西南交通大学数值分析题库
- 格式:docx
- 大小:1.86 MB
- 文档页数:94
西南交通⼤学2018-2019数值分析Matlab上机实习题数值分析2018-2019第1学期上机实习题f x,隔根第1题.给出⽜顿法求函数零点的程序。
调⽤条件:输⼊函数表达式()a b,输出结果:零点的值x和精度e,试取函数区间[,],⽤⽜顿法计算附近的根,判断相应的收敛速度,并给出数学解释。
1.1程序代码:f=input('输⼊函数表达式:y=','s');a=input('输⼊迭代初始值:a=');delta=input('输⼊截⽌误差:delta=');f=sym(f);f_=diff(f); %求导f=inline(f);f_=inline(f_);c0=a;c=c0-f(c0)/f_(c0);n=1;while abs(c-c0)>deltac0=c;c=c0-f(c0)/f_(c0);n=n+1;enderr=abs(c-c0);yc=f(c);disp(strcat('⽤⽜顿法求得零点为',num2str(c)));disp(strcat('迭代次数为',num2str(n)));disp(strcat('精度为',num2str(err)));1.2运⾏结果:run('H:\Adocument\matlab\1⽜顿迭代法求零点\newtondiedai.m')输⼊函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512输⼊迭代初始值:a=1输⼊截⽌误差:delta=0.0005⽤⽜顿法求得零点为0.80072迭代次数为14精度为0.00036062⽜顿迭代法通过⼀系列的迭代操作使得到的结果不断逼近⽅程的实根,给定⼀个初值,每经过⼀次⽜顿迭代,曲线上⼀点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。
上述例⼦中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
用复化梯形公式计算积分1()f x dx ⎰,要把区间[0,1]一般要等分 41 份才能保证满足误差小于0.00005的要求(这里(2)()1f x ∞≤);如果知道(2)()0f x >,则 用复化梯形公式计算积分1()f x dx ⎰此实际值 大 (大,小)。
在以10((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C =∈⎰为内积的空间C[0,1]中,与非零常数正交的最高项系数为1的一次多项式是 23x -3. (15分)导出用Euler 法求解 (0)1y yy λ'=⎧⎨=⎩的公式, 并证明它收敛于初值问题的精确解解 Euler 公式 11,1,,,k k k xy y h y k n h nλ--=+==L -----------(5分) ()()1011kk k y h y h y λλ-=+==+L ------------------- (10分)若用复化梯形求积公式计算积分1x I e dx =⎰区间[0,1]应分 2129 等分,即要计算个 2130 点的函数值才能使截断误差不超过71102-⨯;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分12 等分,即要计算个 25 点的函数值1.用Romberg 法计算积分 232x e dx -⎰解 []02()()2b aT f a f b -=+= 9.6410430E-003 10221()222b a a bT T f -+=+= 5.1319070E-00310022243T T S -== 4.6288616E-00322T = 4.4998E-003 21122243T T S -== 4.E-0031002221615S S C -== 4.6588636E-00332T = 4.7817699E-00332222243T T S -== 4.1067038E-0032112221615S S C -== 4.5783515E-0031002226463C C R -== 4.7358037E-0032.用复合Simpson 公式计算积分232x e dx -⎰(n=5)解 44501()4()2()(),625k k h h b aS f a f a kh f a kh f b h ==⎡⎤-=++++++=⎢⎥⎣⎦∑∑5S =4.3630653 E-0033、 对于n+1个节点的插值求积公式()()bnk k k af x dx A f x =≈∑⎰ 至少具有 n 次代数精度. 4、 插值型求积公式()()bnk k k af x dx A f x =≈∑⎰的求积系数之和0nk k A =∑=b-a 5、 证明定积分近似计算的抛物线公式()()4()()22bab a a b f x dx f a f f b -+⎡⎤≈++⎢⎥⎣⎦⎰具有三次代数精度 证明 如果具有4阶导数,则()()4()()22bab a a b f x dx f a f f b -+⎡⎤-++⎢⎥⎣⎦⎰=)(f 2880)a b ()4(5η--(η∈[a,b])因此对不超过3次的多项式f(x)有()()4()()022bab a a b f x dx f a f f b -+⎡⎤-++=⎢⎥⎣⎦⎰即()()4()()22bab a a b f x dx f a f f b -+⎡⎤=++⎢⎥⎣⎦⎰精确成立,对任一4次的多项式f(x)有 因此定积分近似计算的抛物线公式具有三次代数精度 或直接用定义证.6、 试确定常数A ,B ,C 和a ,使得数值积分公式有尽可能高的代数精度。
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。
《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。
第二章习 题 解 答西南交大 草上飞1下列数据作为π=*x 的近似数,试确定它们各有几位有效数字,并确定其相对误差限..722,15.3,14.3,141.34321====x x x x (i x 表示*x 的近似数,)1415926.3 =π 解:把近似数)4,3,2,1(*=i x i 规格化形式后均有1=k ,首位非零数字为3Ⅰ)31*11021005.000059.0141.3-⨯=≤=-=- πx x *1x 有3位有效数字,0017.010321)(31*1≈⨯⨯=-x r ε Ⅱ) 31*21021005.0001.014.3-⨯=≤=-=- πx x*2x 有3位有效数字,0017.010321)(31*2≈⨯⨯=-x r ε Ⅲ) 21*31021005.0008.015.3-⨯=≤=-=- πx x*3x 有2位有效数字,017.010321)(21*3≈⨯⨯=-x r ε Ⅳ)142857.3722=, 31*41021005.0001.0722-⨯=≤=-=- πx x *4x 有3位有效数字,0017.010321)(31*4≈⨯⨯=-x r ε 2 证明§2.2中的定理 2.1,定理 2.2.3 已知20的近似数x 相对误差为%5.0,试问x 至少有几位有效数字?解:因20的第一位数字为4,所以x 的第一位数字41=a ,根据定理2.1,当n r a x e -⨯+≤1015|)(|1 成立时,x 有n 位有效数字,而2=n 时,101451019510005%5.0)(22--⨯+<⨯+===x e r 所以近似数x 至少有2位有效数字.4 为尽量避免有效数字的严重损失,当1||<<x 时应如何加工下列计算公式:(1)xx x +--+11211 (2)x cos 1- (3)1-xe解:(1))1)(21(22x x x ++;(2)2sin 22x ;(3)4322416121x x x x +++ 5 序列{}n y 满足递推关系()⎪⎩⎪⎨⎧=-==- ,2,1,110210n y y y n n若取41.120≈=y 做近似计算,问计算到10y 时误差有多大?这个计算过程稳定吗?解:,414.120 ==y ,41.1*=y δ=⨯≤--2*001021||y y 10||*11=-y y δ10||*00≤-y y10||*1010=-y y δ10*0010*9910||10||≤-==-y y y y 此递推关系每计算一次误差增长10倍,故算法不稳定. 6设,,1,0,11 ==⎰-n dx e x I x n n 验证,110--=e I .11--=n n nI I 若取,3679.01≈-e 依次计算 n I I I ,,10时(不要求具体算出),请你证明这样设计的算法其误差传播是逐步扩大的,算法是不稳定的.并要求另外设计一种数值稳定的算法.解: ,11110⎰---==e dx eI x 对n I 用分部积分法得==⎰-11dx e x I x n n ⎰-11x n de x ne x x n -=-101|⎰--111dx e x x n .11--=n nI设误差,*n n n I I e -=其中*1*1--=n n nI I .于是=--=-=--)(*11*n n n n n I I n I I e =--=)(!)1(*00I I n n 0!)1(e n n - 当n 增大时n e 是递增的, *n I 的误差达到0!)1(e n n -,是严重失真的.数值稳定的计算方法: 将递推公式11--=n n nI I 改为)1(11n n I nI -=- )1,2,1,( -=k k n 于是在从后往前计算时, 1-n I 的误差减少为原来n I 的n1,若取k n =足够大,误差逐步减少,计算结果是稳定可靠的. 7 7可由下列迭代公式计算:⎪⎩⎪⎨⎧=+==+,2,1,0),7(21210k x x x x k k k若k x 是7的具有n 位有效数字的近似值,求证1+k x 是7的具有n 2位有效数字的近似值.解 由1+k x ,1,0,)7(217)7(2172=-=-+=-k x x x x k kk k 和20=x ,得到,,2,1,7 =≥k x k 数列∞=1}{k k x 有下界.又1)11(21)71(2121=+≤+=+kk k x x x 即k k x x ≤+1,数列∞=1}{k k x 单调不增. 故k k x ∞→lim 存在.令∞→k ,对迭代公式两边取极限,可求得7lim =∞→k k x .现设k x 是7的具有n 位有效数字的近似值,即有11021|7|+-⨯≤-n k x 于是,得|7|1-+k x 2)7(721-≤k x 221041721+-⨯⨯≤n 121021+-⨯≤n可见, 1+k x 是7的具有n 2位有效数字的近似值.8用秦九韶算法计算多项式4532)(23-+-=x x x x p 在自变量3=x 时的值. 解:381432429634532-- 故 38)3(=p补充例题例题1:试问真值62.2*=x 的近似数 2.58x =是否为有效数. 解:*112110.040.05101022x x ---=<=⨯=⨯∴由有效数的定义知近似数 2.58x =具有两位有效数字,分别是2,5由于8不是有效数字,故 2.58x =不是有效数.例题2为尽量避免有效数字的严重损失,当1||>>x 时应如何加工下列计算公式xx x x 11--+解: 为尽量避免有效数字的严重损失,应作变换:xx x x x xx x x 11211-++=--+例题3 设10000,2,1,0,1==⎰n dx e x I x n n(1)证明:.10000,,3,2,1,1 =-=-n nI e I n n (2)设计一种数值稳定的算法,并证明算法的稳定性. 解: (1) 对n I 用分部积分法得 ==⎰1dx e x I x n n ⎰1x n de x n e x x n -=10|⎰-11dx e x x n.10000,,3,2,1,1101 =-=-=--⎰n nI e dx e x n e n x n(2) 由(1)得:,1n n I e nI -=-若已知N I ,设计如下递推算法: 1,2,1,),(11 --=-=-N N N n I e nI n n 注意到: )1,0(,1|110110∈+=+==+⎰ξξξξn e n x e dx x e I n nn ,于是.111+<<+n e I n n 取)1(21++=N eI N 可得如下递推算法1,2,,1,,)1(21)(11 -=⎪⎪⎩⎪⎪⎨⎧++=-=-N N n N e I I e n I N n n . 设 n n n I I e -=,则11---n n I I )(1n n I I n--=, ||11---n n I I |)(|1n n I I n -=,即n n e ne 11=-.每迭代一次误差均在减少,所以设计的递推算法是数值稳定的.例题4 已知,1410⎰+=dx x x y nn 试建立一个具有较好数值稳定性的求),2,1( =n y n 的递推公式,并证明算法的稳定性.解: 由=+-14n n y y ⎰++-101144dx x x x n n =n dx x n 1101=⎰- 得到求),2,1( =n y n 的递推公式:14141--=n n y n y , ,2,1=n (*) 而初值40235.0|)]14[ln(4114110100≈+=+=⎰x dx x y ,由此出发,根据上述递推公式可以求 ),2,1( =n y n 的近似值求*ny : *1*4141--=n n y n y , ,2,1=n . 记*n y 的绝对误差为||*n n n y y -=∆,则有:)(41*11*----=-n n n n y y y y ,即141-∆=∆n n , ,2,1=n . 由此可见,*1-n y 的误差将缩小41传播到*n y ,误差传播是逐步衰减的.因而,递推公式(*)是数值稳定的.例题5 数列{}n x 满足递推公式1101(1,2,)n n x x n -=-=.若取*001.41(3x x =≈=位有有效数字),问按此递推算法从0x 算至10x 时误差有多大?这个计算过程稳定吗? 解: *20001||||102e x x ε-=-=<⨯ *00||||10||10n nn n n n e x x x x ε=-=-=,||()n e n →∞→∞,则计算过程不稳定.计算至10x 时误差: 10281011||10101022e -=⨯⨯=⨯.。
数值分析考试卷及详细答案解答姓名班级学号一、选择题1.()2534F,,,-表示多少个机器数(C ).A 64B 129C 257D 2562. 以下误差公式不正确的是( D)A .()()()1212x *x *x *x *εεε-≈+B .()()()1212x *x *x *x *εεε+≈+C .()()()122112x *x *x *x *x x *εεε?≈+ D .()()()1212x */x *x *x *εεε≈-3. 设)61a =, 从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出a 较好的近似值?(D )A6)12(1+ B 27099- C 3)223(- D3)223(1+4. 一个30阶线性方程组, 若用Crammer 法则来求解, 则有多少次乘法? ( A )A 31×29×30!B 30×30×30!C 31×30×31!D 31×29×29!5. 用一把有毫米的刻度的米尺来测量桌子的长度, 读出的长度1235mm, 桌子的精确长度记为( D )A 1235mmB 1235-0.5mmC 1235+0.5mmD 1235±0.5mm二、填空1.构造数值算法的基本思想是近似替代、离散化、递推化。
2.十进制123.3转换成二进制为1111011.01001。
3.二进制110010.1001转换成十进制为 50.5625 。
4. 二进制0101.转换成十进制为57。
5.已知近似数x*有两位有效数字,则其相对误差限5% 。
6. ln2=0.69314718…,精确到310-的近似值是 0.693 。
7.31415926x .π==,则131416*x .=,23141*x .=的有效数位分别为5 和3 。
8.设200108030x*.,y*.==-是由精确值x y 和经四舍五入得到的近似值,则x*y*+的误差限0.55×10-3 。
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
考试目标及考试大纲本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。
通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。
本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。
考试内容包括以下部分:绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。
非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。
解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。
解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。
插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。
例5-10 求矩阵Q 的||Q ||1,||Q ||2,||Q ||∞与Cond 2(Q),其中⎪⎪⎪⎪⎪⎭⎫⎝⎛------=1111111111111111Q 分析 这实际上是基本概念题,只要熟悉有关范数与条件数的定义即可。
解答 (1)由定义,显然||Q ||1=4 (2)因Q T Q=4I ,故24)(||||max 2===Q Q Q T λ(3)由定义显知4||||=∞Q (4)因Q T Q=4I ,故T Q Q 411=-,从而T T QQ Q Q 161)()(11=--==---)]()[(||||11max 21Q Q Q T λ21)41()161(max max ==I QQ T λλ 所以1212||||||||)(Cond 2122=⋅=⋅=-Q Q Q 例5-12 设有方程组AX=b ,其中⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=3231 21 ,220122101b A已知它有解⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0 3121 X . 如果右端有小扰动61021||||-∞⨯=b δ,试估计由此引起的解的相对误差。
分析 本题是讨论方程组的右端项的小误差所引起的解的相对误差的估计问题,这与系数矩阵的条件数有关,只要求出Cond ∞(A),再由有关误差估计式即可算得结果。
解答 容易求得⎪⎪⎪⎭⎫ ⎝⎛-----=-1125.1121111A ,从而Cond ∞(A)=22.5由公式∞∞∞∞∞⋅≤||||||||)(||||||||b b A Cond X X δδ有56106875.13/210215.22|||||||--∞∞⨯=⨯⨯≤bX X δ例5-13 试证明矩阵A 的谱半径与范数有如下关系||||)(A A ≤ρ其中||A||为A 的任何一种算子范数。
分析 由于谱半径是特征值的绝对值的最大者,故由特征值的定义出发论证是自然的。
证明 由特征值定义,对任一特征值λ有 AX=λX (X ≠0,特征向量) 取范数有 ||AX||=|λ| ⋅ ||X||由于范数||A||是一种算子范数,故有相容关系 ||AX||≤||A|| ⋅ ||X|| 从而|λ| ⋅ ||X||≤||A|| ⋅ ||X|| 由于X ≠0,故|λ|≤||A||,从而 ρ(A) ≤ ||A||例5-18 设A,B 为n 阶矩阵,试证Cond(AB) ≤ Cond(A) ⋅ Cond(B)分析 由条件数定义和矩阵范数的性质即可证明。
考试目标及考试大纲本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。
通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。
本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。
考试内容包括以下部分:绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。
非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。
解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。
解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。
插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。
西南交大数值分析题库填空一. 填空2.Gauss型求积公式不是插值型求积公式。
(限填“是”或“不是”)3. 设l k(x)是关于互异节点x0, x1,…, x n, 的Lagrange 插值基函数,则 0m=1,2,…,n5.用个不同节点作不超过次的多项式插值,分别采用Lagrange 插值方法与Newton插值方法所得多项式相等(相等, 不相等)。
7. n个不同节点的插值型求积公式的代数精度一定会超过n-1次8.f(x)=ax7+x4+3x+1,f[20, 21,…,27]= a,f [20, 21,…,28]= 010设(i=0,1,…,n),则= _x_ , 这里(x i x j,ij, n2)11.设称为柯特斯系数则=______1____12采用正交多项式拟合可避免最小二乘或最佳平方逼近中常见的_法方程组病态___问题。
13辛卜生(Simpson)公式具有___3____次代数精度。
14 牛顿插商与导数之间的关系式为:15试确定[0,1]区间上2x3的不超过二次的最佳一致逼近多项式p(x), 该多项式唯一否?答:p(x)=(3/2)x, ; 唯一。
17.给定方程组记此方程组的Jacobi迭代矩阵为B J=(a ij)33,则a23= -1; ,且相应的Jacobi迭代序列是__发散_____的。
18.欧拉预报--校正公式求解初值问题的迭代格式(步长为h) ,此方法是阶方法。
,此方法是 2阶方法。
19. 2n阶Newton-Cotes公式至少具有2n+1次代数精度。
20.设,则关于的 ||f|| =121矩阵的LU分解中L是一个_为单位下三角阵,而U是一个上三角阵____。
22.设y=f (x1,x2) 若x1,x2,的近似值分别为x1*, x2*,令y*=f(x1*,x2*)作为y的近似值,其绝对误差限的估计式为: ||f(x1*,x2*)|x1-x*1|+ |f(x1*,x2*)|x2-x*2|23设迭代函数(x)在x*邻近有r(1)阶连续导数,且x* = (x*),并且有(k) (x*)=0 (k=1,…,r-1),但(r) (x*)0,则x n+1=(x n)产生的序列{ x n }的收敛阶数为___r___24设公式为插值型求积公式,则, 且=b-a25称微分方程的某种数值解法为p阶方法指的是其局部截断误差为O(h p+1)。
考试目标及考试大纲本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。
通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。
本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。
考试内容包括以下部分:绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。
非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。
解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。
解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。
插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。
曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。
最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。
本段加黑斜体内容理论推导可以淡化,但概念需要理解。
数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。
正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。
本段加黑斜体内容理论推导可以淡化,但概念需要理解。
常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。
本套题库均采用闭卷考试,卷面总分为100分。
试题形式分为判别正误、多项选择、填空、解答和证明等多种题型。
其中判断题、多项选择题和填空题覆盖整个内容范围,题量多而广,重点集中在基本概念、公式和方法的构建与处理思想等方面,此类题型主要用于考查学生对整体内容的理解与掌握情况;解答题重点放在主要的计算技术和方法的具体实现过程,主要考查学生对主要计算技术、技巧和方法理解与掌握情况;证明题主要集中在主要的计算技术和方法的分析过程,主要考查学生的理论分析能力和知识的综合运用能力。
本课程的考试方法与要求:期末闭卷考试,按时完成上机习题。
学习合格条件:考试卷面成绩 60且上机习题符合要求,二者缺一不可。
综合成绩:原则上=卷面成绩,但可参考上机习题完成情况作微调。
1 绪论 (1). 要使20的近似值的相对误差限≤0.1%, 应至少取___4____位有效数字。
20=0.4…⨯10, a 1=4, εr ≤121a ⨯10-(n-1)< 0.1% ,故可取n ≥4, 即4位有效数字。
(2). 要使20的近似值的相对误差限≤0.1%, 应至少取___4___位有效数字,此时的绝对误差限为31102(3). 设y =f (x 1,x 2) 若x 1,x 2,的近似值分别为x 1*, x 2*,令y *=f (x 1*,x 2*)作为y 的近似值,其绝对误差限的估计式为: ε ≤| |f (x 1*,x 2*)|x 1-x*1|+ |f (x 1*,x 2*)|x 2-x*2| (4). 计算 f=(2-1)6 , 取2=1.4 , 利用下列算式,那个得到的结果最好?答:__C_____. (A)6121)(-, (B) (3-22)2, (C)32231)(+, (D) 99-702(5). 要使17的近似值的相对误差限≤0.1%, 应至少取_________位有效数字?17=0.4…⨯10, a 1=4, εr ≤121a ⨯10-(n-1)< 0.1%故可取n ≥3.097, 即4位有效数字。
(6). 设x =3.214, y =3.213,欲计算u =y x -, 请给出一个精度较高的算式u =. u=yx y x +-(7). 设x =3.214, y =3.213,欲计算u =y x -, 请给出一个精度较高的算式u = . u=yx y x +-(8). 设y =f (x 1,x 2) 若x 1,x 2,的近似值分别为x 1*, x 2*,令y *=f (x 1*,x 2*)作为y 的近似值,其绝对误差限的估计式为: ε ≤| |f (x 1*,x 2*)|x 1-x*1|+ |f (x 1*,x 2*)|x 2-x*2|; 2 方程根(9). 设迭代函数ϕ(x )在x *邻近有r (≥1)阶连续导数,且x * = ϕ(x *),并且有ϕ(k )(x *)=0 (k =1,…,r -1),但ϕ(r ) (x *)≠0,则x n +1=ϕ(x n )产生的序列{ x n }的收敛阶数为___r___ (10). 称序列{x n }是p 阶收敛的如果c x x x x pn n n =--+∞→**lim1(11). 用牛顿法求 f (x)=0 的n 重根,为了提高收敛速度,通常转化为求另一函数u(x)=0的单根,u(x)=()()f x f x '(12). 用N e w t o n 法求方程f (x )=x 3+10x -20=0 的根,取初值x 0= 1.5, 则x 1= ________ 解 x 1=1.5970149 (13). 用牛顿法解方程0123=--x x的迭代格式为_______________解kk k k k k x x x x x x 2312231----=+ (14). 迭代过程)(1k k x x ϕ=+收敛的充分条件是(x ϕ'(15). 用Newton 法求方程f(x)=x 3+10x-20=0 的根,取初值x 0= 1.5, 则x 1= 1.5970149 (16). 用牛顿法解方程0123=--x x的迭代格式为(17). 用N e w t o n 法求方程f (x )=x 3+10x -20=0 的根,取初值x 0= 1.5, 则x 1= ________ 解 x 1=1.5970149 (18). 迭代公式x k +1=x k (x k 2+3a )/(3x k 2+a )是求a 1/2的 (12) 阶方法3方程组(19). 矩阵的 LU 分解中L 是一个 _为单位下三角阵,而U 是一个上三角阵____。
(20). 设线性方程组的系数矩阵为A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-6847153131483412,全主元消元法的第一次可选的主元素为 -8,或8___,第二次可选的主元素为 8+7/8或-8-7/8 ____. 列主元消元法的第一次主元素为 _-8_________;第二次主元素为(用小数表示) 7.5_____;(21). 在方阵A 的LU 分解中, 方阵A 的所有顺序主子不为零,是方阵A 能进行LU 分解的充 分 (充分,必要)条件;严格行对角占优阵 能__(能,不能)进行LU 分解;非奇异矩阵___不一定___(一定,不一定)能进行LU 分解。
(22). 设A 是正定矩阵,则A 的cholesky 的分解 唯一 (唯一,不唯一).(23). 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2021012a a A ,为使A 可分解为A=LL T ,其中L 是对角线元素为正的下三角形矩阵,则a 的取值范围是 ,取a=1,则L= 。
(24). 解)3,3(-∈a ,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡3232002321002改进的方法不会4迭代(1). ⎥⎦⎤⎢⎣⎡-=3211A ,则=1||||A ,=2||||A ,=∞||||A ; 答:4,3.6180340,5;(2). 已知方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2121132.021b b x x ,则解此方程组的Jacobi 迭代法___是___收敛(填“是”或“不”)。
(3). 给定方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111 211111112321x x x 记此方程组的Jacobi 迭代矩阵为B J =(a ij )3⨯3,则a 23= -1; , 且 相应的Jacobi 迭代序列是__发散_____的。
(4). 设3()1f x x ,则()f x 关于[0,1]C的f1,2f(5). ⎥⎦⎤⎢⎣⎡-=1301A ,则)1,)1(|(|1)(,4||||2,121=-=-==λλλρA I A A (6). R n 上的两个范数||x||p , ||x||q 等价指的是_∃C,D ∈R,_C_||x||q _≤||x||p ≤D ||x||q _; R n 上的两个范数_一定____是等价的。
(选填“一定”或“不一定”)。