数字电路与逻辑代数
- 格式:ppt
- 大小:1.65 MB
- 文档页数:49
数字电路--逻辑代数的基本运算定律
逻辑代数的基本定律可以用真值表证明:
分别列出等式两边的真值表,如果等式两边对于变量的可能取值所得的结果相符,就证明该公式是正确的。
如:证明
A +
B ·
C = (A + B) ·(A + C) 成立
逻辑代数中的基本公式只反映了变量之间的逻辑关系,而不是数量之间的关系。
在运算中不能把初等代数的其他运算规律套用到逻辑代数中。
例如,等式两边不允许移项,因为逻辑代数中没有减法和除法。
在进行逻辑运算时,按先算括号、再算乘积、最后算加法的顺序进行,与普通代数是一样的。
最简的与或表达式的条件:在不改变逻辑关系的情况下,首先乘积项的个数最少,在此前提下,其次是每一个乘积项中变量的个数最少。
逻辑函数的化简方法l代数化简法l卡诺图化简法
2.卡诺图化简法
卡诺图—将真值表按一定的规则转换成相应变量的方格图
最小项—在一个有n个变量的逻辑函数中,包括全部n个变量的乘积项(每个变量必须而且只能以原变量或反变量的形式出现一次)。
(1)卡诺图的画法
由卡诺图可以看到,任何两个相邻小方格中的最小项仅有一个变量不同。
因而卡诺图边框的变量取值的填法,每次只改变一个变量的值以实现相邻的最小项只有一个变量不同。
2) 由逻辑表达式画卡诺图
与或式→每个乘积项所包含的最小项填“1”,其余的填“0”。