2_1_2矩阵的概念与矩阵运算
- 格式:ppt
- 大小:1.43 MB
- 文档页数:41
第二部分矩阵本章概述矩阵是线性代数的重要内容,也是研究线性方程组和其它各章的主要工具。
主要讨论矩阵的各种运算的概念和性质。
在自学考试中,所占比例是各章之最。
按考试大纲的规定,第二章占26分左右。
而由于第三,四,五,六各章的讨论中都必须以矩阵作为主要工具,故加上试题中必须应用矩阵运算解决的题目的比例就要占到50分以上了。
以改版后的三次考试为例,看下表按考试大纲所占分数07.4 07.7 07.10 直接考矩阵这一章的26分左右31分34分38分加上其它章中必须用矩阵运算的所占分数51分53分67分由此矩阵这一章的重要性可见一般。
2.1 线性方程组和矩阵的定义2.1.1 线性方程组n元线性方程组的一般形式为特别若,称这样的方程组为齐次方程组。
称数表为该线性方程组的系数矩阵;称数表为该线性方程组的增广矩阵。
事实上,给定了线性方程组,就惟一地确定了它的增广矩阵;反过来,只要给定一个m×(n+1)阶矩阵,就能惟一地确定一个以它为增广矩阵的n个未知数,m个方程的线性方程组。
例1 写出下面线性方程组的系数矩阵和增广矩阵【答疑编号12020101】例2 写出以下面矩阵为增广矩阵的线性方程组【答疑编号12020102】2.1.2 矩阵的概念一、矩阵的定义定义2.1.1 我们称由mn个数排成的m行n列的数表为m×n阶矩阵,也可记为为矩阵A第i行,第j列的元素。
注意:矩阵和行列式的区别。
二、几类特殊的矩阵1.所有元素都为零的矩阵称为零矩阵,记为O。
例如都是零矩阵。
2.若A的行数m=1,则称为行矩阵,也称为n维行向量。
若A的列数n=1,则称为列矩阵,也称为m维列向量。
3.若矩阵A的行数=列数=n,则称矩阵A为n阶方阵,或简称A为n阶阵。
如n个未知数,n个方程的线性方程组的系数矩阵。
4.称n阶方阵为n阶对角阵。
特别若上述对角阵中,,称矩阵为数量矩阵,如果其中λ=1,上述数量阵为,称为n阶单位阵。
5.上(下)三角阵称形如的矩阵为上(下)三角矩阵。
矩阵的定义及其运算规则1、矩阵的定义一般而言,所谓矩阵就是由一组数的全体,在括号内排列成m行n 列横的称行,纵的称列的一个数表,并称它为m×n阵;矩阵通常是用大写字母A 、B …来表示;例如一个m 行n 列的矩阵可以简记为:,或;即:2-3我们称2-3式中的为矩阵A的元素,a的第一个注脚字母 ,表示矩阵的行数,第二个注脚字母jj=1,2,…,n表示矩阵的列数;当m=n时,则称为n阶方阵,并用表示;当矩阵a的元素仅有一ij行或一列时,则称它为行矩阵或列矩阵 ;设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B;2、三角形矩阵由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素;如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵;例如,以下矩阵都是三角形矩阵:, ,, ;3、单位矩阵与零矩阵在方阵中,如果只有的元素不等于零,而其他元素全为零,如:则称为对角矩阵,可记为;如果在对角矩阵中所有的彼此都相等且均为1,如:,则称为单位矩阵;单位矩阵常用E来表示,即:当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示;4、矩阵的加法矩阵A=aijm×n 和B=bijm×n相加时,必须要有相同的行数和列数;如以C=cijm ×n表示矩阵A及B的和,则有:式中:;即矩阵C的元素等于矩阵A和B的对应元素之和; 由上述定义可知,矩阵的加法具有下列性质设A、B、C都是m×n矩阵: 1交换律:A+B =B+A 2结合律:A+B+C=A+B+C5、数与矩阵的乘法我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵;如:由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h 为任意常数,则:1 kA+B=kA+kB2k+hA=kA+hA3 khA=khA6、矩阵的乘法若矩阵乘矩阵,则只有在前者的列数等于后者的行数时才有意义;矩阵的元素的计算方法定义为第一个矩阵第i行的元素与第二个矩阵第j列元素对应乘积的和;若:则矩阵的元素由定义知其计算公式为:2-4例2-1 设有两矩阵为:, ,试求该两矩阵的积;解由于A矩阵的列数等于B矩阵的行数,故可乘,其结果设为C:其中:例2-2 已知:A=,B=,求A、B两个矩阵的积;解计算结果如下:矩阵的乘法具有下列性质:1通常矩阵的乘积是不可交换的;2矩阵的乘法是可结合的;3设A是m×n矩阵, B、C是两个n×t矩阵,则有:AB+C=AB+AC;4设A是m×n矩阵,B是n×t矩阵;则对任意常数k有:kAB=kAB=AkB; 例2-3 用矩阵表示的某一组方程为:2-5式中:2-6试将矩阵公式展开,列出方程组;解现将2-6式代入2-5式得:2-7将上式右边计算整理得:2-8可得方程组:可见,上述方程组可以写成2-5式的矩阵形式;上述方程组就是测量平差中的误差方程组,故知2-5式即为误差方程组的矩阵表达式;式中称为改正数阵,称为误差方程组的系数阵,称为未知数阵,称为误差方程组的常数项阵;例2-4 设由n个观测值列出r个条件式如下,试用矩阵表示;解现记:2-9则条件方程组可用矩阵表示成:2-10上式中称为条件方程组的系数阵,称为改正数阵,称为条件方程组的闭合差列阵;。
习题课一 (第二章) 内容介绍一、 第二章基本内容回顾 二、 讲评第二章练习题 三、 讲评第二章部分习题四、 讲评辅导材料第二章中部分典型题一、 第二章矩阵基本内容回顾§2.1 基本内容2.1.1 矩阵的运算1.矩阵的加法设,][,][n m ij n m ij b B a A ⨯⨯==则.][n m ij ij b a B A ⨯+=+2.矩阵的数乘.][n m ij ka kA ⨯=矩阵的加法与数乘统称为矩阵的线性运算,它们满足以下算律: ∙ ;A B B A +=+∙ );()(C B A C B A ++=++ ∙ );()(lA k A kl = ∙ ;)(lA kA A l k +=+∙ 。
A A k kA n为阶方阵|,|||= 3.矩阵的乘法设,][,][p n kj n m ik b B a A ⨯⨯==则,][,][p n kj n m ik b B a A ⨯⨯== 其中.,,2,1,,,2,1,1p j m i b aC kjnk ik ij ===∑=即矩阵C 的第i 行第j 列的元素等于A 的第i 行的元素与B 的第j 列对应元素乘积这和。
两个矩阵可乘的条件是:左边矩阵A 的列数等于右边矩阵B 的行数。
矩阵乘法与数的乘法有很大差异,它体现在∙ 矩阵乘法不满足交换律,即一般地,.BA AB ≠∙ 矩阵乘法含有非零的零因子,即既使0,0≠≠B A ,可能有.0AB =∙ 矩阵乘法不满足消去律,即由0,≠=A AC AB 不能导出.C B =矩阵乘法满足以下运 算律:∙ );()(BC A C AB =∙ ;)(,)(CA BA A C B AC AB C B A +=++=+ ∙ );()()(kB A B kA AB k == ∙ B A B A AB ,|,|||||=为同阶方阵。
4.矩阵的转置 设nn n n n a a a a a a a a a A2121222111211=则A 的转置为nnn nm m Ta a a a a a a a a A212222112111=矩阵转置满足以下算律: ∙ ;)(A A TT =∙ ;)(TTTB A B A +=+ ∙ ;)(TTTA B AB +=∙ |A ||A |T =,此时A 为阶方阵。
课题:矩阵教学目的:理解矩阵的概念,熟练掌握矩阵运算;理解矩阵的初等变换及作用;理解矩阵的秩和逆的概念,熟练掌握矩阵的秩和逆的求解教学重点:矩阵运算、秩和逆的求解教学难点:矩阵的乘法、秩和逆的概念教学时数:10教学设计:§1、§2 矩阵的概念与运算一、矩阵的概念1 矩阵的定义①定义6P def1②矩阵的行、列③行标、列标④元素(元)⑤主对角线、主对角元2 特殊矩阵①矩阵的行、列数目特殊行矩阵(只有一行的矩阵) def列矩阵(只有一列的矩阵) defn阶方阵(行数等于列数) def 注:1阶方阵②矩阵的元素特殊零矩阵 def负矩阵 def单位阵 def3 矩阵的同型 def4 矩阵的相等 def二、矩阵的运算1 矩阵的加、减法①定义9P②性质a)满足交换律与结合律b)A+(-A)=O A+O=Ac)A+(-B)=A-B (减法也可用此式定义)注:可加(减)的条件是两矩阵同型,结果也同型2 矩阵的数乘 ① 定义 10P ② 性质a) ()()A A αβαβ= b) ()A B A B ααα+=+ c) ()A A A αβαβ+=+3 矩阵的乘法 ① 定义 12P注意:可乘条件:左矩阵的列数等于右矩阵的行数 相乘结果:为左矩阵的行数右矩阵的列数 ② 乘法举例例1 设21123,13010A B -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦求AB 解:2112322613010153AB --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦例2 2115003,20141A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦求AB 解 21410115003603201416201AB ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦③ 性质a) 结合律 ()()A BC AB C = b) 左、右分配律 ()A B CAC BC +=+()A B C AB AC +=+c) 不满足交换律主要有以下三方面的原因1) 若AB 有意义,BA 未必有意义如 2223A B ⨯⨯有意义而2322B A ⨯⨯则没有意义 2) 即使AB 、BA 都有意义,也不一定同型 如322333A B C ⨯⨯⨯=, 233222B A C ⨯⨯⨯=3) 即使AB 、BA 都有意义且同型,也不一定相等如24241236A B -⎡⎤⎡⎤==⎢⎥⎢⎥---⎣⎦⎣⎦ 16320081600AB BA --⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦d) 乘法消去律不满足即当AB AC =一般说来没有B C = 如000110010000A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦虽有0000AB AC ⎡⎤==⎢⎥⎣⎦,但B C ≠ 以如512100603011A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦虽有1100ACBC ⎡⎤==⎢⎥⎣⎦,但A B ≠ ④ 方阵的幂对于方阵A 与自然数k ,称k nA A A A =⋅⋅⋅为方阵A 的k 次幂,具有性质: a) 1212k k k k A A A +=, b) 1212()k k k k A A =例3已知1101A ⎛⎫= ⎪⎝⎭,求nA ⑤矩阵的行列式 AB A B=⋅4 矩阵的转置 ① 定义 16P② 性质1) ()T TAA =2) ()T T T A B A B +=+3) ()()T T A A λλ= 4) ()TT T AB B A =作业:P100 2,4,5(2)(3)(6),10,14((1)(5),17(1),18§3、§4 特殊矩阵与分块矩阵一、 特殊矩阵 1 对角矩阵如果n 阶方阵()ij A a =中的元素满足:0(,1,2,)ij a i j i j n =≠= ,则称A 为对角矩阵。
授课章节第二章矩阵§2.1矩阵§2.2矩阵的运算目的要求理解矩阵的定义,掌握矩阵的运算重点矩阵的运算难点矩阵的乘法§2.1矩阵前面介绍了利用行列式求解线性方程组的方法,即Cramer法则。
但是Cramer法则有它的局限性:1. 系数行列式;2. 方程组中变量的个数等于方程的个数。
接下来要学习的还是关于解线性方程组,即Cramer法则无法用上的-――用“矩阵”的方法解线性方程组。
本节课主要学习矩阵的概念及其运算。
一、矩阵的概念矩阵是线性代数的核心,矩阵的概念、运算和理论贯穿线性代数的始终。
矩阵是一个表格,它的运算与数的运算是既有联系又有区别;矩阵与行列式也有很大的关联,但二者不能等同混淆。
对于分块矩阵,它在矩阵乘法、求逆、向量的线性表出、线性相关与秩、线性齐次方程组的解等方面,都有很大的用处。
矩阵是本课程的一个重要概念,在生产活动和日常生活中,我们常常用数表表示一些量或关系,如工厂中的产量统计表,市场上的价目表等等例1 某种物资有3个产地,4个销地,调配量如表1所示表 1 产地销地调配情况表销地产地B1 B2 B3 B4A1 1 6 3 5A2 3 1 2 0A3 4 0 1 2那么,表中的数据可以构成一个矩形数表:在预先约定行列意义的情况下,这样的简单矩形数表就能表明整个产销调配的状况。
不同的问题,矩形数表的行列规模有所不同,去掉表中数据的实际含义,我们得到如下矩阵的概念。
定义2.1 由个数排成的行列数表(2.1)称为一个行列矩阵,简称矩阵。
这个数称为矩阵的元素,其中称为矩阵的第行第列元素.(2.1)式也简记为或. 有时矩阵A也记作.注 1.元素是复数的矩阵称为复矩阵,元素是实数的矩阵称为实矩阵,本书中的矩阵除特别说明外,都指实矩阵.2.当时,称矩阵为长方阵(长得像长方形);3.当时,称矩阵为阶方阵(长得像正方形),简称方阵;4. 两个矩阵的行数、列数均相等时,就称它们是同型矩阵.如果与是同型矩阵,并且它们的对应元素相等,即则称矩阵A与矩阵B相等,记作A=B5.所有元素都为零的矩阵称为零矩阵,记为O. 值得注意的是:不同型的零矩阵是不相等的.例2设,,已知A=B,求.【解】因为,,,所以二、几种特殊矩阵(1)矩阵,当时,即称为n阶方阵,记为. 特别地,一阶方阵.方阵中从左上角元素到右下角元素的这条对角线称为方阵的主对角线,从右上角元素到左下角元素的这条对角线称为方阵的副对角线。
数学初中二年级下册第二章矩阵的认识与运算矩阵是数学中一个重要的概念,它在各个领域起着重要的作用。
本章主要介绍矩阵的基本概念以及矩阵的运算。
1. 矩阵的基本概念矩阵由元素排列成的矩形阵列,其中每个元素都有自己的位置和值。
矩阵通常用大写的字母表示,如A、B等,元素用小写的字母表示,如a、b等。
矩阵的大小由行和列决定,如果一个矩阵有m行n列,则称其为m×n矩阵。
如下所示为一个3×4矩阵:$$A = \begin{bmatrix}a_{11} & a_{12} & a_{13} & a_{14} \\a_{21} & a_{22} & a_{23} & a_{24} \\a_{31} & a_{32} & a_{33} & a_{34} \\\end{bmatrix}$$2. 矩阵的运算2.1 矩阵的加法两个矩阵的加法要求其大小相同,即行数和列数都相等。
对应位置的元素相加得到新矩阵的对应元素。
例如,对于两个矩阵A和B的加法运算,结果矩阵C的对应元素为:$$c_{ij} = a_{ij} + b_{ij}$$2.2 矩阵的数乘矩阵的数乘即一个矩阵中的每个元素都乘以同一个数。
例如,对于矩阵A的数乘运算,结果矩阵B的对应元素为:$$b_{ij} = k \cdot a_{ij}$$其中k为一个实数。
2.3 矩阵的乘法矩阵的乘法是一种比较复杂的运算,要求被乘矩阵的列数等于乘矩阵的行数。
乘积矩阵的行数等于被乘矩阵的行数,列数等于乘矩阵的列数。
设矩阵A为m×n矩阵,矩阵B为n×p矩阵,则乘积矩阵C为m×p 矩阵。
乘积矩阵C的第i行第j列元素为:$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \cdots + a_{in}\cdot b_{nj}$$3. 矩阵的性质3.1 矩阵的转置矩阵的转置是将矩阵的行和列交换得到的新矩阵。
教案
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日
课程名称:线性代数编写时间:20 年月日。
矩阵的性质与运算矩阵是线性代数中一个重要的概念,它不仅在数学领域有着广泛的应用,还在物理、工程等多个学科中发挥着重要的作用。
矩阵的性质和运算是我们研究和应用矩阵的基础,本文将详细介绍矩阵的性质和运算,使读者对矩阵有更加深入的理解。
一、矩阵的基本性质1.1 矩阵的定义矩阵是一个按照长方阵列排列的数表,其中的元素可以是实数、复数或其他数域中的元素。
一个矩阵有m行和n列,我们通常以大写字母表示矩阵,如A、B等。
1.2 矩阵的维度如果一个矩阵有m行和n列,我们称其为m×n维矩阵,其中m表示行数,n表示列数。
特殊地,如果一个矩阵的行数和列数相等,我们称其为方阵。
1.3 矩阵的元素矩阵中的每个数称为一个元素,我们通常用小写字母表示矩阵中的元素。
例如,矩阵A的第i行、第j列的元素用aij表示。
1.4 矩阵的转置对于一个m×n维矩阵A,将其行与列互换得到的n×m维矩阵称为A的转置矩阵,记作AT。
即A的第i行第j列的元素aij在AT中就是第j行第i列的元素。
二、矩阵的运算2.1 矩阵的加法对于两个维度相同的矩阵A和B,它们的和记作A + B。
矩阵A +B的第i行第j列的元素等于矩阵A和矩阵B对应位置上元素的和。
即(A + B)ij = Aij + Bij。
2.2 矩阵的减法对于两个维度相同的矩阵A和B,它们的差记作A - B。
矩阵A - B的第i行第j列的元素等于矩阵A和矩阵B对应位置上元素的差。
即(A - B)ij = Aij - Bij。
2.3 矩阵的数乘对于一个维度为m×n的矩阵A和一个实数或复数c,我们可以将A的每个元素都乘以c得到一个新的矩阵cA。
即(cA)ij = c·Aij。
2.4 矩阵的乘法对于两个矩阵A和B,它们的乘积记作AB。
要使得两个矩阵A和B可以相乘,A的列数必须等于B的行数。
如果A是一个m×n维矩阵,B是一个n×p维矩阵,那么它们的乘积AB是一个m×p维矩阵。
矩阵知识点归纳矩阵是线性代数中一种重要的数学工具,它广泛应用于科学、工程、计算机科学等领域。
本文将对矩阵的基本概念、运算法则以及常见的矩阵类型进行归纳总结。
一、矩阵的基本概念1. 矩阵的定义:矩阵是由m行n列的元素排列而成的矩形阵列,用大写字母表示,如A。
其中,m表示矩阵的行数,n表示矩阵的列数。
2. 元素:矩阵中的数值称为元素,用小写字母表示,如a。
矩阵A的第i行第j列的元素表示为a_ij。
3. 零矩阵:所有元素都为0的矩阵,用0表示。
4. 单位矩阵:主对角线上的元素为1,其他元素为0的矩阵,用I表示。
5. 行向量和列向量:只有一行的矩阵称为行向量,只有一列的矩阵称为列向量。
二、矩阵的运算法则1. 矩阵的加法:两个相同维数的矩阵相加,即对应位置的元素相加。
2. 矩阵的减法:两个相同维数的矩阵相减,即对应位置的元素相减。
3. 矩阵的数乘:用一个数乘以矩阵的每个元素。
4. 矩阵的乘法:矩阵乘法需要满足左矩阵的列数等于右矩阵的行数。
若A是m×n的矩阵,B是n×p的矩阵,那么A与B的乘积AB是m×p的矩阵,且AB的第i行第j列元素为A的第i行与B的第j列对应元素的乘积之和。
5. 转置:将矩阵的行和列对调得到的矩阵称为原矩阵的转置。
若A为m×n的矩阵,其转置记作A^T,即A的第i行第j列元素等于A^T的第j行第i列元素。
三、常见的矩阵类型1. 方阵:行数和列数相等的矩阵称为方阵。
2. 对角矩阵:主对角线以外的元素都为0的方阵称为对角矩阵。
3. 上三角矩阵:主对角线以下的元素都为0的方阵称为上三角矩阵。
4. 下三角矩阵:主对角线以上的元素都为0的方阵称为下三角矩阵。
5. 对称矩阵:元素满足a_ij=a_ji的方阵称为对称矩阵。
6. 反对称矩阵:元素满足a_ij=-a_ji的方阵称为反对称矩阵。
7. 单位矩阵:主对角线上的元素为1,其他元素为0的方阵称为单位矩阵。
四、矩阵的性质1. 矩阵的零点乘法:任何矩阵与零矩阵相乘,结果都是零矩阵。
§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。
12m m mna a a 矩阵。
为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。
记做12m m mn a a a ⎥⎦12m m mn a a a a ⎛⎪⎭。
切记不允许使用111212122212n n m m mna a a a a a a a a =A 。
矩阵的横向称行,纵向称列。
矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。
本课中的矩阵除特殊说明外,都指12n n nn a a a ⎥⎦不是方阵没有主对角线。
在方阵中,00nn a ⎥⎦11212212000n n nn a a a a a a ⎤⎥⎥⎥⎥⎦(主对角线以上均为零)1122000000nn a aa ⎡⎤⎢⎥⎢⎥⎥⎥⎦(既}nn a .对角元素为1的对角矩阵,记作E 或001⎡⎢⎥⎦()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。
a x +)1(+⨯n 矩阵:12m m mnm a b a a a b ⎥⎦任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方122m m m mn mn b a b a b ⎥+++⎦⎥⎦⎤⎢⎣⎡-=4012B ,计算 B A +。
122m m m mn mn b a b a b ⎥---⎦与矩阵n m ij a A ⨯=}{的乘积(称之为数乘),12m m mn a a a λλ⎥⎦以上运算称为矩阵的线性运算,它满足下列运算法则:n b ⎪⎭上述几个例子显示,当有意义时,不一定有意义(例6),即便有相同的阶数,也不一定相等(例A = O 或Ba x +12m m mn a a a ⎥⎦为系数矩阵; m b ⎥⎦,称b 为常数项矩阵;12n x x x ⎡⎢⎢=⎥⎦X = b 。
四、矩阵的转置 5 (转置矩阵12m m mn a a a ⎥⎦12nnmn a a a ⎢⎥⎣⎦矩阵,称它为A 的转置矩阵,记作TA 。