2020年安徽省亳州市谯城区中考数学二调试卷---附答案解析
- 格式:pdf
- 大小:708.49 KB
- 文档页数:16
2020年安徽省亳州市校际联考中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.下列各数中,与−12互为相反数的是()A. 2B. −2C. 12D. −122.下列算式,结果等于a4的是()A. a+3aB. a5+3aC. (a2)2D. a8÷a3.由5个大小相同且边长为1小正方体拼成的几何体如图所示,则下列说法正确的是()A. 主视图的面积最小B. 左视图的面积最小C. 俯视图的面积最小D. 三个视图的面积相等4.2017年南通地区生产总值约为7700亿元,将7700亿用科学记数法表示为()A. 7.7×108B. 7.7×109C. 7.7×1010D. 7.7×10115.小明同学统计我市2016年春节后某一周的最低气温如下表:最低气温(℃)−1021天数1123则这组数据的中位数与众数分别是()A. 2,3B. 2,1C. 1.5,1D. 1,16.对多项式3x2−3x因式分解,提取的公因式为()A. 3B. xC. 3xD. 3x27.如图所示是一个数值转换机,输入x,输出3(x−1),下面给出了四种转换步骤,其中不正确的是()A. 先减去1,再乘3B. 先乘3,再减去1C. 先乘3,再减去3D. 先加上−1,再乘38.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2−ab−ac−bc的值是()A. 0B. 1C. 2D. 39.如图,在Rt△ABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠EDC的度数是()A. 25°B. 30°C. 50°D. 65°10.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC→CB运动,到点B停止.过点P作PD⊥AB于点D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动4秒时,PD的长是()A. 2.4cmB. 1.5cmC. 1.8cmD. 1.2cm二、填空题(本大题共3小题,共15.0分)11.如果关于x的方程x2−x+k=0有两个相等的实数根,那么k=______________.12.如图,△ABC是⊙O的内接三角形,连接OB,过O作OD⊥AB于点D,若⊙O的半径为2,∠ACB=60°,则弦AB的长为______.13.如图,在Rt△ABC中,AB=9,BC=6,∠B=90°.将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为________.三、计算题(本大题共1小题,共8.0分)14.解不等式:5(x−2)+8<6(x−1)+7.四、解答题(本大题共9小题,共87.0分)= _______.15.计算:√2×√3÷1√316.在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)17.如图,在每个小正方形边长为1个单位长度的方格纸中,△ABC的顶点都在方格纸格点上.(1)经过平移,△ABC的顶点A移到了点D.请作出平移后的三角形.(2)所作的图可以看作是由△ABC先向____平移____个单位长度,再向____平移____个单位长度得到.18.观察下列关于自然数的等式:2×4−12+1=8;3×5−22+1=12;4×6−32+1=16;5×7−42+1=20;…利用等式的规律,解答下列问题:(1)若等式8×10−a2+1=b(a,b都为自然数)具有以上规律,则a=_________,a+b=_________.(2)写出第n个等式(用含n的代数式表示).19.如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC交⊙O于点E,连接BE交AC于点H.(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.20.如图,直线y1=kx+b,与双曲线y2=m在第一象限内交于C(a,1)和xD(2,2)两点,连接OC、OD.(1)当y1<y2时,x的取值范围是______.(2)求△OCD的面积.21.为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了______名市民;扇形统计图中,B项对应的扇形圆心角是______度;补全条形统计图;(2)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.22.某淘宝店专销某种品牌的运动服,每套进价70元,售价120元/套.为了促销,淘宝店决定凡是一次购买数量不超过10套的,按原价每套120元购买;10套以上的,每多买1套,每套降价1元,每多买2套,每套降价2元…(例如,某人一次性购买15套运动服,多出5套,按每套降价5元购买,共需(15×115)元;但是最低价90元/套.(1)求顾客一次至少买多少套,才能以最低价购买?(2)写出当一次购买x(x>10)件时,利润w(元)与购买量x(件)之间的函数关系式;(3)有一天,一位顾客买了35套运动服,另一位顾客买了40套运动服,淘宝店发现卖了40套反而比卖35套赚的钱少!为了使每次卖的数量多赚的钱也多,在其它促销条件不变的情况下,最低价为90元/套至少要提高到多少?为什么?23.如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.(1)求证:△ABF∽△COE;(2)①当O为AC的中点,ACAB =2时,如图2,求OFOE的值;②当O为AC边中点,ACAB =n时,请直接写出OFOE的值.【答案与解析】1.答案:C解析:解:与−12互为相反数的是12.故选:C .直接利用互为相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键. 2.答案:C解析:解:A 、a 与3a 不是同类项,不能合并,故本选项错误;B 、a 5与3a 不是同类项,不能合并,故本选项错误;C 、(a 2)2=a 4,故本选项正确;D 、a 8÷a =a 7,故本选项错误;故选:C .根据同底数幂的乘法和合并同类项法则解答.本题考查了幂的运算性质,解题的关键是了解幂的有关运算性质,难度不大.3.答案:B解析:解:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图的面积是4; 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积为3;从上边看上面一层是三个小正方形,下面一层是一个小正方形,俯视图的面积是4,左视图面积最小,故B 正确,故选:B .根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.4.答案:D解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:7700亿用科学记数法表示为7.7×1011,故选D.5.答案:D解析:解:处于这组数据中间位置的那个数是1,由中位数的定义可知,这组数据的中位数是1.众数是一组数据中出现次数最多的数,在这一组数据中1是出现次数最多的,故众数是1.故选:D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而做错.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.答案:C解析:原式利用提公因式法分解得到结果,即可作出判断.此题考查了因式分解−提公因式法,以及公因式,熟练掌握提取公因式的方法是解本题的关键.解:3x2−3x=3x(x−1),则对多项式3x2−3x因式分解,提取的公因式为3x,故选:C.7.答案:B解析:此题主要考查了列代数式,关键是正确理解图示.解:根据题意可得A,C,D均正确,故选:B.8.答案:D解析:解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a−b=−1,a−c=−2,b−c=−1,∴a2+b2+c2−ab−ac−bc=2a2+2b2+2c2−2ab−2ac−2bc2=(a2−2ab+b2)+(a2−2ac+c2)+(b2−2bc+c2)2=(a−b)2+(a−c)2+(b−c)22=(−1)2+(−2)2+(−1)22=3,故选:D.根据题目中的式子,可以求得a−b、a−c、b−c的值,然后对所求式子变形,利用完全平方公式进行解答.本题考查完全平方公式.9.答案:D解析:解:∵∠ACB=90°,∠A=65°,∴∠B=25°,∵CD⊥AB,E是BC的中点,∴ED=12BC=EB,∴∠EDB=∠B=25°,∴∠EDC=90°−25°=65°,故选:D.根据三角形内角和定理求出∠B,根据直角三角形的性质得到ED=EB,得到∠EDB=∠B,计划图形计算,得到答案.本题考查的是直角三角形的性质、三角形内角和定理,在直角三角形中,斜边上的中线等于斜边的一半.10.答案:C解析:解:由图2可得,AC=3,BC=4,∴AB=√32+42=5,当t=4时,如图所示:,此时AC+CP=4,故B P=7−4=3,∵sin∠B=ACAB =35,∴PD=BPsin∠B=3×35=95=1.8cm.故选:C.根据图2可判断AC=3,BC=4,则可确定t=4时BP的值,利用sin∠B的值,可求出PD.本题考查了动点问题的函数图象,解答本题的关键是根据图2得到AC、BC的长度,此题难度一般.11.答案:14解析:根据根的判别式为零时,有两个相等的实数根,就可以求出k的值.解:∵关于x的方程x2−x+k=0有两个相等的实数根∴△=1−4k=0,解得:k=14.故答案为:14.12.答案:2√3解析:本题考查了三角形的外接圆与外心,垂径定理,圆周角定理,熟练掌握圆周角定理是解题的关键.连接OA,根据圆周角定理得到∠AOB=120°,∠AOB=60°,解直角三角形的即根据等腰三角形的性质得到∠BOD=12可得到结论.解:连接OA,∵∠ACB=60°,∴∠AOB=120°,∵OA=OB,OD⊥AB,∠AOB=60°,∴∠BOD=12∵OB=2,OB=√3,∴BD=√32∴AB=2BD=2√3,故答案为:2√3.13.答案:4解析:此题考查了翻折变换(折叠问题).设BN=x,则由折叠的性质可得DN=AN=9−x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.解:设BN=x,由折叠的性质可得DN=AN=9−x,∵D是BC的中点,∴BD=3,在Rt△NBD中,x2+32=(9−x)2,解得x=4.即BN=4.故答案为4.14.答案:解:去括号得,5x−10+8<6x−6+7,移项得,5x−6x<−6+7+10−8,合并同类项得,−x<3,化系数为1得,x>−3.故此不等式的解集为:x>−3.解析:先去括号、移项、再合并同类项,化系数为1即可.本题考查的是解一元一次不等式,去分母;去括号;移项;合并同类项;化系数为1是解一元一次不等式的基本步骤,要根据各不等式的特点灵活应用.15.答案:3√2解析:本题考查二次根式的乘除,关键是掌握二次根式的乘除的法则,根据二次根式的乘除的法则运算即可.解:原式=√2×√3×√3=3√2.故答案为3√2.16.答案:解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB⋅sin∠BAF=0.8×0.9=0.72,AF=AB⋅cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=ACtan∠AEC =41.2≈3.33,∴DE=CD−CE=5.04−3.33=1.71≈1.7,答:小水池的宽DE为1.7米.解析:过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.此题考查的知识点是解直角三角形的应用−仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.17.答案:解:(1)如图所示:△EDF即为所求.(2)上;3;右;1(右;1;上;3也正确).解析:本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据网格结构找出点B、C的对应点的位置,然后与点D顺次连接即可;(2)根据平移的性质易得答案.解:(1)见答案;(2)由图得:所作的图可以看作是由△ABC先向上平移3个单位长度,再向右平移1个单位长度得到,也可看作△ABC先向右平移1个单位长度,再向上平移3个单位长度.故答案为上;3;右;1(右;1;上;3也正确).18.答案:解:(1)7,39;(2)由已知的等式可得:第n个等式为(n+1)(n+3)−n2+1=4(n+1).解析:本题主要考查了式子的变化规律,解答的关键是找出式子中要变化的数与n的关系.(1)由已知的等式发现式子的规律解答即可;(2)由特殊到一般发现的规律为(n+1)(n+3)−n2+1=4(n+1).解:(1)∵2×4−12+1=8;3×5−22+1=12;4×6−32+1=16;5×7−42+1=20;....∴第7个等式为8×10−72+1=4×(7+1),故a=7,b=32,∴a+b=7+32=39,故答案为7,39;(2)见答案.19.答案:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OE//BC,∴OE⊥AC,∴AE⏜=CE⏜,∴∠1=∠2,∴BE平分∠ABC;(2)解:∵BD是⊙O的切线,∴∠ABD=90°,∵∠ACB=90°,BH=BD=2,∴∠CBD=∠2,∴∠1=∠2=∠CBD,∴∠CBD=30°,∠ADB=60°,∵∠ABD=90°,∴AB=2√3,OB=√3,∵OD2=OB2+BD2,∴OD=√7.解析:(1)根据切线的性质得到∠ACB=90°,根据平行线的性质得到OE⊥AC,根据垂径定理即可得到结论;(2)根据切线的性质得到∠ABD=90°,根据等腰三角形的性质得到∠CBD=∠2,解直角三角形即可得到结论.本题考查了切线的性质,圆周角定理,垂径定理,角平分线的判定,勾股定理,正确的识别图形是解题的关键.20.答案:(1)0<x<2或x>4;(2)∵C(4,1),D(2,2),∴直线CD的解析式为y=−12x+3,∴A(0,3),B(6,0),∴S△COD=S△AOB−S△AOD−S△BOC=12×3×6−12×3×2−12×6×1=3.解析:解:(1)把D(2,2)代入y2=mx中,得到m=4,∴y2=4x,把(a,1)代入y=4x中,得到a=4,∴C(4,1),观察图象可知:当y1<y2时,x的取值范围是0<x<2或x>4.故答案为0<x<2或x>4.(2)见答案.(1)利用待定系数法即可解决问题;(2)首先求出直线CD的解析式,确定点B坐标,根据S△COD=S△AOB−S△AOD−S△BOC计算即可;本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.21.答案:解:(1)2000;54;C选项的人数为2000−(100+300+500+300)=800,补全条形图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表可知共有16种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种,所以甲、乙两人恰好选择同一种交通工具上班的概率为416=14.解析:此题考查了条形统计图、扇形统计图和概率公式的运用,解题的关键是仔细观察统计图并从中整理出进一步解题的有关信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据D组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.解:(1)本次调查的总人数为500÷25%=2000人,扇形统计图中,B项对应的扇形圆心角是360°×3002000=54°,故答案为2000;54;(2)见答案.22.答案:解:(1)由题意得:(120−90)÷1+10=40(套)答:一次购买至少40套才能以最低价购买;(2)当10<x ≤40时,单件利润为120−(x −10)−70=60−x , 所以w =x(60−x)=−x 2+60x ; 当x >40时,单件利润为90−70=20, 所以w =(90−70)x =20x; 所以函数解析式为: w ={−x 2+60x(10<x ≤40)20x (x >40)(3)当x >40时,w =20x , w 随x 的增大而增大,符合题意; 当10<x ≤40时,w =−x 2+60x =−(x −30)2+900, ∵a =−1<0,∴抛物线开口向下.对称轴是直线x =30 ∴10<x ≤30,w 随着x 的增大而增大, 而当x =30时,w 最大值=900;∵要求卖的数量越多赚的钱越多,即w 随x 的增大而增大, ∴由以上可知,当x =30,最低售价为120−(30−10)=100元. 答:最低价提高到100元/套时可使每次卖的数量多赚的也多.解析:【试题解析】(1)直接利用每多买1套,每套降价1元,每多买2套,每套降价2元再结合最低价90元/套,得出答案;(2)利用当10<x ≤40时,当x >40时分别得出关系式即可; (3)利用二次函数性质得出函数最值,进而得出最低价格.此题主要考查了二次函数的应用,正确分段求出函数关系式是解题关键.23.答案:(1)证明:∵AD ⊥BC ,∴∠DAC +∠C =90°.∵∠BAC=90°,∴∠BAF=∠C.∵OE⊥OB,∴∠BOA+∠COE=90°,∵∠BOA+∠ABF=90°,∴∠ABF=∠COE,∴△ABF∽△COE;(2)①解:过O作AC垂线交BC于H,则OH//AB,由(1)得∠ABF=∠COE,∠BAF=∠C.∴∠AFB=∠OEC,∴∠AFO=∠HEO,而∠BAF=∠C,∴∠FAO=∠EHO,∴△OEH∽△OFA,∴OF:OE=OA:OH又∵O为AC的中点,OH//AB.∴OH为△ABC的中位线,∴OH=12AB,OA=OC=12AC,而ACAB=2,∴OA:OH=2:1,∴OF:OE=2:1,即OFOE=2;②OFOE=n.解析:本题难度中等,主要考查相似三角形的判定和性质.(1)要求证:△ABF∽△COE,只要证明∠BAF=∠C,∠ABF=∠COE即可;(2)作OH⊥AC,交BC于H,易证:△OEH和△OFA相似,根据相似三角形的对应边的比相等,即可得出①所求的值,同理可得②OFOE=n.②解:OFOE=n.证明:与(2)①相同,可得:OH=12AB,OA=OC=12AC,而ACAB=n,∴OA:OH=n:1,∴OF:OE=n:1,即OFOE=n.。
安徽省亳州市2020届高中毕业班数学第二次质量检测试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题5分,共60分。
) (共12题;共60分)1. (5分)(2017·山西模拟) 设i为虚数中单位,若复数z= +i(a∈R)的实部与虚部互为相反数,则a=()A . ﹣B . ﹣C . ﹣1D . ﹣52. (5分) (2016高一上·渝中期末) sin(﹣690°)的值为()A .B .C .D .3. (5分)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是()A .B .C .D .4. (5分)若双曲线过点(m,n)(m>n>0),且渐近线方程为,则双曲线的焦点()A . 在x轴上B . 在y轴上C . 在x轴或y轴上D . 无法判断是否在坐标轴上5. (5分)设点O是△ABC的外心,AB=13,AC=12,则• 为()A .B . ﹣C .D .6. (5分)若函数y=f(x)的图象与函数y=sin(x+ )的图象关于P(,0)对称,则f(x)解析式为()A . f(x)=sin(x﹣)B . f(x)=﹣sin(x﹣)C . f(x)=﹣cos(x+ )D . f(x)=cos(x﹣)7. (5分) (2016高一下·湖南期中) 如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1 , AB,BB1 , B1C1的中点,则异面直线EF与GH所成的角等于()A . 45°B . 60°C . 90°D . 120°8. (5分)给定两个命题p,q.若﹁p是q的必要而不充分条件,则p是﹁q的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件9. (5分)一个空间几何体的三视图如图所示,则该几何体的表面积为()A . 48B . 32+8C . 48+8D . 8010. (5分)某流程如下图所示,现输入如下四个函数,则可以输出的函数是()A .B .C . f(x)=lnx+2x-6D . f(x)=sinx11. (5分)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为()A . 0.95B . 0.97C . 0.92D . 0.0812. (5分)已知函数,则不等式的解集为()A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分。
中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.-5的倒数是()A. -5B. 5C.D.2.下列算式中,结果等于a5的是()A. a2+a3B. a2•a3C. a5÷aD. (a2)33.2018年,“双11网购促销活动创造了一天交易2135亿元的佳绩,数据2135亿用科学记数法表示为()A. 2.135×103B. 2.135×1011C. 0.2135×1012D. 2.135×10124.由两个长方体组成的几何体如图水平放置,其俯视图为()A.B.C.D.5.方程的解是()A. x=B. x=C. x=D. x=6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A. B.C. D.7.如图,△ABC内接于⊙O,若∠OAB=35°,则∠C的度数是()A. 35°B. 45°C. 65°D. 55°8.有编号为Ⅰ,Ⅱ,Ⅲ的3个信封现将编号为Ⅰ,Ⅱ的两封信,随机地放入其中两个信封里,则信封与信编号都相同的概率为()A. B. C. D.9.如图,矩形ABCD的长AD=9cm,宽AB=3cm,将它折叠,使点D与点B重合,求折叠后DE的长和EF的长分别是()A. 5cm,3cmB. 5cm,cmC. 6cm,cmD. 5cm,4cm10.如图,一次函数y1=-x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b+1)x+c的图象可能为()A.B.C.D.二、填空题(本大题共4小题,共20.0分)11.不等式5-2x>-3的解集是______.12.因式分解:a2(a-4)+(4-a)=______.13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田(即弓形)面积所用的公式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长AB,“矢”指弓形高.在如图所示的弧田中,半径为5,“矢”为2,则弧田面积为______.14.在边长为4的等边三角形ABC中,点P为边AB的中点,点Q为边AC上的任意一点(不与点A,C重合),若点A关于直线PQ的对称点A恰好落在等边三角形ABC 的边上,则AQ的长为______cm.三、解答题(本大题共9小题,共90.0分)15.计算:(-)2+-()0+|1-2|16.某企业因生产转型,二月份产值比一月份下降20%,转型成功后生产呈现良好上升势头,四月份比一月份增长15.2%,求三、四月份的平均增长率.17.如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点(1)在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;(2)在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.18.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为______,A n的坐标(用n的代数式表示)为______.(2)2020米长的护栏,需要两种正方形各多少个?19.如图,MN是一条东西走向的海岸线,上午9:00点一艘船从海岸线上港口A处沿北偏东30°方向航行,上午11:00点抵达B点,然后向南偏东75°方向航行,一段时间后,抵达位于港口A的北偏东60°方向上的C处,船在航行中的速度均为30海里/时,求此时船距海岸线的距离.20.如图,△ABC内接于⊙O,AB=AC,P为⊙O上一动点(P,A分别在直线BC的两侧),连接PC.(1)求证:∠P=2∠ABC;(2)若⊙O的半径为2,BC=3,求四边形ABPC面积的最大值.21.随着“互联网+购物”的快速发展,快递业务也越来越红火,某小区物业为了解本小区1200户家庭在过去的一年中收到快递的情况,随机调查了80户家庭去年一年共收到的快递件数,并绘制了如下的频数分布表和频数分布直方图(不完整).根据以上提供的信息,解答下列问题(1)表格中a=______,b=______,m=______;补全频数分布直方图;(2)这80户家庭一年中收到的快递件数的中位数落在哪一个小组?(3)请估计该小区去年一年共收到快递件数大约是多少?22.已知关于x的二次函数y=-x2+(k-1)x+k.(1)试判断该函数的图象与x轴的交点的个数;(2)求该函数的图象顶点M的坐标(用k的代数式表示);(3)当-3≤k<3时,求顶点M的纵坐标的取值范围.23.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.答案和解析1.【答案】D【解析】解:-5的倒数是-;故选:D.根据倒数的定义可直接解答.本题比较简单,考查了倒数的定义,即若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】B【解析】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选:B.根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.3.【答案】B【解析】解:数据2135亿用科学记数法表示为2.135×1011,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:这个几何体的俯视图为:故选:A.俯视图是指从几何体的上面观察得出的图形,能观察到的棱需要画成实线.本题考查了简单组合体的三视图,能理解三视图的定义是解此题的关键.5.【答案】B【解析】解:去分母得:2x2+2x=2x2-3x+1,解得:x=,经检验x=是分式方程的解,故选:B.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.【答案】D【解析】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.【答案】D【解析】解:连接OB,如图,∵OA=OB,∴∠OAB=∠OBA=35°,∴∠AOB=180°-35°-35°=110°,∴∠C=∠AOB=55°.故选:D.连接OB,如图,利用等腰三角形的性质和三角形内角和计算出∠AOB=110°,然后根据圆周角的定理求∠C的度数.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.8.【答案】C【解析】解:将Ⅰ,Ⅱ,Ⅲ的3个信封记为①②③,Ⅰ,Ⅱ的两封信记为①②,画树状图如下:由树状图知,共有6种等可能结果,其中信封与信编号都相同的只有1种结果,∴信封与信编号都相同的概率为.故选:C.画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:设DE=xcm,则AE=AD-DE=(9-x)cm,由折叠得BE=DE=x,在Rt△ABE中,AB2+AE2=BE2,即32+(9-x)2=x2,解得x=5cm;连结BD交EF于G,过点F作FH⊥AD于H,由折叠知EF所在的直线是BD的中垂线,∴BG=DG,∠BGF=∠DGE=90°,∵AD∥BC,∴∠FBG=∠EDG,在△BFG与△DEG中,,∴△BFG≌△DEG,∴BF=DE=5,∴EH=AH-AE=BF-EH=5-4=1,在Rt△EFH中,EF==,故选:B.设DE=xcm,则AE=AD-DE=(9-x)cm,由折叠得BE=DE=x,在Rt△ABE中,AB2+AE2=BE2,即32+(9-x)2=x2,解得x=5cm;连结BD交EF于G,过点F作FH⊥AD于H,由折叠知EF所在的直线是BD的中垂线,得到BG=DG,∠BGF=∠DGE=90°,由于AD∥BC,得到∠FBG=∠EDG,通过△BFG≌△DEG,得到BF=DE=5,解得EH=AH-AE=BF-EH=5-4=1,在Rt△EFH中,根据勾股定理即可解出结果.本题考查了图形的变换-折叠,全等三角形的判定与性质,勾股定理,掌握折叠的性质是解题的关键.10.【答案】B【解析】解:∵一次函数y1=-x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b+1)x+c=0有两个不相等的根,∴函数y=ax2+(b+1)x+c与x轴有两个交点,∵-<0,a>0∴-=--<0∴函数y=ax2+(b+1)x+c的对称轴x=-<0,∵a>0,开口向上,与y轴交点在正半轴.故选:B.由一次函数y1=-x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b+1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b+1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b+1)x+c的对称轴x=-<0,即可进行判断.本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.11.【答案】x<4【解析】解:-2x>-3-5,-2x>-8,x<4,故答案为:x<4.根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.【答案】(a-4)(a+1)(a-1)【解析】解:原式=a2(a-4)-(a-4)=(a-4)(a2-1)=(a-4)(a+1)(a-1),故答案为:(a-4)(a+1)(a-1)原式变形后,提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【答案】10【解析】解:如图所示:∵OA=OC=5,CD=2,∴OC=3,∵OC⊥AB,∴AC=BC==4,∴AB=8,∴弧田面积=(弦×矢+矢2)=(8×2+22)=10;故答案为:10.由题意得出OC=3,由勾股定理得出AC=BC==4,得出AB=8,代入公式弧田面积=(弦×矢+矢2)进行计算即可.本题考查了垂径定理、勾股定理、弧田面积=(弦×矢+矢2),由勾股定理求出AC是解题的关键.14.【答案】1或2【解析】解:∵点P为边AB的中点,∴AP=AB=2①如图1,当点A关于直线PQ的对称点A'刚好落在边AC上,作PQ⊥AC,连接PA',∵AQ=A'Q,∠A=60°∴△APA'为等边三角形,∠APQ=30°,∴AQ=AP=1;②如图2,当点A关于直线PQ的对称点A'刚好落在边BC上,连接PA',QA',PQ,则PQ⊥AA',PA=PA',四边形APA'Q为菱形,∴PQ=PA=AB=2,故答案为1或2.①如图1,当点A关于直线PQ的对称点A'刚好落在边AC上,作PQ⊥AC,连接PA',AQ=AP=1;②如图2,当点A关于直线PQ的对称点A'刚好落在边BC上,PQ═AB=2.本题考查了对称轴的性质,熟练运用等边三角形的性质是解题的关键.15.【答案】解:原式=+2-1+1=2+.【解析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.【答案】解:设三、四月份的平均增长率是x,一月份产值为a.根据题意得(1-20%)a(1+x)2=(1+15.2%)a,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:三、四月份的平均增长率为20%.【解析】此题可以设三、四月份的平均增长率是x,一月份产值为a.根据题意得到二月份的产值是(1-20%)a,在此基础上连续增长x,则四月份的产量是(1-20%)a(1+x)2,则根据四月份比一月份增长15.2%列方程求解.此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.17.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF即为所求.【解析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.本题主要考查作图-位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.18.【答案】(1)(8,2)(3n-1,2)(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.【解析】解:(1)∵A1的坐标为(2,2)、A2的坐标为(5,2),∴A1,A2,A3,…,A n各点的纵坐标均为2,∵小正方形的边长为1,∴A1,A2,A3,…,A n各点的横坐标依次大3,∴A3(5+3,2),A n(,2),即A3(8,2),A n(3n-1,2),故答案为(8,2);(3n-1,2);(2)见答案【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A2,A3,…,A n各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020米包含多少这样的长度,进而便可求出结果.本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19.【答案】解:如图,过B作BE⊥AC于E,∵∠GAB=30°,∠GAC=60°,∴∠BAE=30°.在Rt△ABE中,∵∠AEB=90°,AB=30×2=60(海里),∠BAE=30°,∴BE=AB=30海里,AE=BE=30海里.在Rt△CBE中,∵∠CEB=90°,∠EBC=75°-(60°-30°)=45°,∴CE=BE=30海里,∴AC=AE+CE=(30+30)海里.过C作CF⊥MN于F,∵∠CAF=90°-∠GAC=30°,∴CF=AC=(15+15)海里.答:此时船距海岸线的距离为(15+15)海里.【解析】本题考查的是解直角三角形的应用-方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.过B作BE⊥AC于E,解Rt△ABE,求出BE=AB=30海里,AE=BE=30海里.再解Rt△CBE,由∠EBC=75°-(60°-30°)=45°,得出CE=BE=30海里,那么AC=AE+CE=(30+30)海里.过C作CF⊥MN于F,得出CF=AC=(15+15)海里.20.【答案】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠A+2∠ABC=180°,∵∠A+∠P=180°,∴∠P=2∠ABC;(2)解:四边形ABPC的面积=S△ABC+S△PBC,∵S△ABC的面积不变,∴当S△PBC的面积最大时,四边形ABPC面积的最大,而BC不变,∴P点到BC的距离最大时,S△PBC的面积最大,此时P点为优弧BC的中点,而点A为的中点,∴此时AP为⊙O的直径,AP⊥BC,∴四边形ABPC面积的最大值=×4×3=6.【解析】(1)利用等腰三角形的性质和三角形内角和定理得到∠A+2∠ABC=180°,根据圆内接四边形的性质得∠A+∠P=180°,从而得到结论;(2)由于S△ABC的面积不变,则当S△PBC的面积最大时,四边形ABPC面积的最大,而P点到BC的距离最大时,S△PBC的面积最大,此时P点为优弧BC的中点,利用点A为的中点可判断此时AP为⊙O的直径,AP⊥BC,然后利用四边形的面积等于对角线乘积的一半计算四边形ABPC面积的最大值.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.21.【答案】(1)36 ; 6 ;0.075补全直方图如下:a=80×0.45=36,b=80-(4+12+36+18+4)=6,m=6÷80=0.075故答案为:36、6、0.075;(2)这组数据的中位数是第40、41个数据的平均数,而这两个数据均落在第3组,所以这80户家庭一年中收到的快递件数的中位数落在第3组;(3)1200×=1200×=16050(件),估计该小区去年一年共收到快递件数大约是16050件.【解析】(1)总数乘以第3组频率可得a,总数减去其它分组人数可得b,依据频率=频数÷总数可得m;(2)根据中位数的定义求解可得;(3)总户数乘以样本的平均值即可得.本题考查搜集信息的能力(读图、表),分析问题和解决问题的能力.正确解答本题的关键在于准确读图表.22.【答案】解:(1)∵△=(k-1)2-4×(-1)×k=+2k+1=(k+1)2≥0,∴该函数的图象与x轴的交点的个数为1个或2个;(2)∵y=-x2+(k-1)x+k=-[x2-(k-1)x+()2-()2]+k=-(x-)2+∴该函数的图象顶点M的坐标为(,);(3)设顶点M的纵坐标为t,则t=(k+1)2,当k=-1时,t有最小值0;当-3≤k<-1,t随k的增大而减小,则0<t≤1;当-1<k<3时,t随k的增大而减小,则0<t<4,∴t的范围为0≤t<4,即当-3≤k<3时,顶点M的纵坐标t的取值范围为0≤t<4.【解析】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.△=b2-4ac决定抛物线与x轴的交点个数(△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点).也考查了二次函数的性质.(1)计算判别式的值得到△=(k+1)2≥0,然后根据判别式的意义确定该函数的图象与x轴的交点的个数;(2)利用配方法,把一般式配成顶点式即可得到该函数的图象顶点M的坐标;(3)设顶点M的纵坐标为t,利用(2)的结论得到t=(k+1)2,则t为k的二次函数,然后利用二次函数的性质求解.23.【答案】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分线,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180°-2∠F,∵BG=BF,∴∠GBF=180°-2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF和△GCE中,∵,∴△BEF≌△GEC(SAS),∴BE=EG;(3)如图3,连接DM,取AC的中点N,连接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N为AC的中点,∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中点,∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四边形DMEN是平行四边形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【解析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=AC,计算可得结论.本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.。
安徽省亳州市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A .10B .14C .10或14D .8或102.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )A .B .C .D .3.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2,下列结论:4a+2b+c <0,2a+b <0,b 2+8a >4ac ,a <﹣1,其中结论正确的有( )A .1个B .2个C .3个D .4个4.若关于x 的一元二次方程x 2﹣2x+m =0没有实数根,则实数m 的取值是( ) A .m <1B .m >﹣1C .m >1D .m <﹣15.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是( )A .B .C .D .6.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )7.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( ) A .1个B .2个C .3个D .4个8.如图,一段抛物线:y=﹣x (x ﹣5)(0≤x≤5),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2, 交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3, 交x 轴于点A 3;…如此进行下去,得到一“波浪线”,若点P (2018,m )在此“波浪线”上,则m 的值为( )A .4B .﹣4C .﹣6D .69.下列方程中是一元二次方程的是( ) A .20ax bx c ++= B .2211x x += C .(1)(2)1x x -+=D .223250x xy y --=10.下列运算正确的是( ) A .x 3+x 3=2x 6B .x 6÷x 2=x 3C .(﹣3x 3)2=2x 6D .x 2•x ﹣3=x ﹣111.如图,已知两个全等的直角三角形纸片的直角边分别为a 、b ()a b ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )A .3个;B .4个;C .5个;D .6个.12.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为( )A .13124π-B .9π1?24- C .1364π+D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.对应点A'是直线45y x=上一点,则点B与其对应点B'间的距离为__________.B.比较sin53︒__________tan37︒的大小.14.因式分解2242x x-+=______.15.钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为______.16.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.17.如图,⊙O的直径CD垂直于AB,∠AOC=48°,则∠BDC=度.18.一次函数y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD;20.(6分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区1800 1600B地区1600 1200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y 与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.21.(6分)解方程式:1x2-- 3 =x12x--22.(8分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.求证:AB=DC.23.(8分)解不等式组223252x xx x≤+⎧⎨-≤+⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为.24.(10分)已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若AB=2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB+AC 之间的数量关系,并证明.25.(10分)先化简,再求值:a b a -÷(a ﹣22ab b a-),其中a=3tan30°+1,b=2cos45°. 26.(12分)如图,直线11y k x b =+与第一象限的一支双曲线my x =交于A 、B 两点,A 在B 的左边. (1)若1b =4,B(3,1),求直线及双曲线的解析式:并直接写出不等式11mk x b x<+的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC 、BC,设直线BC 解析式为y kx b =+;当AC ⊥AB 时,求证:k 为定值.27.(12分)已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根, ∴22﹣4m+3m=0,m=4, ∴x 2﹣8x+12=0, 解得x 1=2,x 2=1.①当1是腰时,2是底边,此时周长=1+1+2=2;所以它的周长是2.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 2.A 【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转. 详解:A 、上面小下面大,侧面是曲面,故本选项正确; B 、上面大下面小,侧面是曲面,故本选项错误; C 、是一个圆台,故本选项错误;D 、下面小上面大侧面是曲面,故本选项错误; 故选A .点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转. 3.D 【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0, 对称轴为x=2ba-<1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0, 当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac ,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0. 由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8, 上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点. 4.C 【解析】试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根,()224241440b ac m m ∆=-=--⨯⨯=-<,解得: 1.m >5.B 【解析】 【分析】俯视图是从上面看几何体得到的图形,据此进行判断即可. 【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B . 【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形. 6.C 【解析】 【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点. 7.C 【解析】 【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解. 【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误; ③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确; ④经过直线外一点有且只有一条直线与已知直线平行,故④正确, 综上所述,正确的有①③④共3个,【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键. 8.C 【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值,由2017÷5=403…2,可知点P (2018,m )在此“波浪线”上C 404段上,求出C 404的解析式,然后把P (2018,m )代入即可.详解:当y=0时,﹣x (x ﹣5)=0,解得x 1=0,x 2=5,则A 1(5,0), ∴OA 1=5,∵将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…;如此进行下去,得到一“波浪线”, ∴A 1A 2=A 2A 3=…=OA 1=5,∴抛物线C 404的解析式为y=(x ﹣5×403)(x ﹣5×404),即y=(x ﹣2015)(x ﹣2020), 当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1, 即m=﹣1. 故选C .点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键. 9.C 【解析】 【分析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可. 【详解】解:A 、当a=0时,20ax bx c ++=不是一元二次方程,故本选项错误; B 、2211x x +=是分式方程,故本选项错误; C 、(1)(2)1x x -+=化简得:230x x +-=是一元二次方程,故本选项正确; D 、223250x xy y --=是二元二次方程,故本选项错误; 故选:C . 【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键. 10.D分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.11.B【解析】分析:直接利用轴对称图形的性质进而分析得出答案.详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.故选B.点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.12.A【解析】【分析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,2213故选A . 【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.5 > 【解析】 【分析】A :根据平移的性质得到OA′=OA ,OO′=BB′,根据点A′在直线45y x =求出A′的横坐标,进而求出OO′的长度,最后得到BB′的长度;B :根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较. 【详解】A :由平移的性质可知,OA′=OA =4,OO′=BB′.因为点A′在直线45y x =上,将y =4代入45y x =,得到x =5.所以OO′=5,又因为OO′=BB′,所以点B 与其对应点B′间的距离为5.故答案为5. B :sin53°=cos (90°-53°)=cos37°, tan37°=sin 37?cos37?,根据正切函数与余弦函数图像可知,tan37°>tan30°,cos37°>cos45°,即tan37°,cos37°<2 ,2<,∴tan37°<cos37°,即sin53°>tan37°.故答案是>. 【点睛】本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.14.22(1)x -. 【解析】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为:22(1)x -.15.51.710⨯ 【解析】解:将170000用科学记数法表示为:1.7×1.故答案为1.7×1. 16.-2。
谯城中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方根是4,那么这个数是:A. 16B. 8C. -4D. 4答案:A3. 函数y=2x+3的斜率是:A. 2B. 3C. -2D. -3答案:A4. 一个三角形的内角和是:A. 90°B. 180°C. 360°D. 720°答案:B5. 下列哪个选项是二次方程的解?A. x = 2B. x = -1C. x = 0D. x = 1答案:D6. 一个圆的半径是5,那么它的周长是:A. 10πB. 15πC. 20πD. 25π答案:C7. 一个数的绝对值是8,那么这个数可以是:A. 8B. -8C. 8或-8D. 0答案:C8. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是:A. 60B. 48C. 35D. 120答案:A9. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 1答案:A10. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 0答案:A二、填空题(本题共5小题,每小题4分,共20分)1. 一个数的立方是-8,那么这个数是______。
答案:-22. 一个三角形的两边长分别为3和4,第三边长为5,那么这个三角形是______三角形。
答案:直角3. 一个数的平方是25,那么这个数是______。
答案:±54. 一个圆的直径是10,那么它的半径是______。
答案:55. 一个长方体的长、宽、高分别为2、3、4,那么它的表面积是______。
答案:52三、解答题(本题共3小题,每小题10分,共30分)1. 解方程:2x - 5 = 9答案:x = 72. 已知一个直角三角形的两条直角边长分别为3和4,求斜边长。
答案:斜边长为53. 已知一个长方体的长、宽、高分别为6、8、10,求它的体积。
安徽省亳州市2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A.2 B.3 C.4 D.52.sin60°的值为()A.3B.32C.22D.123.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差4.下列事件中,必然事件是()A.抛掷一枚硬币,正面朝上B.打开电视,正在播放广告C.体育课上,小刚跑完1000米所用时间为1分钟D.袋中只有4个球,且都是红球,任意摸出一球是红球5.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为()A.8.1×106B.8.1×105C.81×105D.81×1046.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣187.如图所示的几何体的主视图是()A.B.C.D.8.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+19.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣510.下列四个几何体,正视图与其它三个不同的几何体是()A.B.C.D.11.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个12.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是.14.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写15.如图,在正六边形ABCDEF 中,AC 于FB 相交于点G ,则AGGC值为_____.16.16的算术平方根是 . 17.分式方程213024x x x -=+-的解为x =__________. 18.因式分解:3x 2-6xy+3y 2=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表: 请结合图表完成下列各题:(1)①表中a 的值为 ,中位数在第 组; ②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率. 组别 成绩x 分 频数(人数) 第1组 50≤x <60 6 第2组 60≤x <70 8 第3组 70≤x <80 14 第4组 80≤x <90 a 第5组90≤x <1001020.(6分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元. (1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 21.(6分)计算:(π﹣3.14)0﹣20213cos30()2-+﹣|﹣3|.22.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n 的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.23.(8分)(1)问题发现:如图①,在等边三角形ABC 中,点M 为BC 边上异于B 、C 的一点,以AM 为边作等边三角形AMN ,连接CN ,NC 与AB 的位置关系为 ; (2)深入探究:如图②,在等腰三角形ABC 中,BA=BC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作等腰三角形AMN ,使∠ABC=∠AMN ,AM=MN ,连接CN ,试探究∠ABC 与∠ACN 的数量关系,并说明理由; (3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.24.(10分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3o ,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7o ,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈o ,cos32.30.85≈o ,tan32.30.63≈o ,sin55.70.83≈o ,cos55.70.56≈,tan55.7 1.47)≈o25.(10分)已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF . i )求证:△CAE ∽△CBF ; ii )若BE=1,AE=2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB EFk BC FC==时,若BE =1,AE=2,CE=3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE=m ,AE=n ,CE=p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)26.(12分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析容易题,失分原因:未掌握通过三视图还原几何体的方法.2.B【解析】.故选B.解:sin60°=23.B【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.4.D【解析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.5.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】810 000=8.1×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.C【解析】互为相反数的两个数是指只有符号不同的两个数,所以18的相反数是18,故选C.7.A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.C【解析】【分析】解:A.224 .a a a ⋅=故错误; B.2222.a a a += 故错误; C.正确;D.()2212 1.a a a +=++ 故选C . 【点睛】本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键. 9.A 【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A . 考点:科学记数法—表示较小的数. 10.C 【解析】 【分析】根据几何体的三视图画法先画出物体的正视图再解答. 【详解】解:A 、B 、D 三个几何体的主视图是由左上一个正方形、下方两个正方形构成的, 而C 选项的几何体是由上方2个正方形、下方2个正方形构成的, 故选:C . 【点睛】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键. 11.C 【解析】 【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出. 【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确; (3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.12.D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.n1+n+1.【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n个为n1+n+1.考点:规律型:图形的变化类.14.1【解析】【分析】由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.【详解】解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k 的取值范围. 15.12. 【解析】 【分析】由正六边形的性质得出AB=BC=AF ,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG ,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG ,即可得出答案. 【详解】∵六边形ABCDEF 是正六边形,∴AB =BC =AF ,∠ABC =∠BAF =120°, ∴∠ABF =∠BAC =∠BCA =30°, ∴AG =BG ,∠CBG =90°, ∴CG =2BG =2AG , ∴AGGC =12; 故答案为:12. 【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键. 16.4 【解析】 【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±= ∴16的平方根为4和-4 ∴16的算术平方根为4 17.-1 【解析】【分析】先去分母,化为整式方程,然后再进行检验即可得. 【详解】两边同乘(x+2)(x-2),得:x-2﹣3x=0,解得:x=-1,所以x=-1是分式方程的解,故答案为:-1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.18.3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①12,3. ②详见解析.(2)1 3 .【解析】分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.详解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为12,3;②如图,(2)121050×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小强分在一起的概率为:13.点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.20.解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82 123;解法二(列表法):(以下过程同“解法一”)【解析】【分析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):0 10 20 30 0 ﹣﹣10 20 30从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;考点:列表法与树状图法.【详解】请在此输入详解!21.﹣1.【解析】【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式1432=-+-,=1﹣3+4﹣3,=﹣1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.22.(1)50;(2)240;(3)12.【解析】【分析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1)510%50n=÷=;(2)样本中喜爱看电视的人数为501520510---=(人),10120024050⨯=,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率61122==.【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.23.(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3)241;【解析】【分析】(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到AB ACAM AN=,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM ABCN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案.【详解】(1)NC∥AB,理由如下:∵△ABC与△MN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM与△ACN中,AB ACBAM CANAM AN=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°, ∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下: ∵AB AMBC MN ==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB ACAM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN , ∴∠BAC=∠MAN , ∴∠BAM=∠CAN , ∴△ABM ~△ACN , ∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN , ∵四边形ADBC ,AMEF 为正方形, ∴∠ABC=∠BAC=45°,∠MAN=45°, ∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC 即∠BAM=∠CAN ,∵AB AMBC AN == ∴AB ACAM AN=, ∴△ABM ~△ACN ∴BM ABCN AC=,∴CN AC BM AB ==cos45°,∴2BM =, ∴BM=2,∴CM=BC ﹣BM=8, 在Rt △AMC , AM=2222108241AC MC +=+=,∴EF=AM=241.【点睛】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.24.(1)AB 的长为50m ;(2)冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响. 【解析】 【分析】()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设.AB CM DN xm ===想办法构建方程即可解决问题.()2求出AC ,AD ,分两种情形解决问题即可.【详解】解:()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设AB CM DN xm ===. 在Rt PCM V 中,()tan32.30.63PM x x m =⋅=o,在Rt PDN V 中,()tan55.7 1.47PN x x m =⋅=o,42CD MN m ==Q , 1.470.6342x x ∴-=, 50x ∴=, AB ∴的长为50m .()2由()1可知:31.5PM m =,()904231.516.5AD m ∴=--=,9031.558.5AC =-=, 16.53 5.5Q ÷=,58.5319.5÷=,∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.(1)i )证明见试题解析;ii 6;(2)104;(3)222(22)p n m -=+. 【解析】 【分析】(1)i )由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF ,又由于2AC CEBC CF==故△CAE ∽△CBF ; ii )由2AEBF=2,再由△CAE ∽△CBF ,得到∠CAE=∠CBF ,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF ==+=,解得6CE =(2)连接BF ,同理可得:∠EBF=1°,由AB EFk BC FC==,得到2::1:1BC AB AC k k =+2::1:1CF EF EC k k =+,故21AC AEk BC BF==+21BF k =+2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =,故22222222(22)(22)()(22)()(22)22p EF BE BF m m n ==++=++=++,从而有222(22)p n m -=+. 【详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵2AC CEBC CF==,∴△CAE ∽△CBF ; ii )∵2AEBF=,∴BF=2,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得6CE =;(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴2::1::1BC AB AC k k =+,2::1::1CF EF EC k k =+,∴21AC AEk BC BF==+,∴21BF k =+,2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得10k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,∴22222222(22)(22)()(22)()(22)22p EF BE BF m m n =+=++=++=+++, ∴222(22)p n m -=+.【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 26.第二、三季度的平均增长率为20%. 【解析】 【分析】设增长率为x ,则第二季度的投资额为10(1+x )万元,第三季度的投资额为10(1+x )2万元,由第三季度投资额为10(1+x )2=14.4万元建立方程求出其解即可. 【详解】设该省第二、三季度投资额的平均增长率为x ,由题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.27.(1) 14;(2)112.【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.。
安徽省亳州市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法错误的是( )A .2-的相反数是2B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是02.在△ABC 中,点D 、E 分别在AB 、AC 上,如果AD =2,BD =3,那么由下列条件能够判定DE ∥BC 的是( )A .DE BC =23B .DE BC =25 C .AE AC =23D .AE AC =253.计算±81的值为( )A .±3B .±9C .3D .94.如图,在平面直角坐标系xOy 中,A (2,0),B (0,2),⊙C 的圆心为点C (﹣1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最小值是( )A .2B .C .D .5.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲2 6 7 7 8 乙 234 8 8 关于以上数据,说法正确的是( )A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差6.如图,在ABC V 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )A .2B .3C .4D .67.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )A .44B .45C .46D .478.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣2x (x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =k x(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A .53B .34C .43D .239.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒10.下列调查中适宜采用抽样方式的是( )A .了解某班每个学生家庭用电数量B .调查你所在学校数学教师的年龄状况C .调查神舟飞船各零件的质量D .调查一批显像管的使用寿命11.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)12.在下列各平面图形中,是圆锥的表面展开图的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:21633⨯+=________. 14.如图,点A ,B 在反比例函数k y x=(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.15.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE AB=_.16.如图,ABC V 与ADB △中,90ABC ADB ︒∠=∠=,C ABD ∠=∠,5AC =,4AB =,AD 的长为________.17.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得a bc c=;④由23a bc c=,得3a=2b;⑤由a2=b2,得a=b.其中正确的是_____.18.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?20.(6分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.21.(6分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为,图①中m的值为;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.22.(8分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x 的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?23.(8分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=12,求⊙O的半径.24.(10分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.25.(10分)抛物线M :()2410y ax ax a a =-+-≠与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线________;(2)当2AB =时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :()0y kx b k =+≠经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为()330x x >,若当21n -≤≤-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.26.(12分)如图,在矩形纸片ABCD 中,AB=6,BC=1.把△BCD 沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于点G ;E 、F 分别是C′D 和BD 上的点,线段EF 交AD 于点H ,把△FDE 沿EF 折叠,使点D 落在D′处,点D′恰好与点A 重合.(1)求证:△ABG ≌△C′DG ;(2)求tan ∠ABG 的值;(3)求EF 的长.27.(12分)如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.求证:△ABC ≌△ADE ;(2)求证:∠EAC =∠DEB .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.2.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.3.B【解析】【详解】∵(±9)2=81,∴=±9.故选B.4.C【解析】当⊙C 与AD 相切时,△ABE 面积最大,连接CD ,则∠CDA=90°,∵A (2,0),B (0,2),⊙C 的圆心为点C (-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD==2,∵∠AOE=∠ADC=90°,∠EAO=∠CAD ,∴△AOE ∽△ADC , ∴ 即,∴OE=,∴BE=OB+OE=2+∴S △ABE = BE?OA=×(2+)×2=2+故答案为C.5.D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.6.C【解析】【分析】先利用垂直平分线的性质证明BE=CE=8,再在Rt △BED 中利用30°角的性质即可求解ED .【详解】解:因为DE 垂直平分BC ,所以8BE CE ==,在Rt BDE V 中,30B ∠=︒,则118422ED BE ==⨯=; 故选:C .【点睛】本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.7.A【解析】【分析】连接正方形的对角线,然后依据正方形的性质进行判断即可.【详解】解:如图所示:∵四边形为正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故选:A .【点睛】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键.8.C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4 (3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.9.B【解析】【分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.10.D【解析】【分析】根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.11.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.12.C【解析】【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选C.【点睛】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】根据二次根式的运算法则先算乘法,再将3分母有理化,然后相加即可.【详解】解:原式=233 33=3【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC=2BD ,∴OD=2OC .∵CD=k ,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92, ∴22229376()22AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键.15.5【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解.设点C 的坐标为(1,15),则点B 的坐标为(515),点D 的坐标为(1,1),点E 51),则5,51,则DE AB =55.考点:二次函数的性质16.165【解析】【分析】先证明△ABC ∽△ADB ,然后根据相似三角形的判定与性质列式求解即可.【详解】∵90ABC ADB ︒∠=∠=,C ABD ∠=∠,∴△ABC ∽△ADB , ∴AB AD AC AB=, ∵5AC =,4AB =, ∴454AD =, ∴AD=165. 故答案为:165. 【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.17.①②④【解析】①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确, ③由a=b,得a b c c=,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为c 可能为0,所以本选项不正确, ④由23a b c c=,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确, ⑤因为互为相反数的平方也相等,由a 2=b 2,得a=b,或a=-b,所以本选项错误,故答案为: ①②④.18.1【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD ⨯= ,解得:AB=1205060⨯ =1(米). 故答案为1.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.20.证明见解析.【解析】试题分析:根据矩形的性质得出DC //,AB ,DC AB =求出,CF AE =CF //,AE 根据平行四边形的判定得出四边形AFCE 是平行四边形,即可得出答案.试题解析:∵四边形ABCD 是矩形,∴DC //,AB ,DC AB =∴CF //,AEDF BE=Q,CF AE,∴=∴四边形AFCE是平行四边形,.AF CE∴=点睛:平行四边形的判定:有一组对边平行且相等的四边形是平行四边形.21.(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.【解析】分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=1450×100%=1%,所以m=1.故答案为50、1;(Ⅱ)平均数为344105166147650⨯+⨯+⨯+⨯+⨯=5.16次,众数为5次,中位数为552+=5次;(Ⅲ)1614650++×350=2.答:估计该校350名九年级男生中有2人体能达标.点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.【解析】【分析】(1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;(3)利用二次函数的性质求出w的最大值,以及此时x的值即可.【详解】(1)设y=kx+b(k≠0),根据题意得7080 60100k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;(3)w=﹣2(x﹣75)2+21,∵40≤x≤70,∴x=70时,w有最大值为w=﹣2×25+21=2050元,∴当销售单价为70元时,该公司日获利最大,为2050元.【点睛】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.23.(1)详见解析;(2)OA=152.【解析】【分析】(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.【详解】(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=12,∴设AB=x,则BD=2x,∴AD=,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴BE AB BD CD=,∴1029xx=,解得x=∴AB=15,∴OA=152.【点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.24.(1)8m;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CD BP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am 的E 处,用高h (m )的测角仪DE 测得这段古城墙顶端A 的仰角为α.即可测量这段古城墙AB 的高度,过点D 作DC ⊥AB 于点C.在Rt △ACD 中,∠ACD=90°,tanα=AC CD , ∴AC=α tanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.25.(1)2x =;(2)213222y x x =-+-;(3)54k > 【解析】【分析】(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线M 的对称轴;(2)根据抛物线的对称轴及2AB =即可得出点A 、B 的坐标,根据点A 的坐标,利用待定系数法即可求出抛物线M 的函数表达式;(3)利用配方法求出抛物线顶点D 的坐标,依照题意画出图形,观察图形可得出2b <-,再利用一次函数图象上点的坐标特征可得出122k b +=,结合b 的取值范围即可得出k 的取值范围. 【详解】(1)∵抛物线M 的表达式为241y ax ax a =-+-,∴抛物线M 的对称轴为直线422a x a-=-=. 故答案为:2x =.(2)∵抛物线241y ax ax a =-+-的对称轴为直线2x =,2AB =,∴点A 的坐标为()1,0,点B 的坐标为()3,0.将()1,0A 代入241y ax ax a =-+-,得:410a a a -+-=, 解得:12a =-, ∴抛物线M 的函数表达式为213222y x x =-+-.(3)∵()221311222222y x x x =-+-=--+, ∴点D 的坐标为12,2⎛⎫ ⎪⎝⎭. ∵直线y=n 与直线l 的交点的横坐标记为()330x x >,且当21n -≤≤-时,总有13320x x x x ->->, ∴x 2<x 3<x 1,∵x 3>0,∴直线l 与y 轴的交点在()0,2-下方,∴2b <-.∵直线l :()0y kx b k =+≠经过抛物线的顶点D ,∴122k b +=, ∴15424b k =->.【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出.26.(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:∵△BDC′由△BDC 翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD ,∠AGB=∠DGC′,∴∠ABG=∠ADE 。
安徽省亳州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个数和它的倒数相等,则这个数是()A.1 B.0 C.±1 D.±1和02.关于的一元二次方程有两个不相等的实数根,则的取值范围为()A.B.C.D.3.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(). A.众数B.中位数C.平均数D.方差4.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27 B.36 C.27或36 D.185.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是()A.m<n B.m≤n C.m>n D.m≥n6.下列命题正确的是( )A.内错角相等B.-1是无理数C.1的立方根是±1 D.两角及一边对应相等的两个三角形全等7.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A.中位数不变,方差不变B.中位数变大,方差不变C.中位数变小,方差变小D.中位数不变,方差变小8.下列几何体是棱锥的是( )A.B.C.D.9.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°10.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+511.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤12.若|x| =-x,则x一定是()A.非正数B.正数C.非负数D.负数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A(m,2),B(5,n)在函数kyx(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.14.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.15.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.16.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.17.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________18.123=⨯________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018 20.(6分)如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM=2∠A .判断直线MN 与⊙O 的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.21.(6分)解方程(1)2430x x --=;(2)()22(1)210x x ---=22.(8分)已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E . 求证:DE 是⊙O 的切线;若DE=6cm ,AE=3cm ,求⊙O 的半径.23.(8分)如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC 与△DEF 是否相似,并证明你的结论.24.(10分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?25.(10分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.(1)试判断∠AED与∠C的数量关系,并说明理由;(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为.26.(12分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.求证:PE⊥PF.27.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5 a 0.26 18 0.17 14 b8 8 0.16 合计50 c我们定义频率=频数抽样人数,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是1850=0.1.(1)统计表中的a、b、c的值;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据倒数的定义即可求解.【详解】的倒数等于它本身,故C符合题意.故选:C.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.B【解析】试题分析:根据题意得△=32﹣4m>0,解得m<.故选B.考点:根的判别式.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数4.B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-33×3+k=0解得:k=37将k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(3)当3为底时,则其他两边相等,即△=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x 3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意.故k 的值为3.故选B .考点:3.等腰三角形的性质;3.一元二次方程的解.5.C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->V ,求得 0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--,∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,得0a >, ∵121224x x x x <<+<,,∴1222x x ,->-∴m n >,故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大, 6.D【解析】解:A .两直线平行,内错角相等,故A 错误;B .-1是有理数,故B 错误;C .1的立方根是1,故C 错误;D.两角及一边对应相等的两个三角形全等,正确.故选D.7.D【解析】【分析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是=3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;∵新数据的中位数为3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;所以新数据与原数据相比中位数不变,方差变小,故选:D.【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.8.D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.9.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.10.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.11.B【解析】试题分析:①、MN=12AB,所以MN的长度不变;②、周长C△PAB=12(AB+PA+PB),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线12.A【解析】【分析】根据绝对值的性质进行求解即可得.【详解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正数,故选A.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.14.y=x.(答案不唯一)【解析】【分析】首先设一次函数解析式为:y=kx+b(k≠0),b取任意值后,把(1,1)代入所设的解析式里,即可得到k 的值,进而得到答案.【详解】解:设直线的解析式y=kx+b,令b=0,将(1,1)代入,得k=1,此时解析式为:y=x.由于b可为任意值,故答案不唯一.故答案为:y=x.(答案不唯一)【点睛】本题考查了待定系数法求一次函数解析式.15.4【解析】【分析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.【详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4. 【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键.16.20000【解析】试题分析:1000÷10200=20000(条).考点:用样本估计总体.17.75°【解析】【分析】先根据同旁内角互补,两直线平行得出AC∥DF,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.【详解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案为:75°.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键.18.1【解析】【分析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可.【详解】解:原式=1.故答案为1.【点睛】本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-1【解析】【分析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【详解】解:原式=﹣4+1+1+1=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(1)相切;(2)163π- 【解析】试题分析:(1)MN 是⊙O 切线,只要证明∠OCM=90°即可.(2)求出∠AOC 以及BC ,根据S 阴=S 扇形OAC ﹣S △OAC 计算即可. 试题解析:(1)MN 是⊙O 切线.理由:连接OC .∵OA=OC ,∴∠OAC=∠OCA ,∵∠BOC=∠A+∠OCA=2∠A ,∠BCM=2∠A ,∴∠BCM=∠BOC ,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC ⊥MN ,∴MN 是⊙O 切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT △BCO 中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,BC=23 ∴S 阴=S 扇形OAC ﹣S △OAC =212041164234336023ππ-⨯⨯=-g .考点:直线与圆的位置关系;扇形面积的计算.21.(1)127x =,227x =;(2)11x =,23x =-.【解析】【分析】 (1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)解:∵1a =,4b =-,3c =-,∴224(4)41(3)280b ac ∆=-=--⨯⨯-=>, ∴24(4)2847272212b b ac x a ----±±====±⨯ ∴127x =,227x =(2)解:原方程化为:2(1)2(1)(1)0x x x --+-=,因式分解得:[](1)(1)2(1)0x x x ---+=,整理得:(1)(3)0x x ---=,∴10x -=或30x --=,∴11x =,23x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.解:(1)证明见解析;(2)⊙O 的半径是7.5cm .【解析】【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O 的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【详解】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴2235AD DE AE+=连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴AD AC AE AD=.∴35335=则AC=15(cm ).∴⊙O 的半径是7.5cm .考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.23. (1) (2)△ABC ∽△DEF.【解析】【分析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似.【详解】(1)9045135ABC ∠=+=o o o ,BC ==故答案为(2)△ABC ∽△DEF.证明:∵在4×4的正方形方格中, 135,9045135ABC DEF ∠=∠=+=o o o o ,∴∠ABC=∠DEF.∵2,2,AB BC FE DE ====∴2AB BC DE FE ==== ∴△ABC ∽△DEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.24.20千米【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE 和直角三角形CBE 中利用斜边相等两次利用勾股定理得到AD 2+AE 2=BE 2+BC 2,设AE 为x ,则BE=10﹣x ,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E 应建在离A 站x 千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.25.(1)∠AED=∠C,理由见解析;(2)6【解析】【分析】(1)根据切线的性质和圆周角定理解答即可;(2)根据勾股定理和三角函数进行解答即可.【详解】(1)∠AED=∠C,证明如下:连接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切线,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)连接BE ,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt △DAB 中,AD=3,∠ADB=90°,∴cos ∠DAB=AD AB =解得:,∵E 是半圆AB 的中点,∴AE=BE ,∵∠AEB=90°,∴∠BAE=45°,在Rt △AEB 中,ADB=90°,∴cos ∠EAB=AE AB =解得:.【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.26.证明见解析.【解析】【分析】由圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点,继而可得EM=EN ,即可证得:PE ⊥PF .【详解】∵四边形ABCD 内接于圆,∴BCF A ∠∠=,∵FM 平分BFC ∠,∴BFN CFN ∠∠=,∵EMP A BFN ∠∠∠=+,PNE BCF CFN ∠∠∠=+,∴EMP PNE ∠∠=,∴EM EN =,∵PE 平分MEN ∠,∴PE PF ⊥.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用. 27.(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;【解析】【分析】(1)根据百分比=所占人数总人数计算即可; (2)求出a 组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【详解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1; (2)补全图形如下:(3)所有被调查学生课外阅读的平均本数=105618+714+8850⨯+⨯⨯⨯=6.4(本) (4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×14850+=264(名). 【点睛】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.。
中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.与的积为1的数是()A. 2B.C. -2D.2.如图所示的几何体的主视图是()A. B. C. D.3.计算:(-a3)2÷a2=()A. -a3B. a3C. a4D. a74.2019年春晩“奋进新时代,欢度幸福年”,在和谐、温暖、欢乐的氛围里传递了社会的正能量和浓浓的家国情怀,海内外收视的观众总规模达到11.73亿人,其中数据11.73亿用科学记数法表示正确的是()A. 11.73×108B. 1.173×108C. 1.173×109D. 0.1173×10105.下列多项式能用完全平方公式进行因式分解的是()A. a2-1B. a2-2a-1C. a2-a+1D. a2-2a+16.一元二次方程2x2-3x+1=0根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根7.某组长统计组内5人一天在课堂上的发言次数分别为3,0,4,3,5,关于这组数据,下列说法不正确的是()A. 平均数是3B. 众数是3C. 中位数是4D. 方差是2.88.2018年安徽全省生产总值比2017年增长8.02%,2017年比2016年增长8.5%.设安徽省这两年生产总值的年平均增长率为x,则所列方程正确的为()A. (1+x)2=8.02%×8.5%B. (1+2x)2=8.02%×8.5%C. (1+2x)2=(1+8.02%)×(1+8.5%)D. (1+x)2=(1+8.02%)×(1+8.5%)9.如图,矩形ABCD中,AB=5,BC=12,点E在边AD上,点G在边BC上,点F、H在对角线BD上,若四边形EFGH是正方形,则AE的长是()A. 5B.C.D.10.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点A(1,0)和点B(0,-2),且顶点在第三象限,记m=a-b+c,则m的取值范围是()A. -1<m<0B. -2<m<0C. -4<m<-2D. -4<m<0二、填空题(本大题共4小题,共20.0分)11.的整数部分是______.12.=1的解为______.13.如图,AB是⊙O的直径,BC是⊙O的弦,∠ABC的平分线交⊙O于点D.若AB=6,∠BAC=30°,则的长等于______.14.已知△ABC是等腰直角三角形,AB=AC,D为平面内的任意一点,且满足CD=AC,若△ADB是以AD为腰的等腰三角形,则∠CDB的度数为______.三、解答题(本大题共9小题,共90.0分)15.先化简,再求值:(,其中x=-2.16.解不等式.17.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(-1,-1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为______.18.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左、右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等.(1)(a+b)n展开式中项数共有______项.(2)写出(a+b)5的展开式:(a+b)5=______.(3)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.19.某校九(18)班开展数学活动,毓齐和博文两位同学合作用测角仪测量学校的旗杆,毓齐站在B点测得旗杆顶端E点的仰角为45°,博文站在D(D点在直线FB上)测得旗杆顶端E点仰角为15°,已知毓齐和博文相距(BD)30米,毓齐的身高(AB)1.6米,博文的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1)20.如图,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系,并说明理由.21.九(1)班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类别,每位同学仅选一项.根据调根据图表提供的信息,回答下列问题:(1)直接写出:a=______.b=______m=______;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请求选取的2人恰好是甲和乙的概率.22.某公司用100万元研发一种市场急需电子产品,已于当年投入生产并销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,设公司销售这种电子产品的年利润为s(万元).(1)请求出y(万件)与x(元/件)的函数表达式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)的函数表达式,并求出第一年年利润的最大值.23.定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,△ABC中,AC>AB,DE是△ABC在BC边上的中分线段,F为AC中点,过点B作DE的垂线交AC于点G,垂足为H,设AC=b,AB=c.①求证:DF=EF;②若b=6,c=4,求CG的长度;(2)若题(1)中,S△BDH=S△EGH,求的值.答案和解析1.【答案】A【解析】解:∵的倒数是2,∴与乘积为1的数是2,故选:A.根据乘积是1的两数互为倒数,进行求解.本题主要考查了倒数的概念,解题时注意:正数的倒数是正数,负数的倒数是负数,而0 没有倒数.2.【答案】B【解析】解:从正面看是一个半圆形和提个梯形,如图所示:故选:B.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【答案】C【解析】解:(-a3)2÷a2=a6÷a2=a4.故选:C.直接利用积的乘方运算法则以及同底数幂的除法运算法则分别计算得出答案.此题主要考查了积的乘方运算以及同底数幂的除法运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】解:将11.73亿用科学记数法表示为:1.173×109.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】D【解析】解:A、a2-1=(a+1)(a-1),故此选项错误;B、a2-2a-1,无法分解因式,故此选项错误;C、a2-a+1,无法运用完全平方公式分解因式,故此选项错误;D、a2-2a+1=(a-1)2,正确.故选:D.直接利用公式法分解因式进而得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.6.【答案】A【解析】解:∵a=2,b=-3,c=1,∴△=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根,故选:A.先求出△的值,再根据△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数;△<0⇔方程没有实数根,进行判断即可.此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.7.【答案】C【解析】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0-3)2+2×(3-3)2+(4-3)2+(5-3)2]=2.8,故选:C.根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.8.【答案】D【解析】解:如果设徽省这两年生产总值的年平均增长率为x,那么根据题意得:(1+x)2=(1+8.02%)×(1+8.5%),故选:D.用增长后的量=增长前的量×(1+增长率),如果设徽省这两年生产总值的年平均增长率为x,根据已知可以得出方程.考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a 为起始时间的有关数量,b为终止时间的有关数量.9.【答案】B【解析】解:如图,连接EG,交BD于点O,∵四边形ABCD是矩形∴AD=BC=12,∠A=90°,AD∥BC∴BD==13∵四边形EFGH是正方形∴EO=OG,EG⊥FH∵AD∥BC∴∴DO=BO=∵∠A=∠EOD=90°,∠ADB=∠EDO∴△ABD∽△OED∴即∴DE=∴AE=AD-DE=故选:B.连接EG,交BD于点O,由勾股定理可求BD=13,即可求OD=,通过证明△ABD∽△OED,可求DE=,则可求AE的长.本题考查了正方形的性质,矩形的性质,勾股定理,相似三角形的判定和性质,证明△ABD∽△OED是本题的关键.10.【答案】D【解析】解:∵二次函数的图象开口向上,∴a>0,∵对称轴在y轴的左边,∴-<0,∴b>0,∵图象与y轴的交点坐标是(0,-2),过(1,0)点,代入得:a+b-2=0,∴a=2-b,b=2-a,∴y=ax2+(2-a)x-2,当x=-1时,y=a-b+c=a-(2-a)-2=2a-4,∵b>0,∴b=2-a>0,∴a<2,∵a>0,∴0<a<2,∴0<2a<4,∴-4<2a-4<0,∵y=a-b+c=a-(2-a)-2=2a-4,∴-4<a-b+c<0,即-4<m<0.故选:D.求出a>0,b>0,把x=1代入求出a=2-b,b=2-a,把x=-1代入得出y=a-b+c=2a-4,求出2a-4的范围即可.本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c).11.【答案】2【解析】解:∵<,∴2<<3,∴的整数部分是2,故答案为:2.首先确定的范围<,然后可得答案.此题主要考查了估算无理数的大小,关键是掌握估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值.12.【答案】x=-1【解析】解:在方程=1的两边同时乘以(x-1)得:2x=x-1∴x=-1.经检验,当x=-1时,-1-1≠0,∴x=-1是原方程的解.故答案为:x=-1.利用等式的性质两边同时乘以(x-1),转化成整式方程求解,再检验即可.本题属于解分式方程得基本习题,注意解需要检验,本题比较简单.13.【答案】π【解析】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴∠ABC=90°-30°=60°,∵∠ABC的平分线交⊙O于点D,∴∠ABD=∠ABC=×60°=30°,∴∠AOD=2∠ABD=2×30°=60°,∴的长==π.故答案为:π.根据直径所对的圆周角是直角求出∠ACB=90°,再根据直角三角形两锐角互余求出∠ABC,然后根据角平分线的定义求出∠ABD,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的二倍求出∠AOD,然后根据弧长公式列式计算即可得解.本题考查了弧长的计算,圆周角定理,直角三角形两锐角互余的性质,比较简单,熟记定理与公式并求出∠AOD的度数是解题的关键.14.【答案】45°或135°【解析】解:①当AD=AB时,∵AB=AC,CD=AC,AD=AB,∴AC=AD=CD,∴△ACD为等边三角形.当点D在AC边上方时,如图1所示.∵△ABC是等腰直角三角形,AB=AC,△ACD为等边三角形,∴∠BAC=90°,∠CAD=60°,∴∠BAD=∠BAC+∠CAD=150°.∵AB=AD,∴∠ABD=∠ADB=(180°-∠BAD)=15°,∴∠CDB=∠ADC-∠ADB=60°-15°=45°;当点D在AC边下方时,如图2所示.∵∠BAC=90°,∠CAD=60°,∴∠BAD=∠BAC-∠CAD=30°.∵AB=AD,∴∠ABD=∠ADB=(180°-∠BAD)=75°,∴∠CDB=∠ADB+∠ADC=75°+60°=135°.②当AD=BD时,当点D在BC的上方,如图3所示.过D作DE⊥AB于E,过A作AF⊥CD于F,∴∠BED=90°,∵∠BAC=90°,∴∠BED=∠BAC,∴ED∥AC,∴∠EDA=∠DAC,∵AD=CD,∴∠ADC=∠DAC,∴∠EDA=∠ADC,∴AF=AE=AB=AC,Rt△AFC中,∠ACF=30°,∴∠ADC==75°,∴∠ADB=2∠ADE=2∠ADC=150°,∴∠CDB=360°-150°-75°=135°;当D在BC的下方时,如图4,过D作DE⊥AC于E,过C作CF⊥ED于F,∴∠AEF=∠BAC=∠EFC=90°,∴四边形AEFC是矩形,∴CF=AE,∵AD=BD,DE⊥AB,∴AE=AB,∠ADE=∠BDE,∴CF=AB=AC=CD,Rt△CFD中,∠CDF=30°,∵AC∥ED,∴∠CAD=∠ADE,∵AC=CD,∴∠CAD=∠ADC,∴∠CDA=∠ADE=∠CDF=15°,∴∠ADB=30°,∴∠CDB=45°.综上所述,则∠CDB的度数为45°或135°;故答案为:45°或135°.当△ADB是以AD为腰的等腰三角形,可以分两种情况进行讨论:①AD=AB,②AD=BD;①当AD=AB时,又分两种情况:当点D在AC边上方时,如图1所示.由△ACD为等边三角形,得∠CAD=60°,根据角的关系可得结论;当点D在AC边下方时,如图2所示.同理可得结论;②当AD=BD时又分两种情况:当点D在BC的上方,如图3所示.作辅助线,证明∠EDA=∠ADC,根据角平分线的性质得:AF=AE=AB=AC,利用直角三角形30°角的判定得:Rt△AFC中,∠ACF=30°,从而得出结论;当D在BC的下方时,如图4,同理构建矩形AEFC,由CF=AB=AC=CD,得Rt△CFD中,∠CDF=30°,可得结论.本题考查了等腰三角形的性质和判定、等腰直角三角形的性质和判定、角平分线的性质、中垂线的性质以及直角三角形30°的判定,本题多解,要注意不要丢解,采用了分类讨论的思想,并利用数形结合,有一定难度.15.【答案】解:原式==当x=-2时,原式==【解析】先化简,然后将x的值代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.16.【答案】解:去分母得:3x<6-(x-2)去括号得:3x<6-x+2,移项合并得:4x<8,系数化1,得:x<2.【解析】根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.17.【答案】(1)见解析△A1B1C1为所作(2)见解析△A2B2C2为所作(3)(-2,-2)【解析】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(-2,-2).故答案为(-6,0).(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P 点坐标即可.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.【答案】(1)n+1(2)a5+5a4b+10a3b2+10a2b3+5ab4+b5(3)25-5×24+10×23-10×22+5×2-1=25-5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【解析】解:(1))(a+b)n展开式中项数共有n+1项,故答案为n+1;(2)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5故答案为a5+5a4b+10a3b2+10a2b3+5ab4+b5(3)见答案;【分析】(1)根据规律,可知n+1项;(2)根据规律,可知(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(3)根据规律得出原式=(2-1)5.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.【答案】解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,∵AB=1.6米,CD=1.75米,∴MN=0.15米,∵∠EAM=45°,∴AM=ME,设AM=ME=x米,∵BD=30米∴CN=(x+30)米,EN=(x-0.15)米,∵∠ECN=15°,∴tan∠ECN==,解得:x≈11.3,则EF=EM+MF=11.3+1.6=12.9(米).答:旗杆的高EF为12.9米.【解析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.15米,根据E点的仰角为45°,可得△AEM是等腰直角三角形,得出AM=ME,设AM=ME=x米,则CN=(x+30)米,EN=(x-0.15)米,在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF的长.本题考查了解直角三角形的应用,此题是一个比较常规的解直角三角形问题,要求学生能借助仰角构造直角三角形并解直角三角形.20.【答案】解:(1)如图所示;(2)直线BD与⊙A相切.∵∠ABD=∠BAC,∴AC∥BD,∵∠ACB=90°,⊙A的半径等于BC,∴点A到直线BD的距离等于BC,∴直线BD与⊙A相切.【解析】(1)①以点A为圆心,以BC的长度为半径画圆即可;②以点A为圆心,以任意长为半径画弧,与边AB、AC相交于两点E、F,再以点B为圆心,以同等长度为半径画弧,与AB相交于一点M,再以点M为圆心,以EF长度为半径画弧,与前弧相交于点N,作射线BN即可得到∠ABD;(2)根据内错角相等,两直线平行可得AC∥BD,再根据平行线间的距离相等可得点A 到BD的距离等于BC的长度,然后根据直线与圆的位置关系判断直线BD与⊙A相切.本题考查了复杂作图,主要利用了作一个角等于已知角,直线与圆的位置关系的判断,是基本作图,难度不大.21.【答案】(1)20 ,40,15;(2)画树状图如下:共有12种等可能的结果数,其中恰好是甲和乙的只有2种,所以选取的2人恰好是甲和乙的概率==.【解析】解:(1)∵被调查的总人数b=10÷0.25=40(人),∴a=40×0.5=20,m%=×100%=15%,即m=15,故答案为:20、40、15;(2)画树状图如下:共有12种等可能的结果数,其中恰好是甲和乙的只有2种,所以选取的2人恰好是甲和乙的概率==.(1)先由散文对应的频数及其频率可得总人数b,再用总人数乘以小数对应频率求得其人数a,用其他人数除以总人数可得m的值;(2)利用树状图法展示所有12种等可能的结果数,再找出恰好是甲和乙的结果数,然后根据概率公式求解.此题考查的是用列表法或树状图法求概率.注意树状图法或列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比22.【答案】解:(1)当4≤x≤8时,设y=,将A(4,40)代入得k=4×40=160,∴y与x之间的函数关系式为y=;当8<x≤28时,设y=k'x+b,将B(8,20),C(28,0)代入得,,解得,∴y与x之间的函数关系式为y=-x+28,综上所述,y=;(2)当4≤x≤8时,s=(x-4)y-160=(x-4)•-100=-+60,∵当4≤x≤8时,s随着x的增大而增大,∴当x=8时,s max=-+60=-20;当8<x≤28时,s=(x-4)y-10=(x-4)(-x+28)-100=-(x-16)2+44,∴当x=16时,s max=44;∵44>-20,∴当每件的销售价格定为16元时,第一年年利润的最大值为44万元.【解析】(1)依据待定系数法,即可求出y(万件)与x(元/件)之间的函数关系式;(2)分两种情况进行讨论,当x=8时,s max=-20;当x=16时,s max=44;根据44>-20,可得当每件的销售价格定为16元时,第一年年利润的最大值为44万元.本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.23.【答案】(1)①证明:∵F为AC中点,DE是△ABC在BC边上的中分线段,∴DF是△CAB的中位线,∴DF=AB=c,AF=AC=b,CE=(b+c),∴AE=b-CE=b-(b+c)=(b-c),∴EF=AF-AE=b-(b-c)=c,∴DF=EF;②解:过点A作AP⊥BG于P,如图1所示:∵DF是△CAB的中位线,∴DF∥AB,∴∠DFC=∠BAC,∵∠DFC=∠DEF+∠EDF,EF=DF,∴∠DEF=∠EDF,∴∠BAP+∠PAC=2∠DEF,∵ED⊥BG,AP⊥BG,∴DE∥AP,∴∠PAC=∠DEF,∴∠BAP=∠DEF=∠PAC,∵AP⊥BG,∴AB=AG=4,∴CG=AC-AG=6-4=2;(2)解:连接BE、DG,如图2所示:∵S△BDH=S△EGH,∴S△BDG=S△DEG,∴BE∥DG,∵DF∥AB,∴△ABE∽△FDG,∴==,∴FG=AE=×(b-c)=(b-c),∵AB=AG=c,∴CG=b-c,∴CF=b=FG+CG=(b-c)+(b-c),∴3b=5c,∴=.【解析】(1)①由题意得出DF是△CAB的中位线,得出DF=AB=c,AF=AC=b,CE=(b+c),AE=(b-c),求出EF=AF-AE=c,即可得出结论;②过点A作AP⊥BG于P,由中位线定理得出DF∥AB,得出∠DFC=∠BAC,求出∠DEF=∠EDF,∠BAP+∠PAC=2∠DEF,由ED⊥BG,AP⊥BG,得出DE∥AP,得出∠PAC=∠DEF,∠BAP=∠DEF=∠PAC,再由AP⊥BG,得出AB=AG=4,即可得出结果;(2)连接BE、DG,由S△BDH=S△EGH,得出S△BDG=S△DEG,推出BE∥DG,再由DF∥AB,得出△ABE∽△FDG,得出==,推出FG=(b-c),CF=b=FG+CG=(b-c)+(b-c),即可得出结果.本题是三角形综合题,考查了新定义、等腰三角形的判定与性质、平行线的判定与性质、三角形中位线定理、相似三角形的判定与性质、同底三角形面积相等则高相等等知识;熟练掌握中位线定理与平行线的性质是解题的关键.。
2020年中考数学二模试卷一、选择题(共10小题).1.如果数x与﹣20互为相反数,那么x等于()A.﹣20B.20C.D.2.下列计结果为a10的是()A.a6+a4B.a11﹣a C.(a5)2D.a20÷a23.如图是由6个大小相同的小正方体拼成的几何体,当去掉最上面的小正方体时,则不变的是()A.主视图B.左视图C.俯视图D.三种视图4.据统计,我省2019年生产总值约为37100亿元,其中“37100亿”用科学记数法表示为()A.3.71×1012B.3.71×1011C.0.371×105D.3.71×1045.我市某一周的最高气温统计如下表:最高气温(℃)25262728天数1123则这组数据的中位数与众数分别是()A.27,28B.27.5,28C.28,27D.26.5,276.下列多项式中,能用提公因式法因式分解的是()A.x2﹣y B.x2﹣2x C.x2+y2D.x2﹣xy+y27.某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为()A.(a﹣5%)(a+9%)万元B.(a﹣5%+9%)万元C.a(1﹣5%+9%)万元D.a(1﹣5%)(1+9%)万元8.若(b﹣c)2=4(1﹣b)(c﹣1),则b+c的值是()A.﹣1B.0C.1D.29.如图,在△ABC中,∠BCA=90°,D为AC边上一动点,O为BD中点,DE⊥AB,垂足为E,连结OE,CO,延长CO交AB于F,设∠BAC=α,则()A.∠EOF=αB.∠EOF=2αC.∠EOF=180°﹣αD.∠EOF=180°﹣2α10.如图,在正方形ABCD中,AB=4cm,动点E从点A出发,以1cm/秒的速度沿折线AB﹣BC的路径运动,到点C停止运动.过点E作EF∥BD,EF与边AD(或边CD)交于点F,EF的长度y(cm)与点E的运动时间x(秒)的函数图象大致是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:=.12.若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是.13.如图,△ABC内接于⊙O,∠AOC=∠ABC,AC=5,则⊙O的半径长为.14.如图,在△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,沿DE将△ABC 折叠,使点B与点A重合,连接AD,点P在线段AD上,当点P到△ABC的直角边距离等于5时,AP的长为.三、解答题(本大题共9小题,满分90分)15.解不等式≥3(x﹣1)﹣4.16.如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.17.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都在小正方形的顶点上.(1)将线段AB先向右平移2个单位长度,再向上平移6个单位长度,画出平移后的线段A1B1;(2)以线段A1B1为底,作一个腰长为5的等腰三角形A1B1C,且C点在格点上.18.观察下列等式:①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:(1)直接写出:第⑤个等式为;(2)猜想:第n个等式为(用含n的代数式表示),并证明.19.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线CF交BD延长线于点C.(Ⅰ)若∠C=25°,求∠BAF的度数;(Ⅱ)若AB=AC,CD=2,求AB的长.20.如图,双曲线y=与直线y=x交于A、B两点,点P(a,b)在双曲线y=上,且0<a<4.(1)设PB交x轴于点E,若a=l,求点E的坐标;(2)连接PA、PB,得到△ABP,若4a=b,求△ABP的面积.21.某地教育部门为学生提供了四种在线学习方式:阅读、听课、答疑、讨论,并对部分学生作了“最感兴趣的在线学习方式”网络调查(只选择一类),把调查结果绘制成如下两幅尚不完整的统计图:根据图中信息,回答下列问题:(1)本次调查的人数有人;在扇形统计图中,“在线答疑”所在扇形的圆心角度数是;(2)补全条形统计图;(3)在随机调查的学生中,甲、乙两位同学选择同类“最感兴趣的在线学习方式”的概率是否等于?说明理由.22.某药店销售口罩,进价15元,售价20元,为防控疫情,药店决定凡是一次性购买10个以上的客户,每多买一个,售价就降低0.1元(顾客所购买的全部口罩),但最低价是17元/个.(1)顾客一次性至少购买多少个口罩时,才能以最低价17元/个购买?(2)写出一次性购买x个口罩时(x>10),药店的利润y(元)与购买量x(个)之间的函数关系式;(3)在销售过程中,药店发现一次性卖出36个口罩时比卖出26个口罩的钱少,为了使每次销售均能达到多卖就能多获利,在其他促销条件不变的情况下,最低价应确定为每个多少元?23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.如果数x与﹣20互为相反数,那么x等于()A.﹣20B.20C.D.【分析】直接利用相反数的定义得出答案.解:∵数x与﹣20互为相反数,∴x=20,故选:B.2.下列计结果为a10的是()A.a6+a4B.a11﹣a C.(a5)2D.a20÷a2【分析】分别根据合并同类项法则,幂的乘方运算法则以及同底数幂的除法法则逐一判断即可.解:A.a6与a4不是同类项,所以不能合并,故本选项不合题意;B.a11与﹣a不是同类项,所以不能合并,故本选项不合题意;C.(a5)2=a10,符合题意;D.a20÷a2=a18,故本选项不合题意.故选:C.3.如图是由6个大小相同的小正方体拼成的几何体,当去掉最上面的小正方体时,则不变的是()A.主视图B.左视图C.俯视图D.三种视图【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.解:若去掉最上面的小正方体,其俯视图不变,即俯视图依然还是两层,底层中间有一个正方形,上层有3个正方形.故选:C.4.据统计,我省2019年生产总值约为37100亿元,其中“37100亿”用科学记数法表示为()A.3.71×1012B.3.71×1011C.0.371×105D.3.71×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:37100亿=3710000000000=3.71×1012.故选:A.5.我市某一周的最高气温统计如下表:最高气温(℃)25262728天数1123则这组数据的中位数与众数分别是()A.27,28B.27.5,28C.28,27D.26.5,27【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:处于这组数据中间位置的那个数是27,由中位数的定义可知,这组数据的中位数是27.众数是一组数据中出现次数最多的数,在这一组数据中28是出现次数最多的,故众数是28.故选:A.6.下列多项式中,能用提公因式法因式分解的是()A.x2﹣y B.x2﹣2x C.x2+y2D.x2﹣xy+y2【分析】判断各式有公因式的即可.解:能用提公因式法因式分解的是x2﹣2x=x(x﹣2),故选:B.7.某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为()A.(a﹣5%)(a+9%)万元B.(a﹣5%+9%)万元C.a(1﹣5%+9%)万元D.a(1﹣5%)(1+9%)万元【分析】先表示11月份利润为a(1﹣5%)万元,则12月份利润为a(1﹣5%)(1+9%)万元.解:由题意得:12月份的利润为:a(1﹣5%)(1+9%)万元,故选:D.8.若(b﹣c)2=4(1﹣b)(c﹣1),则b+c的值是()A.﹣1B.0C.1D.2【分析】将题目中的式子先展开,然后根据完全平方公式可以分解因式,从而可以得到b+c的值.解:∵(b﹣c)2=4(1﹣b)(c﹣1),∴b2﹣2bc+c2=4c﹣4﹣4bc+4b,∴(b2+2bc+c2)﹣4(b+c)+4=0,∴(b+c)2﹣4(b+c)+4=0,∴(b+c﹣2)2=0,∴b+c=2,故选:D.9.如图,在△ABC中,∠BCA=90°,D为AC边上一动点,O为BD中点,DE⊥AB,垂足为E,连结OE,CO,延长CO交AB于F,设∠BAC=α,则()A.∠EOF=αB.∠EOF=2αC.∠EOF=180°﹣αD.∠EOF=180°﹣2α【分析】设∠ABD=β,则∠BDC=∠ABD+∠A=β+α,根据直角三角形斜边中线的性质得OE=BD=OD,OC=OD,根据等腰三角形的性质和三角形的内角和定理表示∠EOD和∠COD,可得结论.解:设∠ABD=β,则∠BDC=∠ABD+∠A=β+α,∵DE⊥AB,∴∠BED=90°,∴∠BDE=90°﹣β,∵O为BD中点,∴OE=BD=OD,∴∠OED=∠ODE,同理得OC=OD,∴∠OCD=∠ODC=α+β,∴∠EOD=180°﹣2(90°﹣β)=2β,∠COD=180°﹣2(α+β)=180°﹣2α﹣2β,∴∠EOF=180°﹣∠EOD﹣∠COD=180°﹣2β﹣(180°﹣2α﹣2β)=2α;故选:B.10.如图,在正方形ABCD中,AB=4cm,动点E从点A出发,以1cm/秒的速度沿折线AB﹣BC的路径运动,到点C停止运动.过点E作EF∥BD,EF与边AD(或边CD)交于点F,EF的长度y(cm)与点E的运动时间x(秒)的函数图象大致是()A.B.C.D.【分析】根据运动速度乘以时间,根据勾股定理,可得EF长,可得答案.解:∵四边形ABCD是正方形,EF∥BD,∴当0≤x≤4时,y=,当4<x≤8,y==,故符合题意的函数图象是选项A.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:=6.【分析】直接利用二次根式的性质计算得出答案.解:=2×=6.故答案为:6.12.若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是﹣1.【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.解:∵关于x的方程x2﹣2x﹣m=0有两个相等的实数根,∴△=0,∴(﹣2)2﹣4×1×(﹣m)=0,解得m=﹣1.13.如图,△ABC内接于⊙O,∠AOC=∠ABC,AC=5,则⊙O的半径长为.【分析】作所对的圆周角∠ADC,作OH⊥AC于H,如图,利用圆周角定理和圆内接四边形的性质可计算出∠AOC=120°,则∠OAC=∠OCA=30°,再利用垂径定理得到AH=CH=AC=,利用含30度的直角三角形三边的关系求出OA即可.解:作所对的圆周角∠ADC,作OH⊥AC于H,如图,∵∠APC+∠ABC=180°,∠AOC=2∠APC,∴∠AOC+∠ABC=180°,∵∠AOC=∠ABC,∴∠AOC+∠AOC=180°,解得∠AOC=120°,∴∠OAC=∠OCA=30°,∵OH⊥AC,∴AH=CH=AC=,在Rt△OAH中,OH=AH=,∴OA=2OH=,即⊙O的半径长为.故答案为.14.如图,在△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,沿DE将△ABC 折叠,使点B与点A重合,连接AD,点P在线段AD上,当点P到△ABC的直角边距离等于5时,AP的长为或.【分析】设BD=x,由折叠性质得AD与CD,在Rt△ACD中由勾股定理列出x的方程,进而求得DC,进而分两种情况:①点P到AC边的距离等于5时,②当点P到BC边的距离等于5时,过P作△ABC直角边的垂线段,再根据相似三角形的比例线段便可求得结果.解:设BD=x,由折叠知AD=BD=x,CD=16﹣x,在Rt△ACD中,由勾股定理得,x2=82+(16﹣x)2,解得,x=10,∴BD=10,CD=6,分两种情况:①点P到AC边的距离等于5时,过点P作PF⊥AC于点F,如图1,∴PF=5,PF∥CD,∴△APF∽△ADC,∴=,即=,∴AP=;②当点P到BC边的距离等于5时,过点P作PG⊥BC于点G,如图2,∴PG=5,PG∥AC,∴△DPG∽△DAC,∴=,即=,∴DP=,∴AP=10﹣=,综上,AP的长为或,故答案为:或.三、解答题(本大题共9小题,满分90分)15.解不等式≥3(x﹣1)﹣4.【分析】根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.16.如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.【分析】过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG =BC=10.设AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,据此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.8.解:过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC =10.由题意得∠ADE=α,∠E=45°.设AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF===,∵DE=13.3,∴x+=13.3.∴x=11.4.∴AG=AF﹣GF=11.4﹣10=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.∴AB=2AG=2.8,答:灯杆AB的长度为2.8米.17.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都在小正方形的顶点上.(1)将线段AB先向右平移2个单位长度,再向上平移6个单位长度,画出平移后的线段A1B1;(2)以线段A1B1为底,作一个腰长为5的等腰三角形A1B1C,且C点在格点上.【分析】(1)根据平移的性质即可将线段AB先向右平移2个单位长度,再向上平移6个单位长度,得到平移后的线段A1B1;(2)根据网格即可以线段A1B1为底,作一个腰长为5的等腰三角形A1B1C,解:(1)线段A1B1即为所求;(2)如图,等腰三角形A1B1C即为所求.18.观察下列等式:①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:(1)直接写出:第⑤个等式为36﹣35=2×35;(2)猜想:第n个等式为3n+1﹣3n=2×3n(用含n的代数式表示),并证明.【分析】由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式,以及第n个等式的底数不变,指数依次分别是n+1、n、n.解:(1)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式36﹣35=2×35;故答案为:36﹣35=2×35;(2)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第n个等式的底数不变,指数依次分别是n+1、n、n,即3n+1﹣3n=2×3n.证明:左边=3n+1﹣3n=3×3n﹣3n=3n×(3﹣1)=2×3n=右边,所以结论得证.故答案为:3n+1﹣3n=2×3n.19.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线CF交BD延长线于点C.(Ⅰ)若∠C=25°,求∠BAF的度数;(Ⅱ)若AB=AC,CD=2,求AB的长.【分析】(Ⅰ)连接OA,AD,根据切线的性质得到OA⊥CF,求得∠OAC=90°,根据三角形的内角和得到∠COA=65°,根据等腰三角形的性质得到∠OAB=32.5°,于是得到结论;(Ⅱ)根据等腰三角形的性质得到∠B=∠C,求得∠C=30°,根据直角三角形的性质得到OA=OC,于是得到结论.解:(Ⅰ)连接OA,AD,∵CF是⊙O的切线,∴OA⊥CF,∴∠OAC=90°,∵∠C=25°,∴∠COA=65°,∵∠COA=∠B+∠OAB,OA=OB,∴∠B=∠OAB,∴∠OAB=32.5°,∴∠BAF=∠OAF﹣∠OAB=90°﹣32.5°=57.5°;(Ⅱ)∵AB=AC,∴∠B=∠C,∵∠COA=2∠B,∴3∠C=90°,∴∠C=30°,∴OA=OC,∵OA=OD,∴,∴.20.如图,双曲线y=与直线y=x交于A、B两点,点P(a,b)在双曲线y=上,且0<a<4.(1)设PB交x轴于点E,若a=l,求点E的坐标;(2)连接PA、PB,得到△ABP,若4a=b,求△ABP的面积.【分析】(1)解方程组得A(4,1),B(﹣4,﹣1),再利用反比例函数解析式确定P(1,4),则可根据待定系数法求出直线PB的解析式为y=x+3,从而计算出函数值为0对应的函数值得到点E的坐标;(2)利用反比例函数图象上点的坐标特征得到ab=4,加上b=4a,则可求出a、b得到P(1,4),连接OP,如图,由(1)得此时E点坐标为(﹣3,0),接着利用三角形面积公式计算出S△POB=,由于点A与点B关于原点对称,所以OA=OB,所以S△BAP=2S△OBP.解:(1)解方程组得或,∴A(4,1),B(﹣4,﹣1),当x=1时,y==4,则P(1,4),设直线PB的解析式为y=mx+n,把P(1,4),B(﹣4,﹣1)代入得,解得,∴直线PB的解析式为y=x+3,当y=0时,x+3=0,解得x=﹣3,∴点E的坐标为(﹣3,0);(2)∵点P(a,b)在双曲线y=上,∴ab=4,而b=4a,∴a•4a=4,解得a=±1,∵0<a<4.∴a=1,∴P(1,4),连接OP,如图,由(1)得此时E点坐标为(﹣3,0),S△POB=S△OBE+S△OEP=×3×1+×3×4=,∵点A与点B关于原点对称,∴OA=OB,∴S△OAP=S△OBP=,∴S△BAP=2S△OBP=15.21.某地教育部门为学生提供了四种在线学习方式:阅读、听课、答疑、讨论,并对部分学生作了“最感兴趣的在线学习方式”网络调查(只选择一类),把调查结果绘制成如下两幅尚不完整的统计图:根据图中信息,回答下列问题:(1)本次调查的人数有100人;在扇形统计图中,“在线答疑”所在扇形的圆心角度数是72°;(2)补全条形统计图;(3)在随机调查的学生中,甲、乙两位同学选择同类“最感兴趣的在线学习方式”的概率是否等于?说明理由.【分析】(1)根据在线阅读的人数和所占的百分比求出调查的总人数,用360°乘以“在线答疑”所占的百分比即可得出“在线答疑”所在扇形的圆心角度数;(2)用总人数减去其它方式的人数求出在线答疑的人数,从而补全统计图;(3)根据题意画出树状图得出所有等情况数和甲、乙两位同学选择同类“最感兴趣的在线学习方式”的情况数,然后根据概率公式即可得出答案.解:(1)本次调查的人数有:25÷25%=100(人);“在线答疑”在扇形图中的圆心角度数是360°×=72°;故答案为:100,72°;(2)在线答题的人数有:100﹣25﹣40﹣15=20(人),补全统计图如下:(3)不等于,理由如下:把学习方式在线阅读、在线听课、在线答疑、在线讨论,分别为A、B、C、D,则可画树状图如下:共有16种等情况数,其中甲、乙两位同学选择同类的有4种,则甲、乙两位同学选择同类“最感兴趣的在线学习方式”的概率是=≠.22.某药店销售口罩,进价15元,售价20元,为防控疫情,药店决定凡是一次性购买10个以上的客户,每多买一个,售价就降低0.1元(顾客所购买的全部口罩),但最低价是17元/个.(1)顾客一次性至少购买多少个口罩时,才能以最低价17元/个购买?(2)写出一次性购买x个口罩时(x>10),药店的利润y(元)与购买量x(个)之间的函数关系式;(3)在销售过程中,药店发现一次性卖出36个口罩时比卖出26个口罩的钱少,为了使每次销售均能达到多卖就能多获利,在其他促销条件不变的情况下,最低价应确定为每个多少元?【分析】(1)设顾客一次性至少购买x个口罩时,才能以最低价17元/个购买,由题意得关于x的一元一次方程,解方程即可;(2)分两种情况:①当x>40时;②当10<x≤40时,分别写出函数关系式即可;(3)当10<x≤40时,将函数关系式配方,根据二次函数的性质及问题的实际意义可得答案.解:(1)设顾客一次性至少购买x个口罩时,才能以最低价17元/个购买,由题意得:20﹣(x﹣10)×0.1=17,解得x=40.∴顾客一次性至少购买40个口罩时,才能以最低价17元/个购买.(2)当x>40时,y=(17﹣15)x=2x;当10<x≤40时,y=[(20﹣15)﹣(x﹣10)×0.1]x=﹣x2+6x.∴药店的利润y购买量x之间的函数关系式为y=.(3)当10<x≤40时,y=﹣x2+6x=﹣(x﹣30)2+90.∵二次项系数﹣<0,∴当x=30时,y有最大值,且30<x≤40,y随x的增大而减小,∴最低价应定在销售量为30个时的价格,才能使每次销售均能达到多卖就能多获利,此时最低价为:20﹣(30﹣10)×0.1=18(元).∴最低价应确定为每个18元.23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.【分析】(1)证明EN∥BF,得出;(2)证明四边形ABCD是矩形,得出∠BAD=∠ABC=90°,则∠AED=∠AFB,可得出结论;(3)连接AC,过点B作BP∥AC交AF的延长线于点P,证明△BFP∽△CFA,得出,证明△ADE≌△BAP(ASA),得出AE=BP,则可得出结论.解:(1)∵EN⊥AF,BF⊥AF,∴EN∥BF,又∵E为AB的中点,∴BF=2EN,∵,∴,∴,故答案为:;(2)证明:∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠BAD=∠ABC=90°,∵∠ADE=∠BAF,∴∠BAD﹣∠BAF=∠ABC﹣∠BAF∴∠AED=∠AFB,又∵∠BAF=∠MAE,∴△AEM∽△AFB;(3)证明:如图,连接AC,过点B作BP∥AC交AF的延长线于点P,∴△BFP∽△CFA,∴,∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,∵∠ABC=60°,∴∠PBC=∠ACB=60°,∴∠ABP=120°,∴∠DAE=∠ABP,在△ADE与△BAP中,,∴△ADE≌△BAP(ASA),∴AE=BP,又∵AC=AD,∴.。
安徽省亳州市2020年中考第二次模拟数学试题一、选择题1.下列关于0的说法中,正确的个数是()①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值.A.1B.2C.3D.42.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x +c的图象可能是()A. B. C. D.3.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()A. B.C. D.4.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:(1)弧①是以O为圆心,任意长为半径所画的弧;(2)弧②是以P为圆心,任意长为半径所画的弧;(3)弧③是以A为圆心,任意长为半径所画的弧;(4)弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.15.下列命题是真命题的是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分的四边形是正方形D .对角线互相平分的四边形是平行四边形6.如图,正方形ABCD 中,内部有4个全等的正方形,小正方形的顶点E 、F 、G 、H 分别在边AB 、BC 、CD 、AD 上,则tan ∠AEH=( )A.13B.25C.27D.147.某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是( )A .2,1B .1,1.5C .1,2D .1,18.下列运算正确的是( )A .325()a a =B .325a a a +=C .32()a a a a -÷= D .331a a ÷=9.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:则这15名同学一周在校参加体育锻炼的时间的中位数和众数分别为( ) A.6,7B.7,7C.7,6D.6,610.如图,边长为2的正方形ABCD 内接于⊙O ,则阴影部分的面积为( )A .12π+ B .12π- C .14π+ D .14π-11.如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 点6m 的位置,在D 处测得旗杆顶端A 的仰角为53︒,若测角仪的高度是1.5m ,则旗杆AB 的高度约为(精确到0.1m ,参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈)( )A.8.5米B.9米C.9.5米D.10米12.现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变二、填空题13.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A、B为圆心,12 AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的周长是_____.14.已知a,b是方程x2﹣3x﹣1=0的两个根,则代数式a+b的值为_____.15=2,则x的值为_______.16.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.17.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出1个小球,记下数字,前后两次的数字分别记为x,y,并以此确定点P(x,y),那么点P在函数2yx=图像上的概率为_____________.18.已知在△ABC中,AB=AC.(1)若∠A=36º,在△ABC中画一条线段,能得到2个等腰三角形(不包..括.△ABC),这2个等腰三角形的顶角的度数分别是_____;(2)若∠A≠36º,当∠A=_____时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括...△ABC).(写出两个答案即可)三、解答题19.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求该二次函数的解析式;(2)设点D是在x轴上方的二次函数图象上的点,且△DAB的面积为5,求出所有满足条件的点D的坐标;(3)能否在抛物线上找点P ,使∠APB =90°?若能,请直接写出所有满足条件的点P ;若不能,请说明理由.20.先化简,再求值:(26342x x x ---+)÷2x x -,其中x =20190+(﹣13)﹣1tan30° 21.已知,在△ABC 中,∠ACB=90°,∠B=30°,点D 是直线AB 上的动点,连接CD ,以CD 为边,在CD 的左侧作等边△CDE ,连接EB(1)问题发现:如图(1),当CD ⊥AB 时,ED 和EB 的数量关系是_____.(2)规律论证:如图(2)当点D 在线段AB 上运动时,(1)中ED ,EB 的数量关系是否仍然成立?若成立,请仅就图(2)加以证明;若不成立,请写出新的数量关系,并说明理由.(3)拓展应用:如图(3)当点D在直线AB 上运动时,若,且△BCE 恰好为等腰直角三角形时,请直接写出符合条件的AD 的长.22.如图,PB 为⊙O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连接PA 、AO ,并延长AO 交⊙O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是⊙O 的切线;(2)若AC =6,OC =4,求PA 的长.23.计算:|﹣()02sin 452019π︒--.24.如图,某风景区内有一瀑布,AB 表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D 处测得瀑布顶端A 的仰角β为45°,沿坡度i =1:3的斜坡向上走100米,到达观景台C ,在C 处测得瀑布顶端A 的仰角α为37°,若点B 、D 、E 在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,≈3.16)(1)观景台的高度CE 为 米(结果保留准确值); (2)求瀑布的落差AB (结果保留整数).25.如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,求证:BE =DC .【参考答案】一、选择题二、填空题13.8- 14.3 15.5 16.85° 17.2918.(1)36°,108°; (2)1807︒,90°,108°. 三、解答题19.(1)213222y x x =-++;(2)点D 的坐标为(0,2)或(3,2);(3)能,满足条件的点P 的坐标为(0,2)或(3,2). 【解析】 【分析】(1)根据点A 、B 、C 的坐标,利用待定系数法即可求出二次函数的解析式;(2)设点D 的纵坐标为m (m >0),根据三角形的面积公式结合△DAB 的面积为5,即可得出关于m 的一元一次方程,解之即可得出m 的值,再利用二次函数图象上点的坐标特征即可求出点D 的坐标; (3)假设成立,等点P 与点C 重合时,可利用勾股定理求出AP 、BP 的长度,由AP 2+BP 2=AB 2可得出此时∠APB=90°,再利用二次函数图象的对称性即可找出点P 的另一坐标,此题得解. 【详解】解:(1)∵二次函数y =ax 2+bx+c (a≠0)的图象经过A (﹣1,0)、B (4,0)、C (0,2)三点,∴016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴该二次函数的解析式为213222y x x =-++. (2)设点D 的纵坐标为m (m >0), 则DAB 11S AB m 5m 522∆=⋅=⨯=, ∴m =2.当y =2时,有2132222x x -++=,解得:x 1=0,x 2=3,∴满足条件的点D 的坐标为(0,2)或(3,2). (3)假设能,当点P 与点C 重合时,有AP AC BC 5=====,∵222255+==,即AP 2+BP 2=AB 2,∴∠APB =90°,∴假设成立,点P 的坐标为(0,2).由对称性可知:当点P 的坐标为(3,2)时,∠APB =90°. 故满足条件的点P 的坐标为(0,2)或(3,2).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、三角形的面积、勾股定理以及勾股定理的逆运用,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用三角形的面积公式结合△DAB 的面积为5,求出点D 的纵坐标;(3)利用勾股定理的逆运用,找出∠ACB=90°. 20.22x -+,-2. 【解析】 【分析】先将除法转化为乘法,再利用分配律进行计算,最后将x 的值化简,代入即可. 【详解】解:原式=()()632222x x x x x x ⎡⎤---⎢⎥+-+⎢⎥⎣⎦, ()()()6322x x x x ---=+,()6362x x x x --+=+,22x =-+,∴当x =20190+11()3--1﹣3=﹣1时, 原式=212--+=﹣2. 【点睛】本题主要考查分式的化简求值、实数的混合运算、零指数幂、负整数指数幂、特殊角的三角函数值等知识的综合,解决此题的关键是先根据分式的运算性质,将其化简,再将未知数的代入求值.21.(1)EB=ED ;(2)成立,证明见解析;(3)符合条件的AD . 【解析】 【分析】(1)利用等边三角形的性质以及等腰三角形的判定解答即可;(2)取AB 中点F ,连接EF 、CF ,由直角三角形斜边中线的性质可得CF=AF=BF ,由∠A=60°可得△CFA 是等边三角形,可证明AC=BF ,根据等边三角形的性质可得∠ECF=∠DCA ,利用SAS 可证明△ECF ≌△DCA ,可得EF=AD ,∠EFC=∠A=60°,根据平角定义可得∠EFB=60°,可得∠EFB=∠A ,利用SAS 可证明△BEF ≌△CDA ,可得BE=CD ,进而可得DE=BE ;(3)过点C 作CF ⊥AB 于F ,根据含30°角的直角三角形的性质及勾股定理可求出BC 、CF 、AF 的长,分别讨论点D 在线段AB 上、AB 延长线上和BA 延长线上三种情况,根据等腰直角三角形的性质可求出CE 的长,利用勾股定理可求出FD 的长,进而根据线段的和差关系即可求出AD 的长. 【详解】 (1)∵CD ⊥AB , ∴∠EDB=30°, ∵∠B=30°, ∴∠EDB=∠B , ∴ED=EB. 故答案为:ED=EB. (2)成立,如图,取AB 中点F ,连接EF 、CF , ∵∠ACB=90°,∠ABC=30°,BF=AF , ∴CF=BF=AF ,∠A=60°, ∴△CFA 是等边三角形, ∴AC=BF ,∠ACF=∠CFA=60°, ∵△CDE 是等边三角形,∴∠ECF+∠FCD=∠ACD+∠FCD=60°, ∴∠EFC=∠ACD , 又∵CE=CD ,CF=CA , ∴△ECF ≌△DCA ,∴EF=AD ,∠EFC=∠A=60°, ∴∠EFB=180°-∠EFC-∠CFA=60°, ∴∠EFB=∠A , 又∵EF=AD ,AC=BF , ∴△BEF ≌△CDA , ∴EB=CD , ∵CD=ED , ∴EB=ED.(3)过点C 作CF ⊥AB 于F ,∵,∠ABC=30°,∠ACB=90°,∴,,∴CF=12,, 有三种情况:①如图,当点D 在线段AB 上时,∵△BCE 是等腰直角三角形,,∴CE=∴CD=CE=∴,∴.②如图,当点D 在BA 的延长线上时,同理可得CD=,∴.③当点D 在AB 延长线上时,CD 左面不存在等腰直角三角形BCE ,故此种情况不存在,综上所述:符合条件的AD. 【点睛】此题综合考查等边三角形的性质,三角形全等的判定与性质,等腰三角形的判定与性质,含30°角的直角三角形的性质等知识点.30°角所对的直角边等于斜边的一半;直角三角形斜边的中线等于斜边的一半;灵活运用分类讨论的思想是解题关键. 22.(1)见解析;(2)PA =【解析】 【分析】(1)连接OB ,先由等腰三角形的三线合一的性质可得:OP 是线段AB 的垂直平分线,进而可得:PA =PB ,然后证明△PAO ≌△PBO ,进而可得∠PBO =∠PAO ,然后根据切线的性质可得∠PBO =90°,进而可得:∠PAO =90°,进而可证:PA 是⊙O 的切线;(2)连接BE ,由AC =6,OC =4,可求OA 的值,然后根据射影定理可求PC 的值,从而可求OP 的值,然后根据勾股定理可求AP 的值. 【详解】(1)证明:如图1,连接OB ,则OA =OB ,∵OP ⊥AB , ∴AC =BC ,∴OP 是AB 的垂直平分线, ∴PA =PB ,在△PAO 和△PBO 中,0PA PB OP PO OA B =⎧⎪=⎨⎪=⎩, ∴△PAO ≌△PBO (SSS ) ∴∠PBO =∠PAO ,PB =PA , ∵PB 为⊙O 的切线,B 为切点, ∴∠PBO =90°, ∴∠PAO =90°, 即PA ⊥OA , ∴PA 是⊙O 的切线;(2)解:如图2,连接BE,∵OC=4,AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=AE2OA OA∴====在Rt△APO中,∵AC⊥OP,∴AC2=OC•PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==,【点睛】本题考查了全等三角形的判断和性质,切线的性质和判定,做好本题是明确两点:①圆的切线垂直于经过切点的半径.②经过半径的外端且垂直于这条半径的直线是圆的切线.23.【解析】【分析】按顺序先分别进行绝对值的化简、二次根式的化简、代入特殊角的三角函数值、进行0次幂的运算,然后再按运算顺序进行计算即可.【详解】原式=﹣2×2﹣1= 1=【点睛】本题考查了实数的运算,涉及了0次幂、特殊角的三角函数值等,正确化简各数是解题关键.24.(1);(2)瀑布的落差约为411米.【解析】【分析】(1)通过解直角△CDE得到:CE=CD•sin37°.(2)作CF⊥AB于F,构造矩形CEBF.由矩形的性质和解直角△ADB得到DE的长度,最后通过解直角△ACF求得答案.【详解】(1)∵tan∠CDE=13 CE CD=∴CD =3CE .又CD =100米,∴100==∴CE =.故答案是:(2)作CF ⊥AB 于F ,则四边形CEBF 是矩形.∴CE =BF =,CF =BE .在直角△ADB 中,∠DB =45°.设AB =BD =x 米. ∵CE CD =13, ∴DE =. 在直角△ACF 中,∠ACF =37°,tan ∠ACF 0.75AF CF ==≈ 解得x≈411.答:瀑布的落差约为411米.【点睛】本题考查解直角三角形、仰角、坡度等概念,解题的关键是添加辅助线构造直角三角形,记住坡度的定义,属于中考常考题型.25.见解析.【解析】【分析】只需要证明△CBE ≌△ACD ,即可解答【详解】解:由题意知∠CAD+∠ACD =90°,∠ACD+∠BCE =90°,∴∠BCE =∠CAD .在△CBE 与△ACD 中,CEB ADC BCE CAD BC AC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△CBE ≌△ACD (AAS ).∴BE =DC .【点睛】此题考查三角形全等的判定与性质,难度不大。
2020年安徽省亳州市中考数学二调试卷一、选择题:本大题共6个小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知二次函数y=(a−1)x2+3的图象有最高点,那么a的取值范围是()A. a>0B. a<0C. a>1D. a<12. 下列二次函数中,如果图象能与y轴交于点A(0, 1),那么这个函数是()A. y=3x2B. y=3x2+1C. y=3(x+1)2D. y=3x2−x3. 如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A. ∠AED=∠BB. ∠ADE=∠CC. ADAC =AEABD. ADAB=DEBC4. 已知a→、b→、c→都是非零向量,如果a→=2c→,b→=−2c→,那么下列说法中,错误的是()A. a→ // b→B. |a→|=|b→|C. a→+b→=0D. a→与b→方向相反5. 已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A. 1B. 4C. 5D. 86. 如图,在△ABC中,点D、E分别在边AB、AC上,DE // BC,且DE经过重心G,在下列四个说法中①DEBC =23;②BDAD=13;③C△ADEC△ABC=23;④S△ADES DBCE=45,正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共12题,每题4分,满分48分,将答案填在答题纸上)7. 如果xy =72,那么x−2yy的值是________.8. 化简:3(a→+12b→)−2(a→−b→)=________.9. 如果抛物线y=2x2+x+m−1经过原点,那么m的值等于________.10. 将抛物线________.11. 已知抛物线y=2x2+bx−1的对称轴是直线x=1,那么b的值等于________.12. 已知△ABC三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于________.13. 在Rt△ABC中,∠ACB=90∘,AB=3,BC=1,那么∠A的正弦值是________.14. 正八边形的中心角为________度.15. 如图,在梯形ABCD中,AD // BC,AB⊥BC,BD⊥DC,tan∠ABD=1,BC=5,那2么DC的长等于________√5.16. 如图,AB // CD,AD、BC相交于点E,过E作EF // CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于________.17. 已知二次函数y=ax2+c(a>0)的图象上有纵坐标分别为y1、y2的两点A、B,如果点A、B到对称轴的距离分别等于2、3,那么y1<y2(填“<”、“=”或“>”)18. 如图,△ABC中,AB=AC=8,cosB=3,点D在边BC上,将△ABD沿直线AD翻折得4到△AED,点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF=________.三、解答题:本大题共7题,满分0分.解答应写出文字说明、证明过程或演算步骤.19. 计算:4sin45∘+cos230∘.tan60−√220. 如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在边BC上,AE与BD相交于点G,AG:GE=3:1.(1)求EC:BC的值;(2)设BA→=a→,AO→=b→,那么EC→=________,GB→=________(用向量a→、b→表示)21. 如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.22. 如图,小山的一个横断面是梯形BCDE,EB // DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45∘,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31∘(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31∘≈0.52,cos31∘≈0.86,tan31∘≈0.6)23. 已知:如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF⋅AB,∠DAF=∠EAC.(1)求证:△ADE∽△ACB;(2)求证:DFDE =CECB.24. 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx−3(a≠0)与x轴交于点A(−1, 0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点.且∠FBD=135∘,求点F的坐标.25. 如图,点O在线段AB上,AO=2OB=2a,∠BOP=60∘,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90∘,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ // BC,并使∠QOC=∠B,求AQ:OQ的值.2020年安徽省亳州市中考数学二调试卷答案1. D2. B3. D4. C5. B6. C7. 328. a→+72b →9. 110. y=12(x+3)2−4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是12(x+1)2−111. −412. 2413. 1314. 4515. 216. 1517. <18. 321519. 原式=4×√22+(√32)2−√3−√2=2√2+34−2(√3+√2)=34−2√3.20. ∵ 四边形ABCD是平行四边形,∴ AD // BC,AD=BC,∴ ADBE =AGGE=3,∴ BCBE=3,∴ EC:BC=2:3.2 3a→+43b→,−12a→−12b→21. 证明:连接O1A,∵ 点E为AD的中点,∴ O1E⊥AD,∵ ⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,∴ O1C⊥AB,在Rt△O1EA和Rt△O1CA中,{O1A=O1AAE=AC,∴ Rt△O1EA≅Rt△O1CA(HL)∴ O1E=O1C;设⊙O2的半径长为r,∵ O1E=O1C=6,∴ O2C=10−6=4,在Rt△O1EO2中,O2E=√O1O22−O1E2=8,则AC=AE=8−r,在Rt△ACO2中,O2A2=AC2+O2C2,即r2=(8−r)2+42,解得,r=5,即⊙O2的半径长为5.22. 铁塔AB的高度是13米.23. ∵ AE2=AF⋅AB,∴ AEAB =AFAE,∵ ∠EAF=∠BAE,∴ △AEF∽△ABE,∴ ∠AEF =∠B ,∵ ∠DAF =∠EAC ,∴ ∠DAE =∠BAC ,∴ △ADE ∽△ACB .∵ △ADE ∽△ACB ,∴ DE BC =AD AC ,∠D =∠C ,∵ ∠DAF =∠EAC ,∴ △ADF ∽△ACE ,∴ AD AC =DF EC ,∴ DE BC =DF EC ,∴ DF DE =CE CB .24. 解:(1)OB =3OA =3,则点B 的坐标为(3, 0),将点A 、B 的坐标代入二次函数表达式y =ax 2+bx −3(a ≠0)得:{0=a −b −3,0=9a +3b −3,解得:{a =1,b =−2,则抛物线的表达式为:y =x 2−2x −3,∵ y =x 2−2x −3=(x −1)2−4,则点D 的坐标为(1, −4);(2)如图,过点D 作DL ⊥y 轴,交于点E ,设:OE =m ,则EL =4−m ,OB =3,DL =1,∵ ∠LED +∠OEB =90∘,∠OEB +∠OBE =90∘,∴ ∠LED =∠OBE ,∴ tan∠LED =tan∠OBE , 即:OE OB =LD EL ,m 3=14−m ,解得:m =1或3(舍去x =3),则点E 的坐标为(0, −1);(2)延长BD 交y 轴于点H ,将△BCH 围绕点B ,顺时针旋转135∘至△BC′H′的位置,延长BH′交抛物线于点F ,∵ OB=OC=3,∴ ∠OCB=∠OBC=45∘,则∠FBD=135∘,BC′⊥x轴,则点C′(3, 3√2),∠H′C′B=∠HCB=180∘−45∘=135∘,tan∠ABD=−y DOB−x D =42=2,OH=OB⋅tan∠ABD=2×3=6,则:HC=6−3=3=H′C′,过点C′作C′G⊥GH′交于点G,在△BGH′中,GC′=H′C′cos45∘=3√22=GH′,则点H′的坐标为(3−3√22, 9√22),将点H′、B的坐标代入一次函数表达式y=kx+b得:{0=3k+b9√22=(3−3√22)k+b,解得:{k=−3b=9,则直线BH′的表达式为:y=−3x+9②,联立①(即为抛物线的解析式:y=x2−2x−3)②并解得:x=3或−4(x=3舍去),故点F的坐标为(−4, 21).25. 如图①中,作CH⊥AB于H.∵ CH⊥AB,∴ ∠AHC=∠BHC=90∘,∵ ∠ACB=90∘,∴ ∠ACH+∠BCH=90∘,∵ ∠ACH+∠A=90∘,∴ ∠BCH=∠A,∴ △ACH∽△CBH,BH CH ∵ OC =2,∠COH =60∘, ∴ ∠OCH =30∘, ∴ OH =12OC =1,CH =√3,∴ √3a−1=√3,整理得:2a 2−a −4=0,解得a =1+√334或1−√334(舍弃).经检验a =1+√334是分式方程的解. ∴ a =1+√334.如图②中,设OC =x .作CH ⊥AB 于H ,则OH =x 2,CH =√32x .在Rt △ACH 中,∵ AC 2=AH 2+CH 2,∴ (3a)2=(√32x)2+(2a +12x)2, 整理得:x 2+ax −5a 2=0,解得x =(√6−1)a 或(−√6−1)a (舍弃),∴ OC =(√6−1)a ,如图②−1中,延长QC 交CB 的延长线于K .∵ ∠AOC =∠∠AOQ +∠QOC =∠ABC +∠OCB ,∠QOC =∠ABC , ∴ ∠AOQ =∠KCO ,∵ AQ // BK ,∴ ∠Q =∠K ,∴ △QOA ∽△KCO ,∴ AQ OK =OQKC ,OQ KC∵ ∠K=∠K,∠KOB=∠AOQ=∠KCO,∴ △KOB∽△KCO,∴ OKKC =OBOC,∴ AQOQ =OBOC=(√6−1)a=√6+15。
中考数学二调试卷题号一二三四总分得分一、选择题(本大题共6小题,共24.0分)1.已知二次函数y=(a-1)x2+3的图象有最高点,那么a的取值范围是()A. a>0B. a<0C. a>1D. a<12.下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A. y=3x2B. y=3x2+1C. y=3(x+1)2D. y=3x2-x3.如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A. ∠AED=∠BB. ∠ADE=∠CC. =D. =4.已知、、都是非零向量,如果=2,=-2,那么下列说法中,错误的是()A. ∥B. ||=||C. =0D. 与方向相反5.已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A. 1B. 4C. 5D. 86.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE经过重心G,在下列四个说法中①=;②=;③=;④=,正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共12小题,共48.0分)7.如果=,那么的值是______.8.化简:3()-2()=______.9.如果抛物线y=2x2+x+m-1经过原点,那么m的值等于______.10.将抛物线y=(x+3)2-4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是______.11.已知抛物线y=2x2+bx-1的对称轴是直线x=1,那么b的值等于______.12.已知△ABC三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于______.13.在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是______.14.正八边形的中心角为______度.15.如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD=,BC=5,那么DC的长等于______.16.如图,AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于______.17.已知二次函数y=ax2+c(a>0)的图象上有纵坐标分别为y1、y2的两点A、B,如果点A、B到对称轴的距离分别等于2、3,那么y1______y2(填“<”、“=”或“>”)18.如图,△ABC中,AB=AC=8,cos B=,点D在边BC上,将△ABD沿直线AD翻折得到△AED,点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF=______.三、计算题(本大题共1小题,共6.0分)19.计算:4sin45°+cos230°-.四、解答题(本大题共6小题,共48.0分)20.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在边BC上,AE与BD相交于点G,AG:GE=3:1.(1)求EC:BC的值;(2)设=,=,那么=______,=______(用向量、表示)21.如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.22.如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)23.已知:如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF•AB,∠DAF=∠EAC.(1)求证:△ADE∽△ACB;(2)求证:=.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(-1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.25.如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.答案和解析1.【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【解答】解:由题意可知:a-1<0,∴a<1,故选:D.2.【答案】B【解析】【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.根据y轴上点的坐标特征,分别计算出x=0时四个函数对应的函数值,然后根据函数值是否为1来判断图象能否与y轴交于点A(0,1).【解答】解:当x=0时,y=3x2=0;当x=0时,y=3x2+1=1;当x=0时,y=3(x+1)2=9;当x=0时,y=3x2-x=0,所以抛物线y=3x2+1与y轴交于点(0,1).故选B.3.【答案】D【解析】【分析】由已知及三角形相似的判定方法,对每个选项分别分析、判断解答出即可.本题考查了直角三角形相似的判定:①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.【解答】解:由题意得,∠A=∠A,A.当∠ADE=∠B时,△ADE∽△ABC;故本选项不符合题意;B.当∠ADE=∠C时,△ADE∽△ABC;故本选项不符合题意;C.当=时,△ADE∽△ABC;故本选项不符合题意;D.当=时,不能推断△ADE与△ABC相似;故选项符合题意;故选:D.4.【答案】C【解析】【分析】根据平面相等向量的定义、共线向量的定义以及向量的模的计算方法解答.考查了向量,向量是既有方向又有大小的.【解答】解:A.因为=2,=-2,所以∥,且与方向相反,故本选项说法正确;B.因为=2,=-2,所以||=||=|2|,故选项说法正确;C.因为=2,=-2,所以∥,则•=0,故本选项说法错误;D.因为=2,=-2,所以∥,且与方向相反,故本选项说法正确;故选:C.5.【答案】B【解析】【分析】此题主要考查了两圆的位置关系,用到的知识点为:两圆内切,圆心距=两圆半径之差,外切时,r+R=d.【解答】根据两圆位置关系是内切,则圆心距=两圆半径之差,以及外切时,r+R=d,分别求出即可.解:∵两圆相内切,设小圆半径为x,圆心距为2,∴3-x=2,∴x=1,∴小圆半径为1,这两圆外切时,圆心距为:1+3=4.故选:B.6.【答案】C【解析】【分析】本题考查相似三角形的判定和性质以及三角形重心的性质的运用,解决问题的关键是知道相似三角形的对应边对应成比例.连接AG并延长,交BC于F,依据DE∥BC,且DE经过重心G,即可得到△ADE∽△ABC,且相似比为2:3,依据相似三角形的性质,即可得到正确结论.【解答】解:如图所示,连接AG并延长,交BC于F,∵DE∥BC,且DE经过重心G,∴△ADE∽△ABC,∴===,故①正确;∴=,故③正确;∵DG∥BF,∴==,故②错误;∵△ADE∽△ABC,=,∴=,∴=,故④正确;故选C.7.【答案】【解析】解:∵=,∴设x=7a,则y=2a,那么==.故答案为:.直接根据已知用同一未知数表示出各数,进而得出答案.此题主要考查了比例的性质,正确表示出x,y的值是解题关键.8.【答案】【解析】解:3()-2()=3+-2+2=(3-2)+(+2)=.故答案是:.平面向量的运算法则也符合实数的运算法则.考查了平面向量,解题的关键是掌握平面向量的计算法则.9.【答案】1【解析】解:把(0,0)代入y=2x2+x+m-1得m-1=0,解得m=1,故答案为1.把原点坐标代入抛物线解析式即可得到对应m的值.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.10.【答案】y=(x+1)2-1【解析】解:将抛物线y=(x+3)2-4向右平移2个单位所得直线解析式为:y=(x+3-2)2-4=(x+1)2-4;再向上平移3个单位为:y=(x+1)2-4+3,即y=(x+1)2-1.故答案是:y=(x+1)2-1.根据“左加右减、上加下减”的原则进行解答即可.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.11.【答案】-4【解析】解:∵y=2x2+bx-1,∴抛物线对称轴为x=-=-,∴-=1,解得b=-4,故答案为-4.由对称轴公式可得到关于b的方程,可求得答案.本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键,即y=ax2+bx+c的对称轴为x=-.12.【答案】24【解析】解:设△A′B′C′的最大边长是x,根据相似三角形的对应边的比相等,可得:,解得:x=24,∴△A′B′C′最大边的长等于24.故答案为:24.由于△A′B′C′∽△ABC,因此它们各对应边的比都相等,可据此求出△A′B′C′的最大边的长.本题主要考查了相似三角形的性质:相似三角形的对应边成比例.13.【答案】【解析】解:∵∠ACB=90°,AB=3,BC=1,∴∠A的正弦sin A==,故答案为.我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.代入数据直接计算得出答案.本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.【答案】45【解析】解:正八边形的中心角等于360°÷8=45°;故答案为45.根据中心角是正多边形相邻的两个半径的夹角来解答.本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.【答案】2【解析】解:∵AB⊥BC,∴∠ABD+∠DBC=90°,∵BD⊥DC,∴∠C+∠DBC=90°,∴∠ABD=∠C,∴tan C==,∴BD=CD,由勾股定理得,BD2+CD2=BC2,即(CD)2+CD2=52,解得,CD=2,故答案为:2.根据垂直的定义得到∠ABD=∠C,根据正切的定义得到BD=CD,根据勾股定理计算即可.本题考查的是梯形的性质,正切的定义,勾股定理,掌握梯形的性质,正切的定义是解题的关键.16.【答案】15【解析】【分析】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.由△ABE∽△DCE,推出==,可得=,再证明△BEF∽△BCD,可得==,由此即可解决问题.【解答】解:∵AB∥CD,∴△ABE∽△DCE,∴==,∴=,∵EF∥CD,∴△BEF∽△BCD,∴==,∵EF=6,∴CD=15,故答案为15.17.【答案】<【解析】解:∵二次函数y=ax2+c(a>0),∴抛物线开口向上,对称轴为y轴,∵点A、B到对称轴的距离分别等于2、3,∴y1<y2.故答案为<.由于二次函数y=ax2+c(a>0)的图象的开口向上,对称轴为y轴,然后根据点A和点B离对称轴的远近可判断y1与y2的大小关系.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足解析式y=ax2+bx+c(a、b、c为常数,a≠0).18.【答案】【解析】解:如图所示,过A作AH⊥BC于H,∵AB=AC=8,cos B=,∴BH=6=CH,BC=12,由折叠可得,BD=DE=2,∠E=∠ABC=∠C,AB=AE=6,又∵∠AFC=∠DFE,∴△AFC∽△DFE,∴===,设EF=x,则CF=4x,AF=8-x,∴DF=AF=2-x,∵BD+DF+CF=BC,∴2+2-x+4x=12,解得x=,∴EF=,故答案为.过A作AH⊥BC于H,依据等腰三角形的性质即可得到BH=6=CH,由折叠可得,BD=DE=2,∠E=∠ABC=∠C,AB=AE=6,依据△AFC∽△DFE,即可得到===,设EF=x,则CF=4x,AF=8-x,DF=AF=2-x,依据BD+DF+CF=BC,可得x的值,进而得出EF的长.本题主要考查了相似三角形的判定与性质,等腰三角形的性质的运用,解决问题的关键是利用相似三角形的对应边成比例,列方程求解.19.【答案】解:原式=4×+()2-=2+-2(+)=.【解析】直接利用特殊角的三角函数值分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.【答案】(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴==3,∴=3,∴EC:BC=2:3.(2)+,+.【解析】【分析】本题考查平行四边形的性质,平行线分线段成比例定理,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)根据平行四边形的性质,平行线分线段成比例定理即可解决问题;(2)利用三角形法则计算即可.【解答】解:(1)见答案;(2)∵=,AC=2AO,∴=2,∵=+=+2,EC=BC,∴=+,∵AD∥BE,∴==,∴BG=BD,∵=+=+=++2=2+2,∴=(2+2)=+,故答案为+,+.21.【答案】(1)证明:连接O1A,∵点E为AD的中点,∴O1E⊥AD,∵⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,∴O1C⊥AB,在Rt△O1EA和Rt△O1CA中,,∴Rt△O1EA≌Rt△O1CA(HL)∴O1E=O1C;(2)解:设⊙O2的半径长为r,∵O1E=O1C=6,∴O2C=10-6=4,在Rt△O1EO2中,O2E==8,则AC=AE=8-r,在Rt△ACO2中,O2A2=AC2+O2C2,即r2=(8-r)2+42,解得,r=5,即⊙O2的半径长为5.【解析】本题考查的是相交两圆的性质,全等三角形的判定和性质,垂径定理,勾股定理的应用,掌握相交两圆的连心线,垂直平分两圆的公共弦是解题的关键.(1)连接O1A,根据垂径定理得到O1E⊥AD,根据相交两圆的性质得到O1C⊥AB,证明Rt△O1EA≌Rt△O1CA,根据全等三角形的性质证明结论;(2)设⊙O2的半径长为r,根据勾股定理列出方程,解方程得到答案.22.【答案】解:延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,∵斜坡DE的坡长为13米,坡度i=1:2.4,∴设EH=5x,则DH=12x,∵EH2+DH2=DE2,∴(5x)2+(12x)2=132,∴x=1(负值舍去),∴EH=5,DH=12,∵EB∥DC,∴∠ABE=∠AGH=90°,∵∠AEB=45°,∴AB=BE,∴HG=AB,∴FG=5+12+AB,AG=AB+5,∵∠F=31°,∴tan F=tan31°===0.6,∴AB=13米,答:铁塔AB的高度是13米.【解析】延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,根据勾股定理得到EH=5,DH=12,根据三角函数的定义解直角三角形,然后列方程可得到结论.本题考查了解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题,矩形的性质,掌握的作出辅助线是解题的关键.23.【答案】证明:(1)∵AE2=AF•AB,∴=,∵∠EAF=∠BAE,∴△AEF∽△ABE,∴∠AEF=∠B,∵∠DAF=∠EAC,∴∠DAE=∠BAC,∴△ADE∽△ACB.(2)∵△ADE∽△ACB,∴=,∠D=∠C,∵∠DAF=∠EAC,∴△ADF∽△ACE,∴=,∴=,∴=.【解析】(1)由AE2=AF•AB,推出△AEF∽△ABE,推出∠AEF=∠B,再证明∠DAE=∠BAC,即可解决问题;(2)由△ADE∽△ACB,推出=,∠D=∠C,再证明△ADF∽△ACE,可得=,由此即可解决问题;本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.【答案】解:(1)OB=3OA=3,则点B的坐标为(3,0),将点A、B的坐标代入二次函数表达式得:,解得:,则抛物线的表达式为:y=x2-2x-3…①,函数对称轴为x=-=1,则点D的坐标为(1,-4);(2)如图,过点D作DL⊥y轴,交于点E,设:OE=m,则EL=4-m,OB=3,DL=1,∵∠LED+∠OEB=90°,∠OEB+∠OBE=90°,∴∠LED=∠OBE,∴tan∠LED=tan∠OBE,即:=,=,解得:m=1或3(舍去x=3),则点E的坐标为(0,-1);(3)延长BD交y轴于点H,将△BCH围绕点B,顺时针旋转135°至△BC′H′的位置,延长BH′交抛物线于点F,∵OB=OC=3,∴∠OCB=∠OBC=45°,则∠FBD=135°,BC′⊥x轴,则点C′(3,3),∠H′C′B=∠HCB=180°-45°=135°,tan∠ABD===2,OH=OB•tan∠ABD=2×3=6,则:HC=6-3=3=H′C′,过点C′作C′G⊥GH′交于点G,在△BGH′中,GC′=H′C′cos45°==GH′,则点H′的坐标为(3-,),将点H′、B的坐标代入一次函数表达式y=kx+b得:,解得:,则直线BH′的表达式为:y=-3x+9…②,联立①②并解得:x=3或-4(x=3舍去),故点F的坐标为(-4,21).【解析】(1)把点A、B的坐标代入二次函数表达式,即可求解;(2)设:OE=m,则EL=4-m,OB=3,DL=1,利用∠LED=∠OBE,即可求解;(3)延长BD交y轴于点H,将△BCH围绕点B顺时针旋转135°至△BC′H′的位置,延长BH′交抛物线于点F.确定直线BH′的表达式,即可求解.本题考查的是二次函数综合运用,涉及到解直角三角形、图形旋转等知识,其中(3)用图形旋转的方法,确定旋转后图形的位置时本题的难点.25.【答案】解:(1)如图①中,作CH⊥AB于H.∵CH⊥AB,∴∠AHC=∠BHC=90°,∵∠ACB=90°,∴∠ACH+∠BCH=90°,∵∠ACH+∠A=90°,∴∠BCH=∠A,∴△ACH∽△CBH,∴=,∵OC=2,∠COH=60°,∴∠OCH=30°,∴OH=OC=1,CH=,∴=,整理得:2a2-a-4=0,解得a=或(舍弃).经检验a=是分式方程的解.∴a=.(2)如图②中,设OC=x.作CH⊥AB于H,则OH=,CH=x.在Rt△ACH中,∵AC2=AH2+CH2,∴(3a)2=(x)2+(2a+x)2,整理得:x2+ax-5a2=0,解得x=(-1)a或(--1)a(舍弃),∴OC=(-1)a;(3)如图②-1中,延长QC交CB的延长线于K.∵∠AOC=∠∠AOQ+∠QOC=∠ABC+∠OCB,∠QOC=∠ABC,∴∠AOQ=∠KCO,∵AQ∥BK,∴∠Q=∠K,∴△QOA∽△KCO,∴=,∴=,∵∠K=∠K,∠KOB=∠AOQ=∠KCO,∴△KOB∽△KCO,∴=,∴===.【解析】(1)如图①中,作CH⊥AB于H.证明△ACH∽△CBH,可得=,由此构建方程即可解决问题.(2)如图②中,设OC=x.作CH⊥AB于H,则OH=,CH=x.在Rt△ACH中,根据AC2=AH2+CH2,构建方程即可解决问题.(3)如图②-1中,延长QC交CB的延长线于K.利用相似三角形的性质证明=,即可解决问题.本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2020年安徽省豪州涡阳县中考数学二调试卷一、选择题(本大题共6小题,共24.0分)1. 计算(2a 2b 3)4的结果是( )A. 8a 6b 7B. 8a 8b 12C. 16a 8b 12D. 16a 6b 72. 抛物线y =3(x −4)2+5的顶点坐标为( )A. (−4,−5)B. (−4,5)C. (4,−5)D. (4,5)3. 在Rt △ABC 中,∠C =90°,∠B =α,若BC =m ,则AB 的长为( ) A. m cosα B. m ⋅cosα C. m ⋅sinα D. m ⋅tanα4. 已知点P 是线段AB 的一个黄金分割点,且AB =10,PA >BP ,则PA 的长是( )A. 5√5−5B. 6.18C. 3.82D. √5−15. 下列条件不能判定△ABC 与△DEF 相似的是( )A. AB DE =BC EF =AC DFB. AB DE =BCEF ,∠A =∠D C. ∠A =∠D ,∠B =∠ED. AB DE =BC EF ,∠B =∠E 6. 下列说法,不正确的是( )A. AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =CB⃗⃗⃗⃗⃗ B. 如果|AB ⃗⃗⃗⃗⃗ |=|CD ⃗⃗⃗⃗⃗ |,那么AB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ C. a ⃗ +b ⃗ =b ⃗ +a ⃗D. 若非零向量a ⃗ =k ⋅b ⃗ (k ≠0),则a ⃗ //b ⃗二、填空题(本大题共12小题,共48.0分)7. 不等式4x −9>0的解是______ .8. 方程1x+1=x 2x+1的根是______ 9. 若x 2=y 3,则2x−3yx+y的值为______. 10. 如图,△ADE ~△ABC ,AD =3,AE =4,BE =5,则CA 的长为____.11. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为1.5米,那么旗杆BC 的高度为______ 米.12. 若坡度i =√33,则坡角为α=______ 13. 如图,抛物线y =ax 2+bx +1(a ≠0)经过点A(−3,0),对称轴为直线x =−1,则(a +b)(4a −2b +1)的值为______.14. 如图,在△ABC 中,点D 在边AC 上,且CD =2AD.设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,那么BD ⃗⃗⃗⃗⃗⃗ =______.(结果用向量a ⃗ 、b ⃗ 的式子表示)15. 在三角形ABC 中,∠C =90°,AC =8,BC =6,D ,E ,F 分别是AB ,BC ,CA 的中点,G 是重心,则GD =______.16. 在平面直角坐标系中,将抛物线y =2x 2向上平移3个单位,得到的抛物线的函数表达式为______.17. 如图,四边形ABCD 中,AB//DC ,点E 在CB 延长线上,∠ABD =∠CEA ,若3AE =2BD ,BE =1,那么DC =______.18. 如图,在矩形ABCD 中,AD =4,将∠A 向内翻析,点A 落在BC 上,记为A 1,折痕为DE.若将∠B 沿EA 1向内翻折,点B 恰好落在DE 上,记为B 1,则AB =______.三、计算题(本大题共2小题,共12.0分)19.sin230°+cos230°−tan30°·tan60°.20.先化简再求值:(x−1x+1−x+1x+2)÷x+3x2+4x+4,其中x=2.四、解答题(本大题共5小题,共40.0分)21.已知抛物线y=x2+mx+n过A(1,−2)、B(3,4)两点,求(1)抛物线的解析式;(2)抛物线的顶点坐标及抛物线与x轴的交点坐标.22.某条道路上通行车辆限速为60千米/时,在离道路50米的点P处建一个监测点,道路AB段为检测区(如图).在△ABP中,已知∠PAB=30°,∠PBA=45°,一辆轿车通过AB段的时间8.1秒,米/秒)请判断该车是否超速?(参考数据:√2≈1.41,√3≈1.73,60千米/时=50323.如图,△ABC与△ADE均为等腰三角形,BA=BC,DA=DE,如果点D在边BC上,且∠EDC=∠BAD,点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA·OC=OD·CE.24.在平面直角坐标系xOy中,抛物线y=−x2+bx+c与x轴交于A(−3,0),点B(1,0)两点,与y轴交于点C(1)求抛物线的解析式:(2)若点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接PA、PC、AC.①求△ACP的面积S关于t的函数关系式.②求△ACP的面积的最大值,并求出此时点P的坐标.25.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.(1)如图1,若AB=√3,点A,E,P恰好在一条直线上时,求EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,求证:BF=EF;(3)若AB=√3,设BP=2,求QF的长.【答案与解析】1.答案:C解析:本题主要考查了积的乘方及幂的乘方,熟练掌握它的运算法则是解题关键.直接根据积的乘方运算法则计算即可.解:(2a2b3)4=16a8b12,故选C.2.答案:D解析:本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.直接根据二次函数的顶点坐标式进行解答即可.解:∵二次函数的解析式为y=3(x−4)2+5,∴其顶点坐标为:(4,5).故选:D.3.答案:A解析:本题考查了锐角三角函数的定义的应用,关键是根据学生的理解能力和计算能力解答.,由此解答即可.根据锐角三角函数定义,cosα=BCAB解:如图所示:∵cosα=BC,AB∴AB=m,cosα故选:A.4.答案:A解析:【试题解析】本题考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值(√5−12)叫做黄金比.熟记黄金分割的公式:较短的线段=原线段的3−√52,较长的线段=原线段的√5−12,是解题的关键. 解:由于P 为线段AB =10的黄金分割点,且AP 是较长线段;则AP =10×√5−12=5√5−5.B 选项中6.18只是个近似值,相比A 而言,A 是准确答案.故选A .5.答案:B解析:本题考查了相似三角形的判定,掌握相似三角形判定的三种方法是解答本题的关键.相似的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似,逐项分析即可.解:A 、利用三边法可以判定△ABC 与△DEF 相似;B 、不能判定相似,因为∠A 、∠D 不是这两组边对应的夹角;C 、∠A =∠D ,∠B =∠F ,可以判定△ABC 与△DEF 相似;D 、利用两边及其夹角的方法可判定△ABC 与△DEF 相似;故选B .6.答案:B解析:本题考查平面向量的三角形法则,平行向量的判定,向量的加法交换律等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.根据平面向量的三角形法则,平行向量的判定,向量的加法交换律等知识一一判断即可.解:A.正确.∵AB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,∴AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =CB⃗⃗⃗⃗⃗ .不符合题意. B .错误.模相等的向量不一定相等,符合题意.C .正确.向量的解法符合加法交换律.不符合题意.D .正确.根据平行向量的判定得出结论.不符合题意.故选B .7.答案:x >94解析:解:移项得,4x >9,把x 的系数化为1得,x >94.故答案为:x >94.先移项,再把x 的系数化为1即可.本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键. 8.答案:x =1解析:解:去分母得:x 2=1,解得:x =1或x =−1,经检验x =−1是增根,分式方程的解为x =1,故答案为:x =1分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.答案:−1解析:解:∵x 2=y 3,∴2y =3x ,则y =32x ,则2x−3y x+y =2x−3×32xx+32x =−1.故答案为:−1.直接利用比例的性质得出x,y之间的关系进而得出答案.此题主要考查了比例的性质,正确用同一未知数代替另一未知数是解题关键.10.答案:12解析:此题主要考查了相似三角形的性质,正确得出对应边的关系是解题关键.直接利用相似三角形的性质得出对应边的比值相等,进而得出答案.解:∵△ADE∽△ABC,∴AEAC =ADAB,∵AD=3,AE=4,BE=5,∴4AC =34+5,解得:AC=12.故答案为12.11.答案:6√3+1.5解析:解:在Rt△CDE中,tan∠CDE=CEDE,∴CE=DE⋅tan∠CDE=6√3,∴BC=CE+BE=6√3+1.5(米),故答案为:6√3+1.5.根据正切的定义求出CE,计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.12.答案:30°解析:解:∵坡度i=√33,∴tanα=√33,∴α=30°,故答案为:30°.根据坡度i 与坡角α之间的关系计算,得到答案.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度i 与坡角α之间的关系是解题的关键. 13.答案:−1解析:解:∵抛物线y =ax 2+bx +1(a ≠0)经过点A(−3,0),对称轴为直线x =−1,∴{9a −3b +1=0−b 2a =−1, 解得,{a =−13b =−23, ∴(a +b)(4a −2b +1)=(−13−23)×[4×(−13)−2×(−23)+1] =−1,故答案为:−1.根据抛物线y =ax 2+bx +1(a ≠0)经过点A(−3,0),对称轴为直线x =−1,可以求得a 、b 的值,从而可以求得所求式子的值.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.14.答案:13b ⃗ −a ⃗解析:解:∵CD =2AD ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,∴AD ⃗⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ =13b ⃗ , ∵BD⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =−a ⃗ +13b ⃗ , 故答案为:13b ⃗−a ⃗ . 求出AD ⃗⃗⃗⃗⃗⃗ ,根据BD ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ 求解即可. 本题考查平面向量,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 15.答案:53。