2.4 绝对值与相反数(1)
- 格式:doc
- 大小:858.00 KB
- 文档页数:4
2.4 绝对值与相反数教案-2022-2023学年苏科版数学七年级上册教案概述本节课将学习关于绝对值和相反数的概念与性质。
通过教师引导和学生讨论,培养学生分析问题和解决问题的能力,帮助学生掌握绝对值和相反数的计算方法,并将其应用到解决实际问题中。
教学目标•了解绝对值的定义与性质;•理解相反数的概念与运算规则;•掌握求绝对值和相反数的方法;•能够运用绝对值和相反数解决实际问题。
教学重点•绝对值的定义与性质;•相反数的概念与运算规则。
教学难点•绝对值的应用;•相反数的深入理解。
教学准备•教师:教案、黑板、粉笔、教学素材;•学生:课本、笔、本子。
1. 导入新知识•教师引入绝对值的概念,并给出几个有关绝对值的例子,如|-3|、|5|等。
•引导学生发现绝对值的定义:绝对值是一个数离0点的距离,且不考虑其正负性。
2. 绝对值的性质•教师通过示意图展示绝对值的性质:绝对值永远是非负数,即|a| ≥ 0。
•学生进行小组讨论,总结绝对值的另外两个性质:|a| = a (当a ≥ 0)和|a| = -a (当a < 0)。
3. 相反数的概念和运算规则•教师引入相反数的概念,并给出几个有关相反数的例子,如3的相反数是-3,-5的相反数是5等。
•学生进行讨论,总结相反数的运算规则:一个数与它的相反数相加等于0。
4. 绝对值和相反数的计算方法•教师提供一些练习题,让学生运用绝对值和相反数的计算方法进行求解。
5. 绝对值和相反数的应用•教师通过实际问题的引导,让学生运用绝对值和相反数的知识解决实际生活中的问题,如气温的变化、金额的增减等。
6. 小结与反思•教师帮助学生进行知识的小结与反思,对学生在课堂上的表现给予评价和鼓励。
•学生可以通过课后作业巩固对绝对值和相反数的掌握程度。
•学生可以尝试将绝对值和相反数的知识应用到更复杂的问题中,提高问题解决能力。
总结通过本节课的学习,学生掌握了绝对值和相反数的概念与运算规则,通过实际问题的应用,提高了解决问题的能力。
第2章 有理数2.4 绝对值与相反数 课程标准 课标解读 1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 1、相反数和绝对值的表示方法 2、数轴的几何意义表示,在数轴上分析绝对值和相反数性质知识点01 相反数 1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.【微点拨】(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.【即学即练1】1.3-的相反数是( )A .13-B .13C .3D .3-【答案】C【分析】目标导航知识精讲依据相反数的定义求解即可.【详解】解:-3的相反数是3.故选:C.知识点02 多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .【微点拨】(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【即学即练2】2.在下列各数:13⎛⎫--⎪⎝⎭,36-,227,0,-(+3),-|-2015|中,负数的个数是()A.1个B.2个C.3个D.4个【答案】C【分析】先化简各数,再与0比较即可.【详解】解::11=033⎛⎫-->⎪⎝⎭,-(+3)=-3<0,-|-2015|=-2015<0,负数有36-,-(+3),-|-2015|,负数的个数是3.故选择:C.知识点03 绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.【微点拨】(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.【即学即练3】3.已知关于x 的方程mx |m |+1=0是一元一次方程,则m 的取值是( )A .±1B .﹣1C .1D .以上答案都不对【答案】A【分析】根据一元一次方程的定义得出m≠0且|m|=1,求出m 即可.【详解】解:∵关于x 的方程mx |m|+1=0是一元一次方程,∵m≠0且|m|=1,解得:m =±1,故选:A . 知识点04 有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩-数为0 正数与0:正数大于0负数与0:负数小于03. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【微点拨】利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.【即学即练4】4.下列四个数中,最小的数是( )A .2-B .4-C .(1)--D .0【答案】A【分析】根据有理数的大小比较及绝对值可直接进行排除选项.【详解】解:∵()44,11-=--=,∵()4102->-->>-,∵最小的数是-2;故选A .考法01 化简绝对值1、根据题设条件只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.2、借助数轴 能力拓展①零点的左边都是负数,右边都是正数.②右边点表示的数总大于左边点表示的数.③离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.3、采用零点分段讨论法①求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).②分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.③在各区段内分别考察问题.④将各区段内的情形综合起来,得到问题的答案.误区点拨 千万不要想当然地把 等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.【典例1】a 、b 、c 三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )∵0ab >; ∵c a b -<<-; ∵11a b >; ∵b b =-. A .4个B .3个C .2个D .1个 【答案】B【分析】根据有理数大小的比较可得数轴上的右边的数总大于左边的数得出b <c <0<a ,b a c >>,再分别判断各式.【详解】解:结合图形,根据数轴上的右边的数总大于左边的数,可得b <c <0<a ,b a c >>.∵∵0ab <,故错误;∵c a b -<<-,故正确; ∵11a b>,故正确; ∵b b =-,故正确;考法02 绝对值的意义一.绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
苏科版数学七年级上册2.4.3《绝对值与相反数》说课稿一. 教材分析《苏科版数学七年级上册》2.4.3《绝对值与相反数》这一节主要介绍了绝对值和相反数的概念及其性质。
绝对值是数轴上表示一个数的点到原点的距离,相反数是在数轴上与原数相对的数。
这一节内容是初中数学的基础,对于学生理解实数的概念,以及后续学习代数和几何有着重要的意义。
二. 学情分析七年级的学生已经初步接触了实数的概念,对于数轴也有了一定的了解。
但是,他们对于绝对值和相反数的定义及性质可能还不是很清楚,需要通过具体例子和练习来加深理解。
同时,学生可能对于数轴上的距离和相对概念有一定的困惑,需要教师进行详细的解释和引导。
三. 说教学目标1.理解绝对值和相反数的概念,掌握它们的性质。
2.能够运用绝对值和相反数的性质解决一些实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 说教学重难点1.绝对值和相反数的定义及性质。
2.如何运用绝对值和相反数的性质解决实际问题。
五. 说教学方法与手段1.采用讲授法,教师详细讲解绝对值和相反数的定义及性质,引导学生进行思考。
2.使用举例法,通过具体例子让学生理解绝对值和相反数的概念,加深记忆。
3.利用练习法,让学生通过做练习题,巩固所学知识,提高解决问题的能力。
4.采用小组讨论法,让学生分组讨论,培养学生的合作意识和沟通能力。
六. 说教学过程1.引入:通过数轴引导学生回顾实数的概念,然后提出绝对值和相反数的定义,让学生初步了解。
2.讲解:详细讲解绝对值和相反数的定义及性质,让学生理解并能够运用。
3.举例:给出具体例子,让学生理解绝对值和相反数的概念,加深记忆。
4.练习:让学生做练习题,巩固所学知识,提高解决问题的能力。
5.讨论:让学生分组讨论,分享解题心得,培养学生的合作意识和沟通能力。
6.小结:对本节课的内容进行总结,强调绝对值和相反数的重要性。
七. 说板书设计板书设计如下:绝对值与相反数1.绝对值:数轴上表示一个数的点到原点的距离。
2.4绝对值与相反数(1) 班级 姓名 完成时间:19︰25——20︰00 一、选择题 1.-6的绝对值是 ( )A .6B .-6C .+16 D .-162.在数轴上表示-2的点离原点的距离等于 ( )A .2B .-2C .±2D .43.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是 ( )4.绝对值最小的有理数是 ( )A .1B .0C .-1D .不存在5.绝对值最小的整数是 ( )A .-1B .1C .0D .不存在6.绝对值小于3的负数的个数有 ( )A .2B .3C .4D .无数二、填空题 7.2012-=_______.8.23的绝对值是_______,-23的绝对值是_______. 9.实数a 、b 在数轴上位置如图所示,则a 、b 的大小关系是_______.10.用“<”、“>”或“=”填空.(1) 6.3_______7- (2) 4.6_______ 4.5--11.a =100,则a =_______.12.计算|4|+|0|-|-3|=______________.三、解答题13.计算:(1) 4178--- (2)50.7558-÷+14.把-5,5.2-,2,0,-2按从小到大的顺序排列.15.正式排球比赛对所使用的排球质量是有严格规定的,超过规定质量的克数记作正数,不足质这4个排球中,哪一个质量更好些?请你用绝对值的知识加以说明.16.如果点M 、N 在数轴上表示的数分别是a ,b ,且a =3,b =1,试确定M 、N 两点之间的距离.17.已知02921=-+-y x .求代数式y x +22的值.书写评价 优 良 中 差 成绩评价 优 良 中 差 批改时间。
绝对值与相反数 第1课时教学目标1.理解有理数的绝对值的意义,会求已知数的绝对值;2. 理解有理数的相反数的概念,会求已知数的相反数;3.渗透数形结合等思想方法,培养学生的概括能力.教学重难点【教学重点】绝对值和相反数概念的理解应用、观察分析问题和语言表达能力的培养. 【教学难点】应用绝对值的知识解决问题能力的形成.课前准备课件.教学过程情境创设导入小明的家在学校西边3km 处,小丽的家在学校东边2km 处,我们可以用数轴来表示小明、小丽两家和学校的位置分别在A.B 两处. 学生思考:1.A.B 两点离原点的距离各是多少?2.A.B 两点离原点的距离与它们表示的数是正数还是负数有没有关系?3.在数轴上分别描出下列数所对应的点,并指出它们到-2 -1 21 0A-3 B自学指导:阅读书本第23页.完成下面的尝试练习尝试练习:如图,你能说出数轴上A.B.C.D.E各点所表示的数的绝对值问题串:(1)点A表示的数是多少?(2)它到原点的距离是多少?(3)点A表示的数的绝对值是多少?以此类推…特别注意:0的绝对值│0│=?总结:从上面的问题中你能找到求一个数的绝对值的方法吗?(1)先画出数轴,在数轴上找出需要的点;(2)观察这个点与原点的距离,这个距离就是我们要求的绝对值.例1、求4、-3.5的绝对值.解:在数轴上分别画出表示4、-3.5的点A.点BA 点与原点的距离是4, 所以4的绝对值是4, | 4|= 4B 与原点的距离是 3.5, -3.5的绝对值是 3.5, | -3.5|=3.5活动一:请一位同学随便报一个数,并说出它的绝对值,然后点名叫另一位同学说出它的意义.例2、比较-3与-6的绝对值的大小解:在数轴上分别画出表示-3、-6的点A.点B因为∣-3 ∣=3, ∣ -6∣=6,并且3<6,所以∣-3∣ <∣ -6∣,即-3的绝对值小于-6的绝对值. 例3 求3,-4.5,0的相反数.表示一个数的相反数,在这个数前面添一个“-”号,就可以表示这个数的相反数了,比如-5的相反数可以表示为-(-5).(投影教材第23页的“议一议”)大家独立思考第161243-3 65-1-2 -4 -5 -6 3AB。
§2.4 绝对值与相反数(1) 一、选择 1.在-1,0,-2,1四个数中,最小的数是 ( )A .-1B .0C .-2D .12.下列各式中,正确的是 ( )A . 2525-=-B . 1413-< C .-(一512)> 5.5- D .-78<-673.如果a ,b 为两个有理数,且2a ++1b -=0,则a ,b 的值分别为 ( )A .2,-1B .-2,1C .2,1D .-2,-1 4.下列各组数中,互为相反数的是 ( )A .2+与2-B .-2+与+2-C .-(+ 2)与+(-2)D .-(-2)与+(+2)5.如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论中正确的是 ( )A .a >bB .a >bC .-a <bD .a + b <06.下列对0的说法中不正确的有( )个.①0是最小的有理数 ②0的相反数是0 ③0是最小的正数 ④0的绝对值是0 ⑤0是最小的正整数 ⑥0没有倒数 ⑦0是最小的自然数 ⑧0乘以任何数都等于0 ⑨0既不是正数,也不是负数A .3B .4C .5D .6二、认真填一填7.相反数等于本身的数是 ;绝对值是它的本身的数是 .8.-3.5的相反数为 ;-5的绝对值是 ;绝对值是2的数是 .9.3.14π-= .x =3-,则x = .10.若1a ++(b -2)2=0,则(a + b )2015+a 2016= .11.绝对值小于3.14的所有整数是 .12.大家知道5=50-,它在数轴上的意义是表示5的点与原点 (即表示0的点) 之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a +在数轴上的意义是 .三、解答13.计算:(1) 3-+1+; (2) 15--8-; (3) 7.8++8.2-(4) +(-2.8); (5) -(-7); (6) -(+12).14.如果a =4,b =3,则比较a 与b 的大小会有哪些结果,请你都写出来.15.已知零件的标准直径是100 mm ,超过标准直径长度的数量 (mm) 记作正数,不足标准直径长度的数量 (mm) 记作负数,检验员某次抽查了五件样品,检查结果如下:(1) 指出哪件样品的大小最符合要求;(2) 如果规定误差的绝对值在0.18 mm 之内是正品,误差的绝对值在0.18~0.22 mm之间是次品,误差的绝对值超过0.22 mm 是废品,那么这五件样品分别属于哪类产品?16.已知A ,B 在数轴上分别表示a ,b .(1) 对照数轴填写下表:(2) 若A ,B 两点的距离记为d ,试问:d 和a ,b 有何数量关系?(3) 若点C 表示的数为x ,当点C 在什么位置时,1x ++2x -取得最小值? 最小值是多少?(4) 当x 满足什么条件时,4x --3x +的值始终是7.17.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况 (超产为正、减产为负):(1) 根据记录可知前三天共生产 辆;(2) 产量最多的一天比产量最少的一天多生产 辆;(3) 该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?参考答案1.C 2.D 3.B 4.B 5.C 6.A 7.0 非负数 8.3.5 5 ±29.π-3.14 ±3 10.2 11.-3,-2,-1,0,1,2,3 12.表示数a 的点与-5之间的距离 13.(1) =3+1=4 (2) =15-8=7 (3) =7.8+8.2=16 (4)-2.8 (5) 7(6)-12 14.因为a =4,所以a =±4,因为b =3,所以b =±3,所以a ,b 的取值有四种情况. ①当a =4,b =3时,a >b ;②当a =-4,b =3时,a <b ;③当a =-4,b =-3时,a <b ;④当a =4,b =-3时,a >b . 点拨:本题分了四种情况讨论.另外,已知数的绝对值是正数求原数,答案有两个,它们互为相反数. 15.(1)第4件样品的大小最符合要求. (2)因为0.1+=0.1<0.18,0.15-==0.15<0.18,0.05-=0.05<0.18.所以第1,2,4件样品是正品;因为10.21=0.2,0.18<0.2<0. 22,所以第3件样品为次品;因为0.25+=0.25>0.22,所以第5件样品为废品. 16.(1)对照数轴填写下表:(2) d =a b -或d =b a - (3)点C 在-1和2之间的任何一点或-1≤x ≤2,1x ++2x -取得最小值,最小值是3. (4)当x ≤-3,4x --3x +的值始终是7. 17.(1) 599 (2) 26 (3) +5-2-4+13-10+16-9=32-24=9 1400×60+9×75=84 000+675=84 675。
2.4 绝对值与相反数(1)教案一、教学目标1.了解绝对值和相反数的定义和性质;2.掌握计算含有绝对值和相反数的数学表达式的方法;3.理解绝对值和相反数在实际问题中的应用。
二、教学重点1.掌握绝对值的概念和计算方法;2.掌握相反数的概念和计算方法。
三、教学难点1.运用绝对值和相反数的概念解决实际问题。
四、教学准备1.教材《数学七年级上册》;2.班级黑板;3.粉笔或白板笔。
五、教学过程1. 导入新课教师可通过以下问题导入新课:在我们日常生活中,有时我们需要对数进行一些特殊的处理,比如求一个数的绝对值,或者求一个数的相反数。
你们对绝对值和相反数有哪些了解呢?2. 绝对值的概念和计算方法1.给出绝对值的定义:如果x是一个实数,那么x的绝对值是一个非负数,记作|x|,表示与x距离原点的距离。
2.通过示例解释绝对值的概念:比如,|-3|=3,因为-3距离原点的距离是3。
3.给出绝对值的计算方法:–当x≥0时,|x|=x;–当x<0时,|x|=-x。
4.练习:计算下列各式的值,并解释结果的意义。
–|4|–|-5|–|-3-7|3. 相反数的概念和计算方法1.给出相反数的定义:如果x是一个实数,那么与x相加等于0的数为x的相反数,记作-x。
2.通过示例解释相反数的概念:比如,3和-3的和等于0,所以它们互为相反数。
3.给出相反数的计算方法:对于任意实数x,x的相反数是-x。
4.练习:计算下列各式的值,并解释结果的意义。
–-(-5)–-(3+7)–-|3|4. 绝对值和相反数在实际问题中的应用1.通过问题引入绝对值和相反数的应用:小明从家里到学校的距离是5公里,他先走了2公里,然后又返回家里。
这时,他离学校的距离是多少?2.分析问题的解决思路:小明先走2公里,然后返回家里,所以要计算2的相反数,即-2,再与5相加即可。
3.练习:解决以下实际问题。
–一个球从地面上抛起,最高点离地面的高度是20米,那么离地面的距离的绝对值是多少?–某地的气温是-5摄氏度,两天后气温升高了8摄氏度,这时的气温是多少摄氏度?–某地的海拔是-1000米,某山的山峰比该地低海拔100米,该山峰的海拔是多少米?5. 小结与拓展1.对本节课的内容进行小结,并巩固学生对绝对值和相反数概念的理解。
班级姓名______考试时间______________装订线内不要答题◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆ 2013-2014学年度七年级数学练习三 2.4 绝对值与相反数(1-A) 命题:朱学范 审题:朱学范 2013-9-2 一、填空题. 1.2011-=_______. 2.23的绝对值是_______,-23的绝对值是_______. 3.实数a 、b 在数轴上位置如图所示,则a 、b 的大小关系是_______. 4.用“<”、“>”或“=”填空. (1) 6.3_______7- (2) 4.6_______ 4.5-- 5.a =2011,则a =_______. 二、选择题. 6.在数轴上,表示-12的点与原点的距离是 ( ) A .-12 B .12 C .-2 D .2 7.-14的绝对值是 ( ) A .14 B .4 C .-14 D .-4 8.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是 ( ) 9.已知在数轴上,0为原点,A 、B 两点的坐标分别为a 、b ,利用下列A 、B 、0三点在数轴上的位置关系,判断哪一个选项中的a <b ? ( )三、解答题.10.求下列各数的绝对值:(1)32011+ (2)-4.2 (3)011.计算:(1)4178--- (2)50.7558-÷+.12.把-512,4--,2,0,-213按从小到大的顺序排列.13.正式的排球比赛对所用排球的重量有严格的规定.检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下(单位:克):+12,-14,+23,-16,-7.请用学过的绝对值的知识来说明哪个排球的质量最好.14.某检修小组乘一辆汽车沿公路检修线路,约定向南为正,某天从A地出发到收工时,行走记录为(单位:千米):+18,-9,+14,-7,-6,+12,-5,-8.(1)收工时,检修小组在A地何方,距A地多远?(2)若汽车行驶每千米耗油0.3升,则从出发到收工共耗油多少升?2.4 绝对值与相反数(1-B)一、填空题.1.12+=___________;0=___________; 2.1-=_________.2.-23的绝对值是_________,23的绝对值是_________. 3.35-=__________;8--=_________;1532-=_________;53-++=_________. 4.95--=__________.5.___________的绝对值是其本身.6.绝对值是6的整数是___________,绝对值小于3的整数有__________.7.用“>”、“<”或“=”填空: 3-__________2.7; 5.5-_________7.2-.8.在数轴上表示-4、3、-2.5的点A 、B 、C ,填空:(1)点A 、B 、C 到原点的距离分别是_________、___________、_________;(2)4、3、-2.5的绝对值分别是__________、__________、__________.二、选择题.9.-6的绝对值是 ( )A .6B .-6C .+16 D .-16 10.-3-= ( )A .-3B .-13C .13D .311.在数轴上表示-2的点离原点的距离等于 ( )A .2B .-2C .±2D .4 三、解答题.12.求下列各数的绝对值:-5,4.5,-0.5,+1,0,π-3.13.在数轴上表示下列各数:0,-3,2,-14,5.并将上述各数的绝对值用“<”号连接起来.14.如果点M、N在数轴上表示的数分别是a,b,且a=3,b=1,试确定M、N两点之间的距离.15.如图,按下列方法将数轴的正半轴绕在一个圆上(该圆的周长为3个单位长度,且在圆周的三等分点处分别标上了数字0、1、2).先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4……所对应的点分别与圆周上1,2,0,1……所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)若圆周上的数字以与数轴上的数5对应,则a=________.(2)若数轴绕过圆周n圈(n为正整数)后,数轴上的一个整数点,刚好落在圆周上数字l所对应的位置,则这个整数是___________(用含托的代数式表示).。