立体几何4
- 格式:doc
- 大小:216.50 KB
- 文档页数:6
第29练 空间向量解决立体几何问题两妙招——“选基底”与“建系”题型一 选好基底解决立体几何问题例1 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 夹角的余弦值.破题切入点 选好基底,将问题中涉及的向量用所选定的基底来线性表示,然后运算. (1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知:|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0. ∴MN ⊥AB ,同理可证MN ⊥CD . (2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=MN →2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)]=14×2a 2=a 22.∴|MN →|=22a ,∴MN 的长为22a . (3)解 设向量 AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2·cos 60°+a 2·cos 60°-12a 2·cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ =32a ·32a ·cos θ=a 22. ∴cos θ=23,∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 夹角的余弦值为23.题型二 建立空间直角坐标系解决立体几何问题例2 如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .破题切入点 建立空间直角坐标系后,使用向量共线的充要条件证明EF →∥AB →即可证明(1)问,第(2)问根据向量的垂直关系证明线线垂直,进而证明线面垂直,得出面面垂直.另外也可用选基底的方法来解决. 证明 方法一 (坐标法)以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立空间直角坐标系,如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),E (12,1,12),F (0,1,12),所以EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0), DC →=(1,0,0),AB →=(1,0,0). (1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB . 又AB ⊂平面P AB ,EF ⊄平面P AB , 所以EF ∥平面P AB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0, 所以AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,AP ⊂平面P AD ,AD ⊂平面P AD , 所以DC ⊥平面P AD . 因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC . 方法二 (选基底法)选取AB →、AD →、AP →作为空间向量的一组基底.(1)由于E 、F 分别是PC 、PD 的中点,所以EF →=12CD →=-12AB →,即EF →与AB →共线,EF ⊄面P AB ,AB ⊂面P AB , ∴EF ∥面P AB .(2)由于ABCD 为矩形,且P A ⊥面ABCD , ∴AP →·AD →=AP →·AB →=AB →·AD →=0. 所以有AB ⊥面P AD , 又AB →∥CD →,∴CD ⊥面P AD ,CD ⊂面PCD , 从而有平面P AD ⊥平面PDC . 题型三 综合应用问题例3 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.破题切入点 利用向量法建立空间直角坐标系,将几何问题进行转化;对于存在性问题可通过计算得结论. (1)证明以A 为原点,向量AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1), 故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.总结提高 (1)利用选基底的方法证明位置关系或求解空间角等问题时,首先要选好基底,再次解决问题时所用的方法要熟练掌握.(2)利用建系的方法来解决立体几何问题时类似于选基底的办法,关键是理清原理,然后寻求原理所需要的条件来解决.1.下列各组向量共面的是( ) A .a =(1,2,3),b =(3,0,2),c =(4,2,5) B .a =(1,0,0),b =(0,1,0),c =(0,0,1) C .a =(1,1,0),b =(1,0,1),c =(0,1,1) D .a =(1,1,1),b =(1,1,0),c =(1,0,1) 答案 A2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +c B.12a +12b +cC .-12a -12b +c D.12a -12b +c答案 A解析 显然BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=-12a +12b +c .3.如图,已知正三棱柱ABC —A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.答案 90°解析 方法一 延长A 1B 1至D ,使A 1B 1=B 1D ,则AB 1∥BD ,∠MBD 就是直线AB 1和BM 所成的角. 设三棱柱的各条棱长为2, 则BM =5,BD =22,C 1D 2=A 1D 2+A 1C 21-2A 1D ·A 1C 1cos 60°=16+4-2×4=12. DM 2=C 1D 2+C 1M 2=13,∴cos ∠DBM =BM 2+BD 2-DM 22·BM ·BD =0,∴∠DBM =90°.方法二 不妨设棱长为2,选择基向量{BA →,BC →,BB 1→}, 则AB 1→=BB 1→-BA →,BM →=BC →+12BB 1→,cos 〈AB 1→,BM →〉=(BB 1→-BA →)·(BC →+12BB 1→)22·5=0-2+2+022·5=0,故填写90°.4.P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 答案 90° 解析不妨设PM =a ,PN =b ,如图,作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.5.如图所示,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO 、BO 、CO 两两垂直; (2)求〈DM →,AO →〉.(1)证明 设VA →=a ,VB →=b ,VC →=c , 正四面体的棱长为1,则VD →=13(a +b +c ),AO →=16(b +c -5a ),BO →=16(a +c -5b ),CO →=16(a +b -5c ),∴AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2) =136(18×1×1·cos 60°-9)=0. ∴AO →⊥BO →,∴AO ⊥BO , 同理AO ⊥CO ,BO ⊥CO , ∴AO 、BO 、CO 两两垂直.(2)解 DM →=DV →+VM →=-13(a +b +c )+12c=16(-2a -2b +c ). ∴|DM →|= [16(-2a -2b +c )]2=12, |AO →|=[16(b +c -5a )]2=22, DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14,∴cos 〈DM →,AO →〉=1412·22=22,∵〈DM →,AO →〉∈[0,π],∴〈DM →,AO →〉=45°.6.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值. 解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.(1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66. 7.(2014·课标全国Ⅰ)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值. (1)证明 连接BC 1,交B 1C 于点O ,连接AO . 因为侧面BB 1C 1C 为菱形, 所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点. 又AB ⊥B 1C ,AB ∩BO =B , 所以B 1C ⊥平面ABO .由于AO ⊂平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1. (2)解因为AC ⊥AB 1, 且O 为B 1C 的中点,所以AO =CO .又因为AB =BC , 所以△BOA ≌△BOC ,故OA ⊥OB ,从而OA ,OB ,OB 1两两互相垂直.以O 为坐标原点,OB →、OB 1→、OA →的方向为x 轴、y 轴、z 轴的正方向,|OB →|为单位长,建立如图所示的空间直角坐标系O -xyz . 因为∠CBB 1=60°, 所以△CBB 1为等边三角形. 又AB =BC ,OC =OA ,则A (0,0,33),B (1,0,0),B 1(0,33,0),C (0,-33,0),AB 1→=(0,33,-33),A 1B 1→=AB →=(1,0,-33),B 1C 1→=BC →=(-1,-33,0). 设n =(x ,y ,z )是平面AA 1B 1的法向量, 则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·A 1B 1→=0,即⎩⎨⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量,则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0.同理可取m =(1,-3,3). 则cos 〈n ,m 〉=n ·m |n ||m |=17.所以二面角A -A 1B 1-C 1的余弦值为17.8.(2014·山东)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值. (1)证明因为四边形ABCD 是等腰梯形, 且AB =2CD , 所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA . 连接AD 1,如图(1).。
1.与正方体ABCD —1111A B C D 的三条棱AB 、CC 1 、A 11D 所在直线的距离相等的点( )A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个答案:D解析:经验证线段1B D 上的点B,D,中点,四等分点均满足题意,故由排除法知应有无数个点.2.直三棱柱ABC —111A B C 中,若90BAC ∠=°1AB AC AA ,==,则异面直线1BA 与1AC 所成的角等于 ( )A.30°B.45°C.60°D.90° 答案:C解析:不妨设AB=AC=11AA =,建立空间直角坐标系如图所示,则B(0,-1,0),1(001)A ,,,A(0,0,0),1(101)C -,,,∴11(011)BA AC =,,,=u u u u u u u r u u u u u u u u r (-1,0,1).∴cos 111111BA AC BA AC BA AC ⋅,=||||u u u u u u u r u u u u u u u u r u u u u r u u u u r u u u u r u u u u r 11222==⨯. ∴1160BA AC ,=u r °. ∴异面直线1BA 与1AC 所成的角为60°.3.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是(把符合要求的命题序号都填上).答案:②解析:对于①的逆命题可举反例,如直线AB ∥CD,A B C D A B C D ,、、、没有三点共线但、、、四点共面;对于②的逆命题由异面直线定义知正确,故填②.4.若a 、b 是异面直线,在直线a 上有5个点,在直线b 上有4个点,则这9个点可确定平面的个数为 个.答案:9解析:直线a 上任一点与直线b 确定一平面,共5个,直线b 上任一点与直线a 确定一平面,共4个,一共9个.5.如图,三棱锥A —BCD 中E F G AB AC AD ,、、分别是侧棱、、上的点.AE AB AF AC AG AD ==且满足:::EFG BCD :.V V 求证∽证明:在△ABD 中,∵AE ∶AB=AG ∶AD,∴EG ∥BD.同理,GF ∥DC,EF ∥BC.又GEF ∠与DBC ∠方向相同.∴GEF DBC ∠=∠.同理EGF BDC ,∠=∠.∴△EFG ∽△BCD.题组一 共线、共面问题1.下列命题中正确的有几个?( )①若△ABC 在平面α外,它的三条边所在的直线分别交α于点P 、Q 、R,则P 、Q 、R 三点共线;②若三条直线a 、b 、c 互相平行且分别交直线l 于A 、B 、C 三点,则这四条直线共面;③空间中不共面的五个点一定能确定10个平面.A.0个B.1个C.2个D.3个答案:C解析:在①中,因为P 、Q 、R 三点既在平面ABC 上,又在平面α上,所以这三点必在平面ABC 与α的交线上,即P 、Q 、R 三点共线,故①正确;在②中,因为a ∥b,所以a 与b 确定一个平面α,而l 上有A 、B 两点在该平面上,所以l α⊂,即a 、b 、l 三线共面于α;同理a 、c 、l 三线也共面,不妨设为β,而α、β有两条公共的直线a 、l,∴α与β重合,即这四条直线共面,故②正确;在③中,不妨设其中四点共面,则它们最多只能确定7个平面,故③错.2.如图所示,ABCD —1111A B C D 是正方体,O 是11B D 的中点,直线1A C 交平面11AB D 于点M,则下列结论正确的是 ( )A.A 、M 、O 三点共线B.A 、M 、O 、1A 不共面C.A 、M 、C 、O 不共面D.B 、1B 、O 、M 共面答案:A解析:连接11AC AC ,,则11A C ∥AC,∴1A 、1C 、C 、A 四点共面. ∴1AC ⊂平面11ACC A . ∵1M AC ∈,∴M ∈平面11ACC A .又M ∈平面11AB D ,∴M 在平面11ACC A 与平面11AB D 的交线上,同理O 也在平面11ACC A 与平面11AB D 的交线上,∴A 、M 、O 三点共线.3.在空间四边形ABCD 的边AB BC CD DA E F G H EF HG M ,,、、、上分别取、、、四点如果与交于点那么( )A.M 一定在直线AC 上B.M 一定在直线BD 上C.M 可能在直线AC 上,也可能在直线BD 上D.M 既不在直线AC 上,也不在直线BD 上答案:A解析:平面ABC ⋂平面ACD AC M =,∈平面ABC M ,∈平面ACD,从而M AC ∈.4.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中,使三条直线共面的充分条件有 .(把符合要求的条件序号都填上)答案:①④解析:①中两直线相交确定平面,由于第三条直线不过前两条直线的交点且又分别与它们都相交,所以第三条直线也在这个平面内.②中可能有直线和平面平行.③中直线最多可确定3个平面.④两条平行线确定一个平面,第三条直线与它们都相交,所以第三条直线也在这个平面内.5.如图,在四边形ABCD 中,已知AB ∥CD,直线AB 、BC 、AD 、CD 与平面α相交于点E 、G 、H 、F.求证:E 、F 、G 、H 四点共线.证明:∵AB ∥CD,∴直线AB 、CD 确定一个平面β.∵E 是直线AB 上一点,∴E β∈,又E α∈,E 是平面α与β的一个公共点.同理可证F 、G 、H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴E 、F 、G 、H 四点共线.题组二 异面直线6.到两互相垂直的异面直线的距离相等的点… ( )A.只有1个B.恰有3个C.恰有4个D.有无穷多个答案:D解析:放在正方体中研究,显然,线段1OO 、EF 、FG 、GH 、HE 的中点到两垂直异面直线AB 、CD 的距离都相等,所以排除A 、B 、C,选D.7.如图,正方体1AC 中,E 、F 分别是线段BC 、1CD 的中点,则直线1A B 与直线EF 的位置关系是( )A.相交B.异面C.平行D.垂直答案:A解析:如题图所示,直线1A B 与直线1CD 平行,所以确定一个平面11A BCD ,显然EF ⊂平面11A BCD ,直线EF 与1CD 相交1A B ,∥1CD ,所以1A B 与EF 相交.8.如图,长方体1111ABCD A B C D -中,12AA AB AD ==,=1,点E 、F 、G 分别是1DD 、AB 、1CC 的中点.求异面直线1A E 与GF 所成角的大小.解:连接1B G EG ,,由于E 、G 分别是1DD 和1CC 的中点,∴EG C 11D ,而11C D A 11B ,∴EG A 11B ,∴四边形11EGB A 是平行四边形.∴1A E ∥1B G ,从而1B GF ∠为异面直线1A E 与GF 所成的角,连接1B F ,易求得11325FG BG B F =,=,=, ∵22211FG B G B F +=,∴190B GF ∠=°,即异面直线1A E 与GF 所成的角为90°.题组三 综合问题9.在正方体ABCD —1111A B C D 的侧面1AB 内有一动点P 到直线11A B 与直线BC 的距离相等,则动点P 所在曲线的形状为( )答案:C解析:动点P 到定点B 的距离也就是P 到直线BC 的距离,它等于到直线11A B 的距离,所以动点P 的轨迹是以B 为焦点,以11A B 为准线的过A 的抛物线的一部分.10.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为 ( )A.AC BD ⊥B.AC ∥截面PQMNC.AC=BDD.异面直线PM 与BD 所成的角为45°答案:C解析:由PQ ∥AC,QM ∥BD PQ QM ,⊥可得AC BD ⊥,故A 正确;由PQ ∥AC 可得AC ∥截面PQMN,故B 正确;异面直线PM 与BD 所成的角等于PM 与PN 所成的角,故D 正确;综上C 是错误的,故选C.11.已知正方体ABCD —1111A B C D 中,E 是对角线1AB 上一点,且113AE AB F =,是对角线BD 上一点且13BF BD =.求证:E 、F 、C 、1A 四点共面. 证明:∵113AE AB =,延长1A E 与AB 交于G,则12111AG AE A B EB ==,即12AG AB =, ∴∶GA=1∶1.同理延长CF 与AB 交于G′,则′∶G′A=1∶1.∴G 与G′重合,即直线1A E 与CF 相交于G,从而确定一个平面.∴E 、F 、C 、1A 四点共面.12.如图所示,三棱锥P-ABC 中PA ,⊥平面60ABC BAC ,∠=°,PA=AB=AC=2,E 是PC 的中点.(1)求证AE 与PB 是异面直线.(2)求三棱锥A-EBC 的体积.解:(1)证明:假设AE 与PB 共面,设平面为α,∵A B E ααα∈,∈,∈,∴平面α即为平面ABE,∴P ∈平面ABE,这与P ∉平面ABE 矛盾,所以直线AE 与PB 是异面直线.(2)∵PA ⊥平面ABC,E 是PC 的中点,∴E 到平面ABC 的距离112h PA ==. ∵△ABC 中60BAC ,∠=°,AB=AC=2,∴△ABC 的面积12ABC S AB AC =⨯⨯⨯V sin BAC ∠312232=⨯⨯⨯=. ∴三棱锥A —EBC 的体积,即三棱锥E —ABC 的体积为3111333ABC hS =⨯⨯=V .。
立体几何四个重要模型广州市第六十五中学朱星如模型1:在棱长为a 的正面体ABCD 中:1.求证它是一个正三棱锥。
证明:即证顶点A 在底面BCD 的中心H 的连线与底面垂直。
取BC 的中点E,BD 的中点F,连CF,DE 相交于点H,则H 是三角形BCD 的中心,且H 是CF,DE 的一个三等分点,连AH,由BC ⊥DE,BC ⊥AE,AE 交DE=E,AE,DE 的平面AED 内,得BC ⊥平面AED,由此得BC ⊥AH,即AH ⊥BC。
(1)同理:AH ⊥BD。
(2)由BC 交BD=B,BC,BD 在平面BCD 内及(1)(2)得:AH ⊥平面BCD。
所以四面体ABCD 是正三棱锥。
2.设E、F、S、T 分别是BC、BD、AD、AC 的中点,求证:四边形EFST 是正方形。
证明:由于E、F、S、T 分别是BC、BD、AD、AC 的中点,故有ST 12DC EF,ST EF,所四边形EFST 是平行四边形。
同理:SF 12AB TE ,DC=AB ,所以四边形EFST 是菱形。
仿题1可证DC ⊥平面ABH,故DC ⊥AB,故有四边形EFST 是正方形。
注;由此可得到相对的两棱所成角为90o 。
3.设E、S 分别是BC、AD 的中点,求证:ES ⊥BC,ES ⊥AD,并求ES 的长。
证明:可证BC ⊥平面AED,从而BC ⊥ES;可得AD ⊥平面BCS,从而AD ⊥ES。
在直角三角形SBE 中,SB=32a,BE=12a,从而,2222ES SB BE =-=4.求任何一条棱与它相交的面所成角的正弦值。
解:只要求AB 与平面BCD 所成的角。
AH ⊥平面BCD,∴AB 与平面BCD 所成的角是ABH ∠。
22333323BH DE ==⨯=,在直角三角形ABH 中,2263AH AB BH =-=,故6sin 3AH ABH AB ∠==。
5.求相邻两个面的夹角的余弦值。
解:只要求二面角A-BD-C 的平面的余弦值。
垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。
立体几何小题常考题型4核心考点:以立体几何为载体的情境题【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例1.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是()A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a>>>【答案】B【解析】对于正四面体,其离散曲率为111(3)232a ππ=-⨯=,对于正八面体,其离散曲率为111(4)233b ππ=-⨯=,对于正十二面体,其离散曲率为1311(3)2510c ππ=-⨯=,对于正二十面体,其离散曲率为111(5)236d ππ=-⨯=,则111123610>>>,所以a b d c >>>.故选:B.例2.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π;②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是()A .①②B .①③C .②③D .①②③【答案】D【解析】①根据曲率的定义可得正方体在每个顶点的曲率为2322πππ-⨯=,故①正确;②由定义可得多面体的总曲率2π=⨯顶点数-各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为()254214ππππ⨯-⨯+⨯=,故②正确;③设每个面记为[]()1,i n i F ∈边形,则所有的面角和为()()1122222F Fi i i i n n F E F E Fππππππ==-=-=⋅-=-∑∑,根据定义可得该类多面体的总曲率()224V E F πππ--=为常数,故③正确.故选:D.例3.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于()A .32πB .24πC .18πD .16π【答案】D【解析】构造一个底面半径为2,高为3的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为()03h h ≤≤时,小圆锥底面半径为r ,则32h r=,23r h ∴=,故截面面积为:2449h ππ-,把y h =代入22149x y+=,即22149x h +=,解得:x =∴橄榄球形几何体的截面面积为22449x h πππ=-,由祖暅原理可得橄榄球形几何体的体积为:(2V V=圆柱V-圆锥1)24343163πππ⎛⎫=⨯⨯-⨯⨯= ⎪⎝⎭.故选:D.例4.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为()A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒【答案】D【解析】由题可知,天安门广场的太阳高度角()9039542750533θδδ''''''=︒-︒-=︒+,由华表的高和影长相等可知45θ=︒,所以45505335533δ''''''=︒-︒=-︒.所以该天太阳直射纬度为南纬5533'''︒,故选:D.核心考点:翻折问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例5.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是()A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 的体积的最大是33【答案】C【解析】如图所示,取BD 的中点M ,连接,PM CMBCD △是以BD 为斜边的等腰直角三角形,BD CM ∴⊥ABD △为等边三角形,BD PM∴⊥BD ∴⊥面PMC ,BD PC ∴⊥,故A 正确对于B ,假设DP BC ⊥,又BC CD⊥BC ∴⊥面PCD ,BC PC ∴⊥,又2,2PB BC ==2331PC ⎤⎦,故DP 与BC 可能垂直,故B 正确当面PBD ⊥面BCD 时,此时PM ⊥面BCD ,PDB ∠即为直线DP 与平面BCD 所成角此时60PDB ︒∠=,故C 错误当面PBD ⊥面BCD 时,此时四面体PBCD 的体积最大,此时的体积为:1113(22)33323BCD V S PM ==⨯⨯⨯⨯=,故D 正确故选:C例6.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得AB CE ^,则x 的取值范围是()A .0x <≤B .0x <C .01x <≤D .0x ≤<【答案】A【解析】如图示,设1A 处为ABD △沿BD 翻折后的位置,以D 为坐标原点,DA,DC 分别为x,y 轴,过点D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则1(1,0,0),(1,,0),(,0,,0),(,,0)22xA B x C x E ,设1(,,)A a b c ,由于1||1A D =,故2221a b c ++=,而111(1,,),(,,),(,,0)22xBA a b x c DA a b c CE =--==- ,由于AB AD ⊥,故11BA DA ⊥ ,则211(1)()0BA DA a a b b x c ⋅=-+-+= ,即1bx a =-;又由在翻折过程中存在某个位置,便得AB CE ^,不妨假设1BA CE ⊥,则11(1)()022xBA CE a b x ⋅=---= ,即210x bx a -+-=,即212(1)x bx a a =+-=-,当将ABD △翻折到如图A BD ' 位置时,A BD ' 位于平面ABCD 内,不妨假设此时BA CE '⊥,设垂足为G,作A F '⊥AD 的延长线,垂足为F ,此时在x 轴负半轴上方向上,DF 的长最大,a 取最小值,由于90BA D '∠= ,故EG A D '∥,所以BEG BDA BDA '∠=∠=∠,而BEG AED ∠=∠,故AED BDA EDA ∠=∠=∠,又AE AD =,故AED △为正三角形,则60,60EDA BDA FDA ''∠=∴∠=∠= ,而1A D '=,故12DF =,则12a ≥-,故22(1)3x a =-≤,0x >,则x ≤,故x 的取值范围是,故选:A例7.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是()A .B 、E 、C 、F 四点一定共面B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交D .三棱锥B ADC -的体积为定值【答案】B【解析】A.假设B 、E 、C 、F 四点共面,则直线EC 与BF 共面,若EC 与BF 平行,又EC 与AD 平行,则AD 与BF 平行,这与AD 与BF 相交矛盾;若EC 与BF 相交,设交点为Q ,则Q 即在平面BAD 内,又在平面AECD 内,则点Q 在交线AD 上,这与EC 与AD 平行矛盾,所以假设不成立,所以B 、E 、C 、F 不共面,故错误;B.如图所示:在AD 上取点G ,使得AG =EC ,当DF DGFB AG=时,//FG AB ,又FG ⊄平面BAE ,AB ⊂平面BAE ,所以//FG 平面BAE ,同理//CG 平面BAE ,又FG CG G = ,所以平面//CFG 平面BAE ,则CF ∥平面BAE ,故存在点F ,使得CF ∥平面BAE ,故正确;C.设侧面BEC 与侧面BAD 的交线为l ,因为//EC AD ,且EC ⊄面BAD ,AD ⊂面BAD ,所以//EC 面BAD ,则//EC l ,所以AD //l ,故错误;D.因为二面角B AE D --为直二面角,当点E 移动时,点B 到AE 的距离即三棱锥-B ADC 的高变化,而ADC S △是定值,故三棱锥-B ADC 的体积不是定值,故错误;故选:B例8.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则()A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【答案】A【解析】由题意可知,不妨设2AB BC CD ===,则1,3AD CD ==如图所示,取点E ,F 分别为AB ,BC 的中点,连结AF ,DE ,设G 为DE 与AF 的交点,DE 与AC 的交于点H .所以1,3AD CD ''=13BD '<<,则旋转过程中,点D ¢在平面ABC 上的投影在DE 上.当点D ¢的投影为点G 时,则BD CD ''=;当点D ¢的投影在DG 上时,则BD CD ''>;当点D ¢的投影在GE 上时,则BD CD ''<;当点D ¢投影为点E 时,则AD BD ''=.故要使AD BD CD '''<<,则点D ¢的投影在点G ,E 两点之间,此时投影点到AB ,BC ,CD 的距离为AB CA BCd d d <<所以二面角D AB C '﹣﹣最大,其次为二面角D AC B '﹣﹣,而二面角D BC A '﹣﹣最小,故αγβ>>;设三棱锥D ABC '-的高为h.则123sin ,sin ,sin h h h D A D B D Cθθθ==='''.因为AD BD CD '''<<,所以123sin sin sin θθθ>>.因为123,,0,2πθθθ⎡⎤∈⎢⎥⎣⎦,所以123θθθ>>故选:A.。
第四讲:空间中的垂直(二)面面垂直与垂直综合一,知识点1,定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
二面角:两个半平面相交,若第三个平面垂直于他们的交线,且分别和两个平面有交线a,b ,则a,b,所成的角就是二个平面所成的角,简称二面角。
2,判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。
l l βαβα⊥⇒⊥⊂⎫⎬⎭(只需在一个平面内找到另一个平面的垂线就可证明面面垂直) 3,性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。
m l l l m αβαββα⊥=⇒⊥⊂⊥⎫⎪⎪⎬⎪⎪⎭4,证明两直线垂直和主要方法:①利用勾股定理证明两相交直线垂直;②利用等腰三角形三线合一证明两相交直线垂直;③利用线面垂直的定义证明(特别是证明异面直线垂直); ④利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,“线斜垂”)三垂线定理及其逆定理是对线面垂直的判定和性质的综合运用的简化④利用圆中直径所对的圆周角是直角,此外还有正方形、菱形对角线互相垂直等结论。
二,典型例题例1,设α、β、γ为平面,m 、n 、l 为直线,则m ⊥β的一个充分条件是( ) A .α⊥β,α∩β=l ,m ⊥l B .α∩γ=m ,α⊥γ,β⊥γ C .α⊥γ,β⊥γ,m ⊥α D .n ⊥α,n ⊥β,m ⊥α 【练习】已知m ,n ,l 为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A .α∥β,m ⊂α,n ⊂β⇒m ∥n B .l ⊥β,α⊥β⇒l ∥α C .m ⊥α,m ⊥n ⇒n ∥α D .α∥β,l ⊥α⇒l ⊥βa 斜影线αPO A ,PO OA PA a PA a a OA ααα⊥⇒⇒⊥⊂⊥⇒⎫⎬⎭图线线线如:是在平面上的射影 又直且即:影垂直斜垂直,反之也成立。
例2,已知直线l ⊥平面α,有以下几个判断: ①若m ⊥l ,则m ∥α,②若m ⊥α,则m ∥l ③若m ∥α,则m ⊥l ,④若m ∥l ,则m ⊥α, 上述判断中正确的是( )A .①②③B .②③④C .①③④D .①②④【练习】1、已知a 、b 是两条不重合的直线, α、β、γ是三个两两不重合的平面,给出下列四个命题:①若a ⊥α,a ⊥β,则α∥β; ②若α⊥γ,β⊥γ,则α∥β;③α∥β,a ⊂α,b ⊂β,则a ∥b ; ④若α∥β,α∩γ=a , β∩γ=b ,则a ∥b . 其中正确命题的序号是 2、设m 、n 是两条不同的直线,α、β是两个不同的平面.则下列命题中正确的是___________ ①m ⊥α,n ⊂β,m ⊥n ⇒α⊥β ②α∥β,m ⊥α,n ∥β⇒m ⊥n ③α⊥β,m ⊥α,n ∥β⇒m ⊥n ④α⊥β,α∩β=m ,n ⊥m ⇒n ⊥β点金秘笈:此类题目,主要考察在线面位置关系基础上的判定和性质定理,要求有一定的空间想象能力和逻辑推理能力。
立体几何四 直线、平面垂直的判定及其性质[考试要求]1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直.(2)判定定理与性质定理文字语言 图形语言符号语言判定 定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎬⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质 定理垂直于同一个平面的两条直线平行⎭⎬⎫a ⊥αb ⊥α⇒a ∥b (1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)范围:⎣⎢⎡⎦⎥⎤0,π2. 3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)范围:[0,π].4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎬⎫l⊥αl⊂β⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎬⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α[常用结论]直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)垂直于同一个平面的两平面平行.()(2)若α⊥β,a⊥β⇒a∥α.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()[答案](1)×(2)×(3) ×(4)×二、教材习题衍生1.下列命题中错误的是()A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γA[A错误,l与β可能平行或相交,其余选项均正确.]2.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S-EFG中必有()A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面A[四面体S-EFG如图所示:由SG⊥GE,SG⊥GF.且GE∩GF=G得SG⊥△EFG所在的平面.故选A.]3.如图所示,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.4[∵P A⊥平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC,则△P AB,△P AC为直角三角形.由BC⊥AC,且AC∩P A=A,∴BC⊥平面P AC,从而BC⊥PC.因此△ABC,△PBC也是直角三角形.]考点一直线与平面垂直的判定与性质判定线面垂直的四种方法[典例1](1)(2019·北京高考)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________.(2)如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=13DB,点C为圆O上一点,且BC=3AC,PD⊥平面ABC,PD=DB.求证:P A⊥CD.(1)②③⇒①或①③⇒②[(1)已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②.](2)[证明]因为AB为圆O的直径,所以AC⊥CB,在Rt△ACB中,由3AC =BC,得∠ABC=30°.设AD=1,由3AD=DB,得DB=3,BC=23,由余弦定理得CD2=DB2+BC2-2DB·BC cos 30°=3,所以CD2+DB2=BC2,即CD⊥AB.因为PD⊥平面ABC,CD⊂平面ABC,所以PD⊥CD,由PD∩AB=D,得CD⊥平面P AB,又P A⊂平面P AB,所以P A⊥CD.点评:通过本例(2)的训练我们发现:判定定理与性质定理的合理转化是证明线面垂直的基本思想;另外,在解题中要重视平面几何知识,特别是正余弦定理及勾股定理的应用.[跟进训练]如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是CC1上一点.当CF=2时,证明:B1F⊥平面ADF.[证明]因为AB=AC,D是BC的中点,所以AD⊥BC.在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.法一:在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.法二:在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2= 5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2= 5.显然DF 2+B 1F 2=B 1D 2, 所以∠B 1FD =90°.所以B 1F ⊥FD .因为AD ∩FD =D ,AD ,FD ⊂平面ADF , 所以B 1F ⊥平面ADF .考点二 面面垂直的判定与性质证明面面垂直的两种方法[典例2] (2020·雅安模拟)如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若∠CBA =60°,求三棱锥E -BCF 的体积. [解] (1)证明:在菱形ABCD 中,AC ⊥BD , ∵FD ⊥平面ABCD ,∴FD ⊥AC . 又∵BD ∩FD =D ,∴AC ⊥平面BDF . 而AC ⊂平面ACF ,∴平面ACF ⊥平面BDF . (2)取BC 的中点O ,连接EO ,OD , ∵△BCE 为正三角形,∴EO ⊥BC , ∵平面BCE ⊥平面ABCD 且交线为BC , ∴EO ⊥平面ABCD . ∵FD ⊥平面ABCD ,∴EO ∥FD ,得FD ∥平面BCE . ∴V E -BCF =V F -BCE =V D -BCE =V E -BCD .∵S △BCD =12×2×2×sin 120°=3,EO = 3. ∴V E -BCF=13S △BCD ×EO =13×3×3=1.点评:抓住面面垂直的性质,实现面面与线面及线线垂直间的转化是求解本题的关键,另外在第(2)问求解体积时等体积法的应用,是破题的另一要点,平时训练要注意灵活应用.[跟进训练](2020·广州模拟)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC,且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:平面MOC⊥平面VAB;(2)求三棱锥B-VAC的高.[解](1)证明:∵AC=BC,O 为AB的中点,∴OC⊥AB.∵平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,OC⊂平面ABC,∴OC⊥平面VAB.∵OC⊂平面MOC, ∴平面MOC⊥平面VAB.(2)在等腰直角△ACB中,AC=BC=2,∴AB=2,OC=1,∴等边△VAB的面积为S△VAB =12×22×sin 60°=3,又∵OC⊥平面VAB,∴OC⊥OM,在△AMC中,AM=1,AC=2,MC=2,∴S△AMC =12×1×72=74,∴S△VAC=2S△MAC=72,由三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,即13S△VAC·h=13S△VAB·OC, ∴h=3×172=2217,即三棱锥B-VAC的高为221 7.考点三平行与垂直的综合问题1.对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题.2.解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.探索性问题中的平行和垂直关系[典例3-1](2019·北京高考)如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面P AC;(2)若∠ABC=60°,求证:平面P AB⊥平面P AE;(3)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.[解](1)证明:因为P A⊥平面ABCD,所以P A⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又P A∩AC=A,所以BD⊥平面P AC.(2)证明:因为P A⊥平面ABCD,AE⊂平面ABCD,所以P A⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD,所以AB⊥AE.又AB∩P A=A,所以AE⊥平面P AB.因为AE⊂平面P AE,所以平面P AB⊥平面P AE.(3)棱PB上存在点F,使得CF∥平面P AE.取F为PB的中点,取G为P A的中点,连接CF,FG,EG.则FG∥AB,且FG=12AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面P AE,EG⊂平面P AE,所以CF∥平面P AE.点评:(1)处理空间中平行或垂直的探索性问题,一般先根据条件猜测点的位置,再给出证明.探索点存在问题,点多为中点或n等分点中的某一个,需根据相关的知识确定点的位置.(2)利用向量法,设出点的坐标,结论变条件,求出点的坐标,并指明点的位置.折叠问题中的平行与垂直关系[典例3-2](2018·全国卷Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.[解](1)证明:由已知可得,∠BAC=90°,即BA⊥AC.又BA⊥AD,AD∩AC=A,AD,AC⊂平面ACD,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3 2.又BP=DQ=23DA,所以BP=2 2.如图,过点Q作QE⊥AC,垂足为E,则QE∥DC且QE=13DC.由已知及(1)可得,DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-ABP的体积为V Q-ABP=13×S△ABP×QE=13×12×3×22sin 45°×1=1.点评:本例第(1)问是垂直关系证明问题,求解的关键是抓住“BA⊥AC”折叠过程中始终不变;本例第(2)问是计算问题,求解的关键是抓住“∠ACM=90°”折叠过程中始终不变.即折叠问题的处理可采用:不变的关系可在平面图形中处理,而对于变化的关系则要在立体图形中解决.[跟进训练]1.(2020·梧州模拟)如图,四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°C.CA′与平面A′BD所成的角为30°D.四面体A′-BCD的体积为1 3B[若A成立可得BD⊥A′D,产生矛盾,故A错误;由题设知:△BA′D 为等腰直角三角形,CD⊥平面A′BD,得BA′⊥平面A′CD,于是B正确;由CA′与平面A′BD所成的角为∠CA′D=45°知C错误;V A′-BCD=V C-A′BD=16,故D错误,故选B.]2.如图,直三棱柱ABC-A1B1C1中,D,E分别是棱BC,AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.(1)求证:C1E∥平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF? [解](1)证明:连接CE交AD于O,连接OF.因为CE,AD为△ABC的中线,则O为△ABC的重心,故CFCC1=COCE=23,故OF∥C1E,因为OF⊂平面ADF,C1E⊄平面ADF,所以C1E∥平面ADF.(2)当BM=1时,平面CAM⊥平面ADF.证明如下:因为AB=AC,D为BC的中点,故AD⊥BC.在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,BB1⊂平面B1BCC1,故平面B1BCC1⊥平面ABC.又平面B1BCC1∩平面ABC=BC,AD⊂平面ABC,所以AD⊥平面B1BCC1,又CM⊂平面B1BCC1,故AD⊥CM.又BM=1,BC=2,CD=1,FC=2,故Rt△CBM≌Rt△FCD.易证CM⊥DF,又DF∩AD=D,DF,AD⊂平面ADF,故CM⊥平面ADF.又CM⊂平面CAM,故平面CAM⊥平面ADF.。
第四讲-立体几何题型归类总结高中数学-立体几何第四讲立体几何题型归类总结一、考点分析基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
斜棱柱底面是正多边形的棱柱正棱柱直棱柱其他棱柱2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的垂线上,这样的棱锥叫做正棱锥。
3.球球的性质:球心与截面圆心的连线垂直于截面;r=R2-d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体、长方体、正方体等的内接与外切。
注:球的有关问题转化为圆的问题解决。
球面积、体积公式:S球=4πR,V球=4/3πR³(其中R为球的半径)二、平行垂直基础知识网络平行与垂直关系可互相转化平行关系a⊥α,b⊥α⇒a//ba⊥α,a//b⇒b⊥αa⊥α,a⊥β⇒α//βα//β,a⊥α⇒a⊥βα//β,γ⊥α⇒γ⊥β垂直关系线线平行判定线线垂直性质判定性质判定面面垂直定义面面垂直线面平行面面平行线面垂直异面直线所成的角,线面角,二面角的求法1.求异面直线所成的角θ∈(0°,90°):解题步骤:找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行;计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角度$\theta\in[0^\circ,90^\circ]$:关键在于找到“两足”:垂足和斜足。
解题步骤:1.找到斜线与其在平面内的射影的夹角(注意三垂线定理的应用);2.证明所找到的角度就是直线与平面所成的角度(或其补角)(常常需要证明线面垂直);3.通过解直角三角形,计算线面角度。
专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==60BAD ∠= .将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB '的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正233(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.题型二:线面距离及线面角问题1如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB AD CD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD.(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于45°,求二面角B -PC -D 的余弦值.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,23CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --33若存在,求出的CEEM值;若不存在,请说明理由.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.模拟尝试1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AAAB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,16AA =E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值6.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD 与平面ABCD 所成角的正切值433,求点E 到平面ACF 的距离.真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.。
四元正四面体摆法要点
一、四元正四面体的基本概念
四元正四面体,又称四面体,是由四个等边三角形组成的立体几何图形。
在每个面上,都有一个顶点与其他三个顶点相连,形成一个正四面体的结构。
这种独特的结构使其在力学、物理学等领域具有广泛的应用。
二、四元正四面体摆法的原理
四元正四面体摆法的原理是基于地球重力和物体摆动的规律。
当四个等边三角形组成一个四元正四面体时,摆动中心位于正四面体的重心。
在摆动过程中,重力会对摆动产生影响,使得摆动轨迹呈现出特定的规律。
三、四元正四面体摆法的操作步骤
1.准备工具:四元正四面体摆、支架、重物。
2.安装支架:根据实际情况选择合适的支架,确保支架稳定可靠。
3.悬挂四元正四面体:将四元正四面体摆的四个顶点分别悬挂在支架上,使其保持平衡。
4.调整摆动角度:根据需要调整四元正四面体的摆动角度,使其达到预期的摆动效果。
5.观察摆动规律:观察四元正四面体摆动过程中的轨迹,分析其与重力、摆动角度等因素的关系。
四、四元正四面体摆法的应用领域
1.物理学:研究物体在重力作用下的运动规律,为桥梁、建筑等工程结构的设计提供理论依据。
2.地球物理学:通过研究地球重力场,探测地下的矿产资源、地质构造等信息。
3.工程领域:在桥梁、塔架等工程结构中,利用四元正四面体摆法检测结构的稳定性和安全性。
五、总结与建议
四元正四面体摆法作为一种实用的摆动实验方法,在多个领域具有广泛的应用。
通过对四元正四面体的研究和实践,我们可以更好地了解物体在重力作用下的运动规律,为实际工程应用提供理论支持。
2015届高考数学立体几何4(基础及能力训练)14 1.如图,四棱锥P -ABCD中,ABCD为矩形,平面P AD⊥平面
(1)求证:AB⊥P D;(2)若∠BPC=90°,PB=2,PC=2,问AB为
何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC与平面
DPC夹角的余弦值
2.如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC =∠DBC=120°,E,F分别为AC,DC的中点.
(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.
3.如图,三棱柱ABC -A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
(1) 证明:AC=AB1;(2) 若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1C1的余弦值.
4.如图所示,在四棱锥P -ABCD中,P A⊥底面ABCD, AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F -AB -P的余弦值.
5.如图,在四棱锥A -BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2.
(1)证明:DE⊥平面ACD;
(2)求二面角B -AD -E的大小.
6.如图所示,四棱锥PABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,
AB=2,∠BAD=π
3,M为BC上一点,且BM=
1
2,MP⊥AP.
(1)求PO的长;(2)求二面角A-PM-C的正弦值.。
空间向量与立体几何(四)解析1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面的夹角为( ) A .60° B .120° C .60°或120° D .90° 答案 A解析 |cos 〈m ,n 〉|=|m ·n ||m ||n |=|-1|2·2=12,即〈m ,n 〉=60°.∴两平面所成角为60°. 2.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,E 为线段AA 1的中点,F 为线段C 1D 1上靠近D 1的三等分点,则异面直线A 1B 与EF 所成角的余弦值为( ) A.114 B.214 C.314 D.17 答案 B解析 如图,建立空间直角坐标系,则A 1(3,0,0),B (3,3,3), E ⎝⎛⎭⎫3,0,32,F (0,1,0),所以A 1B —→=(0,3,3),EF →=⎝⎛⎭⎫-3,1,-32, 所以|cos 〈A 1B —→,EF →〉|=⎪⎪⎪⎪⎪⎪⎪⎪A 1B —→·EF →||A 1B —→·|EF →|=⎪⎪⎪⎪⎪⎪3-9232×72=214. 3.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M 为棱CC 1的中点,则直线B 1M 与平面A 1D 1M 所成角的正弦值是( ) A.215 B.25C.35 D.45答案 B解析 建立如图所示的空间直角坐标系,则A 1(1,0,1),D 1(0,0,1), M ⎝⎛⎭⎫0,1,12,B 1(1,1,1),A 1D 1—→=(-1,0,0),D 1M —→=⎝⎛⎭⎫0,1,-12, MB 1→=⎝⎛⎭⎫1,0,12,设平面A 1D 1M 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧ A 1D 1—→·m =0,D 1M —→·m =0⇒⎩⎪⎨⎪⎧-x =0,y -12z =0,令y =1可得z =2,所以m =(0,1,2),设直线B 1M 与平面A 1D 1M 所成角为θ,sin θ=|m ·MB 1→||m |·|MB 1→|=15×52=25.4.在三棱锥P -ABC 中,PC ⊥底面ABC ,∠BAC =90°,AB =AC =4,∠PBC =45°,则点C 到平面P AB 的距离是( ) A.463 B.263 C.433 D.423答案 A解析 方法一 建立如图所示的空间直角坐标系, 则A (0,0,0),B (4,0,0),C (0,4,0),P (0,4,42), ∴AP →=(0,4,42),AB →=(4,0,0),PC →=(0,0,-42). 设平面P AB 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AP →=0,m ·AB →=0,即⎩⎨⎧4y +42z =0,4x =0,令y =2,则z =-1,∴m =(0,2,-1),∴点C 到平面P AB 的距离为|PC →·m ||m |=463.方法二 ∵PC ⊥底面ABC ,∴PC ⊥AB ,又AB ⊥AC ,且PC ∩AC =C ,PC ,AC ⊂平面P AC , ∴AB ⊥平面P AC ,∴AB ⊥P A ,∵AC =AB =4,∴BC =42,∴PC =42,PB =8, 在Rt △P AB 中,P A =82-42=43,令点C 到平面P AB 的距离为d ,∵V P -ABC =V C -P AB , ∴13×12×4×4×42=13×12×4×43×d ,∴d =463. 5.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B.277C.33D.24答案 A解析 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), 所以DC 1→=(0,3,1),D 1E —→=(1,1,-1),D 1C —→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E —→=0,n ·D 1C —→=0,即⎩⎪⎨⎪⎧ x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3).因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535.6.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的角的余弦值为( )A.12B.23C.33D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0),∴A 1D —→=(0,1,-1),A 1E —→=⎝⎛⎭⎫1,0,-12. 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),∴⎩⎪⎨⎪⎧ A 1D —→·n 1=0,A 1E —→·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2);∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23,即平面A 1ED 与平面ABCD 所成的角的余弦值为23.7.设A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),则点D 到平面ABC 的距离为________. 答案491717解析 设平面ABC 的法向量为n =(x ,y ,z ).∴n ·AB →=0,n ·AC →=0,∴⎩⎪⎨⎪⎧(x ,y ,z )·(2,-2,1)=0,(x ,y ,z )·(4,0,6)=0,即⎩⎪⎨⎪⎧2x -2y +z =0,4x +6z =0,∴⎩⎪⎨⎪⎧x =-32z ,y =-z .令z =-2,则n =(3,2,-2).又∵AD →=(-7,-7,7),∴点D 到平面ABC 的距离为d =|AD →·n ||n |=|3×(-7)+2×(-7)-2×7|32+22+(-2)2=4917=491717.8.已知四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,P A =PD =5,平面ABCD ⊥平面P AD ,M 是PC 的中点,O 是AD 的中点,则直线BM 与平面PCO 所成角的正弦值是___________. 答案88585解析 以O 为原点,OA 为x 轴,过O 作AB 的平行线为y 轴,OP 为z 轴, 建立空间直角坐标系,则B (1,2,0),P (0,0,2),C (-1,2,0),M ⎝⎛⎭⎫-12,1,1,O (0,0,0), OP →=(0,0,2),OC →=(-1,2,0),BM →=⎝⎛⎭⎫-32,-1,1, 设平面PCO 的法向量m =(x ,y ,z ),⎩⎪⎨⎪⎧m ·OP →=2z =0,m ·OC →=-x +2y =0,可得m =(2,1,0),设直线BM 与平面PCO 所成角为θ,则sin θ=|cos 〈m ,BM →〉|=|m ·BM →||m ||BM →|=45×174=88585. 9.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,F 是DD 1的中点. (1)求证:CF ∥平面A 1DE ;(2)求平面A 1DE 与平面A 1DA 夹角的余弦值.(1)证明 分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系, 则 A 1(2,0,2),E (1,2,0),D (0,0,0),C (0,2,0),F (0,0,1),则DA 1→=(2,0,2),DE →=(1,2,0),CF →=(0,-2,1),设平面A 1DE 的法向量n =(a ,b ,c ), 则⎩⎪⎨⎪⎧n ·DA 1→=2a +2c =0,n ·DE →=a +2b =0,取n =(-2,1,2),∴CF →·n =(0,-2,1)·(-2,1,2)=0,又CF ⊄平面A 1DE ,∴CF ∥平面A 1DE . (2)解 DC →=(0,2,0)是平面A 1DA 的法向量, ∴cos 〈n ,DC →〉=(-2,1,2)·(0,2,0)(-2)2+12+22·0+22+0=13,即平面A 1DE 与平面A 1DA 夹角的余弦值为13.10.如图,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M 分别为CE ,AB 的中点.(1)求异面直线AB 与CE 所成角的大小; (2)求直线CD 与平面ODM 所成角的正弦值. 解 (1)∵DB ⊥BA ,平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB ⊂平面ABDE ,∴DB ⊥平面ABC . ∵BD ∥AE ,∴EA ⊥平面ABC .如图所示,以C 为坐标原点,分别以CA ,CB 所在直线为x ,y 轴,以过点C 且与EA 平行的直线为z 轴,建立空间直角坐标系.∵AC =BC =4,∴C (0,0,0),A (4,0,0),B (0,4,0),E (4,0,4),∴AB →=(-4,4,0),CE →=(4,0,4).∴cos 〈AB →,CE →〉=-1642×42=-12,∴异面直线AB 与CE 所成角的大小为π3.(2)由(1)知O (2,0,2),D (0,4,2),M (2,2,0), ∴CD →=(0,4,2),OD →=(-2,4,0),MD →=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ⊥OD →,n ⊥MD →,可得⎩⎪⎨⎪⎧-2x +4y =0,-2x +2y +2z =0,令x =2,则y =1,z =1,∴n =(2,1,1).设直线CD 与平面ODM 所成的角为θ,则sin θ=|cos 〈n ,CD →〉|=⎪⎪⎪⎪⎪⎪n ·CD →|n ||CD →|=3010,∴直线CD 与平面ODM 所成角的正弦值为3010. 11.如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线B 1C 与EF 所成角最小时,其余弦值为( ) A .0 B.12 C.105D.1116答案 C解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 在正方体ABCD -A 1B 1C 1D 1中,点E 为线段AB 的中点,设正方体棱长为2, 则D (0,0,0),E (2,1,0),B 1(2,2,2),C (0,2,0),B 1C —→=(-2,0,-2),设F (m,0,0)(0≤m ≤2),EF →=(m -2,-1,0),设异面直线B 1C 与EF 的夹角为θ,则cos θ=|EF →·B 1C —→||EF →|·|B 1C —→|=|-2×(m -2)|22·(m -2)2+1=12·1(m -2)2+1,异面直线B 1C 与EF 所成角最小时,则cos θ最大,即m =0时,cos θ=12·14+1=210=105.12.如图,正三棱柱ABC -A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________. 答案 35解析 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB , 分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系 则B 1(0,3,2),F (1,0,1),E ⎝⎛⎭⎫12,32,0,G (0,0,2),B 1F —→=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1).设平面GEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F —→〉|=|1-3-1|5×5=35,所以B 1F 与平面GEF 所成角的正弦值为35.13.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为2,直线CC 1与平面ACD 1所成角的正弦值为13,则正四棱柱的高为________.答案 4解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设DD 1=a ,则A (2,0,0),C (0,2,0),D 1(0,0,a ), 故AC →=(-2,2,0),AD 1→=(-2,0,a ),CC 1→=(0,0,a ), 设平面ACD 1的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=-2x +2y =0,n ·AD →1=-2x +az =0,可取n =⎝⎛⎭⎫1,1,2a , 故cos 〈n ,CC 1→〉=n ·CC →1|n ||CC 1→|=2a ·4a 2+2=22a 2+4, 又直线CC 1与平面ACD 1所成角的正弦值为13,∴22a 2+4=13,解得a =4.14.设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B =λ.当∠APC为锐角时,λ的取值范围是________. 答案 ⎣⎡⎭⎫0,13 解析 建立如图所示的空间直角坐标系,则A (1,0,0),C (0,1,0),B (1,1,0),D 1(0,0,1),由D 1PD 1B=λ得P (λ,λ,1-λ),则P A →=(1-λ,-λ,λ-1),PC →=(-λ,1-λ,λ-1),因为∠APC 为锐角, 所以P A →·PC →=(1-λ,-λ,λ-1)·(-λ,1-λ,λ-1)=(λ-1)(3λ-1)>0,解得λ<13或λ>1,又因为动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,所以λ的取值范围为0≤λ<13.15.如图,在正方体ABCD -A 1B 1C 1D 1中,E 为线段AA 1上的一个动点,F 为线段B 1C 1上的一个动点,则平面EFB 与底面ABCD 所成的角的余弦值的取值范围是( ) A.⎣⎡⎦⎤0,22 B.⎣⎡⎦⎤33,22 C.⎣⎡⎦⎤0,33 D.⎣⎡⎦⎤0,55 答案 A解析 设平面EFB 与底面ABCD 所成的角为θ,如图所示,建立空间直角坐标系,设正方体的棱长为1,AE =m ,FC 1=n ,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),E (1,0,m ),F (n,1,1).BE →=(0,-1,m ),BF →=(n -1,0,1), 设平面EFB 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-y +mz =0,(n -1)x +z =0, 取x =-1,则平面EFB 的法向量为(-1,m (n -1),n -1),而底面ABCD 的一个法向量为(0,0,1),则cos θ=|n -1|1+m 2(n -1)2+(n -1)2,结合选项,当n =1时,cos θ=0,当n ≠1时,cos θ=11(1-n )2+m 2+1∈⎝⎛⎦⎤0,22,故cos θ∈⎣⎡⎦⎤0,22. 16.如图,已知在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动. (1)求证:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E 使得AD 1与平面D 1EC 所成的角为π6?若存在,求出AE 的长,若不存在,说明理由.(1)证明 ∵AE ⊥平面AA 1D 1D ,A 1D ⊂平面AA 1D 1D ,∴AE ⊥A 1D . ∵在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,∴A 1D ⊥AD 1.∵AE ∩AD 1=A ,∴A 1D ⊥平面AED 1. ∵D 1E ⊂平面AED 1,∴D 1E ⊥A 1D .(2)解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设棱AB 上存在点E (1,t,0)(0≤t ≤2),使得AD 1与平面D 1EC 所成的角为π6,A (1,0,0),D 1(0,0,1),C (0,2,0),AD 1→=(-1,0,1),CD 1→=(0,-2,1),CE →=(1,t -2,0), 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD 1→=-2y +z =0,n ·CE →=x +(t -2)y =0,取y =1,得n =(2-t,1,2),∴sin π6=|AD 1→·n ||AD 1→||n |=|t -2+2|2×(t -2)2+5,整理,得t 2+4t -9=0, 解得t =13-2或t =-2-13(舍去),∴在棱AB 上存在点E 使得AD 1与平面D 1EC 所成的角为π6,此时AE =13-2.。
[课堂练通考点]1.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0B.1C.2 D.3解析:选A对于①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①不正确;对于②,若a∥b,a∥α,则应有b∥α或b⊂α,因此②不正确;对于③,若a∥α,b∥α,则应有a ∥b或a与b相交或a与b异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.2.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③B.②③C.①④D.②④解析:选C对于图形①,平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP;对于图形④,AB∥PN,即可得到AB∥平面MNP;图形②③无论用定义还是判定定理都无法证明线面平行,故选C.3.(2014·济南模拟)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 若α∩β=l ,a ∥l ,a ⊄α,a ⊄β,则a ∥α,a ∥β,故排除A.若α∩β=l ,a ⊂α,a ∥l ,则a ∥β,故排除B .若α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l ,则a ∥β,b ∥α,故排除C.故选D.4.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.解析:连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB=12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 答案:平面ABC 、平面ABD5.如图,在三棱柱ABC -A1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面;(2)平面EF A 1∥平面BCHG .证明:(1)∵GH 是△A 1B 1C 1的中位线,∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC .∴B ,C ,H ,G 四点共面.(2)∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC .∵EF ⊄平面BCHG ,BC ⊂平面BCHG ,∴EF ∥平面BCHG .∵A 1G 綊EB ,∴四边形A 1EBG 是平行四边形.∴A 1E ∥GB .∵A 1E ⊄平面BCHG ,GB ⊂平面BCHG .∴A 1E ∥平面BCHG .∵A 1E ∩EF =E ,∴平面EF A 1∥平面BCHG .[课下提升考能]第Ⅰ组:全员必做题1.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析:选A当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.2.(2014·石家庄模拟)已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b ⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.可以推出α∥β的是()A.①③B.②④C.①④D.②③解析:选C对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.3.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,不一定在平面α内D.有无数条,一定在平面α内解析:选B由直线l与点P可确定一个平面β,则平面α,β有公共点,因此它们有一条公共直线,设该公共直线为m,因为l∥α,所以l∥m,故过点P且平行于直线l的直线只有一条,且在平面α内,选B.4.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,则下列命题中,错误的是()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°解析:选C由题意可知PQ∥AC,QM∥BD,PQ⊥QM,所以AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故B正确;由PN∥BD可知,异面直线PM与BD所成的角等于PM与PN所成的角,又四边形PQMN为正方形,所以∠MPN=45°,故D正确;而AC =BD没有论证来源.5.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是()A.MC⊥ANB.GB∥平面AMNC .平面CMN ⊥平面AMND .平面DCM ∥平面ABN解析:选C 显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),作AN 的中点H ,连接HB ,MH ,GB ,则MC ∥HB ,又HB ⊥AN ,所以MC ⊥AN ,所以A 正确;由题意易得GB ∥MH ,又GB ⊂平面AMN ,MH ⊂平面AMN ,所以GB ∥平面AMN ,所以B 正确;因为AB ∥CD ,DM ∥BN ,且AB ∩BN =B ,CD ∩DM =D ,所以平面DCM ∥平面ABN ,所以D 正确.6.(2013·惠州调研)已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有________.①若m ∥α,n ∥α,则m ∥n ;②若α⊥γ,β⊥γ,则α∥β;③若m ∥α,m ∥β,则α∥β;④若m ⊥α,n ⊥α,则m ∥n .解析:若m ∥α,n ∥α,m ,n 可以平行,可以相交,也可以异面,故①不正确;若α⊥γ,β⊥γ,α,β可以相交,故②不正确;若m ∥α,m ∥β,α,β可以相交,故③不正确;若m ⊥α,n ⊥α,则m ∥n ,④正确.答案:④7.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面P AO .解析:假设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥P A .连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面P AO ,QB ⊄平面P AO ,所以D 1B ∥平面P AO ,QB ∥平面P AO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面P AO .故Q 满足条件Q 为CC 1的中点时,有平面D 1BQ ∥平面P AO .答案:Q 为CC 1的中点8.设α,β,γ为三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ.可以填入的条件有________.解析:由面面平行的性质定理可知,①正确;当n ∥β,m ⊂γ时,n 和m 在同一平面内,且没有公共点,所以平行,③正确.答案:①或③9.(2014·保定调研)已知直三棱柱ABC -A ′B ′C ′满足∠BAC =90°,AB =AC =12AA ′=2,点M ,N 分别为A ′B ,B ′C ′的中点. (1)求证:MN ∥平面A ′ACC ′;(2)求三棱锥C -MNB 的体积.解:(1)证明:如图,连接AB ′,AC ′,∵四边形ABB ′A ′为矩形,M 为A ′B 的中点,∴AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点,∴MN ∥AC ′,又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′,∴MN ∥平面A ′ACC ′.(2)由图可知V C -MNB =V M -BCN ,∵∠BAC =90°,∴BC =AB 2+AC 2=22,又三棱柱ABC -A ′B ′C ′为直三棱柱,且AA ′=4,∴S △BCN =12×22×4=4 2. ∵A ′B ′=A ′C ′=2,∠B ′A ′C ′=90°,点N 为B ′C ′的中点,∴A ′N ⊥B ′C ′,A ′N = 2.又BB ′⊥平面A ′B ′C ′,∴A ′N ⊥BB ′,∴A ′N ⊥平面BCN .又M 为A ′B 的中点,∴M 到平面BCN 的距离为22, ∴V C -MNB =V M -BCN =13×42×22=43. 10.(2013·江苏高考)如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC的中点.求证:(1)平面EFG ∥平面ABC ;(2)BC ⊥SA .证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF ∥AB .因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .同理EG ∥平面ABC .又EF ∩EG =E ,所以平面EFG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC.因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF⊂平面SAB,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.第Ⅱ组:重点选做题1.在梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系只能是()A.平行B.平行和异面C.平行和相交D.异面和相交解析:选B因为AB∥CD,AB⊂平面α,CD⊂平面α,所以CD∥平面α,所以CD 与平面α内的直线可能平行,也可能异面.2.(2014·汕头质检)若m,n为两条不重合的直线,α,β为两个不重合的平面,则下列命题中真命题的序号是________.①若m,n都平行于平面α,则m,n一定不是相交直线;②若m,n都垂直于平面α,则m,n一定是平行直线;③已知α,β互相平行,m,n互相平行,若m∥α,则n∥β;④若m,n在平面α内的射影互相平行,则m,n互相平行.解析:①为假命题,②为真命题,在③中,n可以平行于β,也可以在β内,故是假命题,在④中,m,n也可能异面,故为假命题.答案:②。