岩体基本力学性质
- 格式:ppt
- 大小:346.06 KB
- 文档页数:13
图6.1 岩体的压力--变形曲线第六章 岩体的力学性质岩体的力学性质包括岩体的变形性质、强度性质、动力学性质和水力学性质等方面。
岩体在外力作用下的力学属性表现出非均质性、非连续、各向异性和非弹性。
岩体的力学性质取决于两个方面: 1)受力条件;2)岩体的地质特征及其赋存环境条件。
其中地质特征包括岩石材料性质、结构面的发育情况及性质(影响岩体的力学性质不同于岩块的本质原因);赋存环境条件包括天然应力和地下水。
第一节 岩体的变形性质一、 岩体变形试验及其变形参数确定变形参数包括变形模量和弹性模量。
按静力法得到静E ,动力法得到动E 。
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧法波地震声波法动力法轴压缩试验法双单水压洞室法钻孔变形法扁千斤顶法狭缝法承压板法静力法按原理和方法分原位岩体变形试验)()()( )(1.承压板法刚性承压板法和柔性承压板法 各级压力P -W (岩体变形值)曲线 按布西涅斯克公式计算岩体的变形模量E m (Mpa )和弹性模量E me (Mpa )。
⎪⎪⎩⎪⎪⎨⎧-=-=e m mem m W W PD E W W PD E )1()1(22μμ式中:P —承压板单位面积上的压力(Mpa ); D —承压板的直径或边长(cm );W,W e—为相应P下的总变形和弹性变形;ω—与承压板形状、刚度有关系数,圆形板ω=0.785,方形板ω=0.886。
μm—岩体的泊松比。
★定义:岩体变形模量(E m):岩体在无侧限受压条件下的应力与总应变之比值。
岩体弹性模量(E me):岩体在无侧限受压条件下的应力与弹性应变之比值。
图6.2 钻孔变形试验装置示意图②可以在地下水位以下笔图6.3 狭缝法试验装置如图6.3所示。
二、岩体变形参数估算现场原位试验费用昂贵,周期长,一般只在重要的或大型工程中进行,因此,岩体变形参数的很多情况下必须进行估算。
两种方法:① 现场地质调查→建立适当的岩体地质力学模型→室内小试件试验资料→进行估算; ② 岩体质量评价和大量试验资料→建立岩体分类指标与变形参数间的经验关系→进行估算。
结构面:指地质过程中在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。
又称不连续面.结构面包括物质分异面和不连续面。
软弱结构面:结构面中规模较大,强度低,易变性的结构面。
结构体:被结构面切割成的岩石块体。
裂隙度K:是指沿取样线方向单位长度上的节理数量。
切割度Xe:指岩体被节理割裂分离的程度。
剪胀现象:规则齿状结构面在正应力很小的时将沿着齿面滑动,结构面张开,发生剪胀现象岩体的强度:指岩体抵抗外力破坏的能力,包括抗压强度和抗剪强度。
抗剪断强度:指正应力作用下岩体发生剪断破坏时的最大切应力。
摩擦强度:着正应力下岩体沿着既有破裂面发生剪切破坏时的最大切应力。
抗切强度:指剪切破坏面上的法向应力为零时的最大切应力。
岩体完整性系数:岩体与岩石中纵波传播速度的比值的平方。
岩体的动力学性质:指动荷载下岩体表现出的性质。
张节理:是岩体在张应力作用下形成的一系列裂隙的组合,一般粗糙,宽窄不一且延展性较差剪节理:指岩体在切应力作用下形成的一系列裂隙的组合,一般平直光滑,延展性相对比较好张性断层:由张应力或与张断层平行的压应力形成的断层。
压性断层:主要是指压性逆断层,逆掩断层,断层面上常有与走向大致垂直的逆冲擦痕,大致平行集中出现的一系列压性断层构成挤压断层带。
剪性断层:主要指平移断层以及部分正断层,剪裂面产状稳定,断面平整光滑。
劈理:指在地应力作用下,岩石沿着一定方向产生大致平行的破裂面。
泥化夹层:是由于水的作用时夹层内的松软物质泥化而成,其产状与岩层基本一致。
影响结构面力学性质的因素:答:1.结构面两侧结构体的力学性质2.结构面的几何特征3.结构面的尺寸效应4.填充物的力学性质5.水对泥夹层的软化作用6.后期加载过程7.泥化夹层的时效性8. 前期变形历史●影响岩体中结构体特征的因素:答:1.切割岩体的结构面组数2.岩石的类型3.区域构造运动的强度4.工程岩体的破坏方式●影响岩体变形性质与试验结果的因素:答:1.岩体性质2.岩体中结构面发育特征3.岩体试验加载速率,加载过快,岩石变形不充分,导致变形模量较大4.温度,一般来说,温度增高,岩体延性加大,屈服点随之降低。
岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。
岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。
第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。
岩石是构成岩体的基本组成单元。
相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。
岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。
回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。
●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。
●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。
●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。
回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。
其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。
回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。
结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。
这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。
第二章 岩石的基本物理力学性质1、全应力—应变曲线(岩石试件在(刚性试验机)单轴压缩载荷作用下产生变形的全过程)(1)OA 阶段,通常被称为孔隙裂隙压密阶段。
其特征是应力—应变曲线呈上凹型,在此阶段岩石试件中原有的张开型结构面和微裂隙逐渐闭合,横向膨胀较小,试件体积随载荷的增大而减小。
本阶段对节理裂隙丰富的岩石表现较为明显,对坚硬少裂隙的岩石不明显。
(2)AC 阶段,通常称此阶段为弹性变形阶段。
其中AB 阶段为线弹性变形阶段;BC 为非线性变形阶段。
BC 阶段中出现了微裂隙的破裂,因此也称为破裂稳定发展阶段。
(3)CD 阶段,非稳定破裂发展阶段或称累积性破坏阶段。
C 点是岩石从弹性变为塑性的转折点,称为屈服点,其相应的应力称为屈服应力(屈服极限),数值约为峰值应力的三分之二左右。
进入此阶段后,微破裂的发展出现了质的变化,它们不断聚合形成了宏观裂隙,直至岩石试件完全破坏。
此时,试件由体积压缩转为扩容,轴向应变和体积应变速率迅速增大。
当达到D 点时,岩石已经破坏,此时的强度称为峰值强度。
(4)DE 阶段称为破坏后阶段。
当载荷达到D 点后,岩石试件内部结构已遭到破坏,但试件基本保持整体形状。
进入本阶段后,宏观裂隙快速发展,并且相互交叉联合形成宏观断裂面,岩块的变形主要表现为沿宏观断裂面的块体滑移,试件的承载能力迅速下降,但不会到零,岩石仍具有一定的承载能力。
应该指出,对于坚硬的岩石来说,这一塑性阶段很短,有的几乎不存在,它所表现的是脆性破坏的特征。
所谓脆性是指应力超出了屈服应力却并不表现出明显的塑性变形的特性,而因此达到破坏,即为脆性破坏。
2、单轴压缩条件下的岩石变形特征:①岩石的变形特性通常可以从试验时所记录下来的应力—应变曲线中获得;②岩石的应力—应变曲线反映了各种不同应力水平下所对应的应变(变形)规律;③岩石试件在(刚性试验机)单轴压缩载荷作用下产生变形的全过程,可全应力-应变曲线来表示。
3、三轴压缩条件下的岩石变形特征A 、 时岩石变形特征①岩石的强度随围压( )的增加,岩石的屈服应力随之提高;②总体来说,岩石的弹性模量变化不大,有随围压增大而增大的趋势;③随着围压的增加,峰值应力所对应的应变值23σσ=23σσ=有所增大,其变形特征表现出低围压的脆性向高围压的塑性转换的规律。
第四章 岩体的基本力学性质岩体是由岩块和结构面组合的天然地质体,其变形与强度不仅取决于它的受力状态,而且取决于岩体本身特征及赋存环境。
影响岩体基本力学性质的主要因素可概括为:(1)组成岩体的岩石材料性质;(2)组成岩体的结构面力学性质;(3)岩体中结构面的发育组合状态;(4)赋存环境,包括地下水、气和地应力的作用等等。
正是由于这些复杂因素的影响,使得岩体的力学性质与岩块有显著的差别,造成岩体变形增加,强度降低,显示出非均质、非连续、各向异性和非弹性等非线性性质。
本章首先讨论主要影响因素的特征,进而讨论岩体的变形性质和强度性质。
4.1.结构面的几何特征结构面对岩体力学性质的影响因素主要表现在结构面自身的力学性质和及其几何特征两方面。
其中几何特征通常包括:结构面的空间方位、连续性、密度、张开度、形态等;进一步研究还包括这些表述结构面几何特征指标的分布概率和结构面的空间组合关系对岩体力学性质或岩体工程稳定性的影响。
本节仅含前者。
4.1.1.结构面的空间方位结构面的空间方位,地质学中称为结构的产状,由走向、倾向和倾角表示。
其中:走向是指结构面与水平面相交的交线方向;倾向是与走向成垂直的方向,它是结构面上倾斜线最陡的方向;倾角度是指水平面与结构面之间所夹的最大角度。
可见结构面走向和倾向可以互相转换,所以,结构面产状有时又用倾向和倾角来表示。
为了便于结构面的数学表达,建立如图4.1(a)所示的坐标系,结构面就视为该坐标系中的一个空间平面。
并约定:向上为z 轴正向,向东为x 轴正向,向北为y 轴正向;结构面产状由倾向角β和倾角α确定。
由图4.1(a )的几何关系可见,结构面的倾向角则为空间平面倾向与y 轴(正北向)的夹角;结构面倾角则为空间平面外法线与z 轴的夹角,如图4.1(b)所示,图中,ˆn表示结构面(空间平面)外法线。
设为单位矢量ˆn,则ˆn 在坐标轴,,x y z 上的分量分别为:sin sin αβ,sin cos αβ,cos α。