植树问题例1.2.3都可用
- 格式:ppt
- 大小:2.68 MB
- 文档页数:46
植树问题公式(三P133)1、不封闭线路的植树问题:间隔数+1=棵数;(两端植树)路长÷间隔长+1=棵数。
或间隔数-1=棵数;(两端不植)路长÷间隔长-1=棵数;路长÷间隔数=每个间隔长;每个间隔长×间隔数=路长。
2、封闭线路的植树问题:路长÷间隔数=棵数;路长÷间隔数=路长÷棵数=每个间隔长;每个间隔长×间隔数=每个间隔长×棵数=路长。
3、平面植树问题:占地总面积÷每棵占地面积=棵数牛吃草问题概念及公式解决牛吃草问题常用到四个基本公式,分别是:设定一头牛一天吃草量为“1”1、草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3、吃的天数=原有草量÷(牛头数-草的生长速度);4、牛头数=原有草量÷吃的天数+草的生长速度。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的基本数量关系是:1、(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2、牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。
植树与方阵问题奥数知识点植树问题专题分析:要想了解植树问题中的数学并学会怎样解决植树问题,首先要牢记三要素①总路长、②树间距、③棵数。
只要知道这三要素中的任意两个要素,就可以求出第三个要素。
解题的关键是要先求出间隔数,题目一般不会直接给出来。
关于植树的路线,有封闭和不封闭两种路线。
解决植树问题的基本数量关系:每份数(树间距)×份数(间隔数)=总数(路长)总数(路长)÷份数(间隔数)=每份数(树间距)总数(路长)÷每份数(树间距)=份数(间隔数)一、不封闭路线有3种,两端都种、两端都不种、一端种另一端不种。
1、两端都种重要公式:棵数-1=间隔数间隔数+1=棵数路长÷树间距=间隔数这两三公式是解答两端都种的植树问题的关键。
由此推出:树间距×(棵数-1)=路长路长÷(棵数-1)=树间距路长÷树间距+1=棵数例1、同学们在全长100m的小路一边植树,每隔5m栽一棵(两端要栽)。
一共要栽多少棵树?分析:要以两棵树之间的距离作为分段标准,公路全长可分成若干段,由于公路两端都要求栽树,所以植树的棵数比分成的段数多1。
间隔数:100÷5=20(个)路长÷树间距=间隔数一边棵数: 20+1=21(棵)间隔数+1=棵数答:一共要栽种21棵。
例2、在花园小区一条320米的小路的两边上栽树,从起点到终点每隔16米栽一棵,一共栽了多少棵?注意审题看清是“一边”栽,还是“两边”栽间隔数:320÷16=20(个)路长÷树间距=间隔数一边棵数: 20+1=21(棵)间隔数+1=棵数两边棵数: 21×2=42(棵)答:一共要栽种42棵。
例3、园林工人沿一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。
从第1棵到最后一棵的距离有多远?间隔数:36-1=35(个)棵数-1=间隔数路长:6 ×35=210(米)树间距×间隔数=路长答:从第1棵到最后一棵的距离有210米。
四年级奥数-植树问题(一)春天,是植树的大好季节,同学们,你可能每年也参加植树造林活动吗?美化绿化自己的家园,你可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同。
你想了解植树中的学问并学会怎样解决植树问题吗?欢迎你参加我们的数学园栏目,共同研究你想要解决的问题。
请看下列例题。
例1:有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,可种植垂柳多少棵?分析:首先要以两棵垂柳之间的距离作为分段的标准,公路的全长可分为若干段,即1000米里包含有多少个5米,1000÷5=200(段),由于公路的两端都要求种树,所以要种植的棵数比分成的段数多1,即200+1=201(棵) 解:(1)以5米为一段,公路全长可分为:1000÷5=200(段)(2)种垂柳的棵数为:200+1=201(棵)综合算式:1000÷5+1=201(棵)答:可种植垂柳201棵。
例2:两座楼房之间相距56米,每隔4米栽雪松一棵,一直行能栽多少棵? 分析:要以两棵雪松之间的距离作为分段的标准,两座楼房之间的长度可分为若干段,即56米里面包含有多少个4米,56÷4=14(段)这道题与例1的不同点是两头不需要栽树(因为不能在楼房的墙根栽树),所以要栽的雪松数比分成的段是少1,14-1=13(棵)解: (1)以4米为段,56米应分成的段数是:56÷4=14(段)(2)栽种雪松的棵数:14-1=13(棵)综合算式:56÷4-1=13(棵)答:能栽雪松13棵。
例3:某一淡水湖的周长1350米,在湖边每隔9米种柳树一株,在两株柳树中间种植2株夹枝桃,可栽柳树多少株?可栽夹枝桃多少株?两株夹枝桃之间相距多少米?分析:在圆周上植树时,由于开始栽的一棵与依次栽的最后一棵将会重合在一起,所以可栽的株数等于分成的段数;由于两株柳树之间等距离地栽2&127;株夹枝桃,所以栽夹枝桃的株数等于2乘以段数的积;要求两株夹枝桃之间相距多少米,需要懂得两株柳树之间等距地栽2株夹枝桃,即4株之间有3段相等的距离。
植树问题含义:按相等的距离植树,在全长、间隔长、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题一、.线形植树问题主要可分为以下三种情形:1.1.如果在非封闭线路的两端都要植树,那么:棵数=段数+1棵数=全长÷间隔长+1全长=株距×(棵数-1)间隔长=全长÷(棵数-1)1.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:棵数=段数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数1.3.如果在非封闭线路的两端都不要植树,那么:棵数=段数-1=全长÷间隔长-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)二、封闭线路上的植树问题的数量关系如下:棵数=段数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数特别提醒:封闭型植树问题是指在圆、正方形、长方形、三角形等闭合曲线上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
基础练习1、一条小路长96米,在小路一侧每隔2米栽一棵杨树,头尾都栽,一共要栽多少棵杨树?2、在一条小路的一侧,每隔10米种一棵柳树,从头到尾共种20棵,则小路全长多少米?3、在一条小路的一侧,从头到尾共安装10根电线根,如果小路全长90米,每两根电线杆之间相距多少米?4、校园里有一段长80米的路,在路的一侧栽松树,其中路的一端不栽树,每隔5米栽一棵,一共可以栽多少棵?5、在校门前小路的一侧,共安装10根电线杆,每隔10米安装一根,则小路全长多少米?6、在教学楼前一侧共种10棵树,小路全长100米,则每两棵树之间相距多少米?7、某校园需要在一条长30米的小路两旁每隔3米插一面小红旗,首尾不用插小红旗,问一共要准备多少面小红旗?8、在校门前至公共汽车站的小路一侧,共安装10个路灯,每隔10米安装一个路灯,则小路全长多少米?9、在教学楼与图书馆之间小路的一侧共种9棵树,小路全长100米,则每两棵树之间相距多少米?10、希望小学一个圆形花坛的周长是36米,每隔4米摆一盆兰花,一共要摆多少盆兰花?11、一个圆形公园每隔15米种一棵树,共种60棵,则这个池塘的周长是多少米?12、一个池塘的周长为240米,沿池塘周围共种树40棵,每两棵树相距多少米?13、一段木料锯成4段要6分钟,如果要锯成9段需要几分钟?三、特殊问题:锯木头问题数量关系式:锯的次数=段数-1段数=锯的次数+1总时间=每次所用时间×锯的次数其他的一般都是干扰条件1、一根木料锯成7段,每锯一下需要4分钟,则一共需要多少分钟?2、一根木料平均锯成4段,用时12分钟,如果平均锯成6段,需要多少分钟?。
五年级年龄问题、植树问题【旧知复习】——年龄问题年龄问题变化关系的三个基本规律:1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量;3.两个人之间的年龄差不变【旧知复习】——植树问题1.线段上的植树问题可以分为以下三种情形:(1)如果植树线路的两端都要植树(棵数=段数+1)(2)如果一端植树,另一端不植树(棵数=段数)(3)如果两端都不植树(棵数=段数-1)2.在封闭的路线上植数(棵数=段数)形似一边植树问题课前小热身时间:10分钟满分:100分(每小题10分)1、爸爸今年35岁,小林今年9岁。
爸爸42岁时,小林___16___岁。
【利用年龄差不变】2、弟弟今年4岁,哥哥今年12岁,10年后,哥哥比弟弟大___8___岁。
【利用年龄差不变】3、父亲与儿子今年的年龄和是60岁,父亲的年龄是儿子年龄的3倍,那么今年父亲___45__岁。
【可用和倍】4、爸爸今年43岁,儿子今年11岁。
___5___年后爸爸的年龄是儿子的3倍。
【可用差倍】5、今年小勇和妈妈两人的年龄和是38岁,3年前,小勇比妈妈小26岁。
今年妈妈___32__岁。
【可用和差】6、城中小学在一条大路边从头至尾栽树28棵,每隔6米栽一棵。
这条路长___162__米。
【两边都植树】7、在一个周长是240米的游泳池周围栽树,每隔5米栽一棵,一共要栽___48__棵树。
【封闭图形,类似于一边植树问题】8、一座长400米的大桥两旁挂彩灯,每两个相隔4米,从桥头到桥尾一共装了__202__盏灯。
【两边都要植】9、把6米长的木料平均锯成3段要6分钟,照这样计算,如果锯成6段,需要__15__分钟。
【两边都不植】10、一条路长200米,在路的一旁从头至尾每隔5米植一棵树,一共要植___41__棵。
【两边都要植】课前小热身答案16 8 45 5 32162 48 202 15 41年龄问题训练1、今年爸爸和儿子的年龄和是66岁,爸爸的年龄比儿子的年龄的3倍少10岁,那么多少年前爸爸的年龄是儿子的5倍。
第二十四讲应用题(四)植树问题:例1 一条公路长540米,在公路的一侧每隔3米种1棵树,共种多少棵?分析:此题是植树问题。
植树问题一般是研究株数、株距、总距离三者之间的关系。
需要注意的是:如果在首尾不连接的线路上(公路旁)植树,两端都要栽1棵。
其一般公式是:(1)总距离÷株距+1=株数(2)总距离÷(株数-1)=株距(3)株距×(株数-1)=总距离如果是在封闭的(圆形水池或方形场地)线路上植树,株数=总距离÷株距,就不存在加1或减1的问题。
本题是属于求株数的问题。
解:(1)以3米为一段,全长可以分多少段?540÷3=180(段)(2)共种树多少棵?180+1=181(棵)综合算式:540÷3+1=180+1 =181(棵)答:共种树181棵。
例2 一队学生共438人进行军训,每3人一排,排与排之间距离1.2米,每分钟走56米,这支队伍要经过1226米长的大桥,需要几分钟?分析:解题的关键是要先求出这支队伍的长度,全队共能排成438÷3=146(排),从排头到排尾共有146-1=145(间隔),这样,就可以求出队伍的长度。
队伍过桥是指队伍的排头刚上桥到队伍的末尾刚下桥共走的路程。
解:(1)全队共有多少排?438÷3=146(排)(2)队伍有多长?1.2×(146-1)=174(米)(3)共走的路程是多少米?1226+174=1400(米)(4)经过大桥需要多少分钟?1400÷56=25(分钟)综合算式:[1.2×(438÷3-1)+1226]÷56=[1.2×145+1226]÷56=1400÷56 =25(分钟)答:经过大桥需要25分钟。
例3 在一个圆形池周围植树,把树植在距池塘边为3.5米的圆周上,每隔2米植1棵树,共植314棵,这个圆形池塘的周长是多少米?分析:要想求出池塘的周长,必须先求出池塘的直径,池塘的直径等于一圈树围成的圆的直径减去3.5×2(米)。
植树问题的公式1.非封闭线路上的植树问题主要可分为以下三种情形:1.1.如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×株数-1株距=全长÷株数-11.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数1.3.如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×株数+1株距=全长÷株数+12.封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数例题1、学校圆形花坛的周长是36米,每隔4米摆一盆兰花,一共要摆盆兰花分析:圆形为封闭路线的问题,株数=段数=全长÷株距36÷4=9棵例题2、在一条长30米的小路两旁每隔3米植一棵树,首尾都要植,一共要准备多少棵树苗分析:先分清是非封闭路线问题,并且,首尾都要栽,株数=段数+1=全长÷株距+130÷3+1=11 棵,但是,题目中是小路的两旁植树,所以,11×2=22棵综合:30÷3+1×2例题3、公园的一条边长48米,每隔4米,插一面彩旗,后来改为每隔6米插一面,如果第一面彩旗不动,共有多少面彩旗不需要移动分析:这里仅仅考虑公园的一条边长,其他的不考虑,所以,认为是非封闭问题,原来,每隔4米,插一面彩旗,后来改为每隔6米插一面,第一面不需要移动的是4和6的最小公倍数12,就是第12面不移动,所以问题,转化为,48里面有多少个12,就有几面彩旗不移动;48÷12=4面加上第一面不移动的彩旗所以共为4+1=5面算式:4和6的最小公倍数是1248÷12+1=5面练习:1、在长1千米的万安大桥两侧安装路灯,每隔50米安装一盏两端都要安装,一共需要准备多少盏路灯分析:为大桥安装路灯,为非封闭问题,并且两端都要安装的,株数=段数+1=全长÷株距+11000÷50+1×2=201×2=402盏2、公路上一排电线杆,共25根,每相邻两根电线杆间的距离原来都是45米,现在要改为60米,可以有几根不需要移动分析:电线杆之间为分封闭问题,并且是两头都安装电线杆全长=株距×株数-1 即25-1×45=1080米找45和60的最小公倍数是180,1080÷180+1=7根其中的1表示第一根是不移动的,并且也不是45和60的最小公倍数拓展3、一段木料锯成4段要6分钟,如果要锯成9段需要几分钟分析: 锯木料问题,时间花在次数上,类同植树问题的株数两头都不栽树的情况锯成4段,需要锯4-1=3次, 锯成9段,需要锯9-1=8次所以,6÷4-3×9-14、钟楼上的大钟整点时敲相应的点数,早晨6点时敲钟用了40秒,那么12点时敲钟共用多少秒分析:钟表敲钟,时间花在敲相应的点数上,类同植树问题,敲钟为株数,两次敲钟之间的时间为株距,时间就是用在“株距”;所以,敲6下,6棵树,却是6-1=5个株距,所以,40秒与5有联系,与6没联系,同理,敲12下,有12-1=11段40÷6-1×12-1=88秒。
⼀、知识提炼⽅法4、沿着正⽅形的四条边植树,每两棵树之间的距离相等,如果已知每边植树的棵树,求四周⼀共植树的棵树时,可⽤(每边植树棵树—1)×4,求出植树总棵树。
例4 ⼩明⽤棋⼦围成了⼀个空⼼的正⽅形,每边有16颗棋⼦,并且正⽅形四个顶点上都有⼀颗。
⼩明围这个正⽅形共⽤了多少颗棋⼦?巩固练习在⼀个正⽅形池塘四周种树,每条边上都种有13棵,并且正⽅形的四个顶点上都有⼀颗。
这个正⽅形池塘的周围⼀共种了多少棵树?三、提⾼拓展在实际⽣活中,有⼀些类似于植树问题的问题,如上楼梯、锯⽊料等,可按照“植树问题”的⽅法去解决问题。
例⼩红从1楼⾛到4楼⽤了120秒。
照这样计算,⼩红从1楼⾛到8楼共⽤多少秒?巩固练习⽤15秒可以将⼀根⽊料锯成4段。
如果⽤同样的速度将这根⽊料锯成8段,要⽤多少秒钟?课后测试1.学校有⼀条长60⽶的⼩道,计划在道路⼀旁栽树,每隔3⽶栽⼀棵,有()个间隔。
如果两端都各栽⼀棵树,那么共需()棵树苗;如果两端都不栽树,那么共需()棵树苗;如果只有⼀端栽树,那么共需()棵树苗。
2.把10根橡⽪筋连接成⼀个圈,需要打()个结。
3.在⼀个正⽅形的每条边上摆4枚棋⼦,四条边上最多能摆()枚,最少能摆()枚。
4.⾖⾖和玲玲同住⼀幢楼,每层楼之间有20 级台阶,⾖⾖住⼆楼,玲玲住五楼。
⾖⾖要从⾃⼰家到玲玲家去找她玩,需要⾛()级台阶。
5.如下图,每两块正⽅形瓷砖中间贴⼀块长⽅形彩砖。
像这样⼀共贴了50块长⽅形彩砖,那么正⽅形瓷砖有()块(第⼀块和最后⼀块都是正⽅形瓷砖)。
6.15个同学在操场上围成⼀个圆圈做游戏,每相邻两个同学之间的距离都是2 m,这个圆圈的周长是()m。
7.⼀座楼房每上⼀层要⾛18级台阶,王芳回家共上了108级台阶,她家住在()楼。
8.⼩东把⼀些5⾓的硬币平均排列在⼀张正⽅形纸的周边,每边的硬币数相等,这些硬币的总⾯值是12元。
每边最多能放()枚硬币。
⼆)、选择1.7路公共汽车⾏驶路线全长8千⽶,每相邻两站的距离是1千⽶。