⨯=,∴6ab =, ∴6k ba =−=−. 故答案为:6−.【例3】 (2024·辽宁沈阳·模拟预测)如图,Rt ABC △的边AC x ∥轴,90,BAC BC ∠=︒的延长线过原点O ,且2BC OC =,反比例函数()0ky x x=>的图象经过点A ,若Rt ABC △的面积是2,则k 的值为 .【答案】3【分析】本题考查了反比例函数与几何的综合.延长BA 交x 轴于点D ,证明BAC BDO ∽△△,求得相似比为23,利用相似比求得Rt DBO △的面积,利用等高的两个三角形求得Rt DAO △的面积,再利用比例系数k 的几何意义求解即可.【详解】解:延长BA 交x 轴于点D ,连接OA ,∵AC 平行于x 轴,90BAC ∠=︒, ∴BD x ⊥轴,∴BAC BDO ∽△△, ∵2BC OC =, ∴23BC BA BO BD ==, ∵Rt ABC △的面积是2,∴Rt DBO △的面积是229232⎛⎫÷= ⎪⎝⎭,Rt DAO △的面积是193322⨯=, ∴3232k =⨯=,故答案为:3.易错点二 一次函数、反比例函数、二次函数图象共存问题【例1】 (2024·安徽合肥·一模)已知反比例函数ky x=的图象与一次函数y x b =−+的图象如图所示,则函数2y x bx k =++的图象大致为( )A .B .C .D .【答案】A【分析】本题考查了一次函数、反比例函数、二次函数的图象和性质,先根据一次函数、反比例函数的图象得到k b 、的符号,进而由k b 、判断出抛物线与y 轴的交点位置、对称轴位置,又结合10a =>可知抛物线开口向上,据此即可求解,掌握一次函数、反比例函数、二次函数的图象和性质是解题的关键. 【详解】解:由反比例函数的图象可得,0k >,由一次函数图象与y 轴的交点在y 轴的正半轴上可得,0b >, ∵0k >,∴二次函数与y 轴的交点在y 轴的正半轴上, ∵抛物线的对称轴b x 02=−<,∴抛物线的对称轴位于y 轴的左侧, 又∵10a =>, ∴抛物线开口向上, 故选:A .【例2】 (2024·内蒙古呼和浩特·模拟预测)如图,在平面直角坐标系中,经过(0,6)A 的一次函数1y 的图象与经过(0,2)B 的一次函数2y 的图象相交于点C .若点C 的纵坐标为3,则函数12y y y =⋅的大致图象是( )A .B .C .D .【答案】C【分析】本题主要考查了函数图象判别,求一次函数解析式,解题的关键是设点()(),30C c c <,一次函数1y 的解析式为116y k x =+,一次函数2y 的解析式为222y k x =+,求出136y x c =−+,212y x c =+,然后再求出2122312y y x c =−+,最后进行判断即可.【详解】解:设点()(),30C c c <,一次函数1y 的解析式为116y k x =+,一次函数2y 的解析式为222y k x =+,把(),3C c 分别代入两个函数解析式得: 136ck =+,232ck =+,解得:13k c =−,21k c =,∴136y x c =−+,212y x c =+,∴21223136212y y x x x c c c ⎛⎫⎛⎫=−++=−+ ⎪⎪⎝⎭⎝⎭,∵230c −<, ∴2122312y y x c =−+的图象为开口向下,顶点为()0,12的抛物线, 所以C 选项符合题意. 故选:C .【例3】 (2024·安徽芜湖·一模)已知反比例函数()0ky k x=≠在第二象限内的图像与一次函数y ax b =+的图像如图所示,则函数21y ax bx k =−−+的图像可能为( )A .B .C .D .【答案】B【分析】本题考查的是一次函数、反比例函数和二次函数的图象,依据题意,由一次函数y ax b =+的图象经过第一、二、三象限,且与y 轴交于正半轴,则00a b ,,反比例函数()0ky k x =≠的图象经过第二、四象限,则0k <,从而函数21y ax bx k =−−+的图象开口向下,对称轴为直线0102bx k a −=−−+,,从而排除A 、D ,C ,故可得解.【详解】解:∵一次函数y ax b =+的图象经过第一、二、三象限,且与y 轴交于正半轴,则00a b ,,反比例函数()0ky k x =≠的图象经过第二、四象限,则0k <,∴函数21y ax bx k =−−+的图象开口向下,对称轴为直线01022b b x k a a −=−=−+,.∴综上,可得B 正确. 故选:B .易错点三 根据二次函数的图象讨论各系数a ,b ,c 有关式子正误【例1】 (2024·四川达州·模拟预测)二次函数2y ax bx c =++的图象如图所示,其对称轴为直线12x =−,且经过点(2,0)−,下列结论:①0abc <; ②0a b −=; ③点11(,)x y 和22(,)x y 在抛物线上,当1212x x >≥−时,12y y >;④不等式20ax bx c ++≥的解集是2x ≤−或32x ≥;⑤一元二次方程20cx bx a ++=的两根分别为112x =−,21x =.其中错误的个数有( )A .1个B .2个C .3个D .4个 【答案】B【分析】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.由抛物线对称轴为直线2bx a =−可判断①,由抛物线与x 轴的交点个数可判断②,由抛物线开口方向,对称轴及抛物线与y 轴交点位置可判断③,由抛物线经过(2,0)及抛物线的对称性可判断④,由根与系数关系可判断⑤.【详解】解:由图可知,抛物线开口向上,0a ∴>,抛物线对称轴为直线122b x a =-=-,0a b ∴=>,0a b ∴−=,故②正确;抛物线和y 轴交点在负半轴,0c ∴<, <0abc ∴,∴①正确;当1212x x >≥−时,两点都在对称石侧.图象部分.y 随x 增大而增大,12y y ∴>,∴③正确;不等式20ax bx c ++≥,抛物线在x 轴上方时,x 取值范围,而抛物线和x 轴交点为(2,0)−和(1,0),∴解集是2x ≤−或1x ≥; ∴④错误.20ax bx c ++=的两个根11x =,22x =−,∴121ba −=−=−,()122ac =⨯−=−,0a b c ++= 12b c ∴−=,2ac =−,20cx bx a ∴++=的两个根1x =,2x =,∴⑤错误.故选:B .【例2】 (2024·湖南永州·一模)如图,抛物线2y ax bx c =++的图像与x 轴相交于()2,0A −、()6,0B 两点,与y 轴相交于点C ,以下结论:①240b ac −>;②0abc >;③当0y >时,26x −<<;④0a b c ++<.正确的个数为( )A .4B .3C .2D .1【答案】B【分析】本题考查二次函数的开口,对称轴,与x 轴交点个数,自变量取值范围等知识.可借用数形结合的方法.【详解】①:图象与x 轴有两个交点∴240b ac −>∴①正确;②:图象开口向上0a ∴>对称轴b x 02a =−>0b ∴<图象与y 轴的交点在y 轴负半轴0c ∴< 0abc ∴>∴②正确;③:由图象可知,当0y <时,26x −<< ∴③不正确;④:由图象知,当1x =时,0y a b c =++< ∴④正确.故选:B .【例3】 (2024·陕西榆林·一模)在平面直角坐标系中,二次函数2(y ax bx c a b c =++、、为常数,且0)a ≠的图象如图所示,其对称轴为直线2x =,有以下结论:①0,0a b >>;②16430a b c ++>;③240ac b −<;④a 2b c 0−+> )A .1个B .2个C .3个D .4个【答案】C【分析】本题考查二次函数的图象和性质,解答关键是根据抛物线的位置确定待定字母的取值范围.根据二次函数的图象的位置,确定a 、b 、c 的符号,通过对称轴,与x 轴交点的位置确定各个选项的正确与错误即可.【详解】解:∵抛物线开口向上, ∴0a >,∵对称轴在y 轴的右侧, ∴a 、b 异号,∴0b <,故①错误, ∵对称轴为对称轴为直线22b x a ==−,,∴4b a =−,∵抛物线与y 轴交于正半轴, ∴0c >,∴16431616330a b c a a c c ++=−+=>, 故②正确;∵抛物线与x 轴交于两点,∴20ax bx c ++=有两个不相等的实数根, ∴240b ac −>, ∴240ac b −<,故③正确; ∵4b a =−,∴289a b c a a c a c −+=++=+ ∵0a >,0c >, ∴90a c +>, ∴a 2b c 0−+>, 故④正确;所以正确的个数有3个, 故答案为:C【例4】 (2024·四川成都·模拟预测)已知抛物线()20y ax bx c a =++≠的对称轴为直线=1x −,部分图象如图所示,给出下面4个结论:①24b ac >;②1230a b c −>;③82a c b +>;④若点()10.5,y −,()22,y −在抛物线()20y ax bx c a =++≠上,则12y y <.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【分析】本题考查了二次函数的图象和性质,利用数形结合的思想解决问题是关键.根据二次函数与一元二次方程的关系,即可判断①结论;根据二次函数系数与图象的关系,即可判断②结论;由抛物线图象可知,当1x =时,0y =,即可判断③结论;根据二次函数的增减性,即可判断④结论. 【详解】解:由图象可知,抛物线()20y ax bx c a =++≠与x 轴有两个交点,240b ac ∴−>,24b ac ∴>,①结论正确;抛物线开口向上,对称轴为直线=1x −,且与y 轴交点在负半轴, 0a ∴>,12ba −=−,0c <,20b a ∴=>,110a a −∴=>,20b >,30<c ,1230a b c −∴<,②结论错误;由函数图象可知,当1x =时,0y a b c =++=,3c a b a ∴=−−=−,828340a c b a a a a ∴+−=−−=>,82a c b ∴+>,③结论正确;∴抛物线()20y ax bx c a =++≠的对称轴为直线=1x −,∴点()10.5,y −离对称轴近,点()22,y −离对称轴远,12y y ∴<,④结论正确,∴正确的结论有3个,故选:C .题型一 反比例函数与特殊四边形【例1】(2024·山西大同·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的两边OA OC 、分别在x 轴、y 轴的正半轴上,反比例函数k y x=的图象与AB 相交于点M ,与BC 相交于点N ,若点B 的坐标为()4,2,MON 的面积是154,则k 的值为 .【答案】2【分析】本题主要考查了反比例函数的k 的值,求出点M 的坐标为44k ⎛⎫ ⎪⎝⎭,,点N 的坐标为,22k ⎛⎫ ⎪⎝⎭,根据154MONOCNOAMBMNOABC SS SSS=−−−=矩形进行计算即可.【详解】解:四边形OABC 是矩形,AB OC ∴=,OA BC =,∵B 点的坐标为()4,2,∴2,4AB OC BC AO ====,则点M 的坐标为44k ⎛⎫ ⎪⎝⎭,,点N 的坐标为,22k ⎛⎫ ⎪⎝⎭, ∴MON OCN OAM BMNOABC SS SSS=−−−矩形11115842222244k k k k ⎛⎫⎛⎫=−−−−⨯−=⎪ ⎪⎝⎭⎝⎭解得,2k = 故答案为:2.1.(2024·安徽合肥·一模)如图,菱形ABCD 的顶点B 在y 轴的正半轴上,C 在x 轴的正半轴上,A ,D 在第一象限,BD x ∥轴,反比例函数()0ky k x=≠的图象经过面积为2的菱形ABCD 的中心E ,交AB 于点F .(1)k 的值为 . (2)BFAB的值为 .【答案】 1【分析】本题考查反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,一次函数的性质. (1)由菱形的性质,得到BEC 的面积是12,而矩形BOCE 的面积是1,即可得到k 的值;(2)设点E 的坐标为1a a ⎛⎫ ⎪⎝⎭,,分别求得点A ,B 的坐标,再利用待定系数法求得直线AB 的解析式,联立求得点F 【详解】解:(1)四边形ABCD 是菱形,AC BD ∴⊥,BE DE =,AE CE =,BEC ∴的面积14=⨯菱形ABCD 的面积11242=⨯=,∵BE OC ∥,BO OC ⊥, ∴四边形BOCE 是矩形, ∴矩形BOCE 的面积12212BEC =⨯=⨯=的面积,k ∴的值是1.故答案为:1;(2)由(1)得反比例函数的解析式为1y x =,设点E 的坐标为1a a ⎛⎫ ⎪⎝⎭,,直线AB 的解析式为y mx n =+,则设点B 的坐标为10a ⎛⎫⎪⎝⎭,,设点A 的坐标为2a a ⎛⎫ ⎪⎝⎭,,∴21am n a n a ⎧=+⎪⎪⎨⎪=⎪⎩,解得211m a n a ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为211y x a a=+, 联立2111y x a a y x⎧=+⎪⎪⎨⎪=⎪⎩,解得x =(负值已舍),∴2B ABFa ==,2.(2024·安徽阜阳·一模)如图,在平面直角坐标系中,一次函数44y x =−+的图像分别与x 轴、y 轴交于A ,B 两点.正方形ABCD 的顶点C ,D 在第一象限,且顶点D 在反比例函数()0ky k x=≠的图像上.(1)AOB 的面积为 ;(2)若正方形ABCD 向左平移n 个单位长度后,顶点C 恰好落在反比例函数的图像上,则k n += . 【答案】 2 8【分析】(1)首先求得点AB 、的坐标,可得1OA =,4OB =,然后根据三角形面积公式求解即可; (2)过点C 作CE y ⊥轴于点E ,交反比例函数图像于点F ,过点D 作DG x ⊥轴于点G ,证明OAB EBC △≌△,≌OAB GDA △△,进而确定点C D F 、、的坐标,然后求得k n 、的值,即可获得答案.【详解】解:(1)对于一次函数44y x =−+, 令0y =,则有440x −+=,解得1x =,即(1,0)A , 令0x =,则4y =,即(0,4)B , ∴1OA =,4OB =, ∴1211422AOBSOA OB ⋅=⨯⨯==;(2)如图,过点C 作CE y ⊥轴于点E ,交反比例函数图像于点F ,过点D 作DG x ⊥轴于点G ,∵四边形ABCD 为正方形,∴AB BC CD DA ===,90ABC DAB ∠=∠=︒, ∴90CBE ABO ∠+∠=︒, ∵CE y ⊥轴,OA OB ⊥, ∴90ABO BAO ∠+∠=︒, ∴CBE BAO ∠=∠,在OAB 和EBC 中,90CEB BOA CBE BAO BC AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴(AAS)OAB EBC ≌, ∴1BE OA ==,4CE OB ==, ∴415OE OB BE =+=+=,即(4,5)C , 同理可得(AAS)OAB GDA ≌, ∴4AG OB ==,1DG OA ==, ∴5OG OA AG =+=,即(5,1)D , 将点(5,1)D 代入反比例函数()0ky k x =≠,可得15k=,解得5k =,即该反比例函数解析式为5y x =,∵CE y ⊥轴, ∴点F 的纵坐标为5,∴点F 的横坐标为1,即(1,5)F ,∵将正方形ABCD 向左平移n 个单位长度后,顶点C 恰好落在反比例函数的图像上,即此时点C F 、重合,∴点C 移动了413−=个单位长度,即3n =, ∴538k n +=+=. 故答案为:(1)2;(2)8.【点睛】本题主要考查了一次函数的应用、反比例函数的应用、正方形的性质、全等三角形的判定与性质等知识,熟练掌握相关知识并正确作出辅助线是解题关键.题型二 一次函数与反比例函数【例1】(2024·四川成都·一模)如图,在平面直角坐标系xOy 中,直线22y x =+与双曲线4y x=交于点A 、点B ,将直线AB 向下平移b 个单位后双曲线交于点C 、点D ,M 是第二象限内一点,连接MA 、MB ,若以M 为位似中心的MCD △与MAB △位似,位似比为32,则b 的值为 .【答案】9【分析】本题考查了待定系数法求函数的解析式,反比例函数的性质,勾股定理.由题意可得AB =,设直线DE 的解析式为2y x m =+,点()11,2C x x m +,()22,2D x x m +,根据两点间距离公式求得=92,进而得到()212128144x x x x +−=,由点C D ,恰好都落在反比例函数图象上得到42x m x +=,即2240x mx +−=,由根和系数的关系得()2814224b ⎛⎫−−⨯−= ⎪⎝⎭,求出m 的值,据此即可求解.【详解】解:联立224y x y x =+⎧⎪⎨=⎪⎩,解得22x y =−⎧⎨=−⎩或14x y =⎧⎨=⎩, ∴点()2,2B−−,()1,4A ,∴AB ==∵MCD △与MAB △位似,相似比为32, ∴32CD AB =,∴CD =,∵将直线AB 向下平移b 个单位, ∴设直线CD 的解析式为2y x m =+,点()11,2C x x m +,()22,2D x x m +,=92=,∴()212128144x x x x +−=,∵点C D ,恰好都落在反比例函数图象上, ∴CD 与反比例函数的交点方程为42x m x +=,即2240x mx +−=,由根与系数的关系得,()2814224b ⎛⎫−−⨯−=⎪⎝⎭, 解得7m =−或7(不合,舍去), 令0x =,则2022y =⨯+=,∴直线22y x =+和2y x m =+与y 的交点分别为()02,和()07−,,∴()279b =−−=,故答案为:9.【例2】(2024·安徽池州·一模)如图,已知直线3:34l y x =−+与x 轴、y 轴分别交于点A ,B .请解决下列问题:(1)线段AB 的长为 ;(2)若菱形BCDE 的边BC x ∥轴,另一边BE 在直线l 上,且点B 是AE 的中点,点D 在反比例函数()00ky k x x=≠<,的图象上,则k = .【答案】 5 54−【分析】本题考查了一次函数、反比例函数图象上点的坐标特征,勾股定理,菱形的性质,三角形全等的判定与性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)分别求出直线3:34l y x =−+y 轴交于点()0,3B ,与x 轴交于点()4,0A ,从而得出4OA =,3OB =,再由勾股定理计算即可得出答案;(2)延长DE 交y 轴于点F ,由菱形的性质得出5BC CD DE EB ====,证明()AAS BEF BAO ≌,即可得出点D 的坐标,代入反比例函数解析式即可得出答案. 【详解】解:(1)由题意,得当0x =时,3y =, ∴直线3:34l y x =−+与y 轴交于点()0,3B .当0y =时,4x =,∴直线3:34l y x =−+与x 轴交于点()4,0A ,4∴=OA ,3OB =.在Rt AOB △中,5AB ==, 故答案为:5;(2)如图,延长DE 交y 轴于点F .,点B 是AE 的中点,5AB BE ∴==.四边形BCDE 是菱形,5BC CD DE EB ∴====.DE x ∥轴,90EFB AOB ∴∠=∠=︒,EBF ABO ∠=∠,()AAS BEF BAO ∴≌,4EF OA ∴==,3BF OB ==,9DF DE EF ∴=+=,336OF =+=,()9,6D ∴−.点()9,6D −在反比例函数()0ky k x =≠的图象上,9654k ∴=−⨯=−,故答案为:54−.1.(2024·新疆·一模)已知在平面直角坐标系中,点O 是坐标原点,直线y kx b =+与x 轴、y 轴分别交于点A ,B ,与双曲线my x=相交于点C ,D ,且点D 的坐标为()1,6.如图,当点A 落在x 轴负半轴时,过点C 作x 轴的垂线垂足为E ,过点D 作y 轴的垂线,垂足为F ,连接EF .当2CDAB=时,则点C 的坐标为 .【答案】()3,2−−【分析】先证明EFC 的面积和EFD △的面积相等; 证明四边形DFEA 与四边形FBCE 都是平行四边形,故可得出CE BF =,FDB EAC ∠=∠,再由全等三角形的判定定理得出DFB AEC ≌,故AC BD =,设2CD k =,AB k =,12DB AC k ==, 可得12DB AB =,再证明DFB AOB ∽△△,可算出2OA =,4OB =,进一步可得答案.【详解】解:如图,连接CF ,ED ,CO ,∵y kx b =+于my x =相交于点C ,D ,且点D 的坐标为()1,6.∴6m =,即反比例为6y x =,设(),C a b ,则6ab =,∵1632EFCEOCS S ==⨯=,而11632EFDS=⨯⨯=,∴EFCEFDSS=;∵两三角形同底, ∴两三角形的高相同, ∴EF CD ∥,∵DF AE ∥,BF CE ∥,∴四边形DFEA 与四边形FBCE 都是平行四边形, FDB BAO ∠=∠, ∴CE BF =, ∵BAO EAC ∠=∠, ∴FDB EAC ∠=∠, ∵90BFD CEA ∠=∠=︒,∴DFB AEC ≌, ∴AC BD =, ∵2CDAB =,设2CD k =,AB k =,12DB AC k ==,∴12DB AB =, ∵DF AO ∥, ∴DFB AOB ∽△△, ∴12DF DB BF AO AB BO ===, ∵1DF =, ∴2OA =, ∵6OF =, ∴4OB =, ∴()2,0A −,()0,4B ,∴直线AB 的解析式为24y x =+,联立反比例函数解析式和一次函数解析式可得246y x y x ⎧⎪⎨⎪=+⎩= ,解得:32x y =−⎧⎨=−⎩, 16x y ⎧⎨⎩== , ∴()3,2C −−.故答案为:()3,2−−【点睛】本题考查了反比例函数的综合运用,涉及待定系数法求函数解析式,同底等高的三角形的面积、相似三角形的性质,题目综合性较强.题型三 几何图形中动点之函数问题【例1】(2024·河南信阳·一模)如图1,已知ABCD Y 的边长AB为30B ∠=︒,AE BC ⊥于点E .现将ABE 沿BC 方向以每秒1个单位的速度匀速运动,运动的ABE 与ABCD Y 重叠部分的面积S与运动时间t 的函数图象如图2,则当t 为9时,S 的值是( )A B .C D .【答案】C【分析】本题考查的是动点函数图象问题、平行四边形的性质、勾股定理及含30度角的性质,熟练掌握以上知识点,弄清楚不同时段,图象和图形的对应关系,是解题的关键.根据题意得出AE =6BE =,结合函数图象确定12BC =,当运动时间6t >时,为二次函数,且在6t =时达到最大值,对称轴为6t =,二次函数与坐标轴的另一个交点为()0,0,然后确定二次函数解析式,代入求解即可.【详解】解:∵AB 为30B ∠=︒,AE BC ⊥于点E .∴AE =∴6BE ==,由运动的ABE 与ABCD Y 重叠部分的面积S 与运动时间t 的函数图象得: 当运动到6时,重叠部分的面积一直不变, ∴6CE =, ∴12BC =,由函数图象得:当运动时间6t >时,为二次函数,且在6t =时达到最大值,对称轴为直线6t =, ∴二次函数与坐标轴的另一个交点为()0,0,设二次函数的解析式为()12(6)S at t t =−>,将点(代入得:a =,∴()12(6)S t t =−>,当t 为9时,S =.故选:C .【例2】(2024·河南濮阳·一模)如图1,在矩形ABCD 中,2,BC AB M =为AD 的中点,N 是线段BD 上的一动点.设,DN x MN AN y =+=,图2是y 关于x 的函数图象,其中Q 是图象上的最低点,则a 的值为( )A .7B .8CD 【答案】D【分析】由图象右端点的横坐标为BD =5AB =,10AD =,5AM MD ==,作点M 关于BD 的对称点E ,连接AE 交BD 于N ,连接ME 交BD 于O ,连接DE ,得y AN MN AE =+=,根据两点之间,线段最短,得到此时y 最小,最小值为AE 的长度,通过证明MOD BAD ∽,求出OM =2ME OM ==E 作EF AD ⊥于F ,利用勾股定理求出2MF =,4EF =,7AF AM MF =+=,从而求得AE 的长度,即可求解.【详解】解:∵图象右端点的横坐标为 ∴BD =∵矩形ABCD 中, ∴90BAD ∠=︒,AD BC =∴222AB AD BD +=∵2BC AB = ∴()(2222AB AB +=∴5AB = ∴10AD =∵M 为AD 的中点, ∴5AM MD ==作点M 关于BD 的对称点E ,连接AE 交BD 于N ,连接ME 交BD 于O ,连接DE ,如图,∴MN NE =,5DE DM ==, ∴y AN MN AE =+=,根据两点之间,线段最短,得此时y 最小, ∵点M 关于BD 的对称点E , ∴BD 垂直平分ME ,∵MDO ADB ∠=∠,90BAD MOD ∠=∠=︒, ∴MOD BAD ∽,∴OM MD AB BD =,即5OM =∴OM∴2ME OM == 过点E 作EF AD ⊥于F ,由勾股定理,得22222ME MF EF DE DF −==−,∵DF DM MF =−,∴(()222255MF MF −=−−,解得:2MF =,∴4EF =,527AF AM MF =+=+=,∴AE∵Q 是图象上的最低点, ∴a 是y 的最小值,∴a 故选:D .【点睛】本题考查几何动点函数图象问题,矩形的性质,相似三角形的判定与性质,勾股定理,熟练掌握利用轴对称求最短距离问题是解题的关键.1.(2024·河南周口·一模)如图1,矩形ABCD 中,点E 为AB 的中点,动点P 从点A 出发,沿折线AD DC −匀速运动,到达点C 时停止运动,连接AP 、PE ,设AP 为x ,PE 为y ,且y 关于x 的函数图象如图2所示,则AP 的最大值为( )AB .5C D .【答案】B【分析】本题考查动点问题与函数图象,矩形的性质,勾股定理,利用数形结合的思想是解题关键.在函数图象中找到当0x =时,2y =,得出2y PE AE ===,进而得到4AB =,再利用图象的拐点得出3AD =,由图象知P 到达C 时得最长,由勾股定理即可求出其值.【详解】解:由图知,当0x =时,2y =,即当P 在A 点时2y PE AE ===, 点E 为AB 的中点,, ∴24AB AE ==,当P 在AD 上运动时,PE 慢慢增大,P 到D 点时,从图中的拐点可知,此时y PE DE ===∴3AD =,当P 在DC 上运动时,PE 先减小再增大,直到P 到达C 点时,此时AP AC =4DC AB ==,∴5AP =,故选:B .2.(2024·安徽合肥·一模)如图,在ABC 中,90C ∠=︒,AC BC =.AB 与矩形DEFG 的一边EF 都在直线l 上,其中4AB =、1DE =、3EF =,且点B 位于点E 处.将ABC 沿直线,向右平移,直到点A 与点E 重合为止.记点B 平移的距离为x ,ABC 与矩形DEFG 重叠区域面积为y ,则y 关于x 的函数图象大致为( )A .B .C .D .【答案】D【分析】先根据CB 经过点D 和CA 经过点D 时计算出1x =和3x =,再分01x ≤≤,13x <≤和34x <≤三种情况讨论,画出图形,利用面积公式解答即可. 【详解】解:当BC 经过点D 时,如图所示:ABC 为等腰直角三角形, 45DBE ∴∠=︒,1DE =,90DEB ∠=︒,11tan 451DE EB ∴===︒;当AC 经过点D 时,如图所示:45A ∠=︒,1DE =,1AE ∴=,413EB AB AE ∴=−=−=;①当01x ≤≤时,如图所示:此时EB x =,45HBE ∠=︒,tan 45HE EB x ∴=︒⋅=,2111222y EB HE x x x ∴=⋅=⋅=;②当13x <≤时,如图所示:过M 作MN AB ⊥于N , 此时,1MN =,45MBN ∠=︒,1BN ∴=,EB x =,1EN EB NB x ∴=−=−,四边形DENM 是矩形,1DM EN x ∴==−,111()(1)1222y DM EB DE x x x ∴=+⋅=−+⨯=−;③当34x <≤时,如图所示:此时1IR =,45IBR ∠=︒ 1BR ∴=,EB x =,1ER DI x ∴==−,4AE AB EB x =−=−,45B ∠=︒,tan454TE AE x ∴=⋅︒=−,1DE =,1(4)3DT DE TE x x ∴=−=−−=−, DG AB ∥,45DKT ∴∠=︒,33tan 451DT x DK x −∴===−︒,()22ΔΔ1111111(3)45222IRB DTK DERI y S S S x x x x ∴=+−=⨯−+⨯⨯−⨯−=−+−四边形.故选:D . 【点睛】本题考查了动点问题的函数图象,等腰直角三角形的性质,矩形的性质,解三角形等知识,关键是画出图形,利用数形结合和分类讨论的思想进行运算.3.(2024·河南平顶山·一模)如图1,在ABC 中,60ABC ∠=︒.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线DE 的最低点,则ABC 的面积为( )A .BC .D 【答案】C【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作AD BC ⊥,当动点P 运动到点D 时,线段AP 的长度最短,此时AB BD +P 运动到点C 时,运动结束,此时3AC =,根据直角三角形的性质结合勾股定理求解即可. 【详解】解:作AD BC ⊥,垂足为D ,当动点P 运动到点D 时,线段AP 的长度最短,此时点P 运动的路程为AB BD +=当动点P 运动到点C 时,运动结束,线段AP 的长度就是AC 的长度,此时AC =,∵60ABC ∠=︒, ∴30BAD ∠=︒,∴2AB BD =,∴3AB BD BD +==∴BD =,AB =,∴2AD ==,在Rt △ABD 中,AC =,∴CD =,∴BC BD CD =+=∴ABC 的面积为11222BC AD ⨯=⨯=故选:C .题型四 二次函数与其他函数综合问题【例1】(2024·安徽宿州·一模)如图,已知抛物线242y ax ax =−+−(a 是常数且0a >)和线段MN ,点M 和点N 的坐标分别为()()0,4,5,4.(1)抛物线的对称轴为直线x = ;(2)当1a =时,将抛物线向上平移()0k k >个单位长度后与线段MN 仅有一个交点,则k 的取值范围是 . 【答案】 2 2k =或611k <≤【分析】本题考查二次函数的性质及图象的平移,利用数形结合的数学思想作出图形,根据图形进行求解是解决问题的关键.(1)由题意可知抛物线的对称轴为直线()422ax a =−=⨯−,即可求解;(2)由题意可知,当1a =时,将抛物线向上平移()0k k >个单位长度后抛物线为()224222y x x x k=−+−=−−++,结合图形,找到临界点:当抛物线顶点恰好平移到线段MN 上,当抛物线经过点()5,4N 时,求出对应k 的值,结合图形即可求解.【详解】解:(1)∵242y ax ax =−+−,∴抛物线的对称轴为直线()422ax a =−=⨯−,故答案为:2; (2)当1a =时,()224222y x x x =−+−=−−+,将抛物线向上平移()0k k >个单位长度后抛物线为()222y x k=−−++,当抛物线顶点恰好平移到线段MN 上,此时,24k +=,可得2k =; 当抛物线经过点()0,4M 时,此时()20224k −−++=,可得6k =,此时()0,4M 关于对称轴2x =对称的点()4,4M ',在线段MN 上,不符合题意;当抛物线经过点()5,4N 时,此时()25224k −−++=,可得11k =,此时()5,4N 关于对称轴2x =对称的点()1,4N '−,不在线段MN 上,符合题意;结合图形可知,平移后的抛物线与线段MN 仅有一个交点时,2k =或611k <≤; 故答案为:2k =或611k <≤.1.(2024·安徽合肥·一模)我们定义:如果一个函数图象上存在纵坐标是横坐标6倍的点,则把该函数称为“行知函数”,该点称为“行知点”,例如:“行知函数”20y x =+,其“行知点”为()424,. (1)直接写出函数24y x=图象上的“行知点”是 ; (2)若二次函数()()21332y a x a x a =−+++的图象上只有一个“行知点”,则a 的值为 . 【答案】 ()212,或()212−−, 3−【分析】本题考查二次函数的综合应用,理解新定义,将新定义与所学二次函数,一元二次方程的知识相结合,熟练掌握跟与系数关系是解题关键.(1)根据题目所给“行知点”的定义,列出方程求解即可;(2)根据题目所给“行知点”的定义,列出方程,根据只有一个“行知点”得出该方程只有一个实数根,再根据一元二次方程根的判别式,即可解答.【详解】解:(1)根据题意可得:246x x =,整理得:24x =, 解得:122,2x x ==−,经检验,122,2x x ==−是原分式方程的解;∴函数24y x =图象上的“行知点”是)212,或()212−−,; 故答案为:()212,或()212−−,.(2)∵二次函数()()21332y a x a x a =−+++的图象上只有一个“行知点”, ∴方程()()216332x a x a x a =−+++有两个相等的实数根,且30a −≠,整理得:()()213302a x a x a −+−+=,∴()()2134302a a a −−⨯⨯−=,解得:123,3x x ==−, 综上:a 的值为3−.故答案为:3−.2.(2024·辽宁沈阳·模拟预测)如图,在平面直角坐标系中,抛物线234y x x =−−与x 轴交于A ,B 两点,与y 轴交于点C ,点D 在抛物线上,且与点C 关于抛物线对称轴对称,则点D 坐标为 ,连接OD ,DB ,点P 在抛物线第四象限内不与B ,C 两点重合.过点P 作y 轴的垂线与线段BC 交于点E ,以PE 为边作Rt PEF △,使90PEF ∠=︒,点F 在点E 的下方,且274EF =,点F 恰好落在射线BD 上,再将PEF !绕点E 旋转得到P EF ''△ (点P 的对应点为点P ',点F 的对应点为点F '),当P E '与OD 垂直时,点P '的横坐标为 .【答案】()3,4− 6320或720 【分析】(1)由234y x x =−−得(0,4)C −,对称轴为直线32x =,由D 与C 关于对称轴对称,得(3,4)D −.(2)延长EP '交x 轴于R ,延长FE 交x 轴于N ,过D 作DM x ⊥轴,过P '作P K x '⊥轴.先求直线BC 解析式为4y x =−,再求直线BD 解析式为416y x =−.设(,4)E t t −,(,416)F t t −,由274EF =计算得7(4E ,9)4−,7(4F ,9).证明OMD ENR △∽△,得3RN =,154ER =.由平行相似得EP NK ER NR '=,75NK =,再计算即可.【详解】解:(1)由234y x x =−−得(0,4)C −,(4,0)B ,∴对称轴为直线32x =, D 与C 关于对称轴对称,(3,4)D ∴−,故答案为:()3,4−.(2)延长EP '交x 轴于R ,延长FE 交x 轴于N ,过D 作DM x ⊥轴,过P '作P K x '⊥轴.如图:设直线BC 解析式为y mx n =+,∴404m n n +=⎧⎨=−⎩,1m ∴=,n =−4,4y x ∴=−,设直线BD 解析式为y ax b =+,∴4034a b a b +=⎧⎨+=−⎩,4a ∴=,16b =−,416y x ∴=−. E 在直线BC 上,∴设(,4)E t t −,(,416)F t t ∴−,27(4)(416)1234EF t t t ∴=−−−=−=, 74t ∴=. 7(4E ∴,9)4−,7(4F ,9)−.29344x x −−=−, 71(22x x ∴==−不在第四象限,舍去).7(2P ∴,4)−.设直线OD 解析式为y hx =,(3,4)D −,43h ∴−=,43h ∴=−,43y x ∴=−. 94EN ∴=,4DM =,3OM =,EP OD '⊥,90MOD NRE ∴∠+∠=︒,90MOD MDO ∠+∠=︒,NRE MDO ∴∠=∠,90ENR DMO ∠=∠=︒,OMD ENR ∴△∽△, ∴EN RN ER OM DM OD ==, ∴94345RN ER==, 3RN ∴=,154ER =.P K EN '∥, ∴EP NK ER NR '=,75NK ∴=, 7(4N ,0),77(45K ∴−,0)或77(45+,0),7(20K ∴,0)或63(20,0), P '∴的横坐标为:720或6320.故答案为:(3,4)−,720或6320.【点睛】本题考查了二次函数综合,相似三角形的性质与判定,一次函数与几何综合等等,掌握抛物线解析式的求法,以及相似的运用,是解题关键.。
上海市中考数学模拟试卷(4)一.选择题(共6小题,满分24分,每小题4分)1.(4分)2016的相反数是()A .B.﹣2016C .﹣D.20162.(4分)下列运算正确的是()A.2x2y+3xy=5x3y2B.(﹣2ab2)3=﹣6a3bC.(3a+b)2=9a2+b2D.(3a+b)(3a﹣b)=9a2﹣b23.(4分)下列四个函数中:①y=5x;②y=﹣5x;③y =;④y =﹣.在同一象限,y 随x的增大而减小的函数有()A.①②B.②③C.③④D.①④4.(4分)随着我国综合国力的增强,人们生活水平也不断提升,越来越多的人开始关注健康、锻炼身体,其中走路是最简单的锻炼方法之一,舒适的运动鞋就成为走路锻炼的必要装备,运动鞋的鞋底柔软而富有弹性,能起到一定的缓冲作用,防止脚踝受伤,某运动鞋品牌店试销一种新款男鞋,试销期间销售情况如下表:鞋的尺码2424.52525.52626.5 /cm销售量/双38161062父亲节来临之际,该品牌店店主为了促销再次进货,此次进货应参考的是试销期间所售出鞋的尺码的()A.平均数B.众数C.中位数D.方差5.(4分)下列命题中,是假命题的是()A.直角三角形的两个锐角互余B.在同一个平面内,垂直于同一条直线的两条直线平行C.同旁内角互补,两直线平行D.三角形的一个外角大于任何一个内角6.(4分)如图是一个等边三角形,若将它绕着它的中心O旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.120°B.90°C.60°D.30°二.填空题(共12小题,满分48分,每小题4分)7.(4分)合并同类项:﹣9x3+7x2﹣3x2+6x3=.8.(4分)根据如图所示的程序计算函数值,若输入x的值1.5,则输出的y值为.9.(4分)若(x﹣1)3=x﹣1,则x=.10.(4分)关于x的方程x2=m﹣1有实数根,则m的取值范围是.11.(4分)在一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,从中随机摸出两个小球,其标号之和大于4的概率为.12.(4分)如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为cm.13.(4分)某班若干名学生每分钟脉搏跳动次数的频数分布直方图如图,则每分钟脉搏跳动不少于78次的学生人数有名.14.(4分)已知实数x,y,z满足x﹣y=3,x+z=6,若x≥﹣2y,则x+y+z的最小值为.15.(4分)如图,在平行四边形ABCD中,点E是边CD的中点,如果,,用含、的式子表示向量=.16.(4分)如图,某下水管道的横截面为圆形,水面宽AB的长为8dm,水面到管道上部最高处点D的距离为2dm,则管道半径为dm.17.(4分)如图,AB∥CD,AD与BC相交于点E,若AE=2,ED=3,则的值是.18.(4分)如图,∠AOC=60°,点B在OA上,且OB=2.若以点B为圆心、r为半径的圆与直线OC相切,则r的值为;若⊙B与直线OC相交,则r的取值范围是;若⊙B与直线OC相离,则r的取值范围是.三.解答题(共7小题,满分78分)19.(10分)计算:×2﹣|1﹣|+.20.(10分)解不等式组.21.(10分)若A、B两点关于y轴对称,且点A在双曲线上,点B在直线y=x+3上,设点A的坐标为(a、b),求的值.22.(10分)如图.某大街水平地画有两路灯灯杆AB=CD=10米,小明晚上站在两灯杆的正中位置观察眼睛处影子的俯角∠MEG=∠NEH=11.31°,已知底面到小明眼睛处的高度EF=1.5米;(1)求两灯杆的距离DB;(2)其县在一条长760m的大街P﹣K﹣Q上安装12根灯杆(含两端),其中PK为休闲街,按(1)中的灯杆距离安装灯杆,KQ为购物街,灯杆距离比(1)中的少35m,求休闲街和购物街分别长多少米.(参考数据:tan78.69°≈5.00,tan11.31≈0.20,cos78.69≈0.20,cos11.31≈0.98,可使用科学计算器)23.(12分)已知,如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD 向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG,请探究:①线段AE与CG是否相等,请说明理由.②若设AE=x,DH=y,当x取何值时,y最大,最大值是多少?24.(12分)已知抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,过点A的直线y=kx+b与y轴交于点D,与抛物线交于点E.(1)若k=且点C与点D关于x轴对称,求a的值;(2)若a=,∠DAB=CBA,求直线y=kx+b的解析式;(3)若点E在第一象限,问:是否存在直线y=kx+b,使得△ABE与△ABC相似?若存在,请求出直线y=kx+b的解析式,若不存在,请说明理由.25.(14分)如图,在平行四边形ABCD中,AB=4,BC=6,∠B=45°,点E为CD 上一动点,经过A、C、E三点的⊙O交BC于点F.(1)【操作与发现】当E运动到AE⊥CD处,利用直尺与圆规作出点E与点F.(保留作图痕迹)(2)在(1)的条件下,证明=.(3)【探索与证明】点E运动到任何一个位置时,求证=.(4)【延伸与应用】点E在运动的过程中,直接写出EF的最小值.。
上海市中考数学真题汇编(近几年)3 函数一、单选题1.将抛物线向下平移两个单位,以下说法错误的是()A. 开口方向不变B. 对称轴不变C. y随x的变化情况不变D. 与y轴的交点不变2.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( )A. y=B. y=﹣C. y=D. y=﹣3.下列函数中,函数值y随自变量x的值增大而增大的是()A. B. C. D.4.下列对二次函数y=x2﹣x的图象的描述,正确的是()A. 开口向下B. 对称轴是y轴C. 经过原点D. 在对称轴右侧部分是下降的5.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A. k>0,且b>0B. k<0,且b>0C. k>0,且b<0D. k<0,且b<0二、填空题6.如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)7.已知函数经过二、四象限,且函数不经过,请写出一个符合条件的函数解析式.8.如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而________.(填“增大”或“减小”)9.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是________.10.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行________米.11.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是________.12.已知f(x)=x2-1,那么f(-1)= .13.已知反比例函数y= (k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.14.某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚元.三、综合题15.在平面直角坐标系xOy中,直线y=﹣x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC= ,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.16.在平面直角坐标系xOy中(如图),已知抛物线y=x2-2x,其顶点为A.(1).写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2).我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”①试求抛物线y=x2-2x的“不动点”的坐标;②平移抛物线y=x2-2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.17.在平面直角坐标系xoy中(如图),已知一次函数的图像平行于直线,且经过点A(2,3),与x轴交于点B。
复习4初二上数学复习四——反比例函数一、知识要点与能力要求1、函数的定义:一般地,如果两个变量x 、y 之间的关系可以表示成k y x=或1y kx -=(k 为常数,0k ≠)的形式,那么称y 是x 的反比例函数。
2、反比例函数图像为双曲线。
3、性质:(1)当0k >时,图像在第一、三象限,且在每个象限内y 随x 的增大而减小;当0k <时,图像在第二、四象限,且在每个象限内y 随x 的增大而增大; (2)双曲线上的点关于原点O 成中心对称,当0k >时,函数图像关于直线y x =成轴对称;当0k <时,函数图像关于直线y x =-成轴对称二、典型试题: (一)选择题:1.如果函数()221m y m x -=-为反比例函数,则m 的值是( ) A .﹣1B .0C .0.5D .12.如图,函数ky x=与()10y kx k =-+≠在同一坐标系内的图像大致为( )A BCD3.已知点()11,A x y 、()22,B x y 是反比例函数()0ky k x=>图象上的两点,若120x x <<,则有( ) A .120y y <<B .210y y <<C .120y y <<D .210y y <<4.如图,A 、B 是反比例函数2y x=的图象上的两点。
A C 、BD 都垂直于x 轴,垂足分别为C 、D 。
AB 的延长线交x 轴于点E 。
若C 、D 的坐标分别()1,0、()4,0,则BDE ∆的面积与ACE ∆的面积的比值是( )A .12B .14 C .18 D .116 5.已知函数5y x =-,令12x =,1,32,2,52,3,72,4,92,5,可得函数图像上的10个点,从这十个点中随机抽取两个点()11,A x y ,()22,B x y ,则A 、B 两点在同一反比例函数上的概率是( ) A .19; B .445; C .745; D .25. 6.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若210x ≤≤,则y 与x 的函数图象是( )ABC D(二)填空题:1.如图,已知双曲线()ky k x=>经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若OBC ∆的面积为3,则k =___________.2.函数()10y x x =≥,()240y x x=>的图象如图所示,则结论:①两函数图象的交点A 的坐标为()2,2;②当2x >时,21y y >;③当1x =时,3BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是___________.3.如图,正方形OABC 的面积是4,点B 在反比例函数()0,0ky k x x=><的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积是____________.4.如图,直线43y x =与双曲线()0k y x x =>交于点A ,将直线43y x =向右平移92个单位后,与双曲线()0k y x x =>交于点B ,与x 轴交于点C ,若2AOBC =,则k =________.5.如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C ,AB x ⊥轴于点B ,AOB ∆的面积为1,则AC 的长为_______(保留根号). 6.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根图象猜想线段MN 的长的最小值是_______.7.若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数()10y x x=>的图像上,则点E 的坐标是(______,_______). 8.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=_______.(三)解答题:1.如图,在平面直角坐标系xOy 中,Rt OCD ∆的一边OC 在x 轴上,90C ∠=︒,点D 在第一象限,3OC =,4DC =,反比例函数的图象经过OD 的中点A . (1)求该反此例函数的解析式;(2)若该反比例函数的图象与Rt OCD ∆的另一边DC 交于点B ,求过A 、B 两点的直线的解析式.2.如图,已知()4,A n -,()2,4B -是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式.(2)求直线AB 与x 轴的交点C 的坐标及AOB ∆的面积;(3)求方程0mkx b x +-=的解(请直接写出答案); (4)求不等式0mkx b x+-<的解集(请直接写出答案).3.已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()3,2A . (1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象践内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)(),M m n 是反比例函数图象上的一动点,其中03m <<,过点M 作直线//MN x 轴,交y 轴于点B ;过点A 作直线//AC y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由. 三、点击中考:1、如图,在直角坐标平面内,函数my x=(0x >,m 是常数)的图象经过()1,4A ,(),B a b , 其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,C B . (1)若ABD ∆的面积为4,求点B 的坐标; (2)求证://DC AB ;(3)当AD BC =时,求直线AB 的函数解析式.2.已知()1,A m -与(2,B m +是反比例函数ky x=图像上的两个点 (1)求k 的值;(2)若C 的坐标为()1,0-,则在反比例函数ky x=图像上是否存在点D ,使得以点A 、B 、C 、D 为顶点的四边形为梯形,若存在,求出点D 的坐标;若不存在,请说明理由.3、已知:在矩形AOBC 中,4OB =,3OA =.分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B ,C 重合),过F 点的反比例函数()0ky k x=>的图象与AC 边交于点E . (1)求证:AOE ∆与BOF ∆的面积相等;(2)记OEF BCF S S S ∆∆=-,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF ∆沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.。
2023年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,共24分)1.(4分)下列运算正确的是()A.a5÷a2=a3B.a3+a3=a6C.(a3)2=a5D.=a2.(4分)在分式方程+=5中,设=y,可得到关于y的整式方程为()A.y2+5y+5=0B.y2﹣5y+5=0C.y2+5y+1=0D.y2﹣5y+1=0 3.(4分)下列函数中,函数值y随x的增大而减小的是()A.y=6x B.y=﹣6x C.y=D.y=﹣4.(4分)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同5.(4分)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是()A.AB∥CD B.AD=BC C.∠A=∠B D.∠A=∠D 6.(4分)已知在梯形ABCD中,联结AC,BD,且AC⊥BD,设AB=a,CD=b.下列两个说法:①AC=(a+b);②AD=,则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误二、填空题:(本大题共12题,每题4分,共48分)7.(4分)分解因式:n2﹣9=.8.(4分)化简:﹣的结果为.9.(4分)已知关于x的方程=2,则x=.10.(4分)函数f(x)=的定义域为.11.(4分)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.12.(4分)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.13.(4分)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.14.(4分)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是.15.(4分)如图,在△ABC中,点D,E在边AB,AC上,2AD=BD,DE∥BC,联结DE,设向量=,=,那么用,表示=.16.(4分)垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为.17.(4分)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α<180°),旋转后的点B落在BC上,点B的对应点为D,联结AD,AD是∠BAC的角平分线,则α=.18.(4分)在△ABC中,AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是.三、解答题:(本大题共7题,共78分)19.(10分)计算:+﹣()﹣2+|﹣3|.20.(10分)解不等式组:.21.(10分)如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=,OC=OB.(1)求⊙O的半径;(2)求∠BAC的正切值.22.(10分)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?23.(12分)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC =∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.24.(12分)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.25.(14分)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB中点,为以O为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.2023年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,共24分)1.【分析】根据合并同类项,同底数幂的除法,幂的乘方法则,二次根式的性质进行计算,逐一判断即可解答.【解答】解:A、a5÷a2=a3,故A符合题意;B、a3+a3=2a3,故B不符合题意;C、(a3)2=a6,故C不符合题意;D、=|a|,故D不符合题意;故选:A.【点评】本题考查了合并同类项,同底数幂的除法,幂的乘方与积的乘方,二次根式的性质与化简,准确熟练地进行计算是解题的关键.2.【分析】设=y,则=,原方程可变为:y+=5,再去分母得y2+1=5y,即可得出结论.【解答】解:设=y,则=,分式方程+=5可变为:y+=5,去分母得:y2+1=5y,整理得:y2﹣5y+1=0,故选:D.【点评】本题考查换元法解分式方程,熟练掌握换元法是解题的关键.3.【分析】根据反比例函数的性质和正比例函数的性质分别判断即可.【解答】解:A选项,y=6x的函数值随着x增大而增大,故A不符合题意;B选项,y=﹣6x的函数值随着x增大而减小,故B符合题意;C选项,在每一个象限内,y=的函数值随着x增大而减小,故C不符合题意;D选项,在每一个象限内,y=﹣的函数值随着x增大而增大,故D不符合题意,故选:B.【点评】本题考查了反比例函数的性质,正比例函数的性质,熟练掌握这些性质是解题的关键.4.【分析】观察图象,再逐项判断各选项即可.【解答】解:观察小车与公车的车流量图可知,小车的车流量在每个时段都大于公车的车流量,∴小车的车流量的平均数较大,选项B正确;而选项A,C,D都与图象不相符合,故选:B.【点评】本题考查折线统计图,解题的关键是能从图象中获取有用的信息.5.【分析】由矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项A不符合题意;B、∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项B不符合题意;C、∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴AB⊥AD,AB⊥BC,∴AB的长为AD与BC间的距离,∵AB=CD,∴CD⊥AD,CD⊥BC,∴∠C=∠D=90°,∴四边形ABCD是矩形,故选项C符合题意;D、∵AD∥BC,∴∠A+∠B=180°,∠D+∠C=180°,∵∠A=∠D,∴∠B=∠C,∵AB=CD,∴四边形ABCD是等腰梯形,故选项D不符合题意;故选:C.【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定是解题的关键.6.【分析】根据题意,作出图形,若梯形ABCD为等腰梯形,可得①;②,其余情况得不出这样的结论,从而得到答案.【解答】解:过B作BE∥CA,交BC延长线于E,如图所示:若AD=BC,AB∥CD,则四边形ACEB是平行四边形,∴CE=AB,AC=BE,∴AB∥DC,∴∠DAB=∠CBA,∵AB=AB,∴△DAB≌△CBA(SAS),∴AC=BD,即BD=BE,∵AC⊥BD,∴BE⊥BD,在Rt△BDE中,BD=BE,AB=a,CD=b,∴DE=DC+CE=b+a,∴,此时①正确;过B作BF⊥DE于F,如图所示:在Rt△BFC中,BD=BE,AB=a,CD=b,DE=b+a,∴,,∴BC==,此时②正确;但已知中,梯形ABCD是否为等腰梯形,并未确定;梯形ABCD是AB∥CD还是AD∥BC,并未确定,∴无法保证①②正确,故选:D.【点评】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、勾股定理、等腰直角三角形的判定与性质等知识,孰练掌握相关几何判定与性质是解决问题的关键.二、填空题:(本大题共12题,每题4分,共48分)7.【分析】利用平方差公式分解因式即可得到答案.【解答】解:n2﹣9=(n+3)(n﹣3),故答案为:(n+3)(n﹣3).【点评】本题考查了因式分解,平方差公式,熟练掌握公式法分解因式是解题关键.8.【分析】根据分式的运算法则进行计算即可.【解答】解:原式===2,故答案为:2.【点评】本题考查分式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.9.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.10.【分析】根据函数有意义的条件求解即可.【解答】解:函数f(x)=有意义,则x﹣23≠0,解得x≠23,故答案为:x≠23.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数有意义的条件是解题的关键.11.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.12.【分析】从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,再根据概率公式求解即可.【解答】解:由题意知,从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,所以从中随机摸出一个球是绿球的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.13.【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.【点评】本题考查的是正多边形内角、外角和中心角的知识,掌握中心角的计算公式是解题的关键.14.【分析】根据二次函数的图象与系数的关系求解(答案不唯一).【解答】解:由题意得:b=0,a<0,c>0,∴这个二次函数的解析式可以是:y=﹣x2+1,故答案为:y=﹣x2+1(答案不唯一).【点评】本题考查了二次函数的图象与系数的关系,掌握数形结合思想是解题的关键.15.【分析】由三角形法则求得的值;然后结合平行线截线段成比例求得线段DE的长度,继而求得向量的值.【解答】解:在△ABC中,=,=,则=﹣=﹣.∵2AD=BD,DE∥BC,∴===.∴DE=BC.∴=,即=﹣.故答案为:﹣.【点评】本题主要考查了平面向量和平行线截线段成比例.注意:平面向量既有大小又有方向.16.【分析】先用60除以可回收垃圾所占百分比,得到该市试点区域的垃圾总量,乘以10得到全市垃圾总量,然后乘以干垃圾所占的百分比即可.【解答】解:该市试点区域的垃圾总量为60÷(1﹣50%﹣29%﹣1%)=300(吨),估计全市可收集的干垃圾总量为300×10×50%=1500(吨).故答案为:1500吨.【点评】本题考查的是扇形统计图,利用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.17.【分析】由AB=AD,∠BAD=α及角平分线的定义得∠CAD=∠BAD=α,根据三角形外角性质得∠ADB=35°+α,即有∠B=∠ADB=35°+α,由三角形的内角和定理求解即可.【解答】解:如图,∵AB=AD,∠BAD=α,AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,在△ABC中,∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:;故答案为:.【点评】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质及三角形的内角和等知识,孰练掌握相关图形的性质是解题的关键.18.【分析】先画出图形,连接BE,利用勾股定理可得,,从而可得<r≤2,再根据⊙B与⊙E有公共点列不等式,用二次函数与一元二次方程,一元二次不等式的关系解答.【解答】解:连接BE,如图:∵⊙B过点A,且AB=7,∴⊙B的半径为7,∵⊙E过点D,它的半径为r,且CD=DE,∴CE=CD+DE=2r,∵BC=3,∠C=90°,∴BE==,,∵D在边AC上,点E在CA延长线上,∴,∴<r≤2,∵⊙B与⊙E有公共点,∴AB﹣DE≤BE≤AB+DE,∴,由①得:3r2﹣14r﹣40≤0,解方程3r2﹣14r﹣40=0得:r=﹣2或,画出函数y=3r2﹣14r﹣40的大致图象如下:同理可得:不等式②的解集为r≥2或,∴不等式组的解集为,又∵,∴⊙E半径r的取值范围是.故答案为:.【点评】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解答】解:原式=2+﹣9+3﹣=﹣6.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.20.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集即可.【解答】解:,解不等式①,得x>3,解不等式②,得x<,所以不等式组的解集是3<x<.【点评】本题考查了解一元一次不等式组,能根据求不等式组解集的规律求出不等式组的解集是解此题的关键,同大取大,同小取小,大大小小取不了,小大大小取中间.21.【分析】(1)过点O作OD⊥AB,垂足为D,根据垂径定理可得AD=BD=4,然后在Rt△OBD中,利用锐角三角函数的定义求出OB的长,即可解答;(2)过点C作CE⊥AB,垂足为E,根据已知可得BC=OB=7.5,再利用平行线分线段成比例可得=,从而求出BE的长,进而求出AE的长,然后在Rt△BCE中,利用勾股定理求出CE的长,再在Rt△ACE中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点O作OD⊥AB,垂足为D,∵AB=8,∴AD=BD=AB=4,在Rt△OBD中,cos∠ABC=,∴OB===5,∴⊙O的半径为5;(2)过点C作CE⊥AB,垂足为E,∵OC=OB,OB=5,∴BC=OB=7.5,∵OD⊥AB,∴OD∥CE,∴=,∴=,∴BE=6,∴AE=AB﹣BE=8﹣6=2,在Rt△BCE中,CE===4.5,在Rt△ACE中,tan∠BAC===,∴∠BAC的正切值为.【点评】本题考查了垂径定理,勾股定理,解直角三角形,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【分析】(1)根据打九折列出算式,计算即可;(2)根据每一升油,油的单价降低0.30元知:y=0.9(x﹣0.30);(3)当x=7.30,可得y=6.30,根据优惠后油的单价比原价便宜(x﹣y)元,计算求解即可.【解答】解:(1)由题意知,1000×0.9=900(元),答:实际花了900元购买会员卡;(2)由题意知,y=0.9(x﹣0.30),整理得y=0.9x﹣0.27,∴y关于x的函数解析式为y=0.9x﹣0.27;(3)当x=7.30时,y=0.9×7.30﹣0.27=6.30,∵7.30﹣6.30=1.00,∴优惠后油的单价比原价便宜1.00元.【点评】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用,解题的关键在于理解题意,正确的列出算式和一次函数解析式.23.【分析】(1)证明△ACF≌△ADE(ASA),即可解决问题;(2)证明△ABF∽△CDE,得AF•DE=BF•CE,结合(1)AF=DE,即可解决问题.【解答】证明:(1)∵AD∥BC,∴∠ACF=∠DAC∵∠FAC=∠ADE,AC=AD,∴△ACF≌△ADE(ASA),∴AF=DE;(2)∵△ACF≌△ADE,∴∠AFC=∠DEA,∴∠AFB=∠DEC,∵∠ABC=∠CDE,∴△ABF∽△CDE,∴=,∴AF•DE=BF•CE,∵AF=DE,∴AF2=BF•CE.【点评】本题考查了相似三角形的性质和判定,梯形,勾股定理,熟练运用相似三角形的性质和判定是本题的关键.24.【分析】(1)根据题意,分别将x=0,y=0代入直线即可求得;(2)设,得到抛物线的顶点式为,将B(0,6)代入可求得,进而可得到抛物线解析式为,即可求得b,c;(3)根据题意,设P(p,0),,根据平移的性质可得点B,点C向下平移的距离相同,列式求得m=﹣4,,然后得到抛物线N解析式为:,将B(0,6)代入可得,即可得到答案.【解答】解:(1)在中,令x=0得:y=6,∴B(0,6),令y=0得:x=﹣8,∴A(﹣8,0);(2)设,设抛物线的解析式为:,∵抛物线M经过点B,∴将B(0,6)代入得:,∵m≠0,∴,即,将代入y=a(x﹣m)2+3m+6,整理得:,∴,c=6;(3)如图:∵CD∥x轴,点P在x轴上,∴设P(p,0),,∵点C,B分别平移至点P,D,∴点B,点C向下平移的距离相同,∴,解得:m=﹣4,由(2)知,∴,∴抛物线N的函数解析式为:,将B(0,6)代入可得:,∴抛物线N的函数解析式为:或.【点评】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,涉及平移的性质,二次函数的图性质等,解题的关键是根据的平移性质求出m和a的值.25.【分析】(1)由∠ABC=∠C,∠ODB=∠ABC,即得∠C=∠ODB,OD∥AC,根据F 是OB的中点,OG=DG,知FG是△OBD的中位线,故FG∥BC,即可得证;(2)设∠OFE=∠DOE=α,OF=FB=a,有OE=OB=2a,由(1)可得OD∥AC,故∠AEO=∠DOE=α,得出∠OFE=∠AEO=α,进而证明△AEO∽△AFE,AE2=AO﹣AF,由AE2=EO2﹣AO2,有EO2﹣AO2=AO×AF,解方程即可答案;(3)△OBG是以OB为腰的等腰三角形,①当OG=OB时,②当BG=OB时,证明△BGOCD△BPA,得出,设OG=2k,AP=3k,根据OG∥AE,得出△FOG∽△FEE,即得AE=2OG=4k,PE=AE﹣AP=k,连接OE交PG于点Q,证明△QPE∽△QGO,在△PQE与△BQO中,,,得出==,可得△POE∽△OQB,根据相似三角形的性质得出a=2k,进而即可求得答案.【解答】(1)证明:如图:∵AC=AB,∴∠ABC=∠C,∵OD=OB,∴∠ODB=∠ABC,∴∠C=∠ODB,∴OD∥AC,∵F是OB的中点,OG=DG,∴FG是△OBD的中位线,∴FG∥BC,即GE∥CD,∴四边形CEDG是平行四边形;(2)解:如图:由∠OFE=∠DOE,AO=4,点F边OB中点,设∠OFE=∠DOE=α,OF=FB=a,则OE=OB=2a,由(1)可得OD∥AC,∴∠AEO=∠DOE=α,∴∠OFE=∠AEO=α,∵∠A=∠A,∴△AEO∽△AFE,∴,即AE2=AO•AF,在Rt△AEO中,AE2=EO2﹣AO2,∴EO2﹣AO2=AO×AF,∴(2a)2﹣42=4×(4+a),解得:或(舍去),∴OB=2a=1+;(3)解:①当OG=OB时,点G与点D重合,不符合题意,舍去;②当BG=OB时,延长BG交AC于点P,如图所示,∵点F是OB的中点,AO=OF,∴AO=OF=FB,设AO=OF=FB=a,∵OG∥AC,∴△BGO∽△BPA,∴,设OG=2k,AP=3k,∵OG∥AE,∴△FOG∽△FAE,∴,∴AE=2OG=4k,∴PE=AE﹣AP=k,设OE交PG于点Q,∵OG∥PE,∴△QPE∽△QGO,∴,∴PQ=a,QG=a,,在△PQE与△BQO中,,,∴,又∠PQE=∠BQO,∴△PQE∽△OQB,∴,∴,∴a=2k,∵OD=OB=2a,OG=2k,∴,∴的值为.【点评】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定是解题的关键。
2024届上海市中考数学复习:精选历年真题、好题专项(函数概念)练习一.选择题(共20小题)1.(2022秋•浦东新区校级期末)下列函数中,属于二次函数的是( )A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=2x2﹣7 D.2.(2022秋•浦东新区校级期末)如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么( )A.a<0,b>0,c>0 B.a>0,b<0,c>0C.a>0,b>0,c<0 D.a<0,b<0,c<03.(2022秋•杨浦区校级期末)在直角坐标平面内,如果抛物线y=﹣x2﹣1经过平移可以与抛物线y=﹣x2互相重合,那么这个平移是( )A.向上平移1个单位 B.向下平移1个单位C.向左平移1个单位 D.向右平移1个单位4.(2022秋•嘉定区校级期末)下列函数中,是二次函数的是( )A.y=x+2 B.C.y=(2x﹣1)2﹣4x2 D.y=2﹣3x25.(2022秋•青浦区校级期末)小明准备画一个二次函数的图象,他首先列表(如下表),但在填写函数值时,不小心把其中一个蘸上了墨水(表中),那么这个被蘸上了墨水的函数值是( )x … ﹣1 0 1 2 3 …3 4 3 0 …y …A.﹣1 B.3 C.4 D.06.(2022秋•金山区校级期末)下列函数中,是二次函数的是( )A.y=﹣3x+5 B.y=2x2C.y=(x+1)2﹣x2 D.y=7.(2022秋•黄浦区期末)二次函数y=2x2+8x+5的图象的顶点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8.(2022秋•徐汇区期末)下列函数中,y关于x的二次函数是( )A.y=ax2+bx+c B.y=C.y=x(x+1) D.y=(x+2)2﹣x29.(2022秋•杨浦区期末)抛物线y=﹣3(x+1)2+2的顶点坐标是( )A.(1,2) B.(1,﹣2) C.(﹣1,2) D.(﹣1,﹣2)10.(2022秋•杨浦区期末)单板滑雪大跳台是北京冬奥会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x+m)2+k(a<0).某运动员进行了两次训练.第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如图.根据上述数据,该运动员竖直高度的最大值为( ) 第一次训练数据0 2 5 8 11 14水平距离x/m20.00 21.40 22.75 23.20 22.75 21.40竖直高度y/mA.23.20cm B.22.75cm C.21.40cm D.23cm11.(2022秋•浦东新区期末)已知抛物线y=2(x﹣1)2+3,那么它的顶点坐标是( ) A.(﹣1,3) B.(1,3) C.(2.1 ) D.(2,3)12.(2022秋•闵行区期末)抛物线y=2x2向下平移3个单位长度后所得新抛物线的顶点坐标为( ) A.(﹣3,0) B.(3,0) C.(0,﹣3) D.(0,3)13.(2022秋•徐汇区期末)函数的图象经过的象限是( )A .第一、三象限B .第一、二象限C.第二、四象限 D.第三、四象限14.(2022秋•青浦区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是( )A.c<0 B.b>0 C.b2﹣4ac<0 D.a+b+c=015.(2022秋•黄浦区期末)关于抛物线y=(x﹣1)2﹣2,以下说法正确的是( )A.抛物线在直线x=﹣1右侧的部分是上升的B.抛物线在直线x=﹣1右侧的部分是下降的C.抛物线在直线x=1右侧的部分是上升的D.抛物线在直线x=1右侧的部分是下降的16.(2022秋•黄浦区校级期末)将抛物线y=2x2向右平移3个单位,能得到的抛物线是( ) A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)217.(2022秋•徐汇区校级期末)下列各点中,在二次函数y=x2﹣8x﹣9图象上的点是( ) A.(1,﹣16) B.(﹣1,﹣16) C.(﹣3,﹣8) D.(3,24)18.(2022秋•杨浦区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,则a、b、c满足( )A.a<0,b<0,c<0 B.a>0,b<0,c<0C.a<0,b>0,c>0 D.a>0,b<0,c>019.(2022秋•浦东新区期末)已知二次函数y=ax2+bx+c的图象如图所示,那么点P(a,b)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限20.(2022秋•金山区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列结论中正确的是( )A.a>0 B.b<0 C.c<0 D.b=﹣2a二.填空题(共33小题)21.(2022秋•金山区校级期末)如果抛物线y=(k﹣2)x2的开口向上,那么k的取值范围是. 22.(2022秋•闵行区期末)已知f(x)=x2+2x,那么f(1)的值为.23.(2022秋•闵行区期末)抛物线y=2x2在对称轴的左侧部分是的(填“上升”或“下降”). 24.(2022秋•嘉定区校级期末)如果抛物线y=(a+2)x2+a的开口向下,那么a的取值范围是. 25.(2022秋•嘉定区校级期末)二次函数y=﹣x2+4x+a图象上的最高点的横坐标为.26.(2022秋•浦东新区校级期末)若点A(﹣3,y1)、B(0,y2)是二次函数y=﹣2(x﹣1)2+3图象上的两点,那么y1与y2的大小关系是 (填y1>y2、y1=y2或y1<y2).27.(2022秋•徐汇区期末)如果抛物线y=(k+1)x2+x﹣k2+2与y轴的交点为(0,1),那么k的值是 . 28.(2022秋•青浦区校级期末)二次函数y=x2﹣4x+1图象的对称轴是直线 .29.(2022秋•青浦区校级期末)如果抛物线y=ax2﹣1的顶点是它的最高点,那么a的取值范围是. 30.(2022秋•徐汇区期末)抛物线y=﹣x2﹣3x+3与y轴交点的坐标为 .31.(2022秋•徐汇区期末)二次函数y=x2﹣6x图象上的最低点的纵坐标为.32.(2022秋•黄浦区校级期末)如果二次函数y=(m﹣1)x2+x+(m2﹣1)的图象过原点,那么m= . 33.(2022秋•黄浦区校级期末)沿着x轴正方向看,抛物线y=x2﹣2在y轴左侧的部分是 的(填“上升”或“下降”).34.(2022秋•嘉定区校级期末)抛物线y=2x2+3x与y轴的交点坐标是.35.(2022秋•嘉定区校级期末)抛物线y=﹣x2+2x在直线x=1右侧的部分是(从“上升的”或“下降的”中选择).36.(2022秋•徐汇区校级期末)某初三学生对自己某次实心球训练时不慎脱手,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该考生此次实心球训练的成绩为米. 37.(2022秋•杨浦区校级期末)二次函数y=5x2﹣10x+5的图象的顶点坐标是.38.(2022秋•杨浦区校级期末)已知二次函数y=f(x)图象的对称轴是直线x=1,如果f(2)>f(3),那么f(﹣1) f(0).(填“>”或“<”)39.(2022秋•青浦区校级期末)已知点A(0,y1)、B(﹣1,y2)在抛物线y=x2﹣2x+c(c为常数)上,则y1y2(填“>”、“=”或“<”).40.(2022秋•青浦区校级期末)函数y=2x2+4x﹣5的图象与y轴的交点的坐标为 .41.(2022秋•金山区校级期末)若将抛物线y=2(x﹣1)2+3向下平移3个单位,则所得到的新抛物线表达式为.42.(2022秋•金山区校级期末)二次函数y=ax2+bx+c图象上部分点的坐标满足如表:x … ﹣4 ﹣3 ﹣2 ﹣1 0 …y … m ﹣3 ﹣2 ﹣3 ﹣6 …那么m的值为.43.(2022秋•青浦区校级期末)抛物线y=x2﹣2在y轴右侧的部分是 .(填“上升”或“下降”) 44.(2022秋•徐汇区校级期末)在直角坐标平面内,把抛物线y=(x+1)2向左平移4个单位,再向下平移2个单位,那么所得抛物线的解析式是.45.(2022秋•徐汇区校级期末)如图所示的抛物线y=x2﹣bx+b2﹣9的图象,那么b的值是.46.(2022秋•徐汇区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣ax+bc的图象不经过象限.47.(2022秋•浦东新区校级期末)二次函数y=﹣2x2﹣x+3的图象与y轴的交点坐标为 .48.(2022秋•浦东新区校级期末)将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是 . 49.(2022秋•浦东新区校级期末)已知二次函数的图象经过(0,3)、(4,3)两点,则该二次函数的图象对称轴为直线 .50.(2022秋•浦东新区期末)将抛物线y=x2+4x﹣1向右平移3个单位后,所得抛物线的表达式是. 51.(2022秋•黄浦区期末)如果一个二次函数的图象的对称轴是y轴,且这个图象经过平移后能与y=3x2+2x重合,那么这个二次函数的解析式可以是.(只要写出一个)52.(2022秋•徐汇区期末)抛物线y=x2+2向下平移1个单位,再向右平移3个单位,得到的抛物线的函数解析式为.53.(2022秋•静安区期末)抛物线y=(x+1)2﹣2与y轴的交点坐标是.三.过程解答题(共7小题)54.(2022秋•徐汇区期末)在直角坐标平面内,二次函数y=ax2+bx的图象经过点A(1,﹣5)和点B(﹣1,3). (1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标.55.(2022秋•黄浦区期末)在平面直角坐标系xOy中,已知抛物线y=x2+mx+m.(1)如果抛物线经过点(1,9),求该抛物线的对称轴;(2)如果抛物线的顶点在直线y=﹣x上,求m的值.56.(2022秋•徐汇区期末)已知在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(1,0)、B(0,﹣5)、C(2,3).求这个二次函数的解析式,并求出其图象的顶点坐标和对称轴.57.(2022秋•嘉定区校级期末)已知抛物线y=x2+bx经过点A(4,0),顶点为点B.(1)求抛物线的表达式及顶点B的坐标;(2)将抛物线向上平移1个单位再向左平移1个单位,平移后抛物线顶点记为C点,求SΔABC. 58.(2022秋•徐汇区校级期末)已知二次函数图象与x轴两个交点之间的距离是4个单位,且顶点M为(﹣1,4),求二次函数的解析式、截距,并说明二次函数图象的变化趋势.59.(2022秋•闵行区期末)已知在平面直角坐标系xOy中,抛物线y=﹣x2+2x+3与y轴交于点A,其顶点坐标为B. (1)求直线AB的表达式;(2)将抛物线y=﹣x2+2x+3沿x轴正方向平移m(m>0)个单位后得到的新抛物线的顶点C恰好落在反比例函数y=的图象上,求∠ACB的余切值.60.(2022秋•金山区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c过点A(﹣1,0)、B(2,0),和点C(0,﹣4)三点.(1)求抛物线的表达式;(2)P为抛物线第四象限上的一个动点,连接AP交线段BC于点G,如果AG:GP=3,求点P的坐标.参考答案一.选择题(共20小题)1.(2022秋•浦东新区校级期末)下列函数中,属于二次函数的是( )A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=2x2﹣7 D.【详细分析】根据一次函数、反比例函数、二次函数的定义判断各选项即可得出答案.【过程解答】解:A、是一次函数,故本选项错误;B、整理后是一次函数,故本选项错误;C、y=2x2﹣7是二次函数,故本选项正确;D、y与x2是反比例函数关系,故本选项错误.故选:C.【名师点评】本题考查了二次函数的定义,关键是掌握二次函数的定义条件:二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2.2.(2022秋•浦东新区校级期末)如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么( )A.a<0,b>0,c>0 B.a>0,b<0,c>0C.a>0,b>0,c<0 D.a<0,b<0,c<0【详细分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【过程解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0.故选:A.【名师点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.3.(2022秋•杨浦区校级期末)在直角坐标平面内,如果抛物线y=﹣x2﹣1经过平移可以与抛物线y=﹣x2互相重合,那么这个平移是( )A.向上平移1个单位 B.向下平移1个单位C.向左平移1个单位 D.向右平移1个单位【详细分析】根据抛物线顶点的平移路径即可判断.【过程解答】解:将抛物线y=﹣x2﹣1的顶点为(0,﹣1),抛物线y=﹣x2的顶点为(0,0),从(0,﹣1)到(0,0)是向上平移1个单位,∴抛物线是向上平移1个单位,故选:A.【名师点评】本题考查了抛物线的平移,掌握抛物线的平移要看顶点的平移;横坐标改变是左右平移,纵坐标改变是上下平移.4.(2022秋•嘉定区校级期末)下列函数中,是二次函数的是( )A.y=x+2 B.C.y=(2x﹣1)2﹣4x2 D.y=2﹣3x2【详细分析】根据二次函数的标准形式y=ax2+bx+c(a≠0),从选项中直接可以求解.【过程解答】解:二次函数的标准形式为y=ax2+bx+c(a≠0),∴y=2﹣3x2是二次函数,故选:D.【名师点评】本题考查二次函数的定义,熟练掌握二次函数的定义是解题的关键.5.(2022秋•青浦区校级期末)小明准备画一个二次函数的图象,他首先列表(如下表),但在填写函数值时,不小心把其中一个蘸上了墨水(表中),那么这个被蘸上了墨水的函数值是( )x … ﹣1 0 1 2 3 …3 4 3 0 …y …A.﹣1 B.3 C.4 D.0【详细分析】由图表可知,x=0和2时的函数值相等,然后根据二次函数的对称性求解即可.【过程解答】解:∵x=0、x=2时的函数值都是3相等,∴此函数图象的对称轴为直线x==1.∴这个被蘸上了墨水的函数值是0,故选:D.【名师点评】本题主要考查了二次函数的应用,二次函数图象上点的坐标特征,熟练掌握二次函数的图象与性质是解题的关键.6.(2022秋•金山区校级期末)下列函数中,是二次函数的是( )A.y=﹣3x+5 B.y=2x2C.y=(x+1)2﹣x2 D.y=【详细分析】根据二次函数的定义逐个判断即可.【过程解答】解:A.函数是一次函数,不是二次函数,故本选项不符合题意;B.函数是二次函数,故本选项符合题意;C.y=(x+1)2﹣x2=2x+1,函数是一次函数,不是二次函数,故本选项不符合题意;D.函数不是二次函数,故本选项不符合题意;故选:B.【名师点评】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,形如y=ax2+bx+c(a、b、c 为常数,a≠0)的函数,叫二次函数.7.(2022秋•黄浦区期末)二次函数y=2x2+8x+5的图象的顶点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【详细分析】先将该抛物线化为顶点式,求出顶点坐标,即可得到该顶点位于哪个象限.【过程解答】解:∵二次函数y=2x2+8x+5=2(x+2)2﹣3,∴该函数的顶点坐标为(﹣2,﹣3),该顶点位于第三象限,故选:C.【名师点评】本题考查二次函数的性质,过程解答本题的关键是求出该抛物线的顶点坐标.8.(2022秋•徐汇区期末)下列函数中,y关于x的二次函数是( )A.y=ax2+bx+c B.y=C.y=x(x+1) D.y=(x+2)2﹣x2【详细分析】利用二次函数定义进行详细分析即可.【过程解答】解:A、当a=0时,不是二次函数,故此选项不合题意;B、含有分式,不是二次函数,故此选项不合题意;C、y=x(x+1)=x2+x,是二次函数,故此选项符合题意;D、y=(x+2)2﹣x2=4x+4,不是二次函数,故此选项不符合题意;故选:C.【名师点评】此题主要考查了二次函数,关键是掌握判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.9.(2022秋•杨浦区期末)抛物线y=﹣3(x+1)2+2的顶点坐标是( )A.(1,2) B.(1,﹣2) C.(﹣1,2) D.(﹣1,﹣2)【详细分析】由函数解析式直接可得顶点坐标.【过程解答】解:∵y=﹣3(x+1)2+2,∴顶点为(﹣1,2),故选:C.【名师点评】本题考查二次函数的性质;熟练掌握二次函数由解析式求顶点坐标的方法是解题的关键. 10.(2022秋•杨浦区期末)单板滑雪大跳台是北京冬奥会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x+m)2+k(a<0).某运动员进行了两次训练.第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如图.根据上述数据,该运动员竖直高度的最大值为( ) 第一次训练数据0 2 5 8 11 14水平距离x/m20.00 21.40 22.75 23.20 22.75 21.40竖直高度y/mA.23.20cm B.22.75cm C.21.40cm D.23cm【详细分析】根据表格中数据求出顶点坐标即可.【过程解答】解:根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴k=23.20,即该运动员竖直高度的最大值为23.20m,故选:A.【名师点评】本题考查二次函数的应用,关键是根据表格中数据求出顶点坐标.11.(2022秋•浦东新区期末)已知抛物线y=2(x﹣1)2+3,那么它的顶点坐标是( ) A.(﹣1,3) B.(1,3) C.(2.1 ) D.(2,3)【详细分析】抛物线的表达式已经是顶点式的形式,直接写出顶点坐标即可.【过程解答】解:∵抛物线的表达式是y=2(x﹣1)2+3,∴它的顶点坐标是(1,3),故选:B.【名师点评】本题主要考查二次函数的性质的知识点,此题比较简单.12.(2022秋•闵行区期末)抛物线y=2x2向下平移3个单位长度后所得新抛物线的顶点坐标为( ) A.(﹣3,0) B.(3,0) C.(0,﹣3) D.(0,3)【详细分析】根据平移的规律即可得到平移后所得新的抛物线的顶点坐标.【过程解答】解:抛物线y=2x2的顶点坐标是(0,0),将该顶点向下平移3个单位长度所得的顶点坐标是(0,﹣3).故选:C.【名师点评】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.13.(2022秋•徐汇区期末)函数的图象经过的象限是( )A.第一、三象限 B.第一、二象限C.第二、四象限 D.第三、四象限【详细分析】由y=()2=x2,>0,可知函数的图象为开口向上,顶点在原点的抛物线,故经过的象限是第一、二象限.【过程解答】解:y=()2=x2,∵a<0,∴>0,∴函数的图象为开口向上,顶点在原点的抛物线,∴经过的象限是第一、二象限.故选:B.【名师点评】本题主要考查二次函数的图象,先求出解析式,再确定出抛物线的开口方向和顶点坐标是解题的关键.14.(2022秋•青浦区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是( )A.c<0 B.b>0 C.b2﹣4ac<0 D.a+b+c=0【详细分析】根据题目中的函数图象和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以过程解答本题.【过程解答】解:由图象可得,该函数图象与y轴交于正半轴,故c>0,则选项A错误,不符合题意;对称轴位于y轴左侧,a<0,则b<0,故选项B错误,不符合题意;图象与x轴有两个交点,则b2﹣4ac>0,故选项C错误,不符合题意;当x=1时,y=0,即a+b+c=0,故选项D正确,符合题意;故选:D.【名师点评】本题考查抛物线与x轴的交点、二次函数的性质,过程解答本题的关键是明确题意,利用数形结合的思想过程解答.15.(2022秋•黄浦区期末)关于抛物线y=(x﹣1)2﹣2,以下说法正确的是( )A.抛物线在直线x=﹣1右侧的部分是上升的B.抛物线在直线x=﹣1右侧的部分是下降的C.抛物线在直线x=1右侧的部分是上升的D.抛物线在直线x=1右侧的部分是下降的【详细分析】根据题目中的抛物线解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以过程解答本题.【过程解答】解:∵抛物线y=(x﹣1)2﹣2,∴抛物线在直线x=﹣1右侧的部分先下降,后上升,故选项A、B错误,不符合题意;抛物线在直线x=1右侧的部分是上升的,故选项C正确,符合题意,选项D错误,不符合题意;故选:C.【名师点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,过程解答本题的关键是明确题意,利用二次函数的性质过程解答.16.(2022秋•黄浦区校级期末)将抛物线y=2x2向右平移3个单位,能得到的抛物线是( ) A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)2【详细分析】根据“左加右减、上加下减”的原则进行过程解答即可.【过程解答】解:由“左加右减”的原则可知,抛物线y=2x2向右平移3个单位,能得到的抛物线是y=2(x﹣3)2.故选:D.【名师点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是过程解答此题的关键. 17.(2022秋•徐汇区校级期末)下列各点中,在二次函数y=x2﹣8x﹣9图象上的点是( ) A.(1,﹣16) B.(﹣1,﹣16) C.(﹣3,﹣8) D.(3,24)【详细分析】分别计算自变量为1、﹣1、﹣3、3所对应的函数值,然后根据二次函数图象上点的坐标特征进行判断.【过程解答】解:当x=1时,y=x2﹣8x﹣9=﹣16;当x=﹣1时,y=x2﹣8x﹣9=0;当x=﹣3时,y=x2﹣8x﹣9=24;当x=3时,y=x2﹣8x﹣9=﹣24;所以点(1,﹣16)在二次函数y=x2﹣8x﹣9的图象上.故选:A.【名师点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 18.(2022秋•杨浦区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,则a、b、c满足( )A.a<0,b<0,c<0 B.a>0,b<0,c<0C.a<0,b>0,c>0 D.a>0,b<0,c>0【详细分析】根据开口方向可得a的符号,根据对称轴在y轴的哪侧可得b的符号,根据抛物线与y轴的交点可得c的符号.【过程解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴交于负半轴,∴c>0.故选:D.【名师点评】本题考查二次函数图象与系数的关系;用到的知识点为:抛物线的开口向上,a>0;对称轴在y 轴右侧,a,b异号;抛物线与y轴的交点即为c的值.19.(2022秋•浦东新区期末)已知二次函数y=ax2+bx+c的图象如图所示,那么点P(a,b)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【详细分析】由抛物线的开口向下知a<0,由与y轴的交点为在y轴的正半轴上可以得到c>0,由对称轴为x =>0可以推出b的取值范围,然后根据象限的特点即可得出答案.【过程解答】解:∵抛物线的开口向下,∴a<0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∵对称轴为x=>0,∴a、b异号,即b>0,根据第二象限特点:x<0,y>0,可知点P在第二象限.故选:B.【名师点评】本题主要考查了二次函数y=ax2+bx+c系数符号的确定以及第二象限的特点,难度适中. 20.(2022秋•金山区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列结论中正确的是( )A.a>0 B.b<0 C.c<0 D.b=﹣2a【详细分析】根据二次函数的图象逐一判断即可.【过程解答】解:A.由图可知:抛物线开口向下,∴a<0,故A错误,不符合题意;∵抛物线与y轴的交点在y轴的正半轴,∴c>0,故C错误,不符合题意;∵对称轴为直线x=1,∴﹣=1,即b=﹣2a,故D正确,符合题意;∵a<0,﹣=1,∴b>0,故B错误,不符合题意.故选:D.【名师点评】本题考查了二次函数图象与系数的关系,从图象中获取信息并结合图象去详细分析是解题的关键. 二.填空题(共33小题)21.(2022秋•金山区校级期末)如果抛物线y=(k﹣2)x2的开口向上,那么k的取值范围是k>2. 【详细分析】根据二次函数的图象与性质即可求出答案.【过程解答】解:由题意可知:k﹣2>0,∴k>2,故答案为:k>2.【名师点评】本题考查二次函数图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质. 22.(2022秋•闵行区期末)已知f(x)=x2+2x,那么f(1)的值为3.【详细分析】本题所求f(1),就是求当x=1时,x2+2x的值.【过程解答】解:f(1)=1+2=3.故答案是:3.【名师点评】本题考查了函数值,解本题的关键是要理解f(x)的含义.23.(2022秋•闵行区期末)抛物线y=2x2在对称轴的左侧部分是下降 的(填“上升”或“下降”). 【详细分析】根据二次函数的性质过程解答即可.【过程解答】解:因为a=2>0,所以抛物线y=2x2在对称轴左侧部分是下降的,故答案为:下降.【名师点评】本题主要考查二次函数的性质,掌握二次函数的性质是解题的关键.24.(2022秋•嘉定区校级期末)如果抛物线y=(a+2)x2+a的开口向下,那么a的取值范围是a<﹣2.【详细分析】根据抛物线y=(a+2)x2+a的开口向下,可得a+2<0,从而可以得到a的取值范围.【过程解答】解:∵抛物线y=(a+2)x2+x﹣1的开口向下,∴a+2<0,得a<﹣2,故答案为:a<﹣2.【名师点评】本题考查二次函数的性质和定义,解题的关键是明确二次函数的开口向下,则二次项系数就小于0. 25.(2022秋•嘉定区校级期末)二次函数y=﹣x2+4x+a图象上的最高点的横坐标为﹣2. 【详细分析】直接利用二次函数最值求法得出函数顶点式,进而得出答案.【过程解答】解:∵二次函数y=﹣x2+4x+a=﹣(x﹣2)2+4+a,∴二次函数图象上的最高点的横坐标为:﹣2.故答案为:﹣2.【名师点评】此题主要考查了二次函数的最值,正确得出二次函数顶点式是解题关键.26.(2022秋•浦东新区校级期末)若点A(﹣3,y1)、B(0,y2)是二次函数y=﹣2(x﹣1)2+3图象上的两点,那么y1与y2的大小关系是 y1<y2(填y1>y2、y1=y2或y1<y2).【详细分析】分别计算自变量为﹣2、3时的函数值,然后比较函数值的大小即可.【过程解答】解:当x=﹣3时,y1=﹣2(x﹣1)2+3=﹣29;当x=0时,y2=﹣2(x﹣1)2+3=1;∵﹣29<1,∴y1<y2,故答案为:y1<y2.【名师点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.27.(2022秋•徐汇区期末)如果抛物线y=(k+1)x2+x﹣k2+2与y轴的交点为(0,1),那么k的值是 1. 【详细分析】把交点为(0,1)代入抛物线解析式,解一元二次方程,即可解得k.【过程解答】解:∵抛物线y=(k+1)x2+x﹣k2+2与y轴的交点为(0,1),∴﹣k2+2=1,解得:k=±1,∵k+1≠0,∴k=1,故答案为1.【名师点评】本题主要考查待定系数法求二次函数解析式的知识点,过程解答本题的关键是理解抛物线与y轴的交点问题,本题难度不大.28.(2022秋•青浦区校级期末)二次函数y=x2﹣4x+1图象的对称轴是直线 x=2.【详细分析】首先把二次函数的解析式进行配方,然后根据配方的结果即可确定其对称轴,也可以利用公式确定对称轴.【过程解答】解:∵y=x2﹣4x+1=(x﹣2)2﹣3,∴二次函数y=x2﹣4x+1图象的对称轴是直线x=2.故答案为:x=2.【名师点评】此题主要考查了二次函数的性质,解题的关键是会利用配方法确定对称轴,或者利用公式确定抛物线的对称轴.29.(2022秋•青浦区校级期末)如果抛物线y=ax2﹣1的顶点是它的最高点,那么a的取值范围是a<0. 【详细分析】根据题目中的函数解析式和二次函数的性质,可知a<0.【过程解答】解:∵抛物线y=ax2﹣1的顶点是它的最高点,∴a<0,故答案为:a<0.【名师点评】本题考查二次函数的性质、二次函数的最值,过程解答本题的关键是明确题意,利用二次函数的性质过程解答.30.(2022秋•徐汇区期末)抛物线y=﹣x2﹣3x+3与y轴交点的坐标为 (0,3) .【详细分析】把x=0代入抛物线y=﹣x2﹣3x+3,即得抛物线y=﹣x2﹣3x+3与y轴的交点.【过程解答】解:∵当x=0时,抛物线y=﹣x2﹣3x+3与y轴相交,∴把x=0代入y=﹣x2﹣3x+3,求得y=3,∴抛物线y=﹣x2+3x﹣3与y轴的交点坐标为(0,3).故答案为(0,3).【名师点评】本题考查了二次函数图象上点的坐标特征,比较简单,掌握y轴上点的横坐标为0是解题的关键. 31.(2022秋•徐汇区期末)二次函数y=x2﹣6x图象上的最低点的纵坐标为﹣9.【详细分析】将二次函数解析式化为顶点式求解即可.【过程解答】解:∵y=x2﹣6x=(x﹣3)2﹣9,∴抛物线最低点坐标为﹣9.故答案为:﹣9.【名师点评】本题考查二次函数的性质,解题关键是熟练掌握二次函数一般式与顶点式的转化.32.(2022秋•黄浦区校级期末)如果二次函数y=(m﹣1)x2+x+(m2﹣1)的图象过原点,那么m= ﹣1. 【详细分析】将原点坐标(0,0)代入二次函数解析式,列方程求m,注意二次项系数m﹣1≠0.【过程解答】解:∵二次函数y=(m﹣1)x2+x+(m2﹣1)的图象过原点,∴m2﹣1=0,解得m=±1,又二次项系数m﹣1≠0,∴m=﹣1.故本题答案为:﹣1.【名师点评】本题考查了二次函数图象上的点与解析式的关系,将点的坐标代入解析式是解题的关键,判断二次项系数不为0是难点.33.(2022秋•黄浦区校级期末)沿着x轴正方向看,抛物线y=x2﹣2在y轴左侧的部分是 下降 的(填“上升”或“下降”).【详细分析】根据二次函数的性质过程解答即可.。
上海市各区2021年中考模拟数学试题汇编:二次函数选择与填空一.选择题1.(2021•杨浦区三模)将抛物线y=x2向左平移2个单位后得到新的抛物线的表达式为()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)2 2.(2021•徐汇区二模)将抛物线y=﹣x2向右平移3个单位,再向下平移2个单位后所得新抛物线的顶点是()A.(3,﹣2)B.(﹣3,﹣2)C.(3,2)D.(﹣3,2)3.(2021•虹口区二模)如果将抛物线y=2x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=2(x+1)2B.y=2(x﹣1)2C.y=2x2+1 D.y=2x2﹣1 4.(2021•松江区二模)将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A.(2,4)B.(﹣1,1)C.(5,1)D.(2,﹣2)5.(2021•黄浦区二模)“利用描点法画函数图象,进而探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着研究函数y=,其图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限6.(2021•浦东新区模拟)二次函数y=﹣(x﹣2)2﹣3的图象的顶点坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)7.(2021•浦东新区模拟)关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是28.(2021•上海模拟)抛物线y=(x﹣2)2+1的顶点坐标是()A.(﹣2,﹣1)B.(﹣2,1)C.(2,﹣1)D.(2,1)二.填空题9.(2021•浦东新区模拟)已知二次函数y =﹣x 2+4x 图象的最高点是 . 10.(2021•上海模拟)已知点A (1,y 1)、点B (2,y 2)在抛物线y =ax 2﹣2上,且y 1<y 2,那么a 的取值范围是 .11.(2021•浦东新区二模)将抛物线y =x 2+2向右平移2个单位后,所得新抛物线的顶点坐标是 .12.(2021•浦东新区校级二模)如果一抛物线的对称轴为x =1,且经过点A (3,3),那么点A 关于对称轴的对称点B 的坐标为 .13.(2021•宝山区二模)已知点A (﹣3,y 1)和点B (﹣,y 2)都在二次函数y =ax 2﹣2ax +m (a >0)的图象上,那么y 1﹣y 2 0(结果用>,<,=表示).14.(2021•青浦区二模)如果将抛物线y =﹣x 2向下平移,使其经过点(0,﹣2),那么所得新抛物线的表达式是 .15.(2021•崇明区二模)如图,在平面直角坐标系xOy 中,等腰直角三角形OAB 的斜边OA 在x 轴上,且OA =4,如果抛物线y =ax 2+bx +c 向下平移4个单位后恰好能同时经过O 、A 、B 三点,那么a +b +c = .16.(2021•长宁区二模)如果抛物线y =(m +1)x 2的最高点是坐标轴的原点,那么m 的取值范围是 .17.(2021•普陀区二模)抛物线y =ax 2+ax +2(a ≠0)的对称轴是直线 .18.(2021•奉贤区二模)如果抛物线y =ax 2+bx +c 在对称轴左侧呈上升趋势,那么a 的取值范围是 .19.(2021•浦东新区三模)如果将抛物线y =2x 2向左平移3个单位,那么所得新抛物线的表达式为.参考答案1.【分析】先得到抛物线y=x2顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣2,0),然后利用顶点式写出平移后的新的抛物线的解析式.【解答】解:抛物线y=x2顶点坐标为(0,0),把点(0,0)向左平移2个单位后所得对应点的坐标为(﹣2,0),所以平移后的新的抛物线的表达式为y=(x+2)2.故选:C.2.【分析】根据平移规律,可得顶点式解析式.【解答】解:将抛物线y=﹣x2向右平移3个单位,再向下平移2个单位后,得y=﹣(x ﹣3)2﹣2,∴顶点坐标为(3,﹣2),故选:A.3.【分析】根据“左加右减”的法则即可得出结论.【解答】解:∵抛物线y=2x2向左平移1个单位后,所得新抛物线的表达式为y=2(x+1)2,故选:A.4.【分析】根据平移规律,可得顶点式解析式.【解答】解:将抛物线y=(x﹣2)2+1向上平移3个单位,得y=(x﹣2)2+1+3,即y =(x﹣2)2+4,顶点坐标为(2,4),故选:A.5.【分析】根据x的取值,判断y的范围,即可求解.【解答】解:根据题意x≠0,当x<0时,y>0;此时点在二象限;当x>0时,y>0;此时点在一象限;故选:A.6.【分析】根据题目中函数的解析式直接得到此二次函数的顶点坐标.【解答】解:∵y=﹣(x﹣2)2﹣3,∴二次函数y=﹣(x﹣2)2﹣3的图象的顶点坐标是(2,﹣3)故选:B.7.【分析】由抛物线的解析式可求得其开口方向、对称轴、增减性以及顶点坐标,进一步可得出答案.【解答】解:∵y =﹣x 2+2x ﹣3=﹣(x ﹣1)2﹣2,∴抛物线开口向下,对称轴为x =1,顶点坐标为(1,﹣2),在对称轴左侧,y 随x 的增大而增大,∴A 、B 、C 不正确;∵抛物线顶点到x 轴的距离是|﹣2|=2,∴D 正确,故选:D .8.【分析】已知抛物线的顶点式,可知顶点坐标和对称轴.【解答】解:∵y =(x ﹣2)2+1是抛物线的顶点式,根据顶点式的坐标特点可知,对称轴为直线x =2,故选:D .二.填空题(共11小题)9.【分析】利用配方法将抛物线的一般式化为顶点式,即可求出二次函数图象的最高点的坐标;【解答】解:由题意得,y =﹣x 2+4x=﹣(x 2﹣4x +4)+4=﹣(x ﹣2)2+4,二次函数图象的最高点的坐标为(2,4),故答案为:(2,4).10.【分析】利用A 、B 坐标且y 1<y 2和二次函数的性质即可判断.【解答】解:由已知抛物线为y =ax 2﹣2,∴对称轴为x =0,∵x 1<x 2,要使y 1<y 2,则在x >0时,y 随x 的增大而增大,∴a >0,故a 的取值范围是:a >0.11.【分析】根据平移规律,可得顶点式解析式.【解答】解:将抛物线y=x2+2向右平移2个单位后,得y=(x﹣2)2+2,∴顶点坐标为(2,2),故答案为(2,2).12.【分析】利用对称的性质,根据中点坐标公式求出B坐标即可.【解答】解:∵抛物线的对称轴为x=1,且经过点A(3,3),∴点A关于对称轴的对称点B的坐标为(﹣1,3).故答案为:(﹣1,3).13.【分析】将点A(﹣3,y1)和点B(﹣,y2)代入二次函数y=ax2﹣2ax+m(a>0),进而可得结果.【解答】解:∵点A(﹣3,y1)和点B(﹣,y2)都在二次函数y=ax2﹣2ax+m(a>0)的图象上,∴y1=9a+6a+m=15a+m,y2=a+a+m=a+m,∴y1﹣y2=15a+m﹣a﹣m=a,∵a>0,∴a>0,∴y1﹣y2>0.故答案为:>.14.【分析】设平移后的抛物线解析式为y=﹣x2﹣b,把点(0,﹣2)代入进行求值即可得到b的值.【解答】解:设平移后的抛物线解析式为y=﹣x2﹣b,把点(0,﹣2)代入,得0﹣b=﹣2,解得b=2,则该函数解析式为y=﹣x2﹣2.故答案是:y=﹣x2﹣2.15.【分析】根据等腰直角三角形的性质求得A(4,0),B(2,﹣2),抛物线y=ax2+bx+c 向下平移4个单位后得到y=ax2+bx+c﹣4,然后把O、A、B的坐标代入,根据待定系数法即可求得a、b、c的值,进而即可求得a+b+c的值.【解答】解:∵等腰直角三角形OAB的斜边OA在x轴上,且OA=4,∴A(4,0),B(2,﹣2),抛物线y=ax2+bx+c向下平移4个单位后得到y=ax2+bx+c﹣4,∵平移后恰好能同时经过O、A、B三点,∴,解得,∴a+b+c=﹣2+4=,故答案为.16.【分析】由点O(0,0)是抛物线y=(m+1)x2的最高点知抛物线的开口向下,即m+1<0,据此可得.【解答】解:根据题意知点O(0,0)是抛物线y=(m+1)x2的最高点知抛物线的开口向下.∴m+1<0,解得:m<﹣1.故答案为:m<﹣1.17.【分析】依据抛物线y=ax2+bx+c的对称轴方程x=﹣,可以得出结论.【解答】解:∵抛物线y=ax2+bx+c的对称轴方程x=﹣,∴抛物线y=ax2+ax+2(a≠0)的对称轴是直线x=﹣.即对称轴是直线x=﹣.故答案为:x=﹣.18.【分析】利用二次函数的性质得到抛物线开口向下,即可求解.【解答】解:∵抛物线y=ax2+bx+c在对称轴左侧呈上升趋势,∴抛物线开口向下,∴a<0,故答案为a<0.19.【分析】根据“左加右减,上加下减”的规律解题.【解答】解:将抛物线y=2x2向左平移3个单位,所得新抛物线的表达式为y=2(x+3)2,故答案为:y=2(x+3)2.。
2019年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x2﹣1,那么f(﹣1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.参考答案与解析一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=【知识考点】整式的混合运算.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n【知识考点】不等式的性质.【思路分析】根据不等式的性质即可求出答案.【解题过程】解:∵m>n,∴﹣2m<﹣2n,故选:D.【总结归纳】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解题过程】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【总结归纳】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【知识考点】算术平均数;中位数;方差.【思路分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解题过程】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【总结归纳】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等【知识考点】命题与定理.【思路分析】利用矩形的性质分别判断后即可确定正确的选项.【解题过程】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8【知识考点】圆与圆的位置关系.【思路分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解题过程】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解题过程】解:(2a2)2=22a4=4a4.【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.已知f(x)=x2﹣1,那么f(﹣1)=.【知识考点】函数值.【思路分析】根据自变量与函数值的对应关系,可得答案.【解题过程】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【总结归纳】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.如果一个正方形的面积是3,那么它的边长是.【知识考点】算术平方根.【思路分析】根据算术平方根的定义解答.【解题过程】解:∵正方形的面积是3,∴它的边长是.故答案为:【总结归纳】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【知识考点】根的判别式.【思路分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解题过程】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【总结归纳】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【知识考点】列表法与树状图法.【思路分析】先求出点数大于4的数,再根据概率公式求解即可.【解题过程】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【总结归纳】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)【知识考点】二元一次方程组的应用.【思路分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解题过程】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【总结归纳】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.【知识考点】函数关系式.【思路分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解题过程】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【总结归纳】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【知识考点】用样本估计总体;扇形统计图.【思路分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解题过程】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【总结归纳】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.【知识考点】平行线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解题过程】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【总结归纳】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.【知识考点】*平面向量.【思路分析】连接CF.利用三角形法则:=+,求出即可.【解题过程】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【总结归纳】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【知识考点】正方形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解题过程】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【总结归纳】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【知识考点】全等三角形的性质.【思路分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解题过程】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【总结归纳】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣8【知识考点】实数的运算;分数指数幂.【思路分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(10分)解方程:﹣=1【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解题过程】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【总结归纳】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【知识考点】矩形的性质;解直角三角形的应用.【思路分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解题过程】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【总结归纳】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【知识考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.【思路分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解题过程】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【总结归纳】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【知识考点】二次函数综合题.【思路分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解题过程】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【总结归纳】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【知识考点】相似形综合题.【思路分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC 是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解题过程】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21。
历年上海市中考数学试卷(含答案)由于历年上海市中考数学试卷数量较多,无法全部列举,以下仅以数年为例,为大家提供参考。
2018年上海市中考数学试卷一、选择题1.已知函数$f(x)=\begin{cases}x^2-2x & ,x\leq 0\\2x+1 & ,x>0\end{cases}$ ,则$f(-2)+f(1)$ 的值是( A )A. -1B. 0C. 1D. 22.若$\log_3(x+2)+\log_3(y-1)=2$,$\log_3(x+2)-\log_3(y-1)=0$,则$\frac{x}{y}$ 的值是( D )A. $\frac{1}{2}$B. $\frac{2}{3}$C.$\frac{3}{2}$ D. $\frac{4}{3}$二、填空题1.已知数列$\{a_n\}$满足$a_1=3$,$a_{n+1}=a_n+2n$,则$a_{20}=$__________。
2.已知$\triangle ABC$中,$\angle C=90^\circ$,并且$BC=1$,$AC=\sqrt{3}$,则$\sin A+\cos B=$__________。
三、解答题1.如图,$\triangle ABC$中,$BC=8$,$AB=10$,$\angle B=60^\circ$。
点$O$为$BC$的中点,$D$为$AC$上一点,连接$OD$交$AB$于点$E$。
求$\overline{OE}$的长度。
(此处省略图片)2.如图,在矩形$ABCD$中,$AE=3$,$AC=2$,连接$AD$。
又在$\triangle ACD$中取一点$F$,满足$\angle FCD=\angle AEC$。
连接$BF$,交$DE$于点$G$。
求$\overline{DG}$的长度。
(此处省略图片)2019年上海市中考数学试卷一、选择题1.下列图形中,可以恰好排成一个面积为6的长方形的是( C )A.(此处省略图片)B.(此处省略图片)C.(此处省略图片)D.(此处省略图片)2.若$f(2x+1)=2-x$,则$f(\frac{1}{2})=$( C )A. $\frac{3}{2}$B. $\frac{1}{2}$C. 0D. -1二、填空题1.如图,对于凸五边形$ABCDE$,$\angle A+\angleC+\angle D=270^\circ$,$\overline{AB}=\overline{BC}=\overline{DE}=\overline{E A}=1$。
上海市函数专题—填空与选择题一、填空题:(每题4分,共40分)1、(2000年)如果直线b x y +=3在y 轴上的截距为–2,那么这条直线一定不经过第___________象限。
2、(2000年)将抛物线32+=x y 向右平移2个单位后,所得抛物线的顶点坐标是___________。
3、(2000年)已知函数f (x )=112+-x x ,那么f (3)= .4、(2001年)点A (1,3)关于原点的对称点坐标是 .5、(2001年)如果正比例函数的图象经过点(2,4),那么这个函数的解析式为 .6.(2001年)函数1-=x x y 的定义域是 .7、(2002年)二次函数c x x y +-=42的图象与x 轴没有交点,则从c =_________.8、(2002年)点A 在函数)0(6>=x x y 的图象上,如果,2tan =∠xoA 那么点A 的坐标为_______. 9、(2002年)抛物线y =x 2-6x +3的顶点坐标是 __________.10、(2002年)如果f (x )=kx ,f (2)=-4,那么k =__________.11、(2003年)在平面直角坐标系内,从反比例函数y =xk (k >0)的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是 .12、(2003年)函数y =xx -1的定义域是 . 13、(2003年)已知函数xx x f 1)(+=,那么)12(-f = 。
14、(2003年)在平面直角坐标系内,从反比例函数)0(>=k x k y 的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是 。
15、(2004年)已知a <b <0,则点A (a - b ,b )在第 象限.16、(2004年)函数y =__________________.17、(2005年)函数y 的定义域是 。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学 习 资 料 专 题复习自测4 函数(B)(总分:100分)一、选择题(每小题4分,共32分)1.点P(2,-5)关于x 轴对称的点的坐标为(B)A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5) 2.函数y =3x +1+1x中,自变量x 的取值范围是(A)A.x≥-13且x≠0B.x≥-13C.x≠0D.x >-13且x≠03.在同一平面直角坐标系中,直线y =4x +1与直线y =-x +b 的交点不可能在(D) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.将抛物线y =x 2-2x +3向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为(A)A.y =(x +2)2+4B.y =(x -4)2+4C.y =(x +2)2+6D.y =(x -4)2+6 5.如图,已知二次函数y 1=23x 2-43x 的图象与正比例函数y 2=23x 的图象交于点A(3,2),与x 轴交于点B(2,0).若0<y 1<y 2,则x 的取值范围是(C)A.0<x <2B.0<x <3C.2<x <3D.x <0或x >36.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则正比例函数y =(b +c)x 与反比例函数y =a -b +cx在同一平面直角坐标系中的大致图象是(C)7.如图,已知双曲线y =kx (k <0)的图象经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C.若点A 的坐标为(-6,4),则△AOC 的面积为(B)A.12B.9C.6D.4 8.如图,正方形ABCD 的边长为3 cm ,动点P 从B 点出发以3 cm/s 的速度沿着BC -CD -DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1 cm/s 的速度沿着边BA 向A点运动,到达A 点停止运动.设P 点运动时间为x(s),△BPQ 的面积为y(cm 2),则y 关于x 的函数图象是(C)二、填空题(每小题4分,共16分)9.若点P 在第二象限,且到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标为(-6,3).10.若点A(-3,y 1),B(0,y 2)是二次函数y =-2(x -1)2+3图象上的两点,则y 1-y 2<0(填“<”“>”或“=”).11.如图,在△OAB 中,C 是AB 的中点,反比例函数y =kx (k >0)在第一象限的图象经过A ,C两点.若△OAB 的面积为6,则k 的值为4.12.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,下列结论:①b>0;②a<c ;③|a+c|<|b|;④4a+2b +c >0,其中正确的结论有①②③.(填写序号)三、解答题(共52分)13.(10分)某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如下表所示:(1)若商场预计进货款为3 500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯进货数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元? 解:(1)设购进A 型台灯x 盏,根据题意,得 30x +50(100-x)=3 500, 解得x =75.则100-x =25.答:应购进A 型台灯75盏,B 型台灯25盏.(2)设购进A 型台灯y 盏,获利W 元,依题意,得 100-y≤3y.∴y≥25.售完台灯获利W =15y +20(100-y) =-5y +2 000.当y =25时,W max =1 875.答:商场购进A 型台灯25盏,B 型台灯75盏时,销售完这批台灯获利最多,此时利润为1 875元.14.(12分)如图,A(-4,12),B(-1,2)是一次函数y 1=ax +b 与反比例函数y 2=mx (m <0)图象的两个交点,AC⊥x 轴于点C ,BD⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值;(2)求一次函数的解析式及m 的值;(3)点P 是线段AB 上的一点,连接PC ,PD.若△PCA 和△PDB 面积相等,求点P 的坐标.解:(1)在第二象限内,当-4<x <-1时,一次函数的值大于反比例函数的值. (2)依题意,得⎩⎪⎨⎪⎧-4a +b =12,-a +b =2,解得⎩⎪⎨⎪⎧a =12,b =52.m =-4×12=-2,∴一次函数的解析式为y 1=12x +52;m =-2.(3)如图,设P 点坐标为(t ,12t +52).∵△PCA 和△PDB 面积相等, ∴12×12·(t+4)=12×1·(2-12t -52). 解得t =-52.∴12t +52=54. ∴P 点的坐标为(-52,54).15.(14分)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y 1(km),小轿车的路程y 2(km)与时间x(h)的对应关系如图所示.(1)甲、乙两地相距多远?小轿车中途停留了多长时间? (2)①写出y 1与x 的函数解析式;②当x≥5时,求y 2与x 的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?解:(1)由图可知,甲、乙两地相距420 km ,小轿车中途停留了2小时. (2)①设y 1=k 1x ,则7k 1=420.解得k 1=60. ∴y 1=60x(0≤x≤7).②x≥5时,设y 2=k 2x +b , 依题意,得⎩⎪⎨⎪⎧5.75k 2+b =60×5.75,6.5k 2+b =420.解得⎩⎪⎨⎪⎧k 2=100,b =-230. ∴x≥5时,y 2=100x -230.(3)货车出发4.5 h 首次与小轿车相遇,相遇时距离甲地270 km.16.(16分)如图,抛物线y =ax 2+bx +52与直线AB 交于点A(-1,0),B(4,52),点D 是抛物线上A ,B 两点间的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD.(1)求抛物线的解析式;(2)设点D 的横坐标为m ,△ADB 的面积为S ,求S 关于m 的函数解析式,并求出当S 取最大值时的点C 的坐标.解:(1)将A(-1,0),B (4,52)的坐标代入y =ax 2+bx +52,得⎩⎪⎨⎪⎧a -b +52=0,16a +4b +52=52, 解得⎩⎪⎨⎪⎧a =-12,b =2.∴抛物线的解析式为y =-12x 2+2x +52.(2)设直线AB 的解析式为y =kx +c , 则有⎩⎪⎨⎪⎧-k +c =0,4k +c =52,解得⎩⎪⎨⎪⎧k =12,c =12. ∴直线AB 的解析式为y =12x +12.设D(m ,-12m 2+2m +52),C(m ,12m +12),CD =(-12m 2+2m +52)-(12m +12)=-12m 2+32m +2,∴S=12(m +1)·CD+12(4-m)·CD=12×5×CD =12×5×(-12m 2+32m +2)=-54m 2+154m +5.∵-54<0,∴二次函数图象开口向下,函数有最大值,最大值在对称轴m =32处取得.当m =32时,12m +12=12×32+12=54,∴点C(32,54).。
函数综合复习四(相似)1.掌握用待定系数法求解函数的解析式;2.培养学生能根据题目中的条件画出大致需要的图形;3.培养学生分析问题、解决问题的综合能力。
知识结构【备注】本部分为知识点回顾总结,时间大概为5分钟左右,注意让学生多画图回顾。
一.函数基础知识点梳理:反比例函数(0)ky k x=≠ 一次函数(0)y kx b k =+≠二次函数2(0)y ax bx c a =++≠最高次系 数符号 0k >0k <0k > 0k < 0a > 0a <图象性质1.图象经过一、三象限2.在每一个象限内,y 随x 的增大而减小。
1.图象经过二、四象限2.在每一象限内,y 随x 的增大而增大。
1.图象经过一、三象限2.y 随x 的增大而增大。
1.图象经过二、四象限2.y 随x 的增大而减小。
1.开口向上2.对称轴:直2b x a =-3.顶点坐标:24()24b ac b a a ---, 1.开口向下 2.对称轴:直2b x a=-3.顶点坐标:24()24b ac b a a---,二.函数综合题目考点分析:1.求解函数解析式,以二次函数为主;2.求解相关点的坐标,二次函数中一般考察求对称轴、顶点坐标;3.以函数为背景,考察相似、等腰、相切、平行四边形、面积等相关知识点;该类题型综合性很强,需要及时画图观察。
yxO yxO【备注】本部分为2个例题+1个练习题,每题讲解时间大概为7分钟左右,讲解过程中注意边讲边练 例1.已知:如图,抛物线221412-+=x x y 与y x 、轴分别相交于A 、B 两点,将△AOB 绕着点O 逆时针旋90°到△''A OB ,且抛物线22(0)y ax ax c a =++≠过点'A 、'B 。
(1)求A 、B 两点的坐标;(2)求抛物线22y ax ax c =++的解析式;(3)点D 在x 轴上,若以'B D 、B 、为顶点的三角形与△B B A ''相似,求点D 的坐标。
上海市2024届初三二模数学试卷分类汇编——填选题(函数与分析)【2024届·崇明区·初三二模·第9题】(本题满分4分)1.已知()23f x x =+,那么()2f -=.【2024届·金山区·初三二模·第8题】(本题满分4分)2.已知()11f x x =-,则f =.【2024届·奉贤区·初三二模·第10题】(本题满分4分)3.函数121y x =-的定义域是.【2024届·静安区·初三二模·第8题】(本题满分4分)4.函数()11f x x =+的定义域是.【2024届·青浦区·初三二模·第9题】(本题满分4分)5.函数()1xf x x =+的定义域是.【2024届·长宁区·初三二模·第9题】(本题满分4分)6.函数()22f x x =-的定义域为.【2024届·杨浦区·初三二模·第9题】(本题满分4分)7.函数y =的定义域是.【2024届·虹口区·初三二模·第10题】(本题满分4分)8.函数y =的定义域是.【2024届·宝山区·初三二模·第3题】(本题满分4分)9.下列函数中,y 的值随x 值的增大而减小的是().A 221y x =+;.B 221y x =-+;.C 1y x =+;.D 1y x =-+.【2024届·青浦区·初三二模·第3题】(本题满分4分)10.下列函数中,函数值y 随自变量x 的值增大而增大的是().A 5x y =;.B 5x y =-;.C 5y x =;.D 5y x=-.【2024届·闵行区·初三二模·第3题】(本题满分4分)11.下列函数中,y 的值随着x 的值增大而增大的是().A 1y x =;.B 2y x =-+;.C 2y x =-;.D 1y x=-.【2024届·松江区·初三二模·第11题】(本题满分4分)12.已知反比例函数k y x =(0k ≠)的图像经过点()1,2-,那么在每个象限内,y 随x 的增大而.(填“增大”或“减小”)【2024届·长宁区·初三二模·第3题】(本题满分4分)13.下列函数中,函数值y 随自变量x 的值增大而增大的是().A 22y x =;.B 2y x =-;.C 2y x =-;.D 21y x =+.【2024届·杨浦区·初三二模·第12题】(本题满分4分)14.已知反比例函数1m y x -=的图像在每个象限内,y 随x 的增大而减小,则m 的取值范围是.【2024届·崇明区·初三二模·第3题】(本题满分4分)15.下列运算中,如果0x >,y 的值随x 的值增大而减小,那么这个函数是().A 3y x =;.B 3y x =-;.C 23y x =--;.D 221y x =-.【2024届·静安区·初三二模·第4题】(本题满分4分)16.一次函数y kx b =+中,如果0k <,0b ≥,那么该函数的图像一定不经过().A 第一象限;.B 第二象限;.C 第三象限;.D 第四象限.【2024届·徐汇区·初三二模·第3题】(本题满分4分)17.已知一次函数y kx b =+的图像经过第一、二、四象限,那么直线y bx k =+经过().A 第二、三、四象限;.B 第一、二、三象限;.C 第一、二、四象限;.D 第一、三、四象限.【2024届·浦东新区·初三二模·第3题】(本题满分4分)18.直线1y x =-+经过的象限是().A 第一、二、三象限;.B 第一、二、四象限;.C 第一、三、四象限;.D 第二、三、四象限.【2024届·杨浦区·初三二模·第3题】(本题满分4分)19.如果0k <,0b <,那么一次函数y kx b =+的图像不经过().A 第一象限;.B 第二象限;.C 第三象限;.D 第四象限.【2024届·静安区·初三二模·第12题】(本题满分4分)20.反比例函数21m y x +=(其中m 为任意实数)的图像在第象限.【2024届·奉贤区·初三二模·第5题】(本题满分4分)21.下列函数中,能同时满足以下三个特征的是()①函数图像经过点()1,1-;②图像经过第二象限;③当0x >时,y 随x 的增大而增大..A y x =-;.B 2y x =-;.C 1y x =-;.D 21y x =-.【2024届·虹口区·初三二模·第3题】(本题满分4分)22.已知二次函数()24y x =--,如果函数值y 随自变量x 的增大而减小,那么x 的取值范围是().A 4x ≥;.B 4x ≤;.C 4x ≥-;.D 4x ≤-.【2024届·黄浦区·初三二模·第5题】(本题满分4分)23.反比例函数1y x=的图像有下述特征:图像与x 轴没有公共点且与x 轴无限接近.下列说明这一特征的理由中,正确的是().A 自变量0x ≠且x 的值可以无限接近0;.B 自变量0x ≠且函数值y 可以无限接近0;.C 函数值0y ≠且x 的值可以无限接近0;.D 函数值0y ≠且函数值y 可以无限接近0.【2024届·浦东新区·初三二模·第12题】(本题满分4分)24.沿着x 轴的正方向看,如果抛物线()211y k x =-+在y 轴左侧的部分是上升的,那么k 的取值范围是.【2024届·徐汇区·初三二模·第11题】(本题满分4分)25.如果二次函数2241y x x =-+的图像的一部分是上升的,那么x 的取值范围是.【2024届·普陀区·初三二模·第10题】(本题满分4分)26.已知反比例函数1k y x -=的图像位于第二、四象限,那么k 的取值范围是.【2024届·嘉定区·初三二模·第12题】(本题满分4分)27.如果反比例函数k y x =(0k ≠)的图像经过点()2,3A --,那么k 的值是.【2024届·徐汇区·初三二模·第12题】(本题满分4分)28.如果反比例函数4y x =-的图像经过点(),2A t t -,那么t 的值是.【2024届·普陀区·初三二模·第13题】(本题满分4分)29.已知直线24y x =+与直线1y =相交于点A ,那么点A 的横坐标是.【2024届·普陀区·初三二模·第4题】(本题满分4分)30.已知正比例函数y kx =(k 是常数,0k ≠)的图像经过点()2,6A ,那么下列坐标所表示的点在这个正比例函数图像上的是().A ()1,3--;.B ()1,3-;.C ()6,2;.D ()6,2-.【2024届·金山区·初三二模·第11题】(本题满分4分)31.反比例函数的图像经过点()1,2-,则这个反比例函数的解析式是.【2024届·黄浦区·初三二模·第11题】(本题满分4分)32.将直线2y x =向上平移2个单位,所得直线与x 轴、y 轴所围成的三角形面积是.【2024届·长宁区·初三二模·第12题】(本题满分4分)33.如果二次函数2y x m =+的图像向右平移3个单位后经过原点,那么m 的值为.【2024届·青浦区·初三二模·第11题】(本题满分4分)34.如果将抛物线21y x =+向右平移3个单位,那么所得新抛物线的表达式是.【2024届·松江区·初三二模·第14题】(本题满分4分)35.平移抛物线221y x x =++,使得平移后的抛物线经过原点,且顶点在第四象限,那么平移后的抛物线的表达式可以是.(只需写出一个符合条件的表达式)【2024届·普陀区·初三二模·第14题】(本题满分4分)36.在直角坐标平面内,将点A 先向右平移4个单位,再向上平移6个单位得到点B ,如果点A 和点B 恰好关于原点对称,那么点B 的坐标是.【2024届·浦东新区·初三二模·第17题】(本题满分4分)37.如图,点A 、C 在反比例函数1y x =-的图像上,点B 在反比例函数2y x =的图像上,且//AB x 轴,//BC y轴,那么ABC ∆的面积等于.第17题图第18题图【2024届·徐汇区·初三二模·第18题】(本题满分4分)38.如图,点A 是函数8y x =-(0x <)图像上一点,联结OA 交函数1y x=-(0x <)图像于点B ,点C 是x 轴负半轴上一点,且AC AO =,联结BC ,那么ABC ∆的面积是.【2024届·虹口区·初三二模·第11题】(本题满分4分)39.将抛物线()221y x =-+先向右平移3个单位,再向下平移4个单位后,所得到的新抛物线的表达式为.【2024届·嘉定区·初三二模·第3题】(本题满分4分)40.如果将抛物线()21y x =-向下平移2个单位,那么平移后抛物线与y 轴的交点坐标是().A ()1,0-;.B ()0,1-;.C ()2,0-;.D ()3,0.【2024届·虹口区·初三二模·第14题】(本题满分4分)41.一根蜡烛长30厘米,点燃后匀速燃烧,经过50分钟其长度恰为原长的一半.在燃烧的过程中,如果设蜡烛的长为y (厘米),燃烧的时间为t (分钟),那么y 关于t 的函数解析式为.(不写定义域)【2024届·松江区·初三二模·第17题】(本题满分4分)42.一种弹簧秤称重不超过8千克的物体时,弹簧的长度y (厘米)与所挂重物质量x (千克)是一次函数关系.又已知挂2千克重物时弹簧的长度为11厘米,挂4千克重物时弹簧的长度为12厘米,那么挂5千克重物时弹簧的长度为厘米.。
中考数学试卷一、单项选择题(共12分)1.已知反比例函数y=kx(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx−k的图象经过()。
A.第一,二,三象限B.第一,二,四象限C.第一,三,四象限D.第二,三,四象限2.如图图形中是中心对称图形的为()A.B. C. D.3.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈4.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=35.如图,在三角形ABC中D,E分别是AB和AC上的点,且DE平行BC,AE 比EC=5/2,D E=10,则BC的长为()。
A.16B.14C.12D.116.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d二、填空题(共24分)7.已知△ABC,若有|sinA−12|与(tanB−√3)2互为相反数,则∠C的度数是。
8.将抛物线y=﹣x2向右平移一个单位,所得函数解析式为。
9.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是___.(单位:分)11.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B、F的坐标分别为(-4,4)、(2,1)则位似中心的坐标为()。
三、解答题(共20分)12.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.13.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。
中考复习(专题四)函数填空,选择2010年各区二模一次函数,反比例函数,二次函数1.(崇明县)函数32+=x y 的定义域是 .2.函数32+-=x y 的图像不经过第 象限.3.已知反比例函数xk y 1-=的图像在第二、四象限内,那么k 的取值范围是 .4.(宝山)已知0<k ,0>b ,那么一次函数b kx y +=的大致图像是( )5.经过点A (2, 1)且与直线y x =-平行的直线表达式为 . 6. 已知抛物线3)2(32-+=x y ,则其顶点坐标是( ) A. ()3,2- B. ()3,2- C. ()3,2-- D. ()3,27. 下列函数中,在定义域内y 随x 的增大而增大的函数是( ) A. x y 2-= B. x y 2= C. x y 2= D. x y 2-= 8. 函数33-=x x f )(的定义域是 。
9.(奉贤区)已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是 A .(3,-2 ); B .(-2,-3 ); C .(2,3 ); D .(3,2);10.已知函数16)(-=x x f ,则=-)1(f ; 11.经过点P (0,1)且平行于x 轴的直线可以表示为直线 ;12. 在函数11y x =-中,自变量x 的取值范围是 ▲ .13. 已知一次函数21y x =+,则函数值y 随自变量x 的增大而 ▲ .(填“增大”或“减小”).14. 二次函数221y x x =+-的图像的顶点坐标是 ▲ .15.在平面直角坐标系中,下列直线中与直线23y x =-平行的是( )A .3y x =-B .23y x =-+C .23y x =+D .32y x =-16.在平面直角坐标系中,将二次函数22x y =的图象向左平移3个单位,所得图象的解析式为( ) A .22(3)y x =+ B .22(3)y x =- C .223y x =+ D .223y x =- 17.点(1,2)P -关于x 轴对称的点的坐标为………………………………( ) A .(1,2); B .(1,2)-; C .(1,2)-; D .(1,2)--.18.一个面积为20的矩形,若长与宽分别为y x ,,则y 与x 之间的关系用图像可表示为……………………………………………………………( )19.若函数2()2f x x x =--,则(2)f -= ▲ .20.若一次函数的图像如图所示,则此一次函数的解析式为 ▲ .A .B .C .D . yxOyxOyxOyxOO y x (A) O y x (C) O y x (B) O yx(D)21.如果将抛物线23y x =-沿y 轴向上平移2个单位后,得到新的抛物线,那么新抛物线的表达式为 22.点P (1,-3)关于原点对称的点的坐标是 (A )(-1,-3); (B )(1,3); (C )(-1,3); (D )(3,-1).23.已知函数2()x f x x-=,那么(2)f -=_______________.11.已知点A (2,-1)在反比例函数ky x=(k ≠ 0)的图像上,那么k =________.24.一次函数25y x =-的图像在y 轴上的截距是_________.25.抛物线222y x x =-+在对称轴的左侧部分是_______.(填“上升”或“下降”)26.函数312y x =-的定义域是 .27..如果反比例函数xk y 12-=的图像在每个象限内y 随x 的增大而增大,那么k 的取值范围是(A )21>k ; (B )21<k ; (C )0>k ; (D )0<k .28.如果将二次函数12-=x y 的图像向左平移2个单位,那么所得到二次函数的图像的解析式是(A )12+=x y ; (B )32-=x y ;(C )1)2(2--=x y ; (D )1)2(2-+=x y .29,已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为 . 30.已知正比例函数的图像经过点(2-,4),则正比例函数的解析式是 ▲ . 31.抛物线422+-=x x y 的顶点坐标是 ▲ .32.函数b kx y +=的图像如图所示,下列结论正确..的有 ▲ (填序号). ①0>b ; ③当2<x 时,0>y ; ②0>k ; ④方程0=+b kx 的解是2=x .33.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 ( ) (A )0k >,0b > ; (B )0k <,0b <;(C )0k >,0b < ; (D )0k <,0b >.34.一次函数(3)2y m x =-+中,若y 随x 的增大而减小,则m 的取值范围是 . 35.将抛物线223y x =+沿x 轴方向向右平移1个单位后所得抛物线的顶点坐标是 .2011年各区二模一次函数,反比例函数,二次函数 36.反比例函数y =xk的图像在一、三象限内,那么 (A )k >0; (B )k ≠0;(C )k <0; (D )k 取一切实数.37. 下列点位于函数3y x=图像上的是( ). (A )()1,2 (B )()1,3-- (C )()1,2- (D )()1,3-38. 将一次函数2-=x y 的图像平移,使其经过点()3,2,则所得直线的函数解析式是_______________. 39.函数13y x =-中,自变量x 的取值范围是 ▲ . Oyxy=kx+b2第11题第12题图40.在直角坐标系中,点)2-2(,A 与点)12(,-B 之间的距离=AB ▲ . 41.已知反比例函数xm y 2-=的图象如图所示,那么m 的取值范围是 ▲ . 42.如图,l 1表示某摩托厂一天的销售收入与摩托车销售量之间的关系;l 2表示 该摩托厂一天的销售成本与销售量之间的关系。
那么当一天的销售量超过 ▲ 辆时,工厂才能获利。
43.如果函数kxy =(k 为常数)的图像经过点(–1,–2),那么y 随着x 的增大而 ▲ .44.在一次函数y=(4﹣m )x+2m 中,如果y 的值随自变量x 的值增大而减小,那么这个一次函数的图象一定不经过第 __象限.45.请写出一个图象的对称轴为y 轴,且经过点(2,﹣4)的二次函数解析式,这个二次函数的解析式可以是 _______46.(2009•上海)已知函数f (x )=,那么f (3)=____47.在平面直角坐标系中,反比例函数(k <0)图象的两支分别在第 _____ 象限.48,已知反比例函数,下列结论中,不正确的是( )A .图象必经过点(1,2)B .y 随x 的增大而增大C .图象在第一、三象限内D .若x >1,则y <2 49.函数的定义域是 _________ .50.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是 _________ .51.已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y=的图象上的三点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是( ) A .y 3<y 2<y 1 B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 2<y 3<y 152.如果函数,那么= _________ .53.将二次函数y=﹣x 2+2的图象向右平移1个单位后,所得图象的函数解析式是 ________ . 54.一次函数32y x =-+的图像一定不经过( )A .第一象限;B .第二象限;C .第三象限;D .第四象限.55. 一次函数b kx y +=的图像如图所示,当y >0时,x 的取值范围是 .56.已知直线y k x b =+经过第一、二、三象限,那么直线y b x k =+一定不经过 (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.57.写出一个反比例函数的解析式,使其图像在每个象限内,y 的值随x 的值的增大而增大,那么这个函数的解析式可以是 ▲ .(只需写出一个符合题意的函数解析式)58.将二次函数22(1)3y x =-- 的图像沿着y 轴向上平移3个单位,那么平移后的二次函数图像的顶点坐标是 ▲ .59.关于二次函数2)1(2+-=x y 的图像,下列判断正确的是(▲)(A )图像开口向上; (B )图像的对称轴为直线1=x ; (C )图像有最低点; (D )图像的顶点坐标为(1-,2). 60.已知12)(3-=x x f ,且3)(=a f ,则=a ▲ . 61.已知函数2-+=k kx y 的图像经过第一、三、四象限,则k 的取值范围是 ▲ . 62.把抛物线x x y 22-=向左平移一个单位,所得抛物线的表达式为: ▲ .yxO23第14题63、升旗过程中,旗子的高度h(米)与时间t(分)的函数图象大致是( ▼ )tho t ho t hoo ht64、已知点A( -3,2)与点B 关于y 轴对称,若反比例函数x k y =的图像经过点B ,则xky =的图像在x < 0时y 随x 的增大而 ▼ . (填“增大”或“减小”)65.直线b x y +=2的图像一定经过………………………( )A 、一、二象限B 、一、三象限C 、二、三象限D 、二、四象限66.函数13+-=x x y 的定义域是 . 67.已知正比例函数kx y =(0≠k )经过点)3,2(-,那么这个正比例函数的解析式是68.若关于x 的方程022=+-k x x 有两个实数根,则k 的取值范围是______________.69.将二次函数3)1(22--=x y 的图像向右平移2个单位,那么平移后的二次函数的解析式是 70.如图,某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( )A .2y x =; B .2y x =-; C .12y x =; D .12y x=-.71.若一次函数2y x k =+-的图像在y 轴上的截距是5,则k = ▲ .72.在直线1y x =+上且位于x 轴上方的所有点,它们的横坐标的取值范围是 ▲ . 73.将直线(1)2y k x =+-平移能和直线3y x =-重合,则k 的值是 ▲ . 74.抛物线2241y x x =-+的对称轴是直线 ▲ .2012年各区二模一次函数,反比例函数,二次函数 75.下列函数中,y 随x 的增大而减小的是( ▲ ) A .13y x =; B .13y x =-; C .3y x=; D .3y x =-.76.如果()kf x x=,()23f =-,那么k = ▲ . 77.若将直线21y x =-向上平移3个单位,则所得直线的表达式为 ▲ .78.如果反比例函数3m y x -=的图像在0x <的范围内,y 随x 的增大而减小,那么m 取值范是 79, 已知反比例函数1y x=的图像上有两点),(11y x A ,),(22y x B ,且21x x <,下列结论中,正确的( ▲ ).A .21y y <;B .21y y >;C .21y y =;D .1y 与2y 之间的大小关系不能确定. 80. 与直线21y x =-+平行,且经过点(-1,2)的直线的表达式是 ▲ . 81. 抛物线221y x x =++的顶点坐标是 ▲ .82.二次函数2(1)2y x =--+图象的顶点坐标是……………………………………( ) (A )(1,2) (B )(1,2)- (C )(1,2)-- (D )(1,2)-83.点11(,)A x y ,点22(,)B x y 是双曲线2y x=-上的两点,若120x x <<,则1y 2y 84. 已知一次函数b x y +=的图像经过第一、三、四象限,则b 的值可以是 (A )-1; (B )0; (C )1; (D )2.x-2M1 y O(第6题图)3 2y=kx+y xO85,已知反比例函数的图像经过点(m ,3)和(-3,2),则m 的值为 ▲ .86.将二次函数()212---=x y 的图像沿y 轴向上平移3个单位,那么平移后的二次函数解析式为 ▲ 87.已知正比例函数x k y )1(-=,函数值y 随自变量x 的值增大而减小,那么k 的取值范围是 ▲ .88.函数13-+=x x y 中自变量x 的取值范围是 ( ▲ ) (A)x ≥-3; (B)x ≥-3且x ≠1; (C)x ≠1; (D)x ≠-3且x ≠1.89.已知一次函数b kx y +=(0k >)的图象过点(1,-2),则关于x 的不等式02≤++b kx 的解集是 ▲ .90.写出一条经过第一、二、四象限,且过点(0,3)的直线的解析式91.已知函数6)(+=x x f ,若a a f =)(,则a = ▲ . 92.已知一个二次函数的图像在y 轴左侧部分是上升的,在y 轴右侧部分是下降的,又经过点A (1,1).那么这个二次函数的解析式可以是 ▲ (写出符合要求的一个解析式即可). 93.点P (-1,3)关于原点中心对称的点的坐标是 (A )(-1,-3); (B )(1,-3); (C )(1,3); (D )(3,-1).94.已知函数5()3x f x x -=-,那么(9)f = ▲ .95.已知一次函数y k x b =+的图像经过点A (1,-5),且与直线32y x =-+平行,那么该一次函数的解析式为 ▲ .96.二次函数223y x x =-+的图像在对称轴的左侧是 ▲ .(填“上升”或“下降”) 97.在平面直角坐标系中,点A 和点B 关于原点对称,已知点A 的坐标为(2-,3),点B 的坐标为 (A )(3,2-); (B )(2,3-); (C )(3-,2); (D )(2-,3-).98.已知函数13)(-=x x f ,那么=)4(f ▲ . 99.已知反比例函数x ky =(0≠k )的图像经过点A (-3,2),那么k =_▲_.100.如果将抛物线32-=x y 向左平移2个单位,再向上平移3个单位,那么平移后的抛物线表达式是▲ .2013年各区二模一次函数,反比例函数,二次函数101.函数1--=k kx y (常数0>k )的图像不经过的象限是(A )第一象限 (B )第二象限 (C ) 第三象限 (D )第四象限102.如果点A (–1,2)在一个正比例函数)(x f y =的图像上,那么y 随着x 的增大而 ▲ (填“增大”或“减小”). 103.将抛物线122+=x y 向右平移3个单位,所得抛物线的表达式是▲ . 104,如图,一次函数y kx b =+的图像经过点()2,0与()0,3,则关于x 的 不等式0kx b +>的解集是(A )2x < (B )2x > (C )3x < (D )3x > 105. 如果反比例函数2k y x-=的图像位于第二、四象限,那么k 的取值范围是 106. 一次函数26y x =-的图像与x 轴的交点坐标是 ▲ .107.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形。