高一数学对数与对数运算2
- 格式:pdf
- 大小:1.53 MB
- 文档页数:20
对数与对数运算第1课时 对 数学习目标 1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.知识点一 对数的概念思考 解指数方程:3x = 3.可化为3x =123,所以x =12.那么你会解3x =2吗? 答案 不会,因为2难以化为以3为底的指数式,因而需要引入对数概念.梳理 对数的概念:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.常用对数与自然对数:通常将以10为底的对数叫做常用对数,以e 为底的对数称为自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .知识点二 对数与指数的关系思考 log a 1(a >0,且a ≠1)等于?答案 设log a 1=t ,化为指数式a t =1,则不难求得t =0,即log a 1=0.梳理 一般地,有对数与指数的关系:若a >0,且a ≠1,则a x =N ⇔log a N =x .对数恒等式:log a N a=N ;log a a x =x (a >0,且a ≠1).对数的性质:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.类型一 对数的概念例1 在N =log (5-b )(b -2)中,实数b 的取值范围是( )A.b <2或b >5B.2<b <5C.4<b <5D.2<b <5且b ≠4 跟踪训练1 求f (x )=log x 1-x 1+x的定义域. 类型二 应用对数的基本性质求值例2 求下列各式中x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1.解 (1)∵log 2(log 5x )=0.∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.反思与感悟 本题利用对数的基本性质从整体入手,由外到内逐层深入来解决问题.log a N =0⇒N =1;log a N =1⇒N =a 使用频繁,应在理解的基础上牢记.跟踪训练2 若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为( )A.9B.8C.7D.6类型三 对数式与指数式的互化命题角度1 指数式化为对数式例3 将下列指数式写成对数式:(1)54=625;(2)2-6=164;(3)3a =27;(4)⎝⎛⎭⎫13m =5.73. 解 (1)log 5625=4;(2)log 2164=-6; (3)log 327=a ;(4)13log 5.73=m .反思与感悟 指数式化为对数式,关键是弄清指数式各部位的去向:跟踪训练3 (1)如果a =b 2 (b >0,b ≠1),则有( )A.log 2a =bB.log 2b =aC.log b a =2D.log b 2=a (2)将3-2=19,⎝⎛⎭⎫126=164化为对数式. (3)解方程:⎝⎛⎭⎫13m =5.命题角度2 对数式化为指数式例4 求下列各式中x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x ; (4)-ln e 2=x ;(5))1log13+22=x . 解 (1)x =2364-=()2334-=4-2=116. (2)因为x 6=8,所以x =()()1111636266822x ==== 2. (3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2.所以x =-2.(5)因为)1log 13+22=x , 所以(2-1)x =13+22=1(2+1)2=12+1=2-1, 所以x =1. 反思与感悟 要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解. 跟踪训练4 计算:(1)log 927;(2);(3)625.命题角度3 对数恒等式log a N a=N 的应用 例5 (1)求33log 3x +=2中的x . (2)求log log log a b c b c N a⋅⋅的值(a ,b ,c 均为正实数且不等于1,N >0).跟踪训练5 设()5log 2125x -=9,则x = .1.log b N =a (b >0,b ≠1,N >0)对应的指数式是( )A.a b =NB.b a =NC.a N =bD.b N =a 2.若log a x =1,则( )A.x =1B.a =1C.x =aD.x =103.下列指数式与对数式互化不正确的一组是( )A.e 0=1与ln 1=0B.138-=12与log 812=-13C.log 39=2与129=3D.log 77=1与71=74.已知log x 16=2,则x 等于( )A.±4B.4C.256D.25.设10lg x =100,则x 的值等于( )A.10B.0.01C.100D.1 0001.对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2)log a N a =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.课时作业一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e 为底的对数叫做自然对数.其中正确命题的个数为( )A.1B.2C.3D.42.已知b =log (a -2)(5-a ),则实数a 的取值范围是( )A.a >5或a <2B.2<a <5C.2<a <3或3<a <5D.3<a <4 3.方程3log 2x =14的解是( ) A.x =19B.x =33C.x = 3D.x =94.下列四个等式: ①lg(lg 10)=0;②lg(ln e)=0;③若lg x =10,则x =10;④若ln x =e ,则x =e 2.其中正确的是( )A.①③B.②④C.①②D.③④ 5.(12)-1+log 0.54的值为( ) A.6 B.72C.0D.37 6.若log a 3=m ,log a 5=n ,则a 2m+n 的值是( ) A.15B.75C.45D.225二、填空题 7.已知f (log 2x )=x ,则f (12)= . 8.= .9.已知log 7[log 3(log 2x )]=0,那么12x-= . .10.设a =log 310,b =log 37,则3a -b = .三、解答题11.(1)先将下列式子改写成指数式,再求各式中x 的值.①log 2x =-25;②log x 3=-13. (2)已知6a =8,试用a 表示下列各式.①log 68;②log 62;③log 26.12.求22+log 23+32log 93-的值.13.设M ={0,1},N ={lg a,2a ,a,11-a },是否存在a 的值,使M ∩N ={1}?四、探究与拓展14.log(n +1+n )等于( ) A.1B.-1C.2D.-215.若集合{x ,xy ,lg(xy )}={0,|x |,y },求log 2(x 2+y 2)的值.对数的运算知识点一 对数运算性质思考 有了乘法口诀,我们就不必把乘法还原成为加法来计算.那么,有没有类似乘法口诀的东西,使我们不必把对数式还原成指数式就能计算?答案 有.例如,设log a M =m ,log a N =n ,则a m =M ,a n =N ,∴MN =a m ·a n =a m +n ,∴log a (MN )=m +n =log a M +log a N .得到的结论log a (MN )=log a M +log a N 可以当公式直接进行对数运算.梳理 一般地,如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (M ·N )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =n log a M (n ∈R ).知识点二 换底公式思考1 观察知识点一的三个公式,我们发现对数都是同底的才能用这三个公式.而实际上,早期只有常用对数表(以10为底)和自然对数表(以无理数e 为底),可以查表求对数值.那么我们在运算和求值中遇到不同底的对数怎么办?答案 设法换为同底.思考2 假设log 25log 23=x ,则log 25=x log 23,即log 25=log 23x ,从而有3x =5,再化为对数式可得到什么结论? 答案 把3x =5化为对数式为:log 35=x ,又因为x =log 25log 23,所以得出log 35=log 25log 23的结论. 梳理 一般地,对数换底公式:log a b =log c b log c a(a >0,且a ≠1,b >0,c >0,且c ≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).类型一 具体数字的化简求值例1 计算:(1)log 345-log 35;(2)log 2(23×45); (3)lg 27+lg 8-lg 1 000lg 1.2; (4)log 29·log 38.解 (1)log 345-log 35=log 3455=log 39=log 332=2log 33=2. (2)log 2(23×45)=log 2(23×210)=log 2(213)=13log 22=13.(3)原式=)32lg 8lg1012lg 10-=33322lg 321012lg 10⎛⎫⨯÷ ⎪⎝⎭ =3234lg 1012lg 10⨯⎛⎫ ⎪⎝⎭ =32lg 1210lg 1210=32. (4)log 29·log 38=log 2(32)·log 3(23)=2log 23·3log 32=6·log 23·1log 23=6.反思与感悟 具体数的化简求值主要遵循2个原则.(1)把数字化为质因数的幂、积、商的形式.(2)不同底化为同底.跟踪训练1 计算:(1)2log 63+log 64;(2)(lg 25-lg 14)÷12100-; (3)log 43·log 98;(4)log 2.56.25+ln e -130.064.类型二 代数式的化简命题角度1 代数式恒等变换例2 化简log a x 2y 3z. 解 ∵x 2y 3z>0且x 2>0,y >0,∴y >0,z >0. log a x 2y 3z=log a (x 2y )-log a 3z =log a x 2+log a y -log a 3z=2log a |x |+12log a y -13log a z . 反思与感悟 使用公式要注意成立条件,如lg x 2不一定等于2 lg x ,反例:log 10(-10)2=2log 10(-10)是不成立的.要特别注意log a (MN )≠log a M ·log a N ,log a (M ±N )≠log a M ±log a N .跟踪训练2 已知y >0,化简log ax yz .命题角度2 用代数式表示对数例3 已知log 189=a,18b =5,求log 3645.解 方法一 ∵log 189=a,18b =5,∴log 185=b ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a . 方法二 ∵log 189=a,18b =5,∴log 185=b ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1852log 1818-log 189=a +b 2-a. 方法三 ∵log 189=a,18b =5,∴lg 9=a lg 18,lg 5=b lg 18,∴log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9 =a lg 18+b lg 182lg 18-a lg 18=a +b 2-a. 反思与感悟 此类问题的本质是把目标分解为基本“粒子”,然后用指定字母换元.跟踪训练3 已知log 23=a ,log 37=b ,用a ,b 表示log 4256.1.log 513+log 53等于( ) A.0 B.1 C.-1 D.log 51032.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( )A.log a b ·log c b =log c aB.log a b ·log c a =log c bC.log a (bc )=log a b ·log a cD.log a (b +c )=log a b +log a c3.log 29×log 34等于( )A.14B.12C.2D.4 4.lg 0.01+log 216的值是 .1.换底公式可完成不同底数的对数式之间的转化,可正用、逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.(3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M ±N ).课时作业一、选择题1.下列各式(各式均有意义)不正确的个数为( )①log a (MN )=log a M +log a N ;②log a (M -N )=log a M log a N ;③nm a =1m a n ;④(a m )n =am n ;⑤log an b =-n log a b . A.2 B.3 C.4 D.52.4等于( )A.12B.14C.2D.4 3.化简log 58log 52等于( ) A.log 54 B.3log 52 C.2 D.34.已知lg 2=a ,lg 3=b ,则用a ,b 表示lg 15为( )A.b -a +1B.b (a -1)C.b -a -1D.b (1-a )5.若log 513·log 36·log 6x =2,则x 等于( ) A.9B.19C.25D.1256.计算(log 32+log 23)2-log 32log 23-log 23log 32的值是( ) A.log 26B.log 36C.2D.1 二、填空题7.(log 43+log 83)(log 32+log 92)= .8.(lg 5)2+lg 2·lg 50= .9.已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,则x y= . 10.若3x =4y =36,则2x +1y= . 三、解答题11.若x ·log 32 016=1,求2 016x +2 016-x 的值.12.计算: (1)2123log 3⎛⎫ ⎪⎝⎭+log 0.2514+9log 55-log 31; (2)2lg 2+lg 31+12lg 0.36+13lg 8.13.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p 的值;(2)求证:1z -1x =12y.四、探究与拓展14.计算⎝⎛⎭⎫-278-23+log 827log 23+(2-3)0-log 31+2lg 5+lg 4-5log 52= .。
【金版学案】2015-2016高中数学 对数与对数运算(二)练习 新人教A 版必修1 基础梳理1.设a >0,a ≠1,M >0,N >0,则有(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和.(2)log a MN=log a M -log a N ,简记为:商的对数=对数的差.(3)log a M n =n log a M (n ∈R). 例如:①lg (3×5)=______;②lg 5+lg 2=______;③ln e 2=______.2.几点注意:(1)对数的真数是多项式时,需将真数部分加括号,如lg(x +y )与lg x +y 的含义不同.(2)(lg M )n 与lg M n 的含义不同.(3)log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的.(4)log 10(-10)2=2log 10(-10)是不成立的.(5)当心记忆错误:log a (MN )≠log a M ·log a N ;log a (M ±N )≠log a M ±log a N .3.对数的换底公式log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0).换底公式的意义是把一个对数式的底数改变,可将不同底问题化为同底,便于使用运算法则.例如:log 35=________,其中a >0,且a ≠1.4.关于对数换底公式的证明方法有很多,可借助指数式证明对数换底公式.例如:设a >0,且a ≠1;c >0,且c ≠1;b >0.求证:log a b =log c b log c a.5.设a ,b >0,且均不为1,由换底公式可加以求证:(1)log a b ·log b a =1;(2)log am b n =n mlog a b .例如:①log 23·log 32=____;②log 89=________ .基础梳理1.①lg 3+lg 5 ②1 ③2 3.log a 5log a 34.证明:设log a b =x ,则b =a x ,于是log c b =log c a x ,即x log c a =log c b ,∴x =log c b log c a ,∴log a b =log c b log c a. 5.证明:(1)log a b ·log b a =lg b lg a ·lg a lg b=1. (2)log am b n =lg b n lg a m =n lg b m lg a =n mlog a b . 答案:1 23log 23 ,思考应用1.log a (M +N )=log a (MN )对吗?1.错2.log a (M -N )=log a M N 对吗?2错 自测自评1.若a >0,a ≠1,x >y >0,下列式子:①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .其中正确的个数为( ) A .0个 B .1个C .2个D .3个2.设9a =45,log 95=b ,则( )A .a =b +9B .a -b =1C .a =9bD .a ÷b =13.求值:log 274log 32=____. 1.解析:根据对数的性质知4个式子均不正确.故选A.答案:A2.解析:由9a =45得a =log 945=log 99+log 95=1+b ,即a -b =1,故选B. 答案:B3.解析:log 274log 32=lg 4lg 27lg 2lg 3=2lg 23lg 3lg 2lg 3=23. 答案:23►基础达标1.lg a 与lg b 互为相反数,则( )A .a +b =0B .a -b =0C .ab =1 D.a b=11.C2.在log (a -2)2中,a 的取值X 围是____________.2.(2,3)∪(3,+∞)3.已知log 5[log 4(log 3x )]=0,则x =____.3.814.化简12log 612-2log 62的结果为( ) A .6 2 B .12 2C .log 6 3 D.124.解析:12log 612-2log 62=12(1+log 62)-log 62=12(1-log 62)=12log 63=log 6 3.故选C.答案:C5.(log 29)·(log 34)=( )A.14B.12C .2D .4 5.解析:原式=lg 9lg 2·lg 4lg 3=2lg 3·2lg 2lg 2·lg 3=4. 答案:D6.设lg 2=a ,lg 3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b 1-a6.解析:log 512=lg 12lg 5=lg 3+2lg 2lg 5=lg 3+2lg 21-lg 2= b +2a 1-a. 答案:C►巩固提高7.(lg 2)3+(lg 5)3+3lg 2 lg 5的值是( )A .4B .1C .6D .37.B8.(2014·某某卷)已知a =2-13,b =log 2,c =log 1213,则( ) A .a >b >c B .a >c >bC .c >a >bD .c >b >a8.解析:0<a =2-13<20=1,b =log 213<0,a =log 1213=log 23>1,所以c >a >b ,故选C.答案:C9.求值:(lg 2)2+lg 2·lg 50+lg 25.9.解析:(lg 2)2+lg 2·lg 50+lg 25=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 100=2.10.求值:(log 32+log 92)·(log 43+log 83).10.解析:(log 32+log 92)·(log 43+log 83)=⎝⎛⎭⎪⎫log 32+log 32log 39·⎝ ⎛⎭⎪⎫log 33log 34+log 33log 38 =32log 32·⎝ ⎛⎭⎪⎫12log 32+13log 32 =34+12=54.1.条件代数式的求值问题包括以下三个方面:①若条件简单,结论复杂,可从化简结论入手;②若条件复杂,结论简单,可从化简条件入手,转化成结论的形式;③若条件与结论的复杂程度相差无几时,可同时对它们进行化简,直到找出它们之间的联系为止.2.利用换底公式统一对数的底数,即化异为同是处理含不同底的对数的常用方法.3.在化简、求值、证明等问题中,要把换底公式与对数的运算性质结合起来.4.有时需将对数式log a 5log a 3写成log 35后解决有关问题.。
§2.6对数与对数函数1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质与运算法则(1)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么:①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ).(2)对数的性质①负数和零没有对数;②log a 1=0,log a a =1(a >0,且a ≠1);③log a Na=N (a >0,a ≠1,且N >0);④log a a N =N (a >0,且a ≠1).(3)对数的换底公式log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0).3.对数函数的图象与性质y =log a xa >10<a <1图象定义域(1)(0,+∞)值域(2)R性质(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0;(5)当x >1时,y <0;当0<x <1时,y <0当0<x <1时,y >0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.概念方法微思考1.根据对数换底公式:①说出log a b ,log b a 的关系?②化简log m na b .提示①log a b ·log b a =1;②logm na b =n mlog a b .2.如图给出4个对数函数的图象.比较a ,b ,c ,d 与1的大小关系.提示0<c <d <1<a <b .题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若MN >0,则log a (MN )=log a M +log a N .(×)(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.(×)(3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.(√)(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0)且过点(a,1)一、四象限.(√)题组二教材改编2.log 29·log 34·log 45·log 52=________.答案23.已知a =1-32,b =log 213,c =121log 3,则a ,b ,c 的大小关系为________.答案c >a >b解析∵0<a <1,b <0,c =121log 3=log 23>1.∴c >a >b .4.函数y的定义域是______.答案1解析由23log (21)x -≥0,得0<2x -1≤1.∴12<x ≤1.∴函数y1.题组三易错自纠5.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是()A .d =acB .a =cdC .c =adD .d =a +c答案B6.(多选)函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是()A .a >1B .0<c <1C .0<a <1D .c >1答案BC解析由图象可知函数为减函数,所以0<a <1,令y =0得log a (x +c )=0,x +c =1,x =1-c .由图象知0<1-c <1,∴0<c <1.7.若log a 34<1(a >0且a ≠1),则实数a 的取值范围是____________________.答案(1,+∞)解析当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a (1,+∞).对数式的运算1.已知2x =3,log 483=y ,则x +2y 的值为________.答案3解析由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.2.设函数f (x )=3x +9x ,则f (log 32)=________.答案6解析∵函数f (x )=3x +9x ,∴f (log 32)=339log 2log 2log 43929+=+=2+4=6.3.计算:(1-log 63)2+log 62·log 618log 64=________.答案1解析原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.4.(2019·北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A .1010.1B .10.1C .lg 10.1D .10-10.1答案A解析两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,令m 2=-1.45,m 1=-26.7,lgE 1E 2=25·(m 2-m 1)=25(-1.45+26.7)=10.1,E 1E 2=1010.1.思维升华对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数函数的图象及应用例1(1)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是()A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1答案A解析由函数图象可知,f (x )为单调递增函数,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a<b <1.(2)方程4x=log a x ,12上有解,则实数a 的取值范围为__________.答案,22解析若方程4x =log a x ,12上有解,则函数y =4x 和函数y =log a x ,12上有交点,a<1,a12≤2,解得0<a≤22.4x<log a x,12上恒成立,则实数a的取值范围是________.答案解析当0<x≤12时,函数y=4x的图象在函数y=log a x图象的下方.又当x=12时,124=2,即函数y=4x y=log a x,得a=22.若函数y=4x的图象在函数y=log a x图象的下方,则需22<a<1(如图所示).当a>1时,不符合题意,舍去.所以实数a思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.跟踪训练1(1)(2019·河北冀州中学月考)函数f(x)=lg(|x|-1)的大致图象是()答案B解析由函数值域为R,可以排除C,D,当x>1时,f(x)=lg(x-1)在(1,+∞)上单调递增,排除A,选B.(2)若不等式x 2-log a x <0对xa 的取值范围是________.答案116,解析只需f 1(x )=x 2f 2(x )=log a x图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<loga x 在x只需ff所以有≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值范围是116,对数函数的性质及应用命题点1解对数方程、不等式例2(1)方程log 2(x -1)=2-log 2(x +1)的解为________.答案x =5解析原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x =5.(2)设f (x )2x ,x >0,12(-x ),x <0,则方程f (a )=f (-a )的解集为________.答案{-1,1}解析当a >0时,由f (a )=log 2a =121log a ⎛⎫⎪⎝⎭=f (-a )=12log a ,得a =1;当a <0时,由f (a )=12log ()a-=logf (-a )=log 2(-a ),得a =-1.∴方程f (a )=f (-a )的解集为{1,-1}.本例(2)中,f (a )>f (-a )的解集为________.答案(-1,0)∪(1,+∞)解析>0,log 2a >12a<0,12(-a )>log 2(-a ),解得a >1或-1<a <0.命题点2对数函数性质的综合应用例3(2020·湛江质检)已知函数f (x )=12log (x 2-2ax +3).(1)若f (-1)=-3,求f (x )的单调区间;(2)是否存在实数a ,使f (x )在(-∞,2)上为增函数?若存在,求出a 的范围;若不存在,说明理由.解(1)由f (-1)=-3,得12log (4+2a )=-3.所以4+2a =8,所以a =2.则f (x )=12log (x 2-4x +3),由x 2-4x +3>0,得x >3或x <1.故函数f (x )的定义域为(-∞,1)∪(3,+∞).令μ=x 2-4x +3,则μ在(-∞,1)上单调递减,在(3,+∞)上单调递增.又y =12log μ在(0,+∞)上单调递减,所以f (x )的单调递增区间是(-∞,1),单调递减区间是(3,+∞).(2)令g (x )=x 2-2ax +3,要使f (x )在(-∞,2)上为增函数,应使g (x )在(-∞,2)上单调递减,且恒大于0.≥2,(2)≥0,即≥2,-4a ≥0,a 无解.所以不存在实数a ,使f (x )在(-∞,2)上为增函数.思维升华利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的应用.跟踪训练2(1)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为()A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)答案A解析令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1](1)>0,≥1,-a >0,≥1,解得1≤a <2,即a ∈[1,2).(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是__________.答案解析当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =f (2)=log a (8-2a )>1,且8-2a >0,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (1)=log a (8-a )>1,且8-2a >0.∴a >4,且a<4,故不存在.综上可知,实数a比较指数式、对数式的大小例4(1)(2019·天津市河西区模拟)设a =log 3e ,b =e 1.5,c =131log 4,则()A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案D 解析c =131log 4=log 34>log 3e =a .又c =log 34<log 39=2,b =e 1.5>2,∴a <c <b .(2)(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则()A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b答案B解析∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab<1,∴ab <a +b <0.(3)已知函数y =f (x +2)的图象关于直线x =-2对称,且当x ∈(0,+∞)时,f (x )=|log 2x |,若a =f (-3),b =fc =f (2),则a ,b ,c 的大小关系是________.答案c <a <b解析易知y =f (x )是偶函数.当x ∈(0,+∞)时,f (x )=f |log 2x |,且当x ∈[1,+∞)时,f (x )=log 2x 单调递增,又a =f (-3)=f (3),b =f f (4),所以c <a <b .思维升华(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.跟踪训练3(1)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是()A .a =b <cB .a =b >cC .a <b <cD .a >b >c答案B解析因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1,所以a =b >c .(2)(2019·天津市滨海新区模拟)已知函数f (x )=|x |,且a =f b =f c =f (2-1),则a ,b ,c 的大小关系为()A .a <c <bB .b <c <aC .c <a <bD .b <a <c答案A解析ln 32<ln e =12,log 23>12,∴log 23>12>ln 32.又f (x )是偶函数,在(0,+∞)上为增函数,∴ff f (log 23)=f ∴a <c <b .(3)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是()A .a <b <cB .b <a <cC .c <b <aD .a <c <b答案C解析根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0,可得c <b <a <1.故选C.1.(2019·泸州诊断)2lg 2-lg 125的值为()A .1B .2C .3D .4答案B解析2lg 2-lg 125=2lg 100=2,故选B.2.设0<a <1,则()A .log 2a >B .>C .log 2a <D .log 2a <答案B解析∵0<a <1,∴0<a 2<a <a <1,∴在A 中,log 2a =,故A 错误;在B 中,>,故B 正确;在C 中,log 2a >,故C 错误;在D 中,log 2a >,故D 错误.3.函数y =ln1|2x -3|的图象为()答案A解析易知2x -3≠0,即x ≠32,排除C ,D.当x >32时,函数为减函数;当x <32时,函数为增函数,所以选A.4.(2019·衡水中学调研卷)若0<a <1,则不等式1log a x >1的解是()A .x >aB .a <x <1C .x >1D .0<x <a答案B解析易得0<log a x <1,∴a <x <1.5.函数f (x )=12log (x 2-4)的单调递增区间为()A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案D解析函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )由y =12log t 与t =g (x )=x 2-4复合而成,又y =12log t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.6.(2020·长沙期末)已知函数f (x )2x ,x >0,x,x ≤0,且关于x 的方程f (x )-a =0有两个实根,则实数a 的取值范围为()A .(0,1]B .(0,1)C .[0,1]D .(0,+∞)答案A解析作出函数y =f (x )的图象(如图),欲使y =f (x )和直线y =a 有两个交点,则0<a ≤1.7.(多选)关于函数f (x )=ln1-x1+x,下列说法中正确的有()A .f (x )的定义域为(-∞,-1)∪(1,+∞)B .f (x )为奇函数C .f (x )在定义域上是增函数D .对任意x 1,x 2∈(-1,1),都有f (x 1)+f (x 2)=f 答案BD解析函数f (x )=ln 1-x1+x=其定义域满足(1-x )(1+x )>0,解得-1<x <1,∴定义域为{x |-1<x <1}.∴A 不对.由f (-x )=ln 1+x1-x=1=-ln1-x1+x=-f (x ),是奇函数,∴B 对.函数y =21+x -1在定义域内是减函数,根据复合函数的单调性,同增异减,∴f (x )在定义域内是减函数,C 不对.f (x 1)+f (x 2)=ln1-x 11+x 1+ln 1-x 21+x 2=f ∴D 对.8.(多选)已知函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列说法,其中正确的说法为()A .h (x )的图象关于原点对称B .h (x )的图象关于y 轴对称C .h (x )的最大值为0D .h (x )在区间(-1,1)上单调递增答案BC解析函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,∴f (x )=log 2x ,h (x )=log 2(1-|x |),为偶函数,不是奇函数,∴A 错误,B 正确;根据偶函数性质可知D 错误;∵1-|x |≤1,∴h (x )≤log 21=0,故C 正确.9.函数f (x )=log 2x ·(2x )的最小值为________.答案-14解析依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x 2x -14≥-14,当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14.10.(2020·深圳月考)设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.答案(0,1)解析由题意知,在(0,10)上,函数y =|lg x |的图象和直线y =c 有两个不同交点(如图),∴ab=1,0<c <lg 10=1,∴abc 的取值范围是(0,1).11.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求实数a 的值及f (x )的定义域;(2)求f (x )在区间0,32上的最大值.解(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.+x >0,-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在0,32上的最大值是f (1)=log 24=2.12.是否存在实数a ,使得f (x )=log a (ax 2-x )在区间[2,4]上是增函数?若存在,求出a 的范围;若不存在,说明理由.解设t=ax2-x=-1 4a.若f(x)在[2,4]上是增函数,<1,4,-4>0,2,2>0,解得a>1.∴存在实数a满足题意,即当a∈(1,+∞)时,f(x)在[2,4]上是增函数.13.已知函数f(x)=ln e xe-x,若fff1010(a+b),则a2+b2的最小值为()A.1B.2C.3D.4答案B解析∵f(x)+f(e-x)=2,∴ff…+f2020,∴1010(a+b)=2020,∴a+b=2.∴a2+b2≥(a+b)22=2,当且仅当a=b=1时取等号.14.若函数f(x)=log a(x2-x+2)在区间[0,2]上的最大值为2,则实数a=________.答案2解析令u(x)=x2-x+2,则u(x)在[0,2]上的最大值u(x)max=4,最小值u(x)min=74.当a>1时,y=log a u是增函数,f(x)max=log a4=2,得a=2;当0<a<1时,y=log a u是减函数,f(x)max=log a74=2,得a=72(舍去).故a=2. 15.(2019·福州模拟)已知函数f(x)=log a(2x-a)在区间12,23上恒有f(x)>0,则实数a的取值范围是()B.13,D.23,答案A解析当0<a <1时,函数f (x )在区间12,23上是减函数,所以log ,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间12,23上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 16.已知函数f (x )=lgx -1x +1.(1)计算:f (2020)+f (-2020);(2)对于x ∈[2,6],f (x )<lg m(x +1)(7-x )恒成立,求实数m 的取值范围.解(1)由x -1x +1>0,得x >1或x <-1.∴函数f (x )的定义域为{x |x >1或x <-1}.又f (x )+f (-x )=0,∴f (x )为奇函数.∴f (2020)+f (-2020)=0.(2)当x ∈[2,6]时,f (x )<lgm (x +1)(7-x )恒成立可化为x -11+x <m(x +1)(7-x )恒成立.即m >(x -1)(7-x )在[2,6]上恒成立.又当x ∈[2,6]时,(x -1)(7-x )=-x 2+8x -7=-(x -4)2+9.∴当x =4时,[(x -1)(7-x )]max =9,∴m >9.即实数m 的取值范围是(9,+∞).。