矩阵的概念与计算
- 格式:ppt
- 大小:2.44 MB
- 文档页数:60
矩阵计算方法矩阵是线性代数中的重要概念,它在数学、物理、工程等领域都有着广泛的应用。
矩阵计算方法是研究如何高效地进行矩阵运算的技术,对于解决实际问题具有重要意义。
本文将介绍矩阵计算的基本方法和常见算法,希望能够帮助读者更好地理解和应用矩阵计算。
1. 矩阵的基本概念。
矩阵是由m行n列元素组成的数表,通常表示为A=[aij]mn。
其中,aij表示矩阵A中第i行第j列的元素。
矩阵可以进行加法、减法、数乘等运算,具有良好的数学性质。
2. 矩阵的转置。
矩阵的转置是指将矩阵的行列互换得到的新矩阵。
如果A=[aij]mn,那么它的转置记作A^T=[bij]nm,其中bij=aij。
矩阵的转置满足(A^T)^T=A,(kA)^T=kA^T,(A+B)^T=A^T+B^T等性质。
3. 矩阵的乘法。
矩阵的乘法是矩阵计算中的重要运算,它是将一个矩阵的行与另一个矩阵的列对应元素相乘再相加得到的新矩阵。
设A为m×n的矩阵,B为n×p的矩阵,则它们的乘积记作C=AB,其中C为m×p的矩阵。
矩阵乘法满足结合律,但不满足交换律,即AB≠BA。
4. 矩阵的逆。
对于可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵。
这样的矩阵B称为A的逆矩阵,记作A^-1。
逆矩阵的存在与否是判断一个矩阵是否可逆的重要条件。
5. 常见的矩阵计算算法。
(1)高斯消元法,用于求解线性方程组的算法,通过矩阵的初等行变换将系数矩阵化为阶梯形矩阵,进而求解方程组的解。
(2)LU分解法,将一个矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,可用于求解线性方程组和矩阵的逆等问题。
(3)QR分解法,将一个矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积,可用于求解最小二乘问题等。
6. 矩阵计算的应用。
矩阵计算方法在科学计算、工程技术、数据处理等领域有着广泛的应用。
例如,在图像处理中,矩阵运算可以用于图像的变换、滤波等操作;在机器学习中,矩阵运算可以用于特征提取、参数优化等任务;在控制系统中,矩阵运算可以用于系统建模、状态估计等方面。
大一高数矩阵知识点总结在大一的高等数学课程中,矩阵是一个重要的数学概念。
掌握了矩阵的相关知识,不仅可以帮助我们解决线性代数中的问题,还可以应用于其他学科领域。
下面是我对大一高数矩阵知识点的总结:一、矩阵的基本概念1. 矩阵的定义:矩阵是一个按照矩形排列的数表,其中的数称为元素。
2. 矩阵的阶:矩阵的行数和列数称为矩阵的阶。
一个m行n列的矩阵表示为m×n的矩阵。
3. 矩阵的转置:将矩阵的行和列对调得到的新矩阵。
若A为一个m×n的矩阵,其转置记作A^T。
4. 矩阵的相等:两个矩阵的对应元素相等,则称两个矩阵相等。
二、矩阵的运算1. 矩阵的加法:若A和B为两个同阶矩阵(m×n),则它们的和C为一个与A、B同阶的矩阵,C的第(i,j)个元素等于A的第(i,j)个元素与B的第(i,j)个元素之和。
2. 矩阵的数乘:若A为一个m×n的矩阵,k为一个实数或复数,则kA为一个与A同阶的矩阵,kA的第(i,j)个元素等于k与A的第(i,j)个元素的积。
3. 矩阵的乘法:若A为一个m×n的矩阵,B为一个n×p的矩阵,则它们的积C为一个m×p的矩阵,C的第(i,j)个元素等于A的第i行与B的第j列对应元素乘积之和。
4. 矩阵的幂:若A为一个n×n的矩阵,k为一个正整数,则A的k次幂为将A乘以自身k-1次。
三、矩阵的性质1. 矩阵的加法交换律:A+B = B+A2. 矩阵的加法结合律:(A+B)+C = A+(B+C)3. 矩阵的数乘分配律:k(A+B) = kA + kB4. 矩阵的乘法结合律:(AB)C = A(BC)5. 矩阵的乘法分配律:A(B+C) = AB + AC四、矩阵的逆1. 可逆矩阵:设A是一个n×n的矩阵,若存在一个n×n的矩阵B,使得AB = BA = I,其中I是n阶单位矩阵,A称为可逆矩阵,B称为A的逆矩阵,记作A^(-1)。
矩阵运算知识点总结一、矩阵的概念矩阵是由 m 行 n 列元素组成的矩形数组,通常用方括号表示。
例如,一个 2 行 3 列的矩阵可以用以下形式表示:A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}其中 a_{ij} 表示矩阵 A 的第 i 行第 j 列的元素。
矩阵有多种类型,包括方阵、行向量、列向量等。
方阵是行数和列数相等的矩阵,而行向量则是只有一行的矩阵,列向量则是只有一列的矩阵。
二、矩阵的基本操作1. 矩阵的加法和减法矩阵的加法和减法遵循元素相加和相减的规则,即对应位置的元素相加或相减。
例如,对于两个 2 行 3 列的矩阵 A 和 B,A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}和B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}它们的和为A +B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} +b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}矩阵的减法也类似,只需要将相应位置的元素相减即可。
2. 矩阵的数乘矩阵的数乘是指矩阵中的每个元素都乘以一个数。
例如,对于一个 2 行 3 列的矩阵 A,A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}它的数乘结果为kA = \begin{bmatrix} ka_{11} & ka_{12} & ka_{13} \\ ka_{21} & ka_{22} & ka_{23}\end{bmatrix}其中 k 是一个实数。
高中数学中的矩阵定义及其运算法则矩阵是一种常见的数学工具,可以描述线性方程组、向量、转化为矢量空间等等。
在高中数学中,矩阵是一个重要的概念。
本文将会引导您深入了解矩阵的定义、性质及其运算法则。
一、矩阵的定义矩阵可以用一个矩形的数字表格表示,该表格中的每一个数字称为矩阵的一个元素。
矩阵的大小由它的行数和列数来确定。
例如,一个名为A的矩阵可以写作:A = [a11 a12 a13][a21 a22 a23][a31 a32 a33]在上面的矩阵中,a11、a12、a13等数字是矩阵的元素,第一行的三个数字是第一行中的三个元素。
同样,第一列的三个数字是第一列中的三个元素。
二、矩阵的特殊矩阵有几种特殊的矩阵在高中数学中具有重要的地位,下面是其中一些:1. 零矩阵零矩阵也称为零矩阵或零矩阵,表示所有元素都是0。
例如:0 0 00 0 00 0 02. 单位矩阵单位矩阵也称为单位矩阵或标准矩阵,表示矩阵的对角线上的元素都是1和其他元素都是0。
例如:1 0 00 1 00 0 13. 对称矩阵如果一个矩阵A等于其转置矩阵AT,则称矩阵A是对称矩阵。
例如:1 2 32 0 43 4 5三、矩阵的运算法则在高中数学中,矩阵的运算法则包括加法、减法、数与矩阵的乘法和矩阵之间的乘法。
这里将一一介绍。
1. 矩阵的加法矩阵的加法规则很简单,对应元素相加。
例如,如果有两个矩阵A和B:A = [1 2 3]B = [2 4 6][4 5 6] [2 2 2][7 8 9] [1 1 1]A和B的和是:A +B = [3 6 9][6 7 8][8 9 10]2. 矩阵的减法矩阵的减法规则也很简单,对应元素相减。
例如,如果有两个矩阵A和B:A = [1 2 3]B = [2 4 6][4 5 6] [2 2 2][7 8 9] [1 1 1]A和B的差是:A -B = [-1 -2 -3][2 3 4][6 7 8]3. 数与矩阵的乘法数与矩阵的乘法非常简单,只需要将每个元素乘以该数即可。
矩阵计算知识点总结图表一、矩阵的基本概念1. 矩阵的定义矩阵是一个按照矩形排列的数字或数学表达式的集合。
矩阵一般用大写字母表示,例如A、B、C等。
矩阵通常表示为一个m×n的矩阵,其中m表示矩阵的行数,n表示矩阵的列数。
2. 矩阵元素矩阵中的每一个数字都被称为矩阵的元素,一般用小写字母表示,例如a_ij,表示矩阵A中第i行第j列的元素。
3. 矩阵的相等两个矩阵A和B相等,当且仅当它们的对应元素相等,即A和B的每一个元素都相等。
4. 矩阵的零矩阵所有元素皆为零的矩阵称为零矩阵,通常用0表示。
5. 矩阵的单位矩阵单位矩阵是一个主对角线上的元素都是1,其它元素都是0的方阵。
6. 矩阵的转置矩阵的转置是将矩阵A的行转成列,列转成行,表示为A^T。
7. 矩阵的逆矩阵对于一个n阶方阵A,如果存在另一个n阶方阵B使得AB=BA=I(其中I是单位矩阵),则矩阵B称为矩阵A的逆矩阵,记作A^-1。
8. 矩阵的行列式行列式是方阵所固有的一个数。
通过一定方法得出一阶、二阶、三阶和高阶矩阵的行列式。
对于n阶矩阵A,其行列式记作|A|或det(A)。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法定义为:若A、B是同型矩阵,则它们的和记作A+B,其中(A+B)_ij=A_ij+B_ij。
2. 矩阵的减法矩阵的减法定义为:若A、B是同型矩阵,则它们的差记作A-B,其中(A-B)_ij=A_ij-B_ij。
3. 矩阵的数乘矩阵的数乘定义为:若k是一个数,A是一个矩阵,则kA是按元素同时乘以k得到的新矩阵。
4. 矩阵的乘法矩阵的乘法定义为:若A是一个m×n的矩阵,B是一个n×p的矩阵,那么它们的积记作C=AB,其中C的第i行第j列的元素为:C_ij=∑(A_ik*B_kj)。
5. 矩阵的除法矩阵的除法并无严格定义,但可以用矩阵乘法和逆矩阵来表示矩阵的除法。
6. 矩阵的转置矩阵的转置是将矩阵的行转成列,列转成行。
矩阵及其运算详解矩阵是线性代数中重要的概念之一,它不仅在数学理论中有广泛应用,也在各个领域的实际问题中发挥着重要作用。
本文将详细介绍矩阵的概念、性质以及常见的运算法则,以帮助读者深入了解和掌握矩阵相关的知识。
一、矩阵的定义和基本性质矩阵是一个按照矩形排列的数集,通常用方括号表示。
一个 m×n的矩阵包含 m 行和 n 列,并用 aij 表示第 i 行、第 j 列的元素。
例如,一个 2×3 的矩阵可以表示为:A = [ a11 a12 a13a21 a22 a23 ]其中,a11、a12 等分别表示矩阵中不同位置的元素。
对于一个 m×n 的矩阵 A,当且仅当存在 m×n 的矩阵 B,满足 A = B,我们称 B 是 A 的转置矩阵。
转置矩阵中的每个元素是原矩阵对应位置元素的转置。
二、矩阵的运算法则1. 矩阵的加法和减法矩阵的加法和减法规则使其成为一个线性空间。
对于同型矩阵 A 和B,它们的和 A + B 的结果是一个与 A、B 同型的矩阵,其每个元素等于对应位置元素的和。
减法规则类似,也是对应元素相减。
矩阵的数乘指的是将一个矩阵的每个元素乘以一个标量。
即对于矩阵 A 和一个实数 k,kA 的结果是一个与 A 同型的矩阵,其每个元素等于对应位置元素乘以 k。
3. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的一种运算。
对于矩阵 A 和 B,若A 的列数等于B 的行数,则可以进行乘法运算 AB。
结果矩阵C 是一个 m×p 的矩阵,其中的元素 cij 是通过计算矩阵 A 的第 i 行和矩阵 B的第 j 列对应位置元素的乘积,并将结果相加得到的。
4. 方阵和单位矩阵方阵是指行数和列数相等的矩阵,也称为正方形矩阵。
单位矩阵是一种特殊的方阵,它的主对角线上的元素全为1,其它位置元素均为0。
单位矩阵通常用 I 表示。
三、矩阵的性质和应用1. 矩阵的转置性质矩阵的转置运算具有以下性质:- (A^T)^T = A,即两次转置后得到原矩阵。
矩阵及其基本算法矩阵是数学和计算机科学中常见的概念,它是由一组数按照固定的行数和列数排列成的矩形阵列。
矩阵在各个领域中具有重要的应用,如代数学、线性方程组的求解、图像处理、数据分析等。
本文将介绍矩阵的基本概念和常见的算法。
1.矩阵的基本概念:-矩阵的行数和列数被称为矩阵的维度。
一个mxn的矩阵有m行n列。
-矩阵元素指的是矩阵中的每个个体数值,可以用a[i][j]表示,其中i表示行数,j表示列数。
-方阵是指行数和列数相等的矩阵,即nxn的矩阵。
-零矩阵是所有元素都是0的矩阵,通常用0表示。
-单位矩阵是一个方阵,其对角线上的元素都是1,其余元素都是0。
2.矩阵的运算:-矩阵的加法:两个相同大小的矩阵相加,即对应位置的元素相加。
-矩阵的减法:两个相同大小的矩阵相减,即对应位置的元素相减。
-矩阵的乘法:两个矩阵相乘,要求左操作数矩阵的列数等于右操作数矩阵的行数。
结果矩阵的行数等于左操作数矩阵的行数,列数等于右操作数矩阵的列数。
乘法运算是对应位置的元素相乘再求和的过程。
-矩阵的转置:将mxn的矩阵转置为nxm的矩阵,即原矩阵的行列互换。
3.矩阵的基本算法:-矩阵的求逆:对于一个可逆矩阵A,存在一个矩阵B,使得A与B的乘积等于单位矩阵。
求逆矩阵的常用方法是高斯-约当消元法。
-矩阵的行列式:行列式是一个与方阵相关的标量,它可以通过递归计算进行求解。
行列式的值可以用于判断矩阵是否可逆,以及计算矩阵的特征值等。
-矩阵的特征值和特征向量:特征值是一个标量,特征向量是与特征值相关联的非零向量。
特征值和特征向量在矩阵的特征值分解、主成分分析等领域有着重要应用。
4.应用实例:-线性方程组的求解:线性方程组可以表示为一个矩阵乘以一个向量的形式,通过求解矩阵的逆,可以得到方程组的解。
-图像处理:图像可以表示为一个像素矩阵,通过对矩阵的像素进行运算,可以实现图像的旋转、缩放、滤波等操作。
-数据分析:矩阵在数据分析中广泛应用,如矩阵分解、矩阵乘法、矩阵求逆等操作可以用于数据降维、主要成分分析、聚类分析等。
线性代数中矩阵的基本概念与运算线性代数是数学中的一个分支,其中矩阵的概念和运算是非常基本的。
本文将简单介绍矩阵的基本概念和运算。
矩阵的基本概念矩阵是一个方形或长方形的数表,其中的数被排列在行和列中。
一个矩阵通常用大写字母来表示,如下所示:$$A =\begin{bmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1} & a_{m,2} & \cdots & a_{m,n}\end{bmatrix}$$其中 $m$ 表示矩阵的行数,$n$ 表示矩阵的列数,$a_{i,j}$ 表示第 $i$ 行第 $j$ 列的元素。
对于一个 $m \times n$ 的矩阵,我们可以简单地把它看做是$n$ 个列向量的组合,每个列向量是一个 $m$ 维的向量。
也就是说,$A$ 可以被写成如下形式:$$A = [a^{(1)}, a^{(2)}, \cdots, a^{(n)}]$$其中 $a^{(i)}$ 表示矩阵 $A$ 的第 $i$ 列向量。
矩阵的加法和减法两个同规格的矩阵可以进行加法和减法运算。
对于两个 $m\times n$ 的矩阵 $A$ 和 $B$,它们的和可以表示为:$$C = A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \cdots & a_{1,n}+b_{1,n} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \cdots & a_{2,n}+b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}+b_{m,1} & a_{m,2}+b_{m,2} & \cdots &a_{m,n}+b_{m,n}\end{bmatrix}$$同理,它们的差可以表示为:$$D = A - B =\begin{bmatrix}a_{1,1}-b_{1,1} & a_{1,2}-b_{1,2} & \cdots & a_{1,n}-b_{1,n} \\a_{2,1}-b_{2,1} & a_{2,2}-b_{2,2} & \cdots & a_{2,n}-b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}-b_{m,1} & a_{m,2}-b_{m,2} & \cdots & a_{m,n}-b_{m,n}\end{bmatrix}$$需要注意的是,在进行矩阵加法和减法运算时,这些矩阵必须是同规格的,也就是说它们的行数和列数都必须相等。
矩阵知识点总结矩阵是线性代数中重要的概念,是一个由数所组成的矩形表格。
矩阵的运算可以帮助我们解决各种实际问题,因此掌握矩阵的常见操作和性质对于学习数学和应用数学都非常重要。
下面是关于矩阵的一些常见知识点的总结。
1. 矩阵定义:矩阵是由数域中的元素按照一定的规则排列组成的矩形阵列。
矩阵的行数和列数分别称为其阶数。
2. 矩阵的运算:矩阵可以进行加法、减法和数乘运算。
加法和减法的运算需要保证两个矩阵的阶数相同,数乘运算则是将矩阵的每个元素乘以一个常数。
3. 矩阵的转置:矩阵的转置是将矩阵的行变为列,列变为行得到的新矩阵。
转置矩阵的性质包括转置矩阵的转置是原矩阵,转置矩阵的运算规则与原矩阵相同。
4. 矩阵的乘法:两个矩阵的乘法需要满足左矩阵的列数等于右矩阵的行数。
两个矩阵相乘得到的新矩阵,新矩阵的行数等于左矩阵的行数,列数等于右矩阵的列数。
5. 矩阵的单位矩阵:单位矩阵是一个主对角线上全为1,其余元素都为0的方阵。
单位矩阵与任何矩阵相乘都不改变原矩阵。
6. 矩阵求逆:对于一个可逆矩阵,可以求其逆矩阵。
逆矩阵满足逆矩阵与原矩阵相乘得到单位矩阵。
7. 矩阵的行列式:行列式是一个与方阵相关的概念,其结果是一个数。
行列式的值可以用于判断矩阵是否可逆,以及用于计算矩阵的逆元素。
8. 矩阵的秩:矩阵的秩是指矩阵中线性无关的行或列的最大个数。
秩的概念与矩阵的行列式和逆矩阵密切相关。
9. 线性方程组和矩阵:线性方程组可以用矩阵和向量的乘法来表示,并可以通过矩阵的求逆、转置和行列式等操作来解线性方程组。
矩阵在数学领域和其他学科中有着广泛的应用,如线性代数、概率论、计算机科学、物理学等。
通过学习矩阵的知识,我们可以更好地理解和解决与矩阵相关的问题,提高数学和科学建模的能力。
同时,在实际应用中,矩阵的运算和性质也为我们提供了一种简洁高效的数学工具。
因此,掌握矩阵的基础知识以及运用矩阵进行问题求解的能力对于学习和应用数学都是非常重要的。
矩阵的概念和计算矩阵是线性代数中一种重要的数学工具,广泛应用于各个领域,包括物理、工程、计算机科学等。
本文将详细介绍矩阵的概念,以及矩阵的基本运算和计算方法。
一、矩阵的概念矩阵是由数个数按一定的规律排列成的长方形阵列。
矩阵由m行n列元素组成,可以表示成一个m×n的形式。
其中,m表示矩阵的行数,n表示矩阵的列数。
每个元素在矩阵中由其所在的行号和列号来确定。
例如,一个3×2的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中,a11, a12, a21, a22, a31, a32分别表示矩阵A中的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法是指对应元素相加,要求两个矩阵具有相同的行数和列数。
例如,对于两个3×2的矩阵A和B,其加法可以表示为:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法是指对应元素相减,同样需要两个矩阵具有相同的行数和列数。
例如,对于两个3×2的矩阵A和B,其减法可以表示为:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘是指矩阵中的每个元素都乘以一个常数。
例如,对于一个3×2的矩阵A和一个常数k,其数乘可以表示为:B = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指满足前一个矩阵的列数等于后一个矩阵的行数的情况下,将相应的元素相乘再相加得到新的矩阵。
例如,对于一个m×n 的矩阵A和一个n×p的矩阵B,其乘法可以表示为:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,其计算方法为:cij = a[i1]b[1j] + a[i2]b[2j] + ... + a[in]b[nj]三、矩阵的计算方法1. 矩阵的转置矩阵的转置指的是将矩阵的行和列互换得到的新矩阵。
矩阵的定义及其运算规则矩阵是数学中的一种重要工具,用于表示数字和符号的矩形阵列。
矩阵由m行n列的数字或符号排列组成,每个数字或符号称为矩阵的元素。
矩阵通常用大写字母表示,例如A,B,C等。
矩阵的大小由它的行数和列数决定,并用m×n表示。
矩阵的运算规则包括加法、减法、数乘和乘法四种运算。
1.加法:对应位置上的元素相加对于相同大小的两个矩阵A和B,它们的加法定义如下:A+B=C其中C的元素由对应位置上的两个矩阵元素相加得到。
2.减法:对应位置上的元素相减对于相同大小的两个矩阵A和B,它们的减法定义如下:A-B=D其中D的元素由对应位置上的两个矩阵元素相减得到。
3.数乘:矩阵的每个元素与一个标量相乘对于一个矩阵A和一个实数k,它们的数乘定义如下:kA=E其中E的元素由矩阵A的每个元素与k相乘得到。
4.乘法:矩阵的行与列的对应元素相乘后求和对于两个矩阵A(m×n)和B(n×p),它们的乘法定义如下:AB=F其中F是一个m×p的矩阵,F的每个元素由矩阵A的其中一行与矩阵B的对应列的元素相乘后求和得到。
矩阵的运算满足以下一些基本性质:1.加法的交换律:A+B=B+A2.加法的结合律:(A+B)+C=A+(B+C)3.加法的零元素:存在一个零矩阵O,满足A+O=A4.减法的定义:A-B=A+(-B)5.数乘的结合律:(k1k2)A=k1(k2A)6.数乘的分配律:(k1+k2)A=k1A+k2A7.数乘的分配律:k(A+B)=kA+kB8.乘法的结合律:(AB)C=A(BC)9.乘法的分配律:A(B+C)=AB+AC和(A+B)C=AC+BC10.乘法的分配律:k(AB)=(kA)B=A(kB)矩阵的运算在应用中具有广泛的应用,包括线性代数、计算机图形学、优化、概率论等。
通过矩阵的运算规则,可以对线性方程组进行求解、描述线性变换、优化问题、图像处理等。
矩阵的运算规则是学习线性代数和其他数学领域的重要基础知识。
矩阵及其运算矩阵是线性代数中的一个重要概念,它在数学和工程领域中得到广泛应用。
本文将介绍矩阵的定义和基本操作,包括矩阵的加法、减法、乘法以及转置运算。
1. 矩阵的定义矩阵由m行n列的数排列成的矩形数表称为m×n矩阵,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个数称为元素,用a(i,j)表示矩阵中第i行第j列的元素。
例如,一个2×3的矩阵A可以定义为:A = [a(1,1) a(1,2) a(1,3)][a(2,1) a(2,2) a(2,3)]2. 矩阵的加法和减法对于两个同型矩阵A和B(即行列数相等),它们的和记为A + B,差记为A - B。
加法和减法的运算法则是对应元素相加或相减。
例如,对于两个2×3的矩阵A和B,它们的和A + B和差A - B可以表示为:A +B = [a(1,1) + b(1,1) a(1,2) + b(1,2) a(1,3) + b(1,3)][a(2,1) + b(2,1) a(2,2) + b(2,2) a(2,3) + b(2,3)]A -B = [a(1,1) - b(1,1) a(1,2) - b(1,2) a(1,3) - b(1,3)][a(2,1) - b(2,1) a(2,2) - b(2,2) a(2,3) - b(2,3)]3. 矩阵的乘法矩阵的乘法是定义在矩阵上的一种运算,对于矩阵A(m×p)和矩阵B(p×n),它们的乘积记为AB,结果是一个m×n的矩阵。
具体计算过程是,矩阵AB的第i行第j列的元素是矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
用数学公式表示为:AB(i,j) = ∑(A(i,k) * B(k,j)) (k从1到p)例如,对于一个2×3的矩阵A和一个3×2的矩阵B,它们的乘积AB可以表示为:AB = [a(1,1)*b(1,1) + a(1,2)*b(2,1) + a(1,3)*b(3,1) a(1,1)*b(1,2) +a(1,2)*b(2,2) + a(1,3)*b(3,2)][a(2,1)*b(1,1) + a(2,2)*b(2,1) + a(2,3)*b(3,1) a(2,1)*b(1,2) +a(2,2)*b(2,2) + a(2,3)*b(3,2)]4. 矩阵的转置一个矩阵的转置是将其行和列互换得到的新矩阵。
第一讲 矩阵概念及运算一、矩阵概念矩阵是本课程的一个重要概念,在生产活动和日常生活中,我们常常用数表表示一些量或关系,如工厂中的产量统计表,市场上的价目表等等.例1 某户居民第二季度每个月水(单位:吨)、电(单位:千瓦时)、天然气(单位:立方米)的使用情况,可以用一个三行三列的数表表示为 水 电 气⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡16210101519010141659由例1以及教材中的例子可以看到,对于不同的问题可以用不同的数表来表示,我们将这些数表统称为矩阵.定义2.1 有m ⨯n 个数排列成一个m 行n 列,并括以方括弧(或圆括弧)的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211 称为m 行n 列矩阵,简称m ⨯n 矩阵.矩阵通常用大写字母A , B , C …表示. 记作[]n m ij a A ⨯=其中a ij (i = 1, 2, …, m ;j = 1, 2, …, n )称为矩阵A 的第i 行第j 列元素. 注:矩阵的行数m 与列数n 可能相等,也可能不等. 特别地,当m = 1时,即A = []n a a a 11211 称为行矩阵.当n = 1时,即A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡12111m a a a称为列矩阵.当m = n 时,即A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 称为n 阶矩阵,或n 阶方阵. (再介绍几个特殊矩阵)所有元素全为零的m ⨯n 矩阵,称为零矩阵,记作O m n ⨯或O .例如4月5月 6月43⨯O =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000000000主对角线上的元素是1,其余元素全部是零的n 阶矩阵,称为n 阶单位矩阵,记作I n 或I . 如E 2 =⎥⎦⎤⎢⎣⎡1001, E 3 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001(零矩阵和单位矩阵在下面的矩阵运算中,将起着类似于数0和数1在数的加法和乘法中的作用.)二、矩阵运算(对从实际问题中抽象出来的矩阵,我们经常将几个矩阵联系起来,讨论它们是否相等,它们在什么条件下可以进行何种运算,这些运算具有什么性质等问题,这是下面所要讨论的主要内容.) 1.相等定义2.2 如果两个矩阵[]n m ij a A ⨯=,[]p s ij b B ⨯=满足:(1) 行、列数相同,即 p n s m ==,;(2) 对应元素相等,即a ij = b ij (i = 1, 2, …, m ;j = 1, 2, …, n ), 则称矩阵A 与矩阵B 相等,记作 A = B (由定义2.2可知,用等式表示两个m ⨯n 矩阵相等,等价于元素之间的m ⨯n 个等式.)例如,矩阵A =⎥⎦⎤⎢⎣⎡232221131211a a a a a a ,B =⎥⎦⎤⎢⎣⎡--412503 那么A = B ,当且仅当a 11 = 3,a 12 = 0,a 13 = -5,a 21 = -2,a 22 = 1,a 23 = 4而C = ⎥⎦⎤⎢⎣⎡22211211c c c c 因为B , C 这两个矩阵的列数不同,所以无论矩阵C 中的元素c 11, c 12, c 21, c 22取什么数都不会与矩阵B 相等.2.加法定义2.3 设[]n m ij a A ⨯=,[]p s ij b B ⨯=是两个m ⨯n 矩阵,则称矩阵C = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a221122222221211112121111为A 与B 的和,记作C = A + B = []ij ij b a +(由定义2.3可知,只有行数、列数分别相同的两个矩阵,才能作加法运算.) 同样,我们可以定义矩阵的减法:D = A - B = A + (-B ) =[]ij ij b a - 称D 为A 与B 的差.例2 设矩阵A =⎥⎦⎤⎢⎣⎡---152403,B =⎥⎦⎤⎢⎣⎡--130432 求A + B ,A - B .解A +B = ⎥⎦⎤⎢⎣⎡---152403+⎥⎦⎤⎢⎣⎡--130432 = ⎥⎦⎤⎢⎣⎡+--++-+-+-+11)3(5024430)2(3=⎥⎦⎤⎢⎣⎡-022031A -B = ⎥⎦⎤⎢⎣⎡---152403-⎥⎦⎤⎢⎣⎡--130432 =⎥⎦⎤⎢⎣⎡-----------11)3(5024430)2(3=⎥⎦⎤⎢⎣⎡----282835矩阵加法满足的运算规则是什么?设A , B , C , O 都是m ⨯n 矩阵,不难验证矩阵的加法满足以下运算规则 1. 加法交换律: A + B = B + A ; 2. 加法结合律: (A + B ) + C = A + (B + C ) ; 3. 零矩阵满足: A + O = A ; 4. 存在矩阵-A ,满足:A -A = A + (-A ) = O .3.数乘定义2.4 设矩阵[]n m ij a A ⨯=,λ为任意实数,则称矩阵[]n m ij c C ⨯=为数λ与矩阵A 的数乘,其中),2,1;,,2,1(n j m i a c ij ij ===λ,记为C =λA(由定义2.4可知,数λ乘一个矩阵A ,需要用数λ去乘矩阵A 的每一个元素.特别地,当λ = -1时,λA = -A ,得到A 的负矩阵.)例3 设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--062504713那么,用2去乘矩阵A ,可以得到2⨯A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯⨯⨯-⨯⨯-⨯⨯0262225202)4(272)1(232=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--012410081426数乘矩阵满足的运算规则是什么?对数k , l 和矩阵A = []n m ij a ⨯,B =[]n m ij b ⨯满足以下运算规则:1. 数对矩阵的分配律:k (A + B ) = kA + kB ;2. 矩阵对数的分配律:( k + l ) A = kA + lA ;3. 数与矩阵的结合律:( k l ) A = k (lA ) = l (kA ) ;4. 数1与矩阵满足: 1A = A .例4 设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-610523,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--712834,求3A - 2B . 解 先做矩阵的数乘运算3A 和2B ,然后求矩阵3A 与2B 的差. 3A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯⨯-⨯⨯63130353)2(333= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-18301569 2B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯⨯⨯-⨯⨯72)1(22282)3(242= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--14241668 ∴ 3A - 2B = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-18301569-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--14241668= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--4541014.乘法某地区甲、乙、丙三家商场同时销售两种品牌的家用电器,如果用矩阵A 表示各商场销售这两种家用电器的日平均销售量(单位:台),用B 表示两种家用电器的单位售价(单位:千元)和单位利润(单位:千元): I II 单价 利润A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡91811251020 B = ⎥⎦⎤⎢⎣⎡2.158.05.3 用矩阵C = []23⨯ijc 表示这三家商场销售两种家用电器的每日总收入和总利润,那么C 中的元素分别为c c c 112131203510512025351151425183595108=⨯+⨯==⨯+⨯==⨯+⨯=⎧⎨⎪⎩⎪.... ,c c c 1222322008101228250811123321808912252=⨯+⨯==⨯+⨯==⨯+⨯=⎧⎨⎪⎩⎪........ 即C =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡323122211211c c c c c c = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯2.198.018595.3182.1118.0255115.3252.1108.0205105.320 甲乙 丙 I II总 收 入 总利 润=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2.251082.335.14228120其中,矩阵C 中的第i 行第j 列的元素是矩阵A 第i 行元素与矩阵B 第j 列对应元素的乘积之和.定义2.5 设A =[]ij a 是一个m ⨯s 矩阵,B =[]ij b 是一个s ⨯n 矩阵,则称m ⨯n矩阵C =[]ij c 为矩阵A 与B 的乘积,记作 C = AB .其中c ij = a i 1b 1 j + a i 2b 2 j + … + a i s b s j =a b ik kj k s-∑1 (i = 1, 2, …, m ;j = 1, 2, …, n ).(由定义2.5可知:)(1) 只有当左矩阵A 的列数等于右矩阵B 的行数时,A , B 才能作乘法运算AB ;(2) 两个矩阵的乘积AB 亦是矩阵,它的行数等于左矩阵A 的行数,它的列数等于右矩阵B 的列数;(3) 乘积矩阵AB 中的第i 行第j 列的元素等于A 的第i 行元素与B 的第j 列对应元素的乘积之和,故简称行乘列的法则.例5 设矩阵 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--530412, B = ⎥⎦⎤⎢⎣⎡--10789,计算AB . 解 AB = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--530412⎥⎦⎤⎢⎣⎡--10789 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+-⨯-⨯+⨯⨯+-⨯--⨯+⨯-⨯-+-⨯-⨯-+⨯105)8(3)7(59310)8(4)7(09410)1()8(2)7()1(92= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---26832362625在例5中,能否计算BA ?由于矩阵B 有2列,矩阵A 有3行,B 的列数≠A 的行数,所以BA 是无意义的.例6 设矩阵 A = ⎥⎦⎤⎢⎣⎡2142,B =⎥⎦⎤⎢⎣⎡--1122, 求AB 和BA . 解 AB = ⎥⎦⎤⎢⎣⎡2142⎥⎦⎤⎢⎣⎡--1122 = ⎥⎦⎤⎢⎣⎡⨯+-⨯-⨯+⨯⨯+-⨯-⨯+⨯12)2(1)1(22114)2(2)1(422 =⎥⎦⎤⎢⎣⎡0000BA = ⎥⎦⎤⎢⎣⎡--1122⎥⎦⎤⎢⎣⎡2142= ⎥⎦⎤⎢⎣⎡⨯+⨯-⨯+⨯-⨯-+⨯⨯-+⨯214111212)2(421)2(22 = ⎥⎦⎤⎢⎣⎡--2142由例5、例6可知,当乘积矩阵AB 有意义时,BA 不一定有意义;即使乘积矩阵AB 和BA 有意义时,AB 和BA 也不一定相等.因此,矩阵乘法不满足交换律,在以后进行矩阵乘法时,一定要注意乘法的次序,不能随意改变.在例6中矩阵A 和B 都是非零矩阵(A ≠O , B ≠O ),但是矩阵A 和B 的乘积矩阵AB 是一个零矩阵(AB = O ),即两个非零矩阵的乘积可能是零矩阵.因此,当AB = O ,不能得出A 和B 中至少有一个是零矩阵的结论.一般地,当乘积矩阵AB = AC ,且A ≠O 时,不能消去矩阵A ,而得到B = C .这说明矩阵乘法也不满足消去律.那么矩阵乘法满足哪些运算规则呢?矩阵乘法满足下列运算规则: 1. 乘法结合律:(AB )C = A (BC ); 2. 左乘分配律:A (B + C ) = AB + AC ; 右乘分配律:(B + C )A = BA + CA ; 3. 数乘结合律:k (AB )= (k A )B = A (k B ),其中k 是一个常数.5.转置定义2.6 把将一个m ⨯n 矩阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211 的行和列按顺序互换得到的n ⨯m 矩阵,称为A 的转置矩阵,记作A ',即A ' = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n nm m a a a a a a a a a 212221212111 由定义2.6可知,转置矩阵A '的第i 行第j 列的元素等于矩阵A 的第j 行第i 列的元素,简记为A '的(i ,j )元 = A 的(j ,i )元矩阵的转置满足下列运算规则: 1. )(''A = A ;2. )('+B A =A ' +B ';3. )('kA = k A ' , ( k 为实数);4. )('AB =B 'A '.运算规则1—3都容易验证.若要了解运算规则4的证明4. )('AB =B 'A '. 证 设矩阵A =[]ij a 是m ⨯s 矩阵,B =[]ij b 是s ⨯n 矩阵,那么AB 是m ⨯n 矩阵, )('AB 是n ⨯m 矩阵;同样B '是n ⨯s 矩阵,A '是s ⨯m 矩阵,那么B 'A '是n ⨯m 矩阵.)('AB 的(,)i j 元 = AB 的(,)j i 元 =a b jk ki k s=∑1B T A T的(,)i j 元 =[(,)][(,)]Bi k A k j TT k s的元的元=∑1=[(,)][(,)]B k i A j k k s 的元的元=∑1=b a ki jk k s=∑1=a b jk ki k s=∑1∴ (AB )T 的(,)i j 元 = B T A T的(,)i j 元,(i =1, 2, …, n ;j =1, 2, …, m ). 故矩阵转置满足 ( AB )T =B T A T .例7 设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--232014,B = ⎥⎦⎤⎢⎣⎡4312,验证矩阵)('AB =B 'A '. 解 AB = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--232014⎥⎦⎤⎢⎣⎡4312=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡508605,)('AB = ⎥⎦⎤⎢⎣⎡580065 且A '= ⎥⎦⎤⎢⎣⎡--221304,B '=⎥⎦⎤⎢⎣⎡4122 B 'A '=⎥⎦⎤⎢⎣⎡4122⎥⎦⎤⎢⎣⎡--221304=⎥⎦⎤⎢⎣⎡580065 ∴ )('AB =560085⎛⎝ ⎫⎭⎪= B 'A '例8 证明:)('ABC = A B C ''' 证 )('A B C =])[('C AB =)(''AB C =A B C '''(由例8可知,)矩阵转置的运算规则4可以推广到多个矩阵相乘的情况,即)(21'k A A A = 12A A A k'''。
矩阵数学矩阵是数学中的一个基本概念,它是由数个数按照一定规律排列组合而成的一种数学结构。
矩阵理论在现代数学以及物理、工程等学科中都有着广泛的应用。
在本文中,我们将深入探讨矩阵以及相关的数学知识,以期加深对矩阵及其应用的理解。
一、矩阵的基本概念我们首先要了解矩阵的基本概念。
在数学中,我们把由m行n列的数排成一个m×n的矩阵,称之为“m行n列的矩阵”。
通常,我们用大写字母来表示矩阵,用小写字母来表示矩阵中的元素。
例如,一个矩阵A可以表示为:[A11 A12 A13 (1)A21 A22 A23 (2)…Am1 Am2 Am3…Amn]在矩阵中,每个元素都有一个唯一的位置,可以通过坐标(行,列)来进行表示。
例如,在上述矩阵中,元素A23表示的是第2行第3列的元素。
二、矩阵的运算规则在数学中,我们可以对矩阵进行加、减、乘、转置等运算。
其中,加、减运算是指同一位置的元素分别相加、相减,矩阵的大小必须相同;乘运算是指将第一个矩阵的每一行分别与第二个矩阵的每一列进行乘法运算,然后将结果相加得到新的矩阵;转置运算则是将矩阵的行列互换。
这些运算规则的应用十分广泛,例如在线性代数、微积分、概率论等学科中都有着应用。
三、矩阵的应用矩阵作为数学中的一种重要的数学结构,其应用十分广泛。
例如,在物理学中,我们可以通过使用矩阵的乘法运算来计算光的传播过程,其中矩阵表示的是介质的折射率和几何构型等信息;在机器学习中,矩阵则可以用来表示多个变量的关系,进而实现模型的构建和预测。
总之,矩阵是数学中的一个基本概念,它广泛应用于现代数学、物理、工程等学科,并且在科技发展中扮演着重要的角色。
我们可以通过深入学习相关的矩阵理论以及应用,来更好地理解矩阵及其在现代科技中的重要性。
.第二章 矩阵§2.1 矩阵的概念及其线性运算学习本节内容,特别要注意与行列式的有关概念、运算相区别。
一.矩阵的概念矩阵是一张简化了的表格,一般地⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a 212222111211 称为n m ⨯矩阵,它有m 行、n 列,共n m ⨯个元素,其中第i 行、第j 列的元素用j i a 表示。
通常我们用大写黑体字母A 、B 、C ……表示矩阵。
为了标明矩阵的行数m 和列数n ,可用n m ⨯A 或()i jm na ⨯表示。
矩阵既然是一张表,就不能象行列式那样算出一个数来。
所有元素均为0的矩阵,称为零矩阵,记作O 。
两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。
记作B A =。
如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。
n 阶矩阵有一条从左上角到右下角的主对角线。
n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。
在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。
主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001E n ⨯1矩阵(只有一行)又称为n 维行向量;1⨯n 矩阵(只有一列)又称为n 维列向量。
行向量、列向量统称为向量。
向量通常用小写黑体字母a ,b ,x ,y ……表示。
向量中的元素又称为向量的分量。
11⨯矩阵因只有一个元素,故视之为数量,即()a a =。
二.矩阵的加、减运算如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。
分别称为矩阵A 、B 的和与差。
B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。
§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。