【2020精品中考数学提分卷】安徽省亳州市中考数学一模试卷+答案
- 格式:docx
- 大小:493.79 KB
- 文档页数:22
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。
安徽省亳州市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在平面直角坐标系中,点A 在x 轴的正半轴上,点B 的坐标为(0,4),将△ABO 绕点B 逆时针旋转60°后得到△A'BO',若函数y=kx(x >0)的图象经过点O',则k 的值为( )A .23B .4C .43D .82.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是( ) A .圆锥B .圆柱C .球D .正方体3.将二次函数2y x =的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+4.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y <0;③3a+c=0;④若(x 1,y 1)(x 2、y 2)在函数图象上,当0<x 1<x 2时,y 1<y 2,其中正确的是( )A .①②④B .①③C .①②③D .①③④5.已知二次函数y=ax 2+bx+c (a≠1)的图象如图所示,则下列结论: ①a 、b 同号;②当x=1和x=3时,函数值相等; ③4a+b=1;其中,正确的有( )A .2个B .3个C .4个D .5个6.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表: 尺码/cm 21.5 22.0 22.5 23.0 23.5 人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm 的女式运动鞋,商店经理的这一决定应用的统计量是( ) A .平均数 B .加权平均数C .众数D .中位数7.的倒数是( )A .B .C .D .8.通过观察下面每个图形中5个实数的关系,得出第四个图形中y 的值是( )A .8B .﹣8C .﹣12D .129.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒10.若x ﹣2y+1=0,则2x ÷4y ×8等于( ) A .1B .4C .8D .﹣1611.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .12.如图,已知OP 平分∠AOB ,∠AOB =60°,CP =2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是( )A .2B .2C .3D .23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F ,若AD=1,BD=2,BC=4,则EF=________.14.已知函数||(2)31m y m x x =+-+是关于x 的二次函数,则m =__________. 15.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.搬运20kg ,A 型机器人搬运1000kg 所用时间与B 型机器人搬运800kg 所用时间相等,设B 型机器人每小时搬运x kg 物品,列出关于x 的方程为_____.18.函数2y x =-中,自变量x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确.”请回答:小楠的作图依据是______________________________________________. 20.(6分)如图,在△ABC 中,∠C = 90°,E 是BC 上一点,ED ⊥AB ,垂足为D . 求证:△ABC ∽△EBD .21.(6分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF 之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)23.(8分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.24.(10分)如图已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC 的面积与△DBC的面积相等(保留作图痕迹,不写做法)25.(10分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.∠BCM=60°,求图中阴影部分的面积.27.(12分)化简求值:212(1)211x x x x -÷-+++,其中31x =. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据题意可以求得点O'的坐标,从而可以求得k 的值. 【详解】∵点B 的坐标为(0,4), ∴OB=4,作O′C ⊥OB 于点C ,∵△ABO 绕点B 逆时针旋转60°后得到△A'BO', ∴O′B=OB=4,∴3BC=4×cos60°=2, ∴OC=2,∴点O′的坐标为:(3,2), ∵函数y=kx(x >0)的图象经过点O', ∴233,故选C .和反比例函数的性质解答. 2.C 【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断. 【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意, 故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键. 3.B 【解析】 【分析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果. 【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k , 代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1; 故选:B . 【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标. 4.B 【解析】∵函数图象的对称轴为:x=-2b a =132-+=1,∴b=﹣2a ,即2a+b=0,①正确; 由图象可知,当﹣1<x <3时,y <0,②错误; 由图象可知,当x=1时,y=0,∴a ﹣b+c=0, ∵b=﹣2a ,∴3a+c=0,③正确;∵抛物线的对称轴为x=1,开口方向向上,∴若(x 1,y 1)、(x 2,y 2)在函数图象上,当1<x 1<x 2时,y 1<y 2;当x 1<x 2<1时,y 1>y 2;点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.5.A【解析】【分析】根据二次函数的性质和图象可以判断题目中各个小题是否成立.【详解】由函数图象可得,a>1,b<1,即a、b异号,故①错误,x=-1和x=5时,函数值相等,故②错误,∵-1522ba-+==2,得4a+b=1,故③正确,由图象可得,当y=-2时,x=1或x=4,故④错误,由图象可得,当-1<x<5时,y<1,故⑤正确,故选A.【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6.C【解析】【分析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.C由互为倒数的两数之积为1,即可求解.【详解】∵,∴的倒数是.故选C8.D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.9.A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.10.B【解析】【分析】x2y3原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.11.A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.12.C【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴=,∴ ∵PD ⊥OA ,点M 是OP 的中点,∴DM=12 故选C .考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23【解析】【分析】由DE ∥BC 可得出△ADE ∽△ABC ,根据相似三角形的性质和平行线的性质解答即可.【详解】∵DE ∥BC ,∴∠F=∠FBC ,∵BF 平分∠ABC ,∴∠DBF=∠FBC ,∴∠F=∠DBF ,∴DB=DF ,∵DE ∥BC ,∴△ADE ∽△ABC , ∴AD DE AD DB BC =+ ,即1124DE =+ , 解得:DE=43 , ∵DF=DB=2,∴EF=DF-DE=2-43 =23 , 故答案为23. 【点睛】此题考查相似三角形的判定和性质,关键是由DE ∥BC 可得出△ADE ∽△ABC .14.1【解析】【分析】 根据一元二次方程的定义可得:2m =,且20m +≠,求解即可得出m 的值.解:由题意得:2m =,且20m +≠,解得:2m =±,且2m ≠-,∴2m =故答案为:1.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”. 15.18块 (4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n 个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2, 所以第4个图应该有4×4+2=18块, 第n 个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.16.1, 2, 1.【解析】【分析】去分母,移项,合并同类项,系数化成1即可求出不等式的解集,根据不等式的解集即可求出答案.【详解】1x -12Q -≥, ∴1-x≥-2,∴-x≥-1,∴x≤1, ∴不等式1x -12-≥的正整数解是1,2,1, 故答案为:1,2,1.【点睛】本题考查了解一元一次不等式和一元一次不等式的整数解,关键是求出不等式的解集.17.100080020x x=+【分析】设B型机器人每小时搬运x kg物品,则A型机器人每小时搬运(x+20)kg物品,根据“A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等”可列方程.【详解】设B型机器人每小时搬运x kg物品,则A型机器人每小时搬运(x+20)kg物品,根据题意可得100080020x x=+,故答案为100080020x x=+.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x的分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程是关键.18.2x≥【解析】【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得20x-≥,解得:2x≥,故答案为:2x≥.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【解析】【分析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.20.证明见解析【解析】试题分析:先根据垂直的定义得出∠EDB =90°,故可得出∠EDB =∠C .再由∠B =∠B ,根据有两个角相等的两三角形相似即可得出结论.试题解析:解:∵ED ⊥AB ,∴∠EDB =90°.∵∠C =90°,∴∠EDB =∠C .∵∠B =∠B ,∴ABC V ∽EBD V .点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键. 21.(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x ,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得:1280(1+x )2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a ﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.22.215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点 在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN DN =≈o米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.23. (1)y=﹣x 2+4x ﹣3;(2)满足条件的P 点坐标有3个,它们是(2,1)或(2,﹣1)或(22,﹣1).【解析】【分析】(1)由于已知抛物线与x 轴的交点坐标,则可利用交点式求出抛物线解析式;(2)根据二次函数图象上点的坐标特征,可设P (t ,-t 2+4t-3),根据三角形面积公式得到12•2•|-t 2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t 即可得到P 点坐标.【详解】解:(1)抛物线解析式为y=﹣(x ﹣1)(x ﹣3)=﹣x 2+4x ﹣3;(2)设P (t ,﹣t 2+4t ﹣3),因为S △PAB =1,AB=3﹣1=2,所以12•2•|﹣t2+4t﹣3|=1,当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);当﹣t2+4t﹣3=﹣1时,t1=2+2,t2=2﹣2,此时P点坐标为(2+2,﹣1)或(2﹣2,﹣1),所以满足条件的P点坐标有3个,它们是(2,1)或(2+2,﹣1)或(2﹣2,﹣1).【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.24.见解析【解析】【分析】三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.【详解】作∠CDP=∠BCD,PD与AC的交点即P.【点睛】本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.25.(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解析】【分析】(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分),众数为75分,中位数为第13个数据,即75分.【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.26.(1)相切;(2)1643 3π-【解析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.试题解析:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,3∴S阴=S扇形OAC﹣S△OAC=2120411642343 36023ππ-⨯⨯=-g考点:直线与圆的位置关系;扇形面积的计算.27.33【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+ 当31x =时,131311x ==+-+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.。
中考数学一模试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.已知函数:①y=2x-1;②y=-2x2-1;③y=3x3-2x2;④y=2x2-x-1;⑤y=ax2+bx+c,其中二次函数的个数为()A. 1B. 2C. 3D. 42.抛物线y=(x-2)2+3的顶点坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)3.在Rt△ABC中,∠C=90°,如果cos A=,那么tan B的值为()A. B. C. D.4.若,则的值是()A. 2B.C.D.5.将抛物线y=x2+4先向左平移3个长度单位,再向上平移2个长度单位,所得到的抛物线是()A. y=(x-3)2+2B. y=(x+3)2+2C. y=(x+3)2+6D. y=(x-3)2+66.如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若AD:DB=3:1,则AE:AC=()A. 3:1B. 3:4C. 3:5D. 2:37.在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.8.如图,反比例函数y=的图象经过点A(4,1),当y<2时,x的取值范围是()A. x>2B. x<2C. x<0或x>2D. 0<x<29.如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A. 1:2B. 1:3C. 1:4D. 2:310.如图,矩形OABC的顶点A、C分别在x轴、y轴上,OA=4,OC=3,直线m:y=-x从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒),设△OMN的面积为S,则能反映S与t之间函数关系的大致图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是______.12.二次函数y=x2-2x-8的图象与x轴的交点坐标______.13.如图,利用标杆BE测量楼房CD的高度,如果标杆BE长为3.6米,若tan A=,BC=19.2米,则楼高是______米.14.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则BD的长为______.三、计算题(本大题共1小题,共12.0分)15.如图,在四边形ABCD中,∠ABC=90°,∠C=45°,CD=,BD=3.(1)求sin∠CBD的值;(2)若AB=3,求AD的长.四、解答题(本大题共8小题,共78.0分)16.计算:.17.已知抛物线y=2x2+bx+c经过点(1,-3),(0,-1).(1)求抛物线的表达式;(2)用配方法求出该抛物线的顶点坐标.18.如图,我县某中学数学兴趣小组决定测量一下本校教学楼EF的高度,他们在楼梯底部A处测得∠EAF=60°,∠BAC=30°;沿楼梯向上走到B处测得∠EBD=45°,B到地面CF的距离BC为3米.求教学楼EF的高度.(结果精确列1米,参考数据:≈1.4,≈1.7)19.如图,一次函数y=-2x+6与函数y=(x>0)的图象交于C(0,4),D(2,0)两点,AC⊥y轴于C,BD⊥x轴于D.(1)求k的值;(2)根据图象直接写出-2x+6-<0的x的取值范围;20.在如图所示的方格中,每个小正方形的边长都是1,△O1A1B1与△OAB是以点P为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)在图中标出位似中心P的位置(请保留画图痕迹);(2)以点O为位似中心,在直线m的左侧画出△OAB的另一个位似△OA2B2,使它与△OAB的位似比为2:1,并直接写出△OA2B2与△OAB的面积之比是_____.21.如图,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠C.求证:AC•CE=CD•BD.22.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元).(年获利=年销售额-生产成本-投资)(1)试写出z与x之间的函数关系式;(2)请通过计算说明,到第一年年底,当z取最大值时,销售单价x定为多少?此时公司是盈利了还是亏损了?23.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式.(2)点P是直线上方的抛物线上的一个动点,求△ABP的面积最大时的P点坐标.(3)若点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD⊥x 轴于点D,交直线AB于点E.当PE=2ED时,求P点坐标;(4)设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点M,使得AM被FC平分?若存在,请求出点M的坐标;若不存在,说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了二次函数的定义,关键是掌握y=ax2+bx+c(a、b、c是常数,a≠0)是二次函数,注意a≠0这一条件.根据二次函数定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析即可.【解答】解:②④是二次函数,共2个,故选B.2.【答案】A【解析】解:y=(x-2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.3.【答案】D【解析】【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.利用锐角三角函数的定义,通过设参数的方法求三角函数值.【解答】解:∵在Rt△ABC中,∠C=90°,∴cos A=,tan B=,a2+b2=c2.∵cos A=,设b=4x,则c=5x,a=3x.∴tan B=.故选D.4.【答案】A【解析】解:∵,∴设x=a,则y=3a,∴==2.故选:A.直接利用已知设x=a,则y=3a,代入化简即可.此题主要考查了比例的性质,正确用未知数表示出x,y的值是解题关键.5.【答案】C【解析】解:∵将抛物线y=x2+4先向左平移3个长度单位,∴得到y=(x+3)2+4,∵再向上平移2个长度单位,∴所得到的抛物线是:y=(x+3)2+6.故选:C.直接利用二次函数平移规律进而得出平移后的解析式即可.此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.6.【答案】B【解析】解:∵DE∥BC,∴==,∴==.故选:B.根据平行线分线段成比例定理得到==,然后根据比例的性质求AE:AC的值.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.7.【答案】D【解析】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.此题主要考查了反比例函数的图象,以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.8.【答案】C【解析】解:∵反比例函数y=的图象经过点A(4,1),∴k=4×1=4,∴y=,当y=2时,解得x=2,∴当y<2时,x<0或x>2.故选:C.求得函数为2时的x的值,根据反比例函数的图象即可得出结论.本题考查的是反比例函数图象上点的坐标特点,能利用函数图象直接得出不等式的解集是解答此题的关键.9.【答案】B【解析】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.10.【答案】D【解析】解:如图1中,当0<t≤4时,∵MN∥CA,∴OM:OA=ON:OC,∴OM:ON=OA:OC=4:3,∴OM=t,ON=t,∴y=•OM•ON=t2.如图2中,当4<t≤8时,y=S△EOF-S△EON-S△OFM=t2-t•(t-4)-(t-4)=-2+3t.综上所述y=.故选:D.分两种情形①如图1中,当0<t≤4时,②如图2中,当4<t≤8时,分别求出y与t的函数关系式即可解决问题.本题考查动点问题函数图象、矩形的性质.三角形的面积等知识,解题的关键是学会分类讨论,求出分段函数的解析式,属于中考常考题.11.【答案】a>3【解析】解:∵反比例函数y=(a是常数)的图象在第一、三象限,∴a-3>0,∴a>3.故答案为:a>3.反比例函数y=图象在一、三象限,可得k>0,据此列出有关a的不等式求得a的取值范围即可.本题运用了反比例函数y=图象的性质,关键要知道k的决定性作用.12.【答案】(4,0)(-2,0)【解析】解:二次函数的解析式y=x2-2x-8,令y=0,得到x2-2x-8=0,解得:x1=4,x2=-2,则此二次函数的图象与x轴的交点坐标分别为(4,0)、(-2,0);故答案为:(4,0)、(-2,0);解方程x2-2x-8=0即可得出抛物线与x轴的交点的横坐标;此题考查了抛物线与x轴的交点,要求二次函数与x轴的交点,即要y=0,得到关于x 的方程来求解.13.【答案】18【解析】解:∵标杆BE长为3.6米,tan A=,∴=,解得:AB=4.8,∵BC=19.2米,∴AC=19.2+4.8=24(米),∴tan A===,解得:CD=18,故楼高是18米.故答案为:18.直接利用锐角三角函数关系得出AB的长,进而利用tan A=得出答案.此题主要考查了解直角三角形的应用,正确得出AB的长是解题关键.14.【答案】或【解析】解:在Rt△ABC中,∵∠ACB=90°,AB=5,BC=4,∴AC===3,若△CEF与△ABC相似,分两种情况:①若CF:CE=3:4,∵AC:BC=3:4,∴CF:CE=AC:BC,∴EF∥AB.连接CD,如图1所示:由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,AB=5,∴cos B==,∴BD=BC•cos B=4×=;②若CE:CF=3:4,∵AC:BC=3:4,∠C=∠C,∴△CEF∽△CBA,∴∠CEF=∠A.连接CD,如图2所示:由折叠性质可知,∠CEF+∠ECD=90°,又∵∠A+∠B=90°,∴∠B=∠ECD,∴BD=CD.同理可得:∠A=∠FCD,AD=CD,∴D点为AB的中点,∴BD=AB=,故答案为或.△CEF与△ABC相似,分两种情况:①若CF:CE=3:4,此时EF∥AB,CD为AB边上的高;②若CE:CF=3:4,由相似三角形角之间的关系,可以推出∠B=∠ECD与∠A=∠FCD,从而得到CD=AD=BD,即D点为AB的中点.本题考查的是相似三角形的性质、翻转变换的性质,掌握相似三角形的对应边的比相等、运用分类讨论及数形结合思想是解题的关键.15.【答案】解:(1)如图,过点D作DE⊥BC于点E,在Rt△CED中,∵,∴CE=DE=1,在Rt△BDE中,;(2)过点D作DF⊥AB于点F,则∠BFD=∠BED=∠ABC=90°,∴四边形BEDF是矩形,∴DE=BF=1,∵BD=3,∴∴AF=AB-BF=2,∴【解析】(1)过点D作DE⊥BC,构造Rt△CED和Rt△CED,利用锐角三角函数求出sin∠CBD的值;(2)过点D作DF⊥AB,构造矩形BFDE,求出AF、DF的长,再利用勾股定理求出AD.本题考查了锐角三角函数及矩形、等腰三角形的知识.构造直角三角形和矩形,利用锐角三角函数是解决本题的关键.16.【答案】解:原式=4×-×+=2-1+3=4.【解析】分别把sin30°=,cos45°=,tan60°=代入计算即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式等考点的运算.17.【答案】解:(1)把(1,-3)(0,-1)代入y=2x2+bx+c得解得b=-4,c=-1,∴抛物线的表达式为y=2x2-4x-1(2)∵y=2x2-4x-1=2(x-1)2-3∴顶点坐标(1,-3).【解析】(1)将点(1,-3)、(0,-1)代入解析式求出b、c的值即可得;(2)将二次函数配方成顶点式后确定其顶点坐标.本题主要考查二次函数的性质,解题的关键是熟练掌握待定系数法求函数解析式及配方法求抛物线的顶点坐标.18.【答案】解:延长BD交EF于点G,设EG=x在Rt△BGE中,∠EBD=45°,可得EG=BG=CF=x在Rt△ACB中,∠BAC=30°,BC=3,可得在Rt△AFE中,∠EAF=60°,EF=x+3,,所以,则(米).【解析】延长BD交EF于点G,设EG=x.根据等腰Rt△BGE的性质可得EG=BG=CF=x;Rt△ACB中,得到AC、AF的长度,在Rt△AFE中求得EF的长度,所以通过∠EAF的正切定义解答.本题考查了解直角三角形的应用-仰角俯角问题,构造仰角所在的直角三角形,利用两个直角三角形的公共边求解是常用的解直角三角形的方法.19.【答案】解:(1)∵C(0,4),∴可设A(m,4),B(2,n),把A、B代入y=-2x+6得4=-2m+6,n=-2×2+6,解得m=1,n=2,把A(1,4)代入得,解得k=4;(2)由图可知0<x<1或x>2.【解析】(1)根据题意设A(m,4),B(2,n),代入y=-2x+6得到关于m和n的一元一次方程,解之,即可得到m和n的值,把点A的坐标代入函数y=,解之,即可得到k的值,(2)-2x+6-<0,即-2x+6<,根据图象,结合点A和点B的坐标,即可得到答案.本题考查了反比例函数与一次函数的交点问题,数形结合思想是解题的关键.20.【答案】解:(1)如图所示:点P即为所求;(2)如图所示:△OA2B2,即为所求,△OA2B2与△OAB的面积之比是:4:1.故答案为:4:1.【解析】【分析】(1)直接利用位似图形的性质连接对应点得出位似中心的位置;(2)利用位似图形的性质得出对应点位置进而得出答案.此题主要考查了位似变换,正确得出对应点位置是解题关键.【解答】(1)见答案;(2)见答案.21.【答案】证明:∵AB=AC,∴∠B=∠C,∵∠ADE=∠C,∴∠B=∠ADE,∵∠ADC=∠ADE+∠EDC=∠B+∠BAD,∴∠EDC=∠BAD,且∠B=∠C,∴△ABD~△DCE,∴,且AB=AC,∴AC•CE=CD•BD.【解析】通过证明△ABD~△DCE,可得,可得结论.本题考查了相似三角形的判定和性质,证明△ABD~△DCE是本题的关键.22.【答案】解:(1)由题意知,当销售单价定为x元时,年销售量减少(x-120)万件,则y=20-(x-120)=-32,即y与x之间的函数关系式是,由题意得:=,即z与x之间的函数关系是;(2)∵∴当x=180时,z取最大值,此时z=-40,即当销售单价为180元时,年获利最大,并且第一年年底公司还差40万元就可收回全部投资,答:到第一年年底,当z取最大值时,销售单价x定为180元,此时公司是亏损了.【解析】(1)根据题意,可以得到y与x的函数关系式,然后再根据z与y的关系,即可得到z与x的函数关系;(2)根据(1)中的函数关系式,利用二次函数的性质,可以求得z的最大值,即可解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.23.【答案】解:(1)将交点B(4,m)代入直线y=x+1得B(4,5),由题意可设抛物线解析式y=a(x+1)(x-5),把B(4,m)代入得a=-1,∴y=-(x+1)(x-5),即y=-x2+4x+5;(2)过点P作y轴的平行线交AB于点H,则,x B-x A=4-(-1)=5,所以,其对称轴为,把代入y=-x2+4x+5得:,即△ABP的面积最大时P点坐标为;(3)∵P为抛物线上一点,所以存在P点在直线AB上方和下方两种情况.由题意得,ED=y E-y D=(x+1)-0=x+1,因为PE=2ED,所以|-x2+3x+4|=2|x+1|,所以-x2+3x+4=±2(x+1),解得x1=-1(舍),x2=2,x3=6,当x=2时,y=9;当x=6时,y=-7.即当PE=2ED时,求P点坐标为(2,9)或(6,-7);(4)若AM被FC平分,则AM的中点在直线FC上.由F(0,4),C(5,0)得直线FC的表达式为:y=-x+4,设M(x,-x2+4x+5),A(-1,0),所以其中点坐标为,将M'代入,解得x1=3,x2=-1(舍),把代入抛物线解析式y=-x2+4x+5得y=8.即在抛物线上存在一点M,当其坐标为(3,8)时,AM被FC平分.【解析】(1)将交点B(4,m)代入直线y=x+1得B(4,5),由题意可设抛物线解析式y=a(x+1)(x-5),把B(4,m)代入得a=-1,即可求解;(2),即可求解;(3),故|-x2+3x+4|=2|x+1|,所以-x2+3x+4=±2(x+1),即可求解;(4)若AM被FC平分,则AM的中点在直线FC上,由F(0,4),C(5,0)得直线FC的表达式为:y=-x+4,设M(x,-x2+4x+5),A(-1,0),所以其中点坐标为,将M'代入,解得x1=3,x2=-1(舍),即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。
安徽省亳州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共37分)1. (3分) (2019八下·盐湖期中) 剪纸是我国最古老民间艺术之一,被列入第四批(人类非物质文化遗产代表作名录),下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (3分) (2019七下·台安期中) 下列实数中,属于无理数的是()A . ﹣2B . 0C .D . 53. (3分)(2019·兰州模拟) 下列运算正确的是()A . 4m﹣m=3B . a3﹣a2=aC . 2xy﹣yx=xyD . a2b﹣ab2=04. (2分)(2018·深圳模拟) 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A . 5.3×103B . 5.3×104C . 5.3×107D . 5.3×1085. (2分)(2018·南湖模拟) 如图是某个几何体的三视图,则该几何体是()A . 长方体B . 圆锥C . 圆柱D . 三棱柱6. (2分) (2019七下·马山月考) 如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A . 55°B . 60°C . 65°D . 70°7. (3分)(2020·南通模拟) 有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A . 中位数B . 平均数C . 众数D . 方差8. (2分)某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C 观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A . 300米B . 150米C . 900米D . (300+300)米9. (2分) (2016七上·丹徒期中) 如图,在数轴上表示到原点的距离为3个单位的点有()A . D点B . A点C . A点和D点D . B点和C点10. (3分) (2019八下·绍兴期中) 在下列方程中,是一元二次方程的是()A . x+y=0B . x+5=0C . x2﹣2014=0D . x﹣=011. (2分)(2020·上海模拟) 二次函数y=ax2+bx+c与一次函数y=ax+c的图像大致为()A .B .C .D .12. (2分) (2015八下·深圳期中) 如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB= ,则此三角形移动的距离AA′是()A . ﹣1B .C . 1D .13. (2分)如图,在两个同心圆O中,大圆的弦AB交小圆于C、D两点,则AD与BC的数量关系是()A . AD>BCB . AD=BCC . AD<BCD . 无法确定14. (2分) (2017九上·汝州期中) 如图,正方形 ABCD中AB= 3,点B在边CD上,且 CD=3DE. 将△ADE沿AE对折至△AFE,延长EF交边BC 于点G,连接AG,CF下列结论:①点G是BC的中点;②FG=FC;③ GAE=45º;④GE=BG+DE.其中正确的是()A . ①②B . ①③④C . ②③D . ①②③④15. (2分)国家级历史名城金华,风光秀丽,花木葱茏,某广场上一个是平行四边形的花坛(如图),分别种有红、蓝、绿、橙、紫、黄6种颜色的花,如果AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A . 红花,绿花种植面积一定相等B . 紫花,橙花种植面积一定相等C . 红花,蓝花种植面积一定相等D . 蓝花,黄花种植面积一定相等16. (2分) (2017九上·满洲里期末) 方程x2=3x的解是()A . x=3B . x=0C . x1=-3,x2=0D . x1=3,x2=0二、填空题 (共3题;共12分)17. (3分) (2019九上·高邮期末) 在比例尺为1:2000000的地图上,港珠澳大桥的主桥图上距离为1.48cm,则港珠澳大桥的主桥长度为________km.18. (3分) (2015七下·海盐期中) 若x+y=1,则2016﹣x﹣y=________.19. (6分)(2017·兰州模拟) 一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为________cm.三、解答题 (共7题;共59分)20. (8分)(2019·秦安模拟) 计算(1)(2)先化简再求值:其中21. (2分)(2016·新疆) 某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D 器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:选项方式百分比A唱歌35%B舞蹈aC朗诵25%D器乐30%请结合统计图表,回答下列问题:(1)本次调查的学生共△人,a=△,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.22. (9分) (2018八上·汉阳期中) 一个多边形的内角和是外角和的3倍,求这个多边形的边数.23. (9.0分)(2017·太和模拟) 已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.(1)如图1,当α=60°时,求证:△DCE是等边三角形;(2)如图2,当α=45°时,求证:① = ;②CE⊥DE.(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系是: =________.24. (10.0分)(2019·宜昌) 如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作□ABCD.(1)求证:AD是⊙O的切线;(2)若,求四边形AHCD与⊙O重叠部分的面积;(3)若,连接MN,求OH和MN的长.25. (10.0分) (2019九上·无锡期中) 如图所示,AC⊥AB,,AC=2,点D是以AB为直径的半圆O 上一动点,DE⊥CD交直线AB于点E,设 .(1)当时,求弧BD的长;(2)当时,求线段BE的长;(3)若要使点E在线段BA的延长线上,求的取值范围.(直接写出答案)26. (11.0分)(2020·宿州模拟) 在平面直角坐标系中,反比例函数y=(x>0,k>0图象上的两点(n,3n)、(n+1,2n).(1)求n的值;(2)如图,直线l为正比例函数y=x的图象,点A在反比例函数y=(x>0,k>0)的图象上,过点A 作AB⊥l于点B,过点B作BC⊥x轴于点C,过点A作AD⊥BC于点D,记△BOC的面积为S1,△ABD的面积为S2,求S1﹣S2的值.参考答案一、选择题 (共16题;共37分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共12分)17-1、18-1、19-1、三、解答题 (共7题;共59分)20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
安徽省亳州市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·达孜期末) 下列图形中,既是轴对称图形,又是中心对称图形()A . 等腰三角形B . 平行四边形C . 正三角形D . 矩形2. (2分)(2020·岳阳) 下列运算结果正确的是()A .B .C .D .3. (2分)(2020·咸宁) 如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A . 乙的最好成绩比甲高B . 乙的成绩的平均数比甲小C . 乙的成绩的中位数比甲小D . 乙的成绩比甲稳定4. (2分) (2019九上·上海月考) 下列命题中错误的是()A . 相似三角形的周长比等于对应中线的比B . 相似三角形对应高的比等于相似比C . 相似三角形的面积比等于相似比D . 相似三角形对应角平分线的比等于相似比5. (2分)四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A .B .C .D .6. (2分)用尺规作图,下列条件中可能作出两个三角形的是()A . 已知两边和夹角B . 已知两边及其一边的对角C . 已知两角和夹边D . 已知三条边7. (2分)如图,一艘油轮在海中航行,在A点看到小岛B在A的北偏东25°方向距离60海里处,油轮沿北偏东70°方向航行到C处,看到小岛B在C的北偏西50°方向,则油轮从A航行到C处的距离是()海里.(结果保留整数)(参考数据:≈1.41,≈1.74,≈2.45)A . 66.8B . 67C . 115.8D . 1168. (2分)(2019·台湾) 如图表示A、B、C、D四点在O上的位置,其中=180°,且 = ,= .若阿超在上取一点P,在上取一点Q,使得∠APQ=130°,则下列叙述何者正确?()A . Q点在上,且B . Q点在上,且C . Q点在上,且D . Q点在上,且9. (2分)抛物线y=ax2+bx+c向右平移5个单位,再向上平移1个单位,得到的抛物线的解析式为y=-3(x-1)2+4,则抛物线y=ax2+bx+c的顶点坐标是()A . (6,3)B . (6,5)C . (-4,3)D . (-4,5)10. (2分)小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共8题;共9分)11. (2分) (2020八下·中宁期中) 若的意义,则实数x的取值范围________12. (1分)(2018·泸县模拟) 分解因式:2m2-8=________.13. (1分)(2020·营口) 长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为________.14. (1分)圆锥的底面直径是8,母线长是5,则这个圆锥的侧面积是________15. (1分)(2019·温州模拟) 如图,在Rt△ABC中,∠B=90°,AB=2 ,BC= .将△ABC绕点A按逆时针方向旋转90°得到△AB′C′,连结B′C,则sin ∠ACB′=________.16. (1分)(2019·朝阳模拟) 已知某果农贩卖的西红柿,其质量与价钱成一次函数关系,今小华向果农买一竹篮的西红柿,含竹篮称得总质量为15公斤,付西红柿的钱25元.若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的质量为________公斤.17. (1分) (2017八上·陕西期末) 如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是________.18. (1分)(2019·台州模拟) 如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为________.三、解答题 (共10题;共76分)19. (5分)(2020·铜川模拟) 计算: +(π﹣5)0﹣|2 ﹣3|.20. (5分) (2017七下·蒙阴期末) 解不等式组:,并把解集在数轴上表示出来.21. (5分) (2016·兴化模拟) 先化简,再求值:(﹣)÷ ,其中x是方程3x2﹣x﹣1=0的根.22. (2分)(2017·马龙模拟) 已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.23. (2分)(2020·朝阳) 某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.24. (10分)(2018·锦州) 为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和小客车的座位数;(2)经学校统计,实际参加活动人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?25. (10分) (2016九上·通州期中) 如图,在平面直角坐标系xOy中,过坐标原点O的直线l与双曲线y=相交于点A(m,3).(1)求直线l的表达式;(2)过动点P(n,0)且垂于x轴的直线与l及双曲线的交点分别为B,C,当点B位于点C上方时,写出n 的取值范围________.26. (15分)(2020·西华模拟) 如图所示,是的外接圆,为直径,的平分线交O于点D,过点D作,分别交,的延长线于点E,F.(1)求证:是的切线;(2)填空:①当的度数为________时,四边形为菱形;②若的半径为,,则的长为________.27. (11分) (2020九上·渭滨期末) 如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A 出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.28. (11分)(2017·河北模拟) 抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共76分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
安徽省亳州市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A .45oB .60oC .120oD .135o2.已知二次函数2 45y x x =-++的图象如图所示,若()13A y -,,()()2301B y C y ,,,是这个函数图象上的三点,则123y y y ,,的大小关系是( )A .123 y y y <<B .213 y y y <<C .312 y y y <<D .132y y y <<3.如图,平面直角坐标系中,矩形ABCD 的边AB :BC =3:2,点A (3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y =k x的图象经过点D ,则k 值为( )A .﹣14B .14C .7D .﹣74.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:成绩(米)4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70B .4.65,4.75C .4.70,4.70,D .4.70,4.755.△ABC 在正方形网格中的位置如图所示,则cosB 的值为( )A 5B .25C .12D .26.如图,在ABC ∆中,90, 4ACB AC BC ∠=︒== ,将ABC ∆折叠,使点A 落在BC 边上的点D 处, EF 为折痕,若3AE =,则sin CED ∠的值为( )A .13B .22C .2D .357.下列计算正确的是( )A .3a ﹣2a =1B .a 2+a 5=a 7C .(ab )3=ab 3D .a 2•a 4=a 68.下列运算正确的是( )A .()a b c a b c -+=-+B .()2211x x =++ C .()33a a -= D .235236a a a =⋅ 9.点A 、C 为半径是4的圆周上两点,点B 为»AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆半径的中点上,则该菱形的边长为( )A .7或22B .7或23C .26或22D .26或2310.下列几何体是棱锥的是( )A .B .C .D .11.已知a-2b=-2,则4-2a+4b 的值是( )A .0B .2C .4D .812.如图,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点,增加下列条件,不一定能得出BE ∥DF 的是( )A .AE =CFB .BE =DFC .∠EBF =∠FDED .∠BED =∠BFD二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,过y轴正半轴上的任意一点P,作x 轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.14.若2x+y=2,则4x+1+2y的值是_______.15.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).16.不等式组36 {12xxx-≥-->的最大整数解为_____.17.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.18.若一组数据1,2,3,x的平均数是2,则x的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.20.(6分)关于x的一元二次方程230x x k-+=有实数根.求k的取值范围;如果k是符合条件的最大整数,且一元二次方程()2130m x x m-++-=与方程230x x k-+=有一个相同的根,求此时m的值.21.(6分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.22.(8分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;(1)求证:DE=CF;(2)若∠B=60°,求EF的长.23.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)24.(10分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB 的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;(II)如图②,当α=60°时,求点C′的坐标;(III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).25.(10分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣32),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.26.(12分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP 的值.27.(12分)如图①,一次函数y=12x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=12x2+bx+c的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n 边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A .【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.2.A【解析】【分析】先求出二次函数的对称轴,结合二次函数的增减性即可判断.【详解】解:二次函数2 45y x x =-++的对称轴为直线422(1)x =-=⨯-, ∵抛物线开口向下,∴当2x <时,y 随x 增大而增大,∵301-<<,∴123y y y << 故答案为:A .【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性. 3.B【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k14=,故选B.4.D【解析】【分析】根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.5.A【解析】【详解】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cosB=525BDAB==.故选A.6.B【解析】【分析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可. 【详解】解:由折叠性质可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt △CED 中,=sin 3CD CED DE ∠== 故选:B【点睛】 本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键. 7.D【解析】【分析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】∵3a ﹣2a =a ,∴选项A 不正确;∵a 2+a 5≠a 7,∴选项B 不正确;∵(ab )3=a 3b 3,∴选项C 不正确;∵a 2•a 4=a 6,∴选项D 正确.故选D .【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键. 8.D【解析】【分析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b )2=a 2±2ab+b 2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.【详解】解:A 、a-(b+c )=a-b-c≠a -b+c ,故原题计算错误;B 、(x+1)2=x 2+2x+1≠x²+1,故原题计算错误;C 、(-a )3=3a -≠3a ,故原题计算错误;D 、2a 2•3a 3=6a 5,故原题计算正确;故选:D .【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.9.C【解析】【分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【详解】过B作直径,连接AC交AO于E,∵点B为»AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵2222=43=7OC OE--在Rt△DEC中,由勾股定理得:2222=(7)1=22CE DE++如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C.【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.10.D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.11.D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故选D.12.B【解析】【分析】由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD 均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.【详解】Q四边形ABCD是平行四边形,∴AD//BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE//DF;C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF.故选B.【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【详解】设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=4x的图象上,∴当y=b,x=-4b,即A点坐标为(-4b,b),又∵点B在反比例函数y=2x的图象上,∴当y=b,x=2b,即B点坐标为(2b,b),∴AB=2b-(-4b)=6b,∴S△ABC=12•AB•OP=12•6b•b=1.14.1【解析】分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案.详解:原式=2(2x+y)+1=2×2+1=1.点睛:本题主要考查的是整体思想求解,属于基础题型.找到整体是解题的关键.15.63【解析】试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.解:过S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴33(海里).即船继续沿正北方向航行过程中距灯塔S的最近距离是3海里.故答案为:16.﹣1.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解.【详解】3612x x x -≥-⎧⎪⎨-⎪⎩①>②, 解不等式①得:x≤1,解不等式②得x-1>1x ,x-1x >1,-x >1,x <-1,∴ 不等式组的解集为x <-1,∴ 不等式组的最大整数解为-1.故答案为-1.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解. 17.35【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个, ∴抽到有理数的概率是:35.故答案为35.点睛:知道“,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.18.1【解析】【分析】根据这组数据的平均数是1和平均数的计算公式列式计算即可.【详解】∵数据1,1,3,x的平均数是1,∴12324x+++=,解得:2x=.故答案为:1.【点睛】本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)tan∠CBG=7 24.【解析】【分析】(1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【详解】解:(1)证明:连接OD,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴OD⊥DF,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,∵S△ABC=11··22AB CD ACBG=,即6×4=5BG,∴BG=245,由勾股定理得:CG=222475()55-=,∴tan∠CBG=tan∠E=77524245CGBG==.【点睛】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点.20.(1)94k≤;(2)m的值为32.【解析】【分析】(1)利用判别式的意义得到()2340k∆=--≥,然后解不等式即可;(2)利用(1)中的结论得到k的最大整数为2,解方程2320x x-+=解得121,2x x==,把1x=和2x=分别代入一元二次方程()2130m x x m-++-=求出对应的m,同时满足10m-≠.【详解】解:(1)根据题意得()2340k ∆=--≥, 解得94k ≤; (2)k 的最大整数为2,方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,∵一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根, ∴当1x =时,1130m m -++-=,解得32m =; 当2x =时,()41230m m -++-=,解得1m =,而10m -≠,∴m 的值为32. 【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根. 21.(1)见解析;(2)1【解析】【分析】(1)根据ASA 推出:△AEO ≌△CFO ;根据全等得出OE=OF ,推出四边形是平行四边形,再根据EF ⊥AC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF ,设AF=x ,推出AF=CF=x ,BF=8-x .在Rt △ABF 中,由勾股定理求出x 的值,即可得到结论.【详解】(1)∵EF 是AC 的垂直平分线,∴AO=OC ,∠AOE=∠COF=90°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO=∠FCO .在△AEO 和△CFO 中,∵EAO FCO AO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO ≌△CFO (ASA );∴OE=OF .又∵OA=OC ,∴四边形AECF 是平行四边形.又∵EF ⊥AC ,∴平行四边形AECF 是菱形;(2)设AF=x .∵EF 是AC 的垂直平分线,∴AF=CF=x ,BF=8﹣x .在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,∴42+(8﹣x )2=x 2,解得:x=5,∴AF=5,∴菱形AECF 的周长为1.【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.=22.()1证明见解析;()2EF23【解析】【分析】()1根据两组对边分别平行的四边形是平行四边形即可证明;()2只要求出CD即可解决问题.【详解】()1证明:DQ、E分别是AB、AC的中点∴,DE//CFQ又EF//DC∴四边形CDEF为平行四边形∴=.DE CF()2AB AC4Q,B60o==∠=∴===,BC AB AC4Q为AB中点又D∴⊥,CD AB∴在Rt BCDV中,1==,BD AB2222∴=+=CD BC BD23Q四边形CDEF是平行四边形,∴==EF CD23【点睛】本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.24.(I)(10,4)或(6,4)(II)C′(6,23)(III)①C′(8,4)②C′(245,﹣125)【解析】【分析】(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=12OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,3∴OK=6,∴C′(6,3.(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B 、C′、D′共线时,BD′交OA 于F ,易证△BOF ≌△AC′F ,∴OF=FC′,设OF=FC′=x ,在Rt △ABC′中,BC′=22AB AC -'=8,在RT △BOF 中,OB=4,OF=x ,BF=8﹣x ,∴(8﹣x )2=42+x 2, 解得x=3,∴OF=FC′=3,BF=5,作C′K ⊥OA 于K , ∵OB ∥KC′,∴KC OB '=FK OF =FC BF', ∴4KC '=3FK =35, ∴KC′=125,KF=95, ∴OK=245, ∴C′(245,﹣125). 【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(1)y=12x2+x﹣32(2)存在,(﹣1﹣22,2)或(﹣1+22,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1 【解析】【分析】(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,32)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;【详解】(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,32)代入抛物线解析式得09a-3b+c0a+b+c32c⎧⎪=⎪=⎨⎪⎪=-⎩,解得:a=12,b=1,c=﹣32∴抛物线解析式:y=12x2+x﹣32(2)存在.∵y=12x2+x﹣32=12(x+1)2﹣2∴P点坐标为(﹣1,﹣2)∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,设E(a,2),∴12a2+a﹣32=2解得a1=﹣1﹣22,a2=﹣1+22∴符合条件的点E的坐标为(﹣1﹣22,2)或(﹣1+22,2)(3)∵点A(﹣3,0),点B(1,0),∴AB=4若AB为边,且以A、B、P、F为顶点的四边形为平行四边形∴AB∥PF,AB=PF=4∵点P坐标(﹣1,﹣2)∴点F坐标为(3,﹣2),(﹣5,﹣2)∴平行四边形的面积=4×2=1若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形∴AB与PF互相平分设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)∴3112200222xy-+-+⎧=⎪⎪⎨+-+⎪=⎪⎩,∴x=﹣1,y=2∴点F(﹣1,2)∴平行四边形的面积=12×4×4=1综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.【点睛】本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.26.(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.27.(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值3;(3)点M 的坐标为(52,12)或(52,. 【解析】【分析】(1)先求出A 、B 的坐标,然后把A 、B 的坐标分别代入二次函数的解析式,解方程组即可得到结论; (2)先证明△PDE ∽△OAB ,得到PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -),PD +PE =3PE ,然后配方即可得到结论.(3)分两种情况讨论:①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.求出圆心O 1的坐标和半径,利用MO 1=半径即可得到结论.②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.求出点O 2的坐标,算出DM 的长,即可得到结论.【详解】解:(1)令y =122x -=0,得:x =4,∴A (4,0). 令x =0,得:y =-2,∴B (0,-2).∵二次函数y =212x bx c -++的图像经过A 、B 两点, ∴8402b c c -++⎧⎨-⎩==,解得:522b c ⎧⎪⎨⎪-⎩==, ∴二次函数的关系式为y =215222x x -+-. 令y =215222x x -+-=0,解得:x =1或x =4,∴C (1,0). (2)∵PD ∥x 轴,PE ∥y 轴,∴∠PDE =∠OAB ,∠PED =∠OBA ,∴△PDE ∽△OAB .∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,215222m m -+-), 则E (m ,122m -). ∴PD +PE =3PE =3×[(215222m m -+-)-(122m -)]=2362m m -+=()23262m --+. ∵0<m <4,∴当m =2时,PD +PE 有最大值3.(3)①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ). ∴()22522t ⎛⎫+- ⎪⎝⎭=22512t ⎛⎫-+ ⎪⎝⎭,解得:t =2, ∴圆心O 1的坐标为(52,-2),∴半径为52. 设M (52,y ).∵MO 1=52,∴522y +=, 解得:y=12,∴点M 的坐标为(5122,). ②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA .∵O 1B ∥x 轴,∴∠O 1BA =∠OAB , ∴∠O 1AB =∠OAB ,O 2在x 轴上,∴点O 2的坐标为 (32,0),∴O 2D =1, ∴DM =225()12-=21,∴点M 的坐标为(52,21-). 综上所述:点M 的坐标为(52,12)或(52,21-).点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC 外接圆的圆心坐标.。
安徽省亳州市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·柳州期中) 乘积是1的两个数叫做互为倒数,则–2的倒数是()A . –2B . -C .D . 22. (2分)(2018·丹棱模拟) 总投资647亿元的西成高铁已于2017年11月竣工,成都到西安只需3小时,上午游武侯祠,晚上看大雁塔已成现实,用科学计数法表示647亿为()A .B .C .D .3. (2分) (2016八上·博白期中) 下列图形中,是轴对称图形的是()A .B .C .D .4. (2分)(2016·东营) 下列计算正确的是()A . 3a+4b=7abB . (ab3)2=ab6C . (a+2)2=a2+4D . x12÷x6=x65. (2分) (2016九上·泰顺期中) 甲、乙两名运动员在10次的百米跑练习中,平均成绩分别为 =10.7秒, =10.7秒,方差分别为S甲2=0.054,S乙2=0.103,那么在这次百米跑练习中,甲、乙两名运动员成绩较为稳定的是()A . 甲运动员B . 乙运动员C . 甲、乙两人一样稳定D . 无法确定6. (2分)已知关于x的一元二次方程,若方程有两个不相等的实数根,则的最小整数值为()A . 0B . -1C . 1D . 27. (2分) (2017九下·滨海开学考) 一只不透明的袋子中装有1个黑球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1 个球,摸到黑球的概率为()A .B .C .D .8. (2分)下列说法正确的是()A . 两点之间直线最短B . 用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C . 把一个角分成两个角的射线叫角的平分线D . 直线l经过点A,那么点A在直线l上9. (2分)某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品250元降低到每件160元,则平均每月降低的百分率为()A . 10%B . 5%C . 15%D . 20%10. (2分)(2017·绵阳模拟) 如图,在正方形ABCD中,点O为对角线AC的中点,过点o作射线OG、ON 分别交AB,BC于点E,F,且∠EOF=90°,BO、EF交于点P.则下列结论中:⑴图形中全等的三角形只有两对;⑵正方形ABCD的面积等于四边形OEBF面积的4倍;⑶BE+BF= OA;⑷AE2+CF2=2OP•OB.正确的结论有()个.A . 1B . 2C . 3D . 411. (2分)如图,在Rt△A BC中,∠ACB=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点A与点C 重合得到△CED,连结MD.若∠B=25°,则∠BMD等于().A . 50°B . 80°C . 90°D . 100°12. (2分)(2017·乌鲁木齐模拟) 如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;② = ;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE其中正确的是()A . ①②④B . ③④⑤C . ①③④D . ①③⑤二、填空题 (共6题;共6分)13. (1分)有理数的加法法则:同号相加时,取 ________ 的符号,并把它们的绝对值相加.14. (1分) (2015八下·绍兴期中) 二次根式中,a的取值范围是________.15. (1分) (2017八下·武进期中) 分式,的最简公分母是________.16. (1分) (2018八下·深圳月考) 一等腰三角形一个外角是110°,则它的底角的度数为________17. (1分)如图是某个几何体的三视图,该几何体是________ .18. (1分) (2016九上·永泰期中) 请写出一个二次函数,使其满足以下条件:①图象开口向下;②图象的对称轴为直线x=2;它的解析式可以是________.三、解答题 (共8题;共91分)19. (10分) (2020九上·覃塘期末)(1)计算:;(2)解方程:.20. (5分)(2014·防城港) 先化简,再求值:﹣,其中x= ﹣1.21. (6分)根据图形把下列画图语句补充完整。
安徽省亳州市2020年九年级数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列说法正确的是()A . 1的立方根是B .C . 9的平方根是D . 0没有平方根2. (2分) (2017·平谷模拟) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分)下列运算正确的是()A . 3a2•a3=3a6B . 5x4﹣x2=4x2C . (2a2)3•(﹣ab)=﹣8a7bD . 2x2÷2x2=04. (2分)在四边形ABCD中,∠A+∠C=160°,∠B比∠D大60°,则∠B为()A . 70°B . 80°C . 120°D . 130°5. (2分)已知m为整数,则解集可以为﹣1<x<1的不等式组是()A .B .C .D .6. (2分)如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=4,OA=3,则cos∠APO的值为()A .B .C .D .二、填空题 (共10题;共10分)7. (1分) (2015八下·临河期中) 若y= + +2,则xy=________.8. (1分)(2018·湘西) “可燃冰”作为新型能源,有着巨大的开发使用潜力,1千克“可燃冰”完全燃烧放出的热量约为420000000焦耳,数据420000000用科学记数法表示为________.9. (1分)(2017·南宁模拟) 分解因式:xy2﹣x=________.10. (1分)(2018·东营模拟) 如果一组数据x1 , x2 ,… ,xn的方差是4,则另一组数据x1+3,x2+3,… ,xn+3的方差是________11. (1分) (2018七下·龙岩期中) 如图,是用一张长方形纸条折成的,如果∠1=108°,那么∠2=________ °.12. (1分)当 <0时, =________.13. (1分)(2017·沭阳模拟) 如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BCO等于________度.14. (1分)(2017·青岛模拟) 某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为________元.15. (1分) (2016九上·永城期中) 已知点(1,4),(a,4)是二次函数y=x2﹣4x+c的图象上的两个点,则a的值为________.16. (1分)(2018·崇阳模拟) 如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2 ;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是________(把你认为正确结论的序号都填上).三、解答题 (共10题;共92分)17. (5分)计算:(﹣π)0﹣(1﹣sin30°)﹣1+2 .18. (5分)(2018·南岗模拟) 先化简,再求代数式(1﹣)÷ 的值,其中x=2cos30°﹣tan45°.19. (10分) (2018九上·番禺期末) 关于的方程有两个不相等的实数根.(1)求实数的取值范围;(2)设方程的两个实数根分别为,是否存在实数k,使得?若存在,试求出的值;若不存在,说明理由.20. (12分)(2017·个旧模拟) 某社区为了进一步提高居民珍惜谁、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:用户季度用水量频数分布表平均用水量(吨)频数频率3<x≤6100.16<x≤9m0.29<x≤12360.3612<x≤1525n15<x≤1890.09请根据上面的统计图表,解答下列问题:(1)在频数分布表中:m=________,n=________;(2)根据题中数据补全频数直方图;(3)如果自来水公司将基本季度水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?21. (10分) (2017八上·云南期中) 为进一步普及足球知识,传播足球文化,某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.22. (10分)(2017·萍乡模拟) 如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.(1)求证:CF=AD;(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.23. (10分) (2017九上·章贡期末) 某商店将成本为每件60元的某商品标价100元出售.(1)为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?24. (10分) (2020九上·南昌期末) 如图,AB是⊙O的直径,C、D在⊙O上,连结BC,过D作PF∥AC交AB于E,交⊙O于F,交BC于点G,交过B点的直线于点P,且∠BPF=∠ADC.(1)判断直线BP与⊙O的位置关系,并说明理由(2)若⊙O的半径为,AC=2,BE=1,求BP的长。
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.4解析:C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC 与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC 与△DEF 的面积比为4:1.故选C .【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.2.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差解析:D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.3.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC 的值为( )A .12B .1C .3D .3解析:B【解析】【分析】连接BC ,由网格求出AB ,BC ,AC 的长,利用勾股定理的逆定理得到△ABC 为等腰直角三角形,即可求出所求.【详解】 如图,连接BC ,由网格可得AB=BC=5,AC=10,即AB 2+BC 2=AC 2,∴△ABC 为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B .【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.4.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .26±B .6C .2或3D 23解析:A【解析】【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的方程,解之即可得出结论.【详解】∵方程2230x kx -+=有两个相等的实根,∴△=k 2-4×2×3=k 2-24=0,.解得:k=26故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.5.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7解析:D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.6.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个解析:C【解析】【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.7.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小解析:C【解析】如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM=12S△ABC,开始时,S△MPQ=S△ACM=12S△ABC;。
安徽省亳州市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是( )A .①②③④B .②①③④C .③②①④D .④②①③2.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( )A .72.510-⨯B .70.2510-⨯C .62.510-⨯D .52510-⨯3.如图,已知AB ∥CD ,∠1=115°,∠2=65°,则∠C 等于( )A .40°B .45°C .50°D .60°4.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ).A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=5.化简:x x y --y x y+,结果正确的是( ) A .1 B .2222x y x y +- C .x y x y -+ D .22x y + 6.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°7.“一般的,如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x=1x﹣2实数根的情况是 ( )A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根8.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A .140元B .150元C .160元D .200元9.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为( )A .0.25×1010B .2.5×1010C .2.5×109D .25×10810.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱 11.若a+|a|=0,则()222a a -+等于( ) A .2﹣2a B .2a ﹣2C .﹣2D .2 12.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一次函数y=ax+b 的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.14.在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成一个圆锥,则圆锥的高为______.15.如图,直线y=3x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为__________.16.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.17.如图,点A在反比例函数y=kx(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.18.2的平方根是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB 的度数及P点坐标.20.(6分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.21.(6分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;13②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.22.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.23.(8分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.24.(10分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.25.(10分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.26.(12分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.27.(12分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=;②若∠BAC=90°(如图3),BC=6,AD=;(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.2.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】70.00000025 2.510-=⨯,故选:A .【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C【解析】分析:根据两直线平行,同位角相等可得1115EGD ∠=∠=︒,再根据三角形内角与外角的性质可得∠C 的度数.详解:∵AB ∥CD ,∴1115EGD ∠=∠=︒,∵265∠=o ,∴1156550C ∠=-=o o o ,故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和. 4.B【解析】【分析】先用含有x 的式子表示2015年的绿化面积,进而用含有x 的式子表示2016年的绿化面积,根据等式关系列方程即可.【详解】由题意得,绿化面积平均每年的增长率为x ,则2015年的绿化面积为300(1+x ),2016年的绿化面积为300(1+x )(1+x ),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x )2=363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.5.B【解析】【分析】先将分母进行通分,化为(x+y )(x-y )的形式,分子乘上相应的分式,进行化简.【详解】 ()()()()222222x y x +xy xy-y x +y -=-=x-y x+y x+y x-y x+y x-y x -y【点睛】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.6.B【解析】试题解析:∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,∵AB 的垂直平分线交AC 于D ,∴AD=BD ,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B .7.C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点 所以方程只有一个实数根故选C.考点:函数的图象 点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.8.B【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.故选B.考点:一元一次方程的应用9.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】2500000000的小数点向左移动9位得到2.5,所以2500000000用科学记数表示为:2.5×1.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.10.A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..11.A【解析】【分析】直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.14cm【解析】【分析】利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.【详解】∵半径为1cm的圆形,∴底面圆的半径为:1cm,周长为2πcm,扇形弧长为:2π=90180R π⨯,∴R=4,即母线为4cm,=cm)..【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.15.(128,0)。
2020年安徽省亳州市蒙城县中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2020•柳州模拟)数轴上表示﹣5的点到原点的距离为()A.5B.﹣5C.D.﹣2.(4分)(2020•蒙城县模拟)若式子在实数范围内有意义,则x的取值范围是()A.x<7B.x≤7C.x>7D.x≥73.(4分)(2020•蒙城县模拟)下面的计算正确的是()A.6a﹣5a=1B.=±6C.()﹣1=﹣2D.2(a+b)=2a+2b4.(4分)(2020•巨野县二模)如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°5.(4分)(2020•蒙城县模拟)若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为()A.B.C.D.6.(4分)(2020•牡丹江)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗7.(4分)(2020•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.8.(4分)(2020•山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.9.(4分)(2020•潼南县)如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD 沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.10.(4分)(2020•蒙城县模拟)如图1,圆上均匀分布着11个点A1,A2,A3,A11.从A1起每隔k个点顺次连接,当再次与点A1连接时,我们把所形成的图形称为“k+1阶正十一角星”,其中1≤k≤8(k为正整数).例如,图2是“2阶正十一角星”.那么当∠A1+∠A2+…+∠A11=540°时,k的值为()A.3B.3或6C.2或6D.2二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2020•蒙城县模拟)已知空气的单位体积质量为1.24×10﹣3g/cm3,将1.24×10﹣3g/cm3用小数表示为.12.(5分)(2020•泗水县一模)分解因式:m3﹣4m2+4m=.13.(5分)(2020•晋江市)若a+b=5,ab=6,则a﹣b=.14.(5分)(2020•蒙城县模拟)如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:①∠A始终为60°;②当∠ABC=45°时,AE=EF;③当△ABC为锐角三角形时,ED=;④线段ED的垂直平分线必平分弦BC.其中正确的结论是.(把你认为正确结论的序号都填上)三、解答题(共2小题,满分16分)15.(8分)(2020•蒙城县模拟)计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.16.(8分)(2020•蒙城县模拟)解不等式组请结合题意,完成本题解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式组的解集在数轴上表示出来.四、解答题(共2小题,满分16分)17.(8分)(2020•十堰)在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?18.(8分)(2020•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.五、解答题(共2小题,满分20分)19.(10分)(2020•蒙城县模拟)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,求C处与灯塔A的距离.20.(10分)(2020•郴州)如图,已知点A(1,2)是正比例函数y1=kx(k≠0)与反比例函数y2=(m≠0)的一个交点.(1)求正比例函数及反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,y1<y2?六、解答题(共1小题,满分12分)21.(12分)(2020•长沙)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 10 0.0560≤x<70 20 0.1070≤x<80 30 b80≤x<90 a 0.3090≤x≤100 80 0.40请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?七、解答题(共1小题,满分12分)22.(12分)(2020•遵义)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P 从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.八、解答题(共1小题,满分14分)23.(14分)(2020•贵港三模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.2020年安徽省亳州市蒙城县中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2020•柳州模拟)数轴上表示﹣5的点到原点的距离为()A.5B.﹣5C.D.﹣【解答】解:∵在数轴上,表示数a的点到原点的距离可表示为|a|,∴数轴上表示﹣5的点到原点的距离为|﹣5|=5.故选:A.2.(4分)(2020•蒙城县模拟)若式子在实数范围内有意义,则x的取值范围是()A.x<7B.x≤7C.x>7D.x≥7【解答】解:由题意得,x﹣7≥0,解得x≥7.故选:D.3.(4分)(2020•蒙城县模拟)下面的计算正确的是()A.6a﹣5a=1B.=±6C.()﹣1=﹣2D.2(a+b)=2a+2b【解答】解;A、6a﹣5a=a,故此选项错误;B、=6,故此选项错误;C、()﹣1=2,故此选项错误;D、2(a+b)=2a+2b,正确.故选:D.4.(4分)(2020•巨野县二模)如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°【解答】解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.5.(4分)(2020•蒙城县模拟)若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为()A.B.C.D.【解答】解:∵三角形三个内角度数的比为1:2:3,∴设三个内角分别为k、2k、3k,∴k+2k+3k=180°,解得k=30°,最小角的正切值=tan30°=.故选:C.6.(4分)(2020•牡丹江)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【解答】解:由题意得,解得.故选:B.7.(4分)(2020•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【解答】解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选:D.8.(4分)(2020•山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.9.(4分)(2020•潼南县)如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD 沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.【解答】解:DF=x,正方形ABCD与正方形EFGH重叠部分的面积为y①y=DF2=x2(0≤x<);②y=1(≤x<2);③∵BH=3﹣x∴y=BH2=x2﹣3x+9(2≤x<3).综上可知,图象是故选:B.图:①②③10.(4分)(2020•蒙城县模拟)如图1,圆上均匀分布着11个点A1,A2,A3,A11.从A1起每隔k个点顺次连接,当再次与点A1连接时,我们把所形成的图形称为“k+1阶正十一角星”,其中1≤k≤8(k为正整数).例如,图2是“2阶正十一角星”.那么当∠A1+∠A2+…+∠A11=540°时,k的值为()A.3B.3或6C.2或6D.2【解答】解:如图2,设圆心为O,则优角A10OA3的度数为角A1的2倍.而优角A10OA3=∠A10OA9+∠A9OA8+∠A8OA7+…+∠A4OA3,而每个∠A k OA k﹣1=,所以,优角A10OA3=7×,由题意,∠A1即为2∠A k+1A1A12﹣k,当k<6时,可计算得那个优角的度数为(9﹣2k)×,因此,(9﹣2k)×=2×,解得k=3,当k>6时,优角的度数为(2k﹣9)×,因此(2k﹣9)×=2×,解得k=6.综上所述,k=3或6.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2020•蒙城县模拟)已知空气的单位体积质量为1.24×10﹣3g/cm3,将1.24×10﹣3g/cm3用小数表示为0.00124.【解答】解:1.24×10﹣3g/cm3用小数表示为:0.00124.故答案为:0.00124.12.(5分)(2020•泗水县一模)分解因式:m3﹣4m2+4m=m(m﹣2)2.【解答】解:m3﹣4m2+4m=m(m2﹣4m+4)=m(m﹣2)2.故答案为:m(m﹣2)2.13.(5分)(2020•晋江市)若a+b=5,ab=6,则a﹣b=±1.【解答】解:(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=1,则a﹣b=±1.故答案是:±1.14.(5分)(2020•蒙城县模拟)如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:①∠A始终为60°;②当∠ABC=45°时,AE=EF;③当△ABC为锐角三角形时,ED=;④线段ED的垂直平分线必平分弦BC.其中正确的结论是①②③④.(把你认为正确结论的序号都填上)【解答】解:①延长CO交⊙O于点G,如图1.则有∠BGC=∠BAC.∵CG为⊙O的直径,∴∠CBG=90°.∴sin∠BGC===.∴∠BGC=60°.∴∠BAC=60°.故①正确.②如图2,∵∠ABC=45°,CE⊥AB,即∠BEC=90°,∴∠ECB=45°=∠EBC.∴EB=EC.∵CE⊥AB,BD⊥AC,∴∠BEC=∠BDC=90°.∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°.∵∠EFB=∠DFC,∴∠EBF=∠DCF.在△BEF和△CEA中,.∴△BEF≌△CEA.∴AE=EF.故②正确.③如图2,∵∠AEC=∠ADB=90°,∠A=∠A,∴△AEC∽△ADB.∴=.∵∠A=∠A,∴△AED∽△ACB.∴=.∵cosA==cos60°=,∴=.∴ED=BC=.故③正确.④取BC中点H,连接EH、DH,如图3、图4.∵∠BEC=∠CDB=90°,点H为BC的中点,∴EH=DH=BC.∴点H在线段DE的垂直平分线上,即线段ED的垂直平分线平分弦BC.故④正确.故答案为:①②③④.三、解答题(共2小题,满分16分)15.(8分)(2020•蒙城县模拟)计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.【解答】解:(﹣3)0﹣+|1﹣|+×+(+)﹣1=1﹣3+﹣1+2+﹣=3﹣3.16.(8分)(2020•蒙城县模拟)解不等式组请结合题意,完成本题解答.(1)解不等式①,得x>2;(2)解不等式②,得x≤4;(3)把不等式组的解集在数轴上表示出来.【解答】解:(1)系数化成1得x>2,故答案是:x>2;(2)移项,得﹣x≥﹣3﹣1,合并同类项,得﹣x≥﹣4,系数化成1得x≤4.故答案是:x≤4.(3)在数轴上表示出来为:.四、解答题(共2小题,满分16分)17.(8分)(2020•十堰)在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?【解答】解:设原来每天改造管道x米,由题意得:+=27,解得:x=30,经检验:x=30是原分式方程的解,答:引进新设备前工程队每天改造管道30米.18.(8分)(2020•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;由勾股定理得,OA==,点A旋转到点A2所经过的路径长为:=.五、解答题(共2小题,满分20分)19.(10分)(2020•蒙城县模拟)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,求C处与灯塔A的距离.【解答】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40(海里),∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=20(海里).在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).答:C处与灯塔A的距离是海里.20.(10分)(2020•郴州)如图,已知点A(1,2)是正比例函数y1=kx(k≠0)与反比例函数y2=(m≠0)的一个交点.(1)求正比例函数及反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,y1<y2?【解答】解:(1)将点A(1,2)代入正比例函数y1=kx(k≠0)与反比例函数y2=(m≠0)得,2=k,m=1×2=2,故y1=2x(k≠0),反比例函数y2=;(2)如图所示:当0<x<1时,y1<y2.六、解答题(共1小题,满分12分)21.(12分)(2020•长沙)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 10 0.0560≤x<70 20 0.1070≤x<80 30 b80≤x<90 a 0.3090≤x≤100 80 0.40请根据所给信息,解答下列问题:(1)a=60,b=0.15;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?【解答】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.七、解答题(共1小题,满分12分)22.(12分)(2020•遵义)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P 从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.【解答】解:∵如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得=5cm.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP∽△ABC时,=,即=,解得t=;②当△APM∽△ABC时,=,即=,解得t=0(不合题意,舍去);综上所述,当t=时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH⊥BC于点H.则PH∥AC,∴=,即=,∴PH=t,∴S=S△ABC﹣S△BPN,=×3×4﹣×(3﹣t)•t,=(t﹣)2+(0<t<2.5).∵>0,∴S有最小值.当t=时,S最小值=.答:当t=时,四边形APNC的面积S有最小值,其最小值是.八、解答题(共1小题,满分14分)23.(14分)(2020•贵港三模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是QE=QF;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【解答】解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴QE=QF,故答案为:AE∥BF,QE=QF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.。