广东省汕头市潮师高级中学2015届高三上学期期中考试数学(文)试题
- 格式:doc
- 大小:296.00 KB
- 文档页数:8
潮师高中2016~2017学年度第一学期高一级期中考试数 学一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列对象能确定一个集合的是( )A .第一象限内的所有点B .某班所有成绩较好的学生C .高一数学课本中的所有难题D .所有接近1的数2.已知集合M {}20x x x =-=,N ={}20y y y +=,则M N =U ( )A .∅B .{}0C .{}11-,D .{}101-,, 3.已知U R =,集合{|1}A x x =>,集合{|12}B x x =-<<,则图中阴影部分表示的集合为( ) A. {|1}x x > B. {|1}x x >-C. {|11}x x -<<D. {|11,2}x x x -<≤≥或 4. 下列幂函数中,定义域为R 的是( )(A) y=x 2(B) y=21x (C) y=41x (D) y=21x-5.y=(m 2-2m+2)x2m+1是一个幂函数,则m=( )A .-1B .1C .2D .06.设)(x f 是R 上的偶函数,且在),0[+∞上单调递增,则)3(),(),2(f f f π--的大小顺序是( ) A 、)2()3()(->>-f f f π B 、)3()2()(f f f >->-π C 、)2()3()(-<<-f f f π D 、)3()2()(f f f <-<-π 7.二次函数342+-=x x y 在区间(1,4]上的值域是( )。
A .[-1,+∞) B .(0,3] C .[-1,3] D .(-1,3)8. 三个数414131)23(,)43(,)43(———===c b a 的大小顺序是( )A 、b a c <<B 、a b c <<C 、c b a <<D 、c a b <<9. 当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图象是: ( )10.设函数()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则0)(<x xf 的解集是( ).A .{}|303x x x -<<>或B .{}|303x x x <-<<或C .{}|33x x x <->或D .{}|3003x x x -<<<<或11.已知函数2,0(),()(1)0,1,0x x f x f a f x x >⎧=+=⎨+≤⎩若则实数a 的值等于( )A .-1B . -3C .1D .312.已知x R ∈,用()A x 表示不小于x 的最小整数,如(3)2A =,( 1.2)1A -=-,若(21)3A x +=,则x 的取值范围是( )A .31,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎤ ⎥⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎤ ⎥⎝⎦二、填空题:本大题共4小题,每小题5分,满分20分。
2014-2015学年度汕头金山中学第一学期高三期中考试数学(文)一.选择题 (本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集{,,,,}U a b c d e =,集合{,}M a d =,{,,}N a c e =,则()U NC M =( )A.{,}c eB.{,}a cC.{,}d eD.{,}a e 2.命题“2,||0x R x x ∀∈+≥”的否定是( )A.2,||0x R x x ∀∈+<B.2,||0x R x x ∀∈+≤C.2000,||0x R x x ∃∈+<D.2000,||0x R x x ∃∈+≥3.设函数()ln f x x x =,则( )A.1x =为()f x 的极大值点B.1x =为()f x 的极小值点C.1x e =为()f x 的极大值点 D.1x e =为()f x 的极小值点 4.若tan 0α>,则( )A.sin 0α>B.cos 0α>C.sin 20α>D.cos20α>5.设函数(2),2()1()1,22x a x x f x x -≥⎧⎪=⎨-<⎪⎩是R 上的单调递减函数,则实数a 的取值范围为( )A.(,2)-∞B.13(,]8-∞ C.(0,2) D.13[,2)86.已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( ) A.d ac = B.a cd = C.c ad = D.d a c =+7.函数()f x 的定义域为R ,(1)2f -=,对任意x R ∈,'()2f x >,则()24f x x >+的解集为( )A.(1,)-+∞B.(,1)-∞-C.(2,)+∞D.(,2)-∞- 8.在函数①cos |2|y x =,②|cos |y x =,③cos(2)6y x π=+,④tan(2)4y x π=-中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.②③ 9.已知函数2()4f x x =-,()g x 是定义在(,0)(0,)-∞+∞上的奇函数,当0x >时,2()log g x x =,则函数()()y f x g x =⋅的大致图象为( )AFE D CBA B C D10.设函数()1()f x x Q αα=+∈的定义域为[,][,]b a a b --,其中0a b <<,且()f x 在区间[,]a b 上的最大值为6,最小值为3,则()f x 在区间[,]b a --上的最大值与最小值的和是( )A.59或B.93--或C.59-或D.95-或二.填空题 (本大题共4小题,每小题5分,满分20分.) (一)必做题(11-13题) 11.函数3log 1y x =-的定义域为 .12.已知()f x 是定义在R 上且周期为3的函数,当[0,3)x ∈时,21()|2|2f x x x =-+.若函数()y f x a =-在区间[3,4]-上有10个零点(互不相同),则实数a 的取值范围是 .13.如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x R ∀∈,()(1)f x f x >-,则正实数a 的取值范围为 .(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为 .15.(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆∆的周长的周长= .三.解答题(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)设命题:p 实数x 满足22430x ax a -+<,其中0a <;命题:q 实数x 满足260x x --≤,且p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.17.(本小题满分12分)已知函数()sin()3f x A x π=+,x R ∈,且5()122f π=. (1)求A 的值;(2)若()()f f θθ--=,)2,0(πθ∈,求()6f πθ-.18.(本小题满分14分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(1(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人中仅有一人成绩在[60,70)中的概率.19.(本小题满分14分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积4V =,求A 到平面PBC 的距离.20.(本小题满分14分)设等差数列{}n a 的公差为d ,点*(,)()n na b n N ∈在函数()2x f x =的图象上.(1)证明:数列{}n b 为等比数列;(2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2*{}()n n a b n N ∈的前n 项和n S .21.(本小题满分14分)已知函数()xxf x e e -=+,其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数. (2)若关于x 的不等式()1xmf x em -≤+-在(0,)+∞上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在0[1,)x ∈+∞,使得2000()(3)f x a x x <-+成立.试比较1a e -与1e a -的大小,并证明你的结论.高三期中考试数学(文)选择题答案ACDCB BAABC。
广东省汕头市潮师高级中学2017届高三数学上学期期中试题 理一.选择题:本大题共12小题,每小题5分.(1)已知集合{}1A x x =<,{}20B x x x =-≤,则A B =I(A ){}11x x -≤≤ (B ){}01x x ≤≤ (C ){}01x x <≤ (D ){}01x x ≤< (2)已知复数3i1iz +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为(A )6 (B )8 (C )10 (D )12 (4)已知cos 1123πθ⎛⎫-=⎪⎝⎭, 则5sin 12πθ⎛⎫+ ⎪⎝⎭的值是 (A)13 (B) 22 (C) 13- (D) 22-(5)已知随机变量X 服从正态分布()23,N σ, 且()40.84P X ≤=, 则()24P X <<= (A) 0.84 (B) 0.68 (C) 0.32 (D) 0.16(6)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-;3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是(A )1 (B )2 (C )3 (D )4(7)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++=L ,则12n PF P F P F +++=L (A )10n + (B )20n + (C )210n + (D )220n +(8)等比数列{}n a 中,182,4a a ==,函数128()()()()f x x x a x a x a =---L ,则'(0)f =( )A .62B .92C .122D .152开始 0k =23x x =+ 2k k =+ 结束输入x 是否 输出k 100?x >(9)若0<m <1,则( )A .lo g m (1+m )>log m (1-m )B .log m (1+m )>0C .1-m >(1+m )2D .(1-m )0.3>(1-m)0.5(10)已知边长为23ABCD 中,60BAD ∠=o ,沿对角线BD 折成二面角A BD C --为120o 的四面体ABCD ,则四面体的外接球的表面积为( )A .25πB .26πC .27πD .28π(11)设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为( ) .(A) 2 (B) 3 (C) 4 (D) 8 (12)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A )88246+ (B )88226+(C )2226+(D )126224++二.填空题:本大题共4小题,每小题5分.(13)一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号依次为1,2,3,…,6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是 .(14) ()422x x --的展开式中,3x 的系数为 . (用数字填写答案)(15)已知AD 是ABC ∆的中线,(,)AD AB AC R λμλμ=+∈u u u r u u u r u u u r ,0120,2A AB AC ∠=⋅=-u u u r u u u r ,则||AD u u u r的最小值是 .(16)已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为 个三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,53AC =,5CD =,2BD AD =.(Ⅰ)求AD 的长;(Ⅱ)求△ABC 的面积.ABCD(18)(本小题满分12分)已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n (n ∈N *)都成立的最小正整数m .(19)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[)45,75内的产 品件数为X ,求X 的分布列与数学期望.(20)(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形,AC BD O =I ,1A O ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:平面1ACO ⊥平面11BB D D ;(Ⅱ)若60BAD ∠=o,求二面角1B OB -(21)(本小题满分12分)已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.请考生在第23、24题中任选一题做答,做答时请写清题号.(22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l :33,32x t y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.(23)(本小题满分10分)选修4-5:不等式选讲设函数()1f x x a x a =--(Ⅰ)当1a =时,求不等式()12f x ≥的解集; (Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.2017年 潮师高级中学 期中测试 理科数学试题答案及评分参考一.选择题(1)D (2)D(3)C(4)A (5)B (6)B (7)A (8)C (9)D(10)D(11)D(12)A二.填空题(13)43(14) 40- (15)1(16)2三.解答题(17)(Ⅰ) 解法一: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =,所以cos CD CDB BD ∠=52x =.………………………………………………………2分 在△ACD 中,因为AD x =,5CD =,53AC =,由余弦定理得2222225(53)cos 2AD CD AC x ADC AD CD +-+-∠==⨯⨯. ………4分因为CDB ADC ∠+∠=π,所以cos cos ADC CDB ∠=-∠, 即2225(53)52x x+-=-.………………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分 解法二: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =. 在△BCD 中,因为CD BC ⊥,5CD =,2BD x =, 所以2425BC x =-所以2425cos 2BCx CBD BDx-∠==.……………………………………………2分在△ABC 中,因为3AB x =,2425BC x =-53AC =,由余弦定理得22222cos 26425AB BC AC CBA AB BC x x +-∠==⨯⨯⨯-4分 2425x -=226425x x ⨯-.………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分 (Ⅱ)解法一:由(Ⅰ)求得315AB x ==,2425BC x =-53=8分所以3cos 2BC CBD BD ∠==1sin 2CBD ∠=.…………………………10分 所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠ 11753155322=⨯⨯=12分 解法二:由(Ⅰ)求得315AB x ==,2425BC x =-53=.………………8分因为53AC =,所以△ABC 为等腰三角形. 因为3cos 2BC CBD BD ∠==,所以30CBD ∠=o.……………………………10分 所以△ABC 底边AB 上的高15322h BC ==. 所以12ABC S AB h ∆=⨯⨯ 153********=⨯⨯=.……………………………………………12分 【18】[自主解答] (1)设函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b ,由f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5.当n =1时,a 1=S 1=3×12-2×1=1=6×1-5,所以,a n =6n -5(n ∈N *).(2)由(1)知b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =b 1+b 2+…+b n =12[(1-17)+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1]=12(1-16n +1). 因此,要使12⎝⎛⎭⎪⎫1-16n +1<m 20(n ∈N *)恒成立, 则m 需满足12≤m20即可,则m ≥10,所以满足要求的最小正整数m 为10.(19)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,………………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X 服从二项分布(),B n p ,其中3n =.由(Ⅰ)得,区间[)45,75内的频率为0.30.2+0.1=0.6+,将频率视为概率得0.6p =.………………………………………………………5分因为X 的所有可能取值为0,1,2,3,…………………………………………6分且0033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=, 2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=.所以X X0 1 2 3 P 0.064 0.288 0.432 0.216所以X 的数学期望为00.06410.28820.43230.216 1.8EX =⨯+⨯+⨯+⨯=. (或直接根据二项分布的均值公式得到………………………10分(20)(Ⅰ)证明:因为1AO ⊥平面ABCD , BD ⊂平面ABCD ,所以1A O BD ⊥.………………1分因为ABCD 是菱形,所以CO BD ⊥.………………2分因为1AO CO O =I , 所以BD ⊥平面1A CO .……………………………………………………………3分因为BD ⊂平面11BB D D ,所以平面11BB D D ⊥平面1A CO .…………………………………………………4分(Ⅱ)解法一:因为1AO ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB u u r ,OC u u u r ,1OA u u u r方 向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.………………………5分 因为12AB AA ==,60BAD ∠=o, 所以1OB OD ==,OA OC ==11OA ==.………………6分则()1,0,0B,()C,()0,A ,()10,0,1A ,所以()11BB AA ==u u u r u u u r设平面1OBB 的法向量为n 因为()1,0,0OB =u u r,1OB =u u u r所以0,0.x x z =⎧⎪⎨++=⎪⎩令1=y ,得(0,1,=n 同理可求得平面1OCB 所以cos ,<>==n m 因为二面角1B OB C --的平面角为钝角,所以二面角1B OB C --的余弦值为-解法二:由(Ⅰ)知平面1ACO ⊥连接11A C 与11B D 交于点1O ,连接1CO ,1OO , 因为11AA CC =,11//AA CC , 所以11CAA C 为平行四边形.因为O ,1O 分别是AC ,11A C 所以11OA O C 为平行四边形.且1O C 因为平面1ACO I 平面11BB D D = 过点C 作1CH OO ⊥于H ,则CH ⊥平面11.过点H 作1HK OB ⊥于K ,连接CK ,则1CK OB ⊥.所以CKH ∠是二面角1B OB C --的平面角的补角.……………………………6分 在1Rt OCO ∆中,1113322O C OC CH OO ⨯⨯===.………………………………7分在1OCB ∆中,因为1A O ⊥11A B ,所以2211115OB OA A B =+=.因为11A B CD =,11//A B CD , 所以221112B C A D AO OD ==+=. 因为22211B C OC OB +=,所以1OCB ∆为直角三角形.……………………………8分所以1123655CB OC CK OB ⨯===⨯.…………………………………………9分所以2225KH CK CH =-=.…………………………………………………10分所以6cos 4KH CKH CK∠==.……………………………………………………11分所以二面角1B OB C --的余弦值为64-.……………………………………12分(21)(Ⅰ)解:因为+3()ex mf x x =-,所以+2()e3x mf x x '=-.……………………………………………………………1分 因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.…………………………………………………2分(Ⅱ)证法一:因为+3()ex mf x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+eln 120x mx -+->.当1m ≥时,()()+1e ln 12e ln 12x mx x x +-+-≥-+-.要证()+eln 120x mx -+->,只需证明1e ln(1)20x x +-+->.………………4分以下给出二种思路证明1e ln(1)20x x +-+->.思路1:设()()1e ln 12x h x x +=-+-,则()11e 1x h x x +'=-+. 设()11e 1x p x x +=-+,则()()121e 01x p x x +'=+>+. 所以函数()p x =()11e 1x h x x +'=-+在()1+-∞,上单调递增.…………………6分 因为121e 202h ⎛⎫'-=-< ⎪⎝⎭,()0e 10h '=->,所以函数()11e 1x h x x +'=-+在()1+-∞,上有唯一零点0x ,且01,02x ⎛⎫∈- ⎪⎝⎭.………………………………8分 因为()00h x '=,所以0+101e1x x =+,即()()00ln 11x x +=-+.………………9分 当()01,x x ∈-时,()0h x '<;当()0,x x ∈+∞时,()0h x '>,所以当0x x =时,()h x 取得最小值()0h x .………………………………………10分所以()()()0100=e ln 12x h x h x x +≥-+-()0011201x x =++->+. 综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 思路2:先证明1e2x x +≥+()x ∈R .……………………………………………5分设()1e 2x h x x +=--,则()+1e 1x h x '=-.因为当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以当1x <-时,函数()h x 单调递减,当1x >-时,函数()h x 单调递增. 所以()()10h x h ≥-=. 所以1e2x x +≥+(当且仅当1x =-时取等号).…………………………………7分 所以要证明1e ln(1)20x x +-+->, 只需证明()2ln(1)20x x +-+->.………………………………………………8分下面证明()ln 10x x -+≥.设()()ln 1p x x x =-+,则()1111xp x x x '=-=++. 当10x -<<时,()0p x '<,当0x >时,()0p x '>,所以当10x -<<时,函数()p x 单调递减,当0x >时,函数()p x 单调递增. 所以()()00p x p ≥=.所以()ln 10x x -+≥(当且仅当0x =时取等号).……………………………10分 由于取等号的条件不同, 所以1eln(1)20x x +-+->.综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 (若考生先放缩()ln 1x +,或e x、()ln 1x +同时放缩,请参考此思路给分!) (22)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分 因为222x y ρ=+,sin y ρθ=,…………………………………………………2分所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为33,32x t y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l 的普通方程为35y x =-+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l :35y x =-+的距离最短, 所以曲线C 在点D 处的切线与直线l :35y x =-+平行. 即直线GD 与l 的斜率的乘积等于1-,即(00131y x -⨯=-.………………7分 因为()220011x y +-=,解得03x =03x =.所以点D 的坐标为3122⎛⎫- ⎪ ⎪⎝⎭,或3322⎛⎫⎪ ⎪⎝⎭,.……………………………………9分 由于点D 到直线35y x =-+的距离最短,所以点D 的坐标为332⎛⎫⎪ ⎪⎝⎭,.……………………………………………………10分 解法二:因为直线l 的参数方程为33,32x t y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l 的普通方程为350x y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分所以点D 到直线l 的距离为3cos sin 4d ϕϕ+-=2sin 3ϕπ⎛⎫=-+ ⎪⎝⎭.………………………………8分 因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 332⎛⎫⎪⎪⎝⎭,,所以点D 的坐标为332⎛⎫ ⎪ ⎪⎝⎭,.……………………………10分(23)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解;②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分(Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()1f x x a x a =+--- ()01a ≤≤, 当x a ≤()1f x x a x a =-- 1a a =--0<.当1a x a <-<-()1f x x a x a =- 21x a a =-11a a a £-+--1a a =+-当1x a ≥-()1f x x a x a =-1a a =-11 所以()max f x ⎡⎤⎣⎦1a a =+-.……………………………………………………7分 思路2:因为 ()1f x x a x a =+---1x a x a ≤+-+-1a a =+-1a a =+-,当且仅当1x a ≥-时取等号.所以()max f x ⎡⎤⎣⎦1a a =+-.……………………………………………………7分因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集, 所以max1b a a ⎡⎤>+-⎣⎦.………………………………………………………8分 以下给出三种思路求()1g a a a =+-的最大值.思路1:令()1g a a a =+-,所以()2121g a a a =+-()()22112a a ≤++-=.当且仅当1a a =-,即12a =时等号成立.所以()max 2g a =⎡⎤⎣⎦.所以b 的取值范围为()2+∞,.…………………………………………………10分 思路2:令()1g a a a =+-,因为01a ≤≤,所以可设2cos a θ= 02θπ⎛⎫≤≤ ⎪⎝⎭,则()g a =1cos sin 2sin 24a a θθθπ⎛⎫+-=+=+≤ ⎪⎝⎭,当且仅当4θπ=时等号成立.所以b 的取值范围为()2+∞,.…………………………………………………10分 思路3:令()1g a a a =-因为01a ≤≤,设,1,x a y a ìï=ïíï=-ïî则221x y +=()01,01x y ##.问题转化为在221x y +=()01,01x y ##的条件下, 求z x y =+的最大值.利用数形结合的方法容易求得z 2,此时22x y ==. 所以b 的取值范围为)2+∞,.…………………………………………………10分xyO。
广东省汕头市潮师高中2015届高三上学期期中数学试卷(文科)一、选择题(每小题5分,总50分)1.(5分)已知集合A={x|x>1},B={x|x2﹣2x<0},则A∩B=()A.{x|x>0} B.{x|x>1} C.{x|1<x<2} D.{x|0<x<2}2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=log2x C.y=|x| D.y=﹣x23.(5分)设i为虚数单位,则复数等于()A.B.C.D.4.(5分)设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(﹣1)=()A.﹣2 B.0 C.2 D.﹣15.(5分)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.36πD.12π6.(5分)已知函数f(x)=x+1(x<0),则f(x)的()A.最小值为3 B.最大值为3 C.最小值为﹣1 D.最大值为﹣1 7.(5分)函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.(5分)如图,在△ABC中,点D是BC边上靠近B的三等分点,则=()A.B.C.D.9.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值范围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]10.(5分)设函数f(x)=x3﹣4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是()A.x1>﹣1 B.x2<0 C.0<x2<1 D.x3>2二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a∈(﹣,0),且sin(+a)=,则tana=.12.(5分)直线y=﹣x+b是函数f(x)=的切线,则实数b=.13.(5分)设函数,若f(x0)>1,则x0的取值范围是.14.(5分)向量在正方形网格中的位置如图所示.设向量=,若,则实数λ=.三、解答题(共80分)15.(12分)已知函数的周期是π.(1)求ω和的值;(2)求函数的最大值及相应x的集合.16.(12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如下所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为.(1)请完成列联表;组别达标不达标总计甲班8乙班54合计120(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.17.(14分)已知=(sinB,1﹣cosB),且与=(1,0)的夹角为,其中A,B,C是△ABC的内角.(1)求角B的大小;(2)求sinA+sinC的取值范围.18.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B﹣AA1C1D的体积.19.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求f(x)的极值;(Ⅲ)讨论f(x)的单调区间.20.(14分)已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.广东省汕头市潮师高中2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,总50分)1.(5分)已知集合A={x|x>1},B={x|x2﹣2x<0},则A∩B=()A.{x|x>0} B.{x|x>1} C.{x|1<x<2} D.{x|0<x<2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即B={x|0<x<2},∵A={x|x>1},∴A∩B={x|1<x<2}.故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=log2x C.y=|x| D.y=﹣x2考点:奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:根据y=x﹣1=在区间(0,+∞)上单调递减,得A项不符合题意;根据y=log2x的定义域不关于原点对称,得y=log2x不是偶函数,得B项不符合题意;根据y=﹣x2的图象是开口向下且关于x=0对称的抛物线,得y=﹣x2的在区间(0,+∞)上为减函数,得D项不符合题意.再根据函数单调性与奇偶性的定义,可得出只有C项符合题意.解答:解:对于A,因为函数y=x﹣1=,在区间(0,+∞)上是减函数不满足在区间(0,+∞)上单调递增,故A不符合题意;对于B,函数y=log2x的定义域为(0,+∞),不关于原点对称故函数y=log2x是非奇非偶函数,故B不符合题意;对于C,因为函数y=|x|的定义域为R,且满足f(﹣x)=f(x),所以函数y=|x|是偶函数,而且当x∈(0,+∞)时y=|x|=x,是单调递增的函数,故C符合题意;对于D,因为函数y=﹣x2的图象是开口向下的抛物线,关于直线x=0对称所以函数y=﹣x2的在区间(0,+∞)上为减函数,故D不符合题意故选:C点评:本题给出几个基本初等函数,要求我们找出其中的偶函数且在区间(0,+∞)上单调递增的函数,着重考查了基本初等函数的单调性与奇偶性等知识,属于基础题.3.(5分)设i为虚数单位,则复数等于()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以2﹣i,然后整理成a+bi(a,b∈R)的形式即可.解答:解:=.故选A.点评:本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.4.(5分)设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(﹣1)=()A.﹣2 B.0 C.2 D.﹣1考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:由奇函数的性质可得f(﹣1)=﹣f(1),再根据已知表达式可求得f(1).解答:解:∵f(x)为奇函数,∴f(﹣1)=﹣f(1),又当x>0时,f(x)=x2+x,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选A.点评:本题考查函数奇偶性的性质及其应用,属基础题,定义是解决问题的基本方法.5.(5分)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.36πD.12π考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知:该几何体是一个倒置的圆锥,其底面的直径为6,母线长为5.如图所示:底面上的高PO==4.据此可计算出其体积.解答:解:由三视图可知:该几何体是一个倒置的圆锥,其底面的直径为6,母线长为5.如图所示:底面上的高PO==4.∴V==12π.故选D.点评:由三视图正确恢复原几何体是解决问题的关键.6.(5分)已知函数f(x)=x+1(x<0),则f(x)的()A.最小值为3 B.最大值为3 C.最小值为﹣1 D.最大值为﹣1考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式即可得出.解答:解:∵x<0,∴函数f(x)=x+1=+1=﹣1,当且仅当x=﹣1时取等号.因此f(x)有最大值﹣1.故选:D.点评:本题考查了基本不等式的应用,属于基础题.7.(5分)函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由已知函数的图象求出函数解析式,然后看自变量x的变化得答案.解答:解:由图可知,A=1,,∴,即ω=2.由五点作图的第三点可知,+φ=π,得φ=(|φ|<),则f(x)=sin(2x+)=sin2(x+).∴为了得到f(x)的图象,则只要将g(x)=sin2x的图象向左平移个单位长度.故选:C.点评:本题考查由函数的部分图象求函数解析式,考查了函数图象的平移,解答的关键是利用五点作图的某一点求初相,是基础题.8.(5分)如图,在△ABC中,点D是BC边上靠近B的三等分点,则=()A.B.C.D.考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:利用向量的三角形法则和向量共线定理即可得出.解答:解:===.故选C.点评:熟练掌握向量的三角形法则和向量共线定理是解题的关键.9.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值范围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]考点:简单线性规划的应用;平面向量数量积的运算.专题:数形结合.分析:先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入•分析比较后,即可得到•的取值范围.解答:解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,•=﹣1×1+1×1=0当x=1,y=2时,•=﹣1×1+1×2=1当x=0,y=2时,•=﹣1×0+1×2=2故•和取值范围为[0,2]解法二:z=•=﹣x+y,即y=x+z当经过P点(0,2)时在y轴上的截距最大,从而z最大,为2.当经过S点(1,1)时在y轴上的截距最小,从而z最小,为0.故•和取值范围为[0,2]故选:C点评:本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.10.(5分)设函数f(x)=x3﹣4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是()A.x1>﹣1 B.x2<0 C.0<x2<1 D.x3>2考点:根的存在性及根的个数判断.专题:计算题;函数的性质及应用.分析:利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.解答:解:∵函数f (x)=x3﹣4x+a,0<a<2,∴f′(x)=3x2﹣4.令f′(x)=0,得x=±.∵当x<﹣时,f′(x)>0;在(﹣,)上,f′(x)<0;在(,+∞)上,f′(x)>0.故函数在(﹣∞,﹣)上是增函数,在(﹣,)上是减函数,在(,+∞)上是增函数.故f(﹣)是极大值,f()是极小值.再由f (x)的三个零点为x1,x2,x3,且x1<x2<x3,得 x1<﹣,﹣<x2<,x3>.根据f(0)=a>0,且f()=a﹣<0,得>x2>0.∴0<x2<1.故选C.点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a∈(﹣,0),且sin(+a)=,则tana=﹣.考点:两角和与差的正切函数.专题:三角函数的求值.分析:先由诱导公式求出cosα的值,再根据角的范围求出sinα,从而可求tana的值.解答:解:sin(+a)=⇒cosα=,∵a∈(﹣,0),=﹣,故tana===﹣.故答案为:﹣.点评:本题主要考察了诱导公式的应用,考察了同角三角函数的关系式的应用,属于基础题.12.(5分)直线y=﹣x+b是函数f(x)=的切线,则实数b=1或﹣1.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:设切点为P(m,n),求出函数f(x)=的导数,得切线斜率为﹣,再根据切点P既在切线y=﹣x+b上又在函数f(x)=的图象上,列出关于m、n、b的方程组,解之即可得到实数b之值.解答:解:由于函数f(x)=的导数,若设直线y=﹣x+b与函数f(x)=相切于点P(m,n),则解之得m=2,n=,b=1或m=﹣2,n=﹣,b=﹣1综上所述,得b=±1故答案为:1或﹣1点评:本题给出已知函数图象的一条切线,求参数b的值,着重考查了导数的运算公式与法则和利用导数研究曲线上某点切线方程等知识,属于基础题.13.(5分)设函数,若f(x0)>1,则x0的取值范围是(﹣∞,﹣1)∪(1,+∞).考点:指数函数的单调性与特殊点;幂函数的单调性、奇偶性及其应用.专题:计算题;分类讨论.分析:根据函数表达式分类讨论:①当x0≤0时,可得2﹣x﹣1>1,得x<﹣1;②当x0>0时,x0.5>1,可得x>1,由此不难得出x0的取值范围是(﹣∞,﹣1)∪(1,+∞).解答:解:①当x0≤0时,可得2﹣x0﹣1>1,即2﹣x0>2,所以﹣x0>1,得x0<﹣1;②当x0>0时,x00.5>1,可得x0>1.故答案为(﹣∞,﹣1)∪(1,+∞)点评:本题考查了基本初等函数的单调性和值域等问题,属于基础题.利用函数的单调性,结合分类讨论思想解题,是解决本题的关键.14.(5分)向量在正方形网格中的位置如图所示.设向量=,若,则实数λ=3.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据正方形网格确定向量的长度和两个向量的夹角,然后利用,可以求实数λ.解答:解:设正方形的边长为1,则AB=1,AC=,∴cos∠CAB=,∵,=,∴,即,∴,解得λ=3.故答案为:3.点评:本题主要考查平面数量积的应用,利用向量垂直和数量积的关系即可求出λ,要根据表格确定向量是解决本题的关键.三、解答题(共80分)15.(12分)已知函数的周期是π.(1)求ω和的值;(2)求函数的最大值及相应x的集合.考点:三角函数的周期性及其求法;三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:(1)根据函数的周期公式即可求ω和的值;(2)将函数g(x)进行化简,然后利用三角函数的性质即可求函数的最大值.解答:解:(1)∵函数的周期是π,且ω>0,∴,解得ω=2.∴.∴.(2)∵=,∴当,即时,g(x)取最大值.此时x的集合为.点评:本题主要考查三角函数的图象和性质,要求熟练掌握函数的周期性和函数最值的求解方法.16.(12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如下所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为.(1)请完成列联表;组别达标不达标总计甲班8乙班54合计120(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(1)根据在全部学生中随机抽取1人为不达标的概率为,总人数为120,故不达标的人数为12,达标的人数为108,乙班不达标为4人,甲班达标的人数为54,故可得结论;(2)用分层抽样的方法,可求甲班、乙班抽取的人数;(3)利用枚举法确定基本事件的个数,根据古典概型概率公式,可得结论.解答:解:(1)在全部学生中随机抽取1人为不达标的概率为,总人数为120,故不达标的人数为12,达标的人数为108,乙班不达标为4人,甲班达标的人数为54,故有组别达标不达标总计甲班54 8 62乙班54 4 58合计108 12 120…(3分)(2)由表可知:用分层抽样的方法从甲班抽取的人数为人,…(4分)从乙班抽取的人数为人…(5分)(3)设从甲班抽取的人为a,b,c,d,从乙班抽取的人为1,2;“抽到的两个人恰好都来自甲班”为事件A.…(6分)所得基本事件共有15种,即:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12…(8分)其中事件A包含基本事件ab,ac,ad,bc,bd,cd,共6种,…(10分)由古典概型可得…(12分)点评:本题考查概率知识的运用,考查分层抽样,考查枚举法的运用,考查学生分析解决问题的能力,属于中档题.17.(14分)已知=(sinB,1﹣cosB),且与=(1,0)的夹角为,其中A,B,C是△ABC的内角.(1)求角B的大小;(2)求sinA+sinC的取值范围.考点:平面向量数量积的运算.专题:三角函数的求值.分析:(1)根据两向量的夹角及两向量的求出两向量的数量积,然后再利用平面向量的数量积的运算法则计算,两者计算的结果相等,两边平方且利用同角三角函数间的基本关系化简,得到关于cosB的方程,求出方程的解即可得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出B的度数;(2)由B的度数,把所求的式子利用三角形的内角和定理化为关于A的式子,再利用两角差的正弦函数公式及特殊角的三角函数值化简,最后利用两角和的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由A的范围求出这个角的范围,根据正弦函数的图象可知正弦函数值的范围,进而得到所求式子的范围.解答:解:(1)∵=(sinB,1﹣cos B),且与=(1,0)的夹角为,∴=2sinB,又=×1×cos=,∴2sinB=,化简得:2cos2B﹣cosB﹣1=0,∴cos B=1(舍去)或cosB=﹣,又∵B∈(0,π),∴B=;(2)sinA+sinC=sinA+sin(﹣A)=sinA+cosA﹣sinA=sinA+cosA=sin(A+),∵0<A<,∴,则,∴sin A+sin C∈(,1].点评:此题考查了平面向量的数量积的运算,向量的数量积表示向量的夹角,三角函数的恒等变换以及同角三角函数间基本关系的运用.学生做题时注意角度的范围,熟练掌握三角函数公式,牢记特殊角的三角函数值,掌握正弦函数的值域.18.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B﹣AA1C1D的体积.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.专题:计算题;证明题.分析:(1)欲证AB1∥平面BC1D,根据线面平行的判定定理可知只需证AB1与平面BC1D内一直线平行,连接B1C,设B1C与BC1相交于点O,连接OD,根据中位线定理可知OD∥AB1,OD⊂平面BC1D,AB1⊄平面BC1D,满足定理所需条件;(2)根据面面垂直的判定定理可知平面ABC⊥平面AA1C1C,作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,然后求出棱长,最后根据四棱锥B﹣AA1C1D的体积求出四棱锥B﹣AA1C1D的体积即可.解答:解:(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD,∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.∵D为AC的中点,∴OD为△AB1C的中位线,∴OD∥AB1.(3分)∵OD⊂平面BC1D,AB1⊄平面BC1D,∴AB1∥平面BC1D.(6分)(2)∵AA1⊥平面ABC,AA1⊂平面AA1C1C,∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC.作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,(8分)∵AB=BB1=2,BC=3,在Rt△ABC中,,,(10分)∴四棱锥B﹣AA1C1D的体积(12分)==3.∴四棱锥B﹣AA1C1D的体积为3.(14分)点评:本题主要考查了线面平行的判定定理,以及棱锥的体积的度量,同时考查了空间想象能力,计算能力,以及转化与化归的思想,属于基础题.19.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求f(x)的极值;(Ⅲ)讨论f(x)的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)由求导公式求出导函数,求出切线的斜率f′(1)及f(1)的值,代入点斜式方程再化为一般式方程;(Ⅱ)先求出函数的定义域,再对导函数进行化简,判断出导函数的符号,即可得函数的单调性即极值情况;(Ⅲ)先对导函数进行化简,再对a进行分类讨论,利用列表格判断出导函数的符号,即可得函数的单调区间.解答:解:(I)当a=1时,f(x)=x+lnx,则,﹣﹣﹣(1分)所以f′(1)=2,且f(1)=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以切线方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)函数的定义域为(0,+∞),由(1)得=,﹣﹣﹣﹣﹣(6分)∵x>0,∴f′(x)>0恒成立﹣﹣﹣﹣﹣(8分)∴f(x)在(0,∞)上单调递增,没有极值﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)由题意得,(x>0)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当a≥0时,在(0,∞)时,f′(x)>0,所以f(x)的单调增区间是f′(x)>0;﹣﹣﹣﹣﹣(11分)当a<0时,函数f(x)与f′(x)在定义域上的情况如下:x (0,a)﹣a (﹣a,+∞)f′(x)﹣0 +f(x)↘极小值↗﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)综上,当a≥0时,f(x)的单调增区间是(0,+∞);当a<0时,f(x)的单调增区间是(﹣a,+∞),减区间是(0,a).﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题考查导数的几何意义,切线方程的求法,以及导数与函数的单调性、极值的应用,考查了分类讨论思想,注意一定先求出函数的定义域,以及把导函数化到最简.20.(14分)已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.考点:利用导数研究函数的单调性;二次函数的性质;二次函数在闭区间上的最值.专题:计算题.分析:(1)当a=2时,由g(x)=,x∈[0,3],利用二次函数的性质求出它的值域.(2)利用函数f(x)的导数的符号,分类讨论f(x)单调性,从而求出f(x)的最小值.(3)令 h(x)==﹣,通过h′(x)=的符号研究h(x)的单调性,求出h(x)的最大值为h(1)=﹣.再由f(x)=xlnx在(0,+∞)上的最小值为﹣,且f(1)=0大于h(1),可得在(0,+∞)上恒有f(x)>h(x),即.解答:解:(1)当a=2时,g(x)=,x∈[0,3],当x=1时,;当x=3时,,故g(x)值域为.(2)f'(x)=lnx+1,当,f'(x)<0,f(x)单调递减,当,f'(x)>0,f(x)单调递增.①若,t无解;②若,即时,;③若,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt,所以 f(x)min=.(3)证明:令 h(x)==﹣,h′(x)=,当 0<x<1时,h′(x)>0,h(x)是增函数.当1<x时.h′(x)<0,h(x)是减函数,故h(x)在(0,+∞)上的最大值为h(1)=﹣.而由(2)可得,f(x)=xlnx在(0,+∞)上的最小值为﹣,且当h(x)在(0,+∞)上的最大值为h(1)时,f(x)的值为ln1=0,故在(0,+∞)上恒有f(x)>h(x),即.点评:本题主要考查利用导数研究函数的单调性,二次函数的性质,函数的恒成立问题,属于中档题.。
广东省汕头市潮师高级中学2017届高三数学上学期期中试题 理一.选择题:本大题共12小题,每小题5分.(1)已知集合{}1A x x =<,{}20B x x x =-≤,则AB =(A ){}11x x -≤≤ (B ){}01x x ≤≤ (C ){}01x x <≤ (D ){}01x x ≤< (2)已知复数3i1iz +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为(A )6 (B )8 (C )10 (D )12 (4)已知cos 1123πθ⎛⎫-=⎪⎝⎭, 则5sin 12πθ⎛⎫+ ⎪⎝⎭的值是 (A)13 (C) 13- (D) -(5)已知随机变量X 服从正态分布()23,N σ, 且()40.84P X ≤=, 则()24P X <<= (A) 0.84 (B) 0.68 (C) 0.32 (D) 0.16(6)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-;3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是(A )1 (B )2 (C )3 (D )4(7)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++=,则12n PF P F P F +++=(A )10n + (B )20n + (C )210n + (D )220n + (8)等比数列{}n a 中,182,4a a ==,函数128()()()()f x x x a x a x a =---,则'(0)f =( )A .62 B .92 C .122 D .152(9)若0<m <1,则( )A .lo g m (1+m )>log m (1-m )B .log m (1+m )>0C .1-m >(1+m )2D .(1-m )0.3>(1-m)0.5(10)已知边长为ABCD 中,60BAD ∠=,沿对角线BD 折成二面角A BD C --为120的四面体ABCD ,则四面体的外接球的表面积为( )A .25πB .26πC .27πD .28π(11)设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为( ) .(A) 2 (B) 3 (C) 4 (D) 8 (12)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A)8+ (B)8+(C)2+(D)1224++二.填空题:本大题共4小题,每小题5分.(13)一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号依次为1,2,3,…,6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是 .(14) ()422x x --的展开式中,3x 的系数为 . (用数字填写答案)(15)已知AD 是ABC ∆的中线,(,)AD AB AC R λμλμ=+∈,0120,2A AB AC ∠=⋅=-,则||AD 的最小值是 .(16)已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为 个三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,AC =,5CD =,2BD AD =.(Ⅰ)求AD 的长;(Ⅱ)求△ABC 的面积.(18)(本小题满分12分)已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n (n ∈N *)都成立的最小正整数m .(19)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[)45,75内的产 品件数为X ,求X 的分布列与数学期望.(20)(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形,AC BD O =,1A O ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:平面1ACO ⊥平面11BB D D ;(Ⅱ)若60BAD ∠=,求二面角1B OB -(21)(本小题满分12分)已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.请考生在第23、24题中任选一题做答,做答时请写清题号.(22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l :32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.(23)(本小题满分10分)选修4-5:不等式选讲设函数()f x x x =-(Ⅰ)当1a =时,求不等式()12f x ≥的解集; (Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.2017年 潮师高级中学 期中测试 理科数学试题答案及评分参考一.选择题(1)D (2)D(3)C(4)A (5)B (6)B (7)A (8)C (9)D(10)D(11)D(12)A二.填空题(13)43(14) 40- (15)1(16)2三.解答题(17)(Ⅰ) 解法一: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =,所以cos CD CDB BD ∠=52x =.………………………………………………………2分在△ACD 中,因为AD x =,5CD =,AC =,由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯ ………4分因为CDB ADC ∠+∠=π,所以cos cos ADC CDB ∠=-∠,52x=-.………………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分 解法二: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =. 在△BCD 中,因为CD BC ⊥,5CD =,2BD x =,所以BC =所以cos 2BCCBD BDx∠==.……………………………………………2分在△ABC 中,因为3AB x =,BC =AC =,由余弦定理得2222cos 2AB BC AC CBA AB BC +-∠==⨯⨯4分=2.………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分(Ⅱ)解法一:由(Ⅰ)求得315AB x ==,BC ==8分所以cos 2BC CBD BD ∠==1sin 2CBD ∠=.…………………………10分 所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠111522=⨯⨯=12分解法二:由(Ⅰ)求得315AB x ==,BC ==.………………8分因为AC =,所以△ABC 为等腰三角形. 因为cos BC CBD BD ∠==30CBD ∠=.……………………………10分 所以△ABC 底边AB 上的高12h BC ==. 所以12ABC S AB h ∆=⨯⨯ 115224=⨯⨯=.……………………………………………12分 【18】[自主解答] (1)设函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b ,由f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5.当n =1时,a 1=S 1=3×12-2×1=1=6×1-5,所以,a n =6n -5(n ∈N *).(2)由(1)知b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =b 1+b 2+…+b n =12[(1-17)+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1]=12(1-16n +1). 因此,要使12⎝⎛⎭⎪⎫1-16n +1<m 20(n ∈N *)恒成立, 则m 需满足12≤m20即可,则m ≥10,所以满足要求的最小正整数m 为10.(19)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,………………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X 服从二项分布(),B n p ,其中3n =.由(Ⅰ)得,区间[)45,75内的频率为0.30.2+0.1=0.6+,将频率视为概率得0.6p =.………………………………………………………5分 因为X 的所有可能取值为0,1,2,3,…………………………………………6分且0033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=, 2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=.所以X所以X 的数学期望为00.06410.28820.43230.216 1.8EX =⨯+⨯+⨯+⨯=. (或直接根据二项分布的均值公式得到………………………10分(20)(Ⅰ)证明:因为1AO ⊥平面ABCD , BD ⊂平面ABCD ,所以1A O BD ⊥.………………1分因为ABCD 是菱形,所以CO BD ⊥.………………2分 因为1AO CO O =,所以BD ⊥平面1A CO .……………………………………………………………3分 因为BD ⊂平面11BB D D ,所以平面11BB D D ⊥平面1A CO .…………………………………………………4分(Ⅱ)解法一:因为1AO ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB ,OC ,1OA 方 向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.………………………5分 因为12AB AA ==,60BAD ∠=, 所以1OB OD ==,OA OC ==11OA ==.………………6分则()1,0,0B,()C,()0,A ,()10,0,1A ,所以()11BB AA ==设平面1OBB 的法向量为n 因为()1,0,0OB =,1OB =所以0,0.x x z =⎧⎪⎨++=⎪⎩令1=y ,得(0,1,=n 同理可求得平面1OCB 所以cos ,<>==n m 因为二面角1B OB C --的平面角为钝角,所以二面角1B OB C --的余弦值为-解法二:由(Ⅰ)知平面1ACO ⊥连接11A C 与11B D 交于点1O ,连接1CO ,1OO , 因为11AA CC =,11//AA CC , 所以11CAA C 为平行四边形.因为O ,1O 分别是AC ,11A C 所以11OA O C 为平行四边形.且1O C 因为平面1ACO 平面11BB D D = 过点C 作1CH OO ⊥于H ,则CH ⊥平面11.过点H 作1HK OB ⊥于K ,连接CK ,则1CK OB ⊥.所以CKH ∠是二面角1B OB C --的平面角的补角.……………………………6分 在1Rt OCO ∆中,1122O C OC CH OO ⨯===.………………………………7分在1OCB ∆中,因为1A O ⊥11A B,所以1OB ==因为11A B CD =,11//A B CD ,所以11B C A D ===. 因为22211B C OC OB +=,所以1OCB ∆为直角三角形.……………………………8分所以11CB OC CK OB ===⨯9分所以KH .…………………………………………………10分所以cos 4KH CKH CK∠==.……………………………………………………11分所以二面角1B OB C --的余弦值为4-.……………………………………12分(21)(Ⅰ)解:因为+3()ex mf x x =-,所以+2()e3x mf x x '=-.……………………………………………………………1分 因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.…………………………………………………2分(Ⅱ)证法一:因为+3()ex mf x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+eln 120x mx -+->.当1m ≥时,()()+1e ln 12e ln 12x mx x x +-+-≥-+-.要证()+eln 120x mx -+->,只需证明1e ln(1)20x x +-+->.………………4分以下给出二种思路证明1e ln(1)20x x +-+->.思路1:设()()1e ln 12x h x x +=-+-,则()11e 1x h x x +'=-+. 设()11e 1x p x x +=-+,则()()121e 01x p x x +'=+>+. 所以函数()p x =()11e 1x h x x +'=-+在()1+-∞,上单调递增.…………………6分 因为121e 202h ⎛⎫'-=-< ⎪⎝⎭,()0e 10h '=->,所以函数()11e 1x h x x +'=-+在()1+-∞,上有唯一零点0x ,且01,02x ⎛⎫∈- ⎪⎝⎭.………………………………8分 因为()00h x '=,所以0+101e1x x =+,即()()00ln 11x x +=-+.………………9分 当()01,x x ∈-时,()0h x '<;当()0,x x ∈+∞时,()0h x '>,所以当0x x =时,()h x 取得最小值()0h x .………………………………………10分所以()()()0100=e ln 12x h x h x x +≥-+-()0011201x x =++->+. 综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 思路2:先证明1e2x x +≥+()x ∈R .……………………………………………5分设()1e 2x h x x +=--,则()+1e 1x h x '=-.因为当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以当1x <-时,函数()h x 单调递减,当1x >-时,函数()h x 单调递增. 所以()()10h x h ≥-=. 所以1e2x x +≥+(当且仅当1x =-时取等号).…………………………………7分 所以要证明1e ln(1)20x x +-+->, 只需证明()2ln(1)20x x +-+->.………………………………………………8分下面证明()ln 10x x -+≥.设()()ln 1p x x x =-+,则()1111xp x x x '=-=++. 当10x -<<时,()0p x '<,当0x >时,()0p x '>,所以当10x -<<时,函数()p x 单调递减,当0x >时,函数()p x 单调递增. 所以()()00p x p ≥=.所以()ln 10x x -+≥(当且仅当0x =时取等号).……………………………10分 由于取等号的条件不同, 所以1eln(1)20x x +-+->.综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 (若考生先放缩()ln 1x +,或e x、()ln 1x +同时放缩,请参考此思路给分!) (22)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分 因为222x y ρ=+,sin y ρθ=,…………………………………………………2分所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-.………………7分 因为()220011x y +-=,解得0x =0x =.所以点D 的坐标为122⎛⎫- ⎪ ⎪⎝⎭,或322⎛⎫⎪ ⎪⎝⎭,.……………………………………9分由于点D 到直线5y =+的距离最短,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………………………………10分解法二:因为直线l 的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l 50y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分所以点D 到直线l 的距离为d =2sin 3ϕπ⎛⎫=-+ ⎪⎝⎭.………………………………8分 因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 32⎫⎪⎪⎝⎭,,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………10分(23)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解;②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分(Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()f x x x =+-- ()01a ≤≤,当x ≤()f x x x =-=0<.当x <<()f x x x =2x =£+-=+当x ≥()f x x x ==11 所以()max f x ⎡⎤⎣⎦=7分思路2:因为 ()f x x x =-x x ≤+==当且仅当x ≥所以()max f x ⎡⎤⎣⎦=7分因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,所以maxb >.………………………………………………………8分 以下给出三种思路求()g a =.思路1:令()g a =所以()21g a =+2212≤++=.=12a =时等号成立.所以()max g a =⎡⎤⎣⎦.所以b的取值范围为)+∞.…………………………………………………10分 思路2:令()g a =因为01a ≤≤,所以可设2cos a θ= 02θπ⎛⎫≤≤ ⎪⎝⎭,则()g a=cos sin 4θθθπ⎛⎫=+=+≤ ⎪⎝⎭ 当且仅当4θπ=时等号成立.所以b的取值范围为)+∞.…………………………………………………10分 思路3:令()g a =因为01a ≤≤,设x y ìï=ïíï=ïî则221x y +=()01,01x y ##.问题转化为在221x y +=()01,01x y ##的条件下, 求z x y =+的最大值.利用数形结合的方法容易求得z,此时2x y ==. 所以b的取值范围为)+∞。
参考答案一.选择题(本大题共10小题,每小题5分,共50分)二. 填空题(本大题共做4小题,每小题5分,共20分)11. 2;12. -5;13. [2,10];14. 15. 32三. 解答题:本大题共6题,满分80分.16. 解:(1)()3sin 23sin 121263f ππππ⎛⎫=⨯+== ⎪⎝⎭4分 (2)53541sin 1cos ,2,0,54sin 22=⎪⎭⎫ ⎝⎛-=-=∴⎪⎭⎫ ⎝⎛∈=θθπθθ …6分 …………………………………………………………12分17. 解:(1)1-0. 01×10×3-0. 02×10×2=0. 3………………………1分()257253546cos sin 63sin2θ2sin 361252sin 3125=⨯⨯===-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-θθθππθπθπfBC DEGH第18题 F………………………3分(2)200.1300.2400.3500.2600.1700.143⨯+⨯+⨯+⨯+⨯+⨯=(百元)……………5分即这50人的平均月收入估计为4300元。
………………………………6分(3)[65,75]的人数为5人,其中2人赞成, 3人不赞成。
……………7分记赞成的人为b a ,,不赞成的人为z y x ,,……………8分任取2人的情况分别是:,,,,,,,,,,yz xz xy bz by bx az ay ax ab 共10种情况。
…………9分其中2人都不赞成的是:,,,yz xz xy 共3种情况。
…………11分 ∴2人都不赞成的概率是:310p =…………12分 18. (1)证明: 四边形ABCD 为菱形 AC BD ⊥∴,………………1分 又 面ACFE ⋂面ABCD =AC ABCD BD 平面⊂∴………………2分 面ABCD ⊥面ACFE C ………………3分ACFE BD 面⊥∴,………………4分ACFE CH 面⊂ ………………5分CH BD ⊥∴………………………………6分(2)在FCG ∆中,GF CH CH CF CG ⊥===,23,3 所以︒=∠120GCF ,………………6分3=GF ………………8分 ACFE BD 面⊥ ,ACFE GF 面⊂GF BD ⊥∴,………………9分3322121=⨯⨯=⋅=∆GF BD S BDF …………………………………. 10分 又BD CH ⊥∴,GF CH ⊥,G GF BD =⋂∴,BDF GF BD 平面⊂∴,. . . . . . . . . . . . . 12分232333131=⋅⋅=⋅⋅==∆--CH S V V BDF BDF C BDC F ……………………………14分 注:另两种求体积方法19.(1) ………………………1分两式相减,得221=--n n a a ,整理1211+=-n n a a (3)分()2),2(2121≥-=--n a a n n ……………………………………………………,1=n 令,321=a 得,231=a BDF CH 平面⊥∴12+=+n S a n n ()()*∈≥+-=+∴+=+--N n n n S a n S a n n n n ,2,1121211{}2-∴n a 数列是首项为1122a -=-,公比为12的等比数列………………6分n n nn a a 212,212-=∴⎪⎭⎫ ⎝⎛-=-∴………………………………………………… 7分(2)()()121121121222122122121212111211---=--=-⋅-⋅=∴+++++++++n n n n n n n n n n n n n a a . . 10分31121311211211211211211212121212214332132221<--=⎪⎭⎫ ⎝⎛---++⎪⎭⎫ ⎝⎛---+⎪⎭⎫ ⎝⎛---=+++++++n n n n n n a a a a a a …………… 12分 …………………………………………………………………… 14分20. 解:(1)设()()0,,0,21c F c F - 则()⎪⎩⎪⎨⎧+=+=1222222c a a c ,解得1,2==c a ………………………………3分 ∴1222=-=c a b ,∴椭圆E:2212x y +=…………………………………………………………4分 (2)由 22x +2y =1 y kx m =+⇒222(12)42(1)0k x kmx m +++-=……………………………………………设直线l 与椭圆E 相切于点P 00(,)x y则2212,0m k =+∴=∆化简………………………………………………………7分焦点21,F F 到直线l 的距离21,d d 分别为1d =,2d =,………………………………………………………8分 则22212221111m k k d d k k -+===++………………………………………………………9分(3)mk k km x 221220-=+-= ∴00y kx m =+=-22221k m k m m m m-+==,∴)1,2(m m k P -……………………10分又联立y k =+与2x =,得到(2N k m +………………………………………11分⎪⎭⎫ ⎝⎛-+=m m k PF 1,212,()m k F +=2,12()()2221F F 1,1,2211222110k k m m m k k m m mk k m m⎛⎫P ⋅N =+-⋅+ ⎪⎝⎭=+-+=+--= ……………………………………………………………13分 ∴22⊥∴以PN 为直径的圆恒过点2F ………………………………………14分注:用椭圆切线容易计算21. 解:(1)f′(x )=()142-+a ax (*)………………………………1分当a≥1时,f′(x )>0,此时,f (x )在区间(0,+∞)上单调递增. ………3分当0<a<1时,由f′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎪⎫x 2=-21-a a 舍去…………………………………4分 当x∈(0,x 1)时,f′(x )<0;当x∈(x 1,+∞)时,f′(x )>0.故f (x )在区间(0,x 1)上单调递减,在区间(x 1,+∞)上单调递增. ……………………………………5分综上所述,当a≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间(0在区间(,+∞)上单调递增. ………………………………6分(2)由(*)式知,当a≥1时,f′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a<1. …………………………7分又f (x )的极值点只可能是x 1=21-aa和x 2=-21-aa,且由f (x )的定义可知,x>-1a 且x≠-2,所以-21-aa >-1a,-21-a a ≠-2⇒a ∈(0,12)(12,1)…………8分此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点. 而g (x 1)+g (x 2)=ln (1+ax 1)-2x 1x 1+2+ln (1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln (2a -1)2-4(a -1)2a -1=ln (2a -1)2+22a -1-2. …………9分令2a -1=x. 由0<a<1且a≠12知,当0<a<12时,-1<x<0;当12<a<1时,0<x <1. ………………10分记h (x )=lnx 2+2x-2.(1)当-1<x<0时,h (x )=2ln (-x )+2x-2,()()()()()()()041,02222ln 2,1,02<-=<∴>+='--==∈-=ϕϕϕϕϕt t t t t tt t x h x t 单调递增,设从而h (x )<-4<0.故当0<a<12时,g (x 1)+g (x 2)<0.不合题意,舍去………………………………………………12分 (2)当0<x<1时,h (x )=2lnx +2x -2,所以h ′(x )=2x -2x 2=2x -2x 2<0,因此,h (x )在区间(0,1)上单调递减,从而h (x )>g (1)=0. 故当12<a<1时,g (x 1)+g (x 2)>0. (13)分综上所述,满足条件的a 的取值范围为⎝ ⎛⎭⎪⎫12,1. …………………14分。
广东省汕头市潮师高级中学2014届高三数学上学期期中试题 文 新人教A 版一、选择题(每小题5分,总50分)1. 已知集合Al={x|x<3}, 7V = {%|X 2-6X + 8<0},则MC\N=()A . 0B . (x|0<x<3|C . {x| 1 <x<3}D . {x|2<x<3}2. 己知命题P 是:“对任意的XG R ,F+1W0”,那么「"是()A. 不存在R ,兀'一兀2 +] WOB. 存在XG R , x 3 -x 2 +1C. 存在 xeR 9 x 3 - x 2 +1 > 0D. 对任意的XG R , x 3-x 2+l>03. y = (sinx + cosx)2 -1 是()7. 在平面直角坐标系中,不等式组{ x-y + 4>0表示的平面区域面积是()•%<1TT1TT8. 已知sin(a_N )=亍,贝0cos(— + a)的值等于(A. 蚁小正周期为2兀的奇函数B. 最小正周期为2兀的偶函数C. 最小正周期为兀的奇函数D. 最小正周期为兀的偶函数4.设 X 9ye R, ]jj|j “ X n 2 且 y n 2 ” 是 A.充分而不必要条件C. 充分必要条件/(X )= ---- -------10岂(2 兀+1) 2« x 2 + y 2> 4 ”的( ) B. 必要而不充分条件 D.即不充分也不必要条件,则/(兀)的定义域为((-“)(-异)A. 2B. 2c.6.函数 f\x ) =Asin ( ^x+ 0) ( A>0, 的部分图彖如图所示,则代0)的值是(A.晅B •晅C.《D.@ 24 2 4A. 3B. 6D. 9)2 /~ 2 /~1 1A. —丁2B. ------------- 丁2C. —D.—3 33 39. 已知函数y 二a”"(G >0, H.GH I)的图彖恒过定点A,若点A 在函数y = mx + n 的图象上,其中加,〉0,则丄+丄的最小值为m nA. 1B. 4C. x/2D. 2| lg x |,0 < x < 1010. 已知函数/*(*) = ] 1 ,若 a, b, c 互不相等,且 f (a)二f (b)二f (c),—x + 6, A -〉10 2则abc 的収值范围是()A. (1, 10)B. (5, 6)C. (10, 12) 二、填空题(每小题5分,总20分、具小14、15题为选做题} 11. 已知函数广(兀)」2",(兀<4) ,则兀5)=[/(兀一 1) + 2,(沦 4)12. cos24 cos36 -cos66 cos54 的值等于 ___________ .13. 一个空间儿何体的三视图及部分数据如图所示,则这个儿何体的体积是 __________7T14. (坐标系与参数方程选做题)过点(2,y)K 平行于极轴的直线的极坐标方程为 ______________15. (几何证明选讲选做题)己知阳是圆O 的切线,切点为A ,直线P0交圆O 于B,C 两点,AC = 2f = 120°,则圆O 的面积为 _________ ・ 三、解答题(共80分)7T16. (本小题满分12分)已知函数/(%) = sin(— + %) + sin(^ + x), (1) 求函数/(兀)的最小正周期; (2) 求/(X )的最大值和最小值; (3) 若/(%) = — ,求sin2兀的值D. (20, 24)1正视图 侧就图7317.(本小题满分12分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和人于或等于7的概率;(2)若笫一•次随机抽1张卡片,放回后再随机抽収1张卡片,求两次抽取中至少一次抽到数字2的概率.点E、F分别为棱AB、PD的中点.(1)求证:AF〃平面PCE; (2)求证:平而PCE丄平面PCD;18.(14分)如图,四棱锥P-ABCD的底面是正方形,PA丄底ffi ABCD, PA = 2, ZPDA=45° ,19.(本小题满分14分)已知函数f (x) =x2一lnx.(1)求曲线f(x)在点(1, f(l))处的切线方程;(2)求函数徴的单调递减区间:(3)设函数g(x)=f(x)-x2+ax, a>0,若xW (O, e]时,g@的最小值是3,求实数a的值.(e是为自然对数的底数)20・(木小题满分14分)在经济学中,函数/(%)的边际函数Mf\x)定义为= 1)-/(%),某公司每月生产兀台某种产品的收入为R(x)元,成本为C(兀)元,且/?(x) = 3000x-20x2, C(x) = 600x +4000(%G N*),现已知该公司每月生产该产品不超过100台,(利润二收入一成木)(1) 求利润函数P(x)以及它的边际利润函数MP(x);(2) 求利润函数的最人值与边际利润函数的最大值之差。
潮师高中2017届高三上学期数学(文科)期中考试(本试卷共4页,21小题,满分150分。
考试用时120分钟)注意事项:非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一、选择题(每小题5分,总50分)1.已知集合{}|3M x x =<,{}2|680N x x x =-+<,则M N = ( )A .∅B .{}|03x x <<C .{}|13x x <<D .{}|23x x <<2.已知命题P 是:“对任意的x ∈R ,3210x x -+≤”,那么p ⌝是( )A .不存在x ∈R ,3210x x -+≤B .存在x ∈R ,3210x x -+≤C .存在x ∈R ,3210x x -+> D .对任意的x ∈R ,3210x x -+> 3.2(sin cos )1y x x =+-是( )A. 最小正周期为2π的奇函数B. 最小正周期为2π的偶函数C. 最小正周期为π的奇函数D. 最小正周期为π的偶函数4.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞C.1(,0)(0,)2-⋃+∞D.1(,2)2-6. 函数f (x )=A sin(ωx +φ)( A >0,ω>0,20πϕ<<)的部分图象如图所示,则f (0)的值是( )A.23B.43C.26D.467. 在平面直角坐标系中,不等式组0401x y x y x +≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域面积是( ).A .3B .6C . 92D .9 8. 已知31)4sin(=-πα,则)4cos(απ+的值等于( )A .232 B .232- C .31D .31- 9. 已知函数1x y a -=(0a >,且1a ≠)的图象恒过定点A ,若点A 在函数y mx n =+的图象上,其中,0m n >,则11m n+的最小值为 A .1 B .4 C .D .210.⎪⎩⎪⎨⎧>+-≤<=10,621100|,lg |)(x x x x x f 已知函数 , 若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(每小题5分,总20分,其中14、15题为选做题)11.已知函数⎩⎨⎧≥+-<=)4(,2)1()4(,2)(x x f x x f x , 则(5)f = _____________.12. cos24cos36cos66cos54︒︒︒︒-的值等于________.13.一个空间几何体的三视图及部分数据如图所示,则这个几何体 的体积是14.(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为_ _.15.(几何证明选讲选做题)已知PA 是圆O 的切线,切点为A ,直线PO 交圆O 于,B C 两点,2AC =,120PAB ∠=,则圆O 的PABOC面积为 . 三、解答题(共80分)16.(本小题满分12分)已知函数()sin()sin()2f x x x ππ=+++,(1)求函数()f x 的最小正周期; (2)求()f x 的最大值和最小值; (3)若1()4f x =,求sin 2x 的值 17.(本小题满分12分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(2)若第一次随机抽1张卡片,放回后再随机抽取1张卡片,求两次抽取中至少一次抽到数字2的概率.18.(14分)如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,PA =2,∠PDA=45°,点E 、F 分别为棱AB 、PD 的中点.(1)求证:AF ∥平面PCE ;(2)求证:平面PCE ⊥平面PCD ;19.(本小题满分14分) 已知函数f(x) =x 2—lnx. (1)求曲线f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的单调递减区间:(3)设函数g(x)=f(x)-x 2+ax, a>0,若x ∈ (O ,e]时,g(x)的最小值是3,求实数a 的值. (e 是为自然对数的底数)20.(本小题满分14分)在经济学中,函数()f x 的边际函数()Mf x 定义为()(1)()Mf x f x f x =+-,某公司每月生产x 台某种产品的收入为()R x 元,成本为()C x 元,且2()300020R x x x =-,*()6004000()C x x x N =+∈,现已知该公司每月生产该产品不超过100台,(利润=收入-成本)(1)求利润函数()P x 以及它的边际利润函数()MP x ; (2)求利润函数的最大值与边际利润函数的最大值之差。
2016-2017学年广东省汕头市潮师高中高二(上)期中数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.函数y=ln(﹣1)的定义域为()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)3.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥βD.若α∥β,则l∥m 4.等差数列{a n}的前n项和为S n,若a2+a4+a6=12,则S7的值是()A.21 B.24 C.28 D.75.已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.106.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a7.函数y=sin(2x+)的图象可由函数y=sin2x的图象()A.向左平移个单位长度而得到B.向右平移个单位长度而得到C.向左平移个单位长度而得到D.向右平移个单位长度而得到8.某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π9.根据如图框图,当输入x为6时,输出的y=()A.1 B.2 C.5 D.1010.直线xcosα﹣y+1=0的倾斜角的取值范围是()A.[0,] B.[0,π)C.[,]D.[0,]∪[,π)11.在平面直角坐标系xOy中,直线3x+4y﹣5=0与圆x2+y2=4相交于A、B两点,则弦AB 的长等于()A.3B.2C.D.112.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2 B.3 C.4 D.5二、填空题:本大题共4小题,每小题5分,满分20分.13.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:7,现用分层抽样的方法抽出一个样本,样本中A型号的产品共有10件,那么此样本容量共件.14.已知函数f(x)=,则f(5)=.15.过点(1,2)且在两坐标轴上的截距相等的直线的方程.16.已知正方体的外接球的体积是,则这个正方体的棱长是.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.18.等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.19.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积.20.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.21.已知圆C经过A(3,2)、B(1,6),且圆心在直线y=2x上.(Ⅰ)求圆C的方程.(Ⅱ)若直线l经过点P(﹣1,3)与圆C相切,求直线l的方程.22.设函数f(x)=(1)若a=1,求f(x)的最小值;(2)若f(x)恰有2个零点,求实数a的取值范围.2016-2017学年广东省汕头市潮师高中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【考点】交集及其运算.【分析】根据集合的基本运算即可得到结论.【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B2.函数y=ln(﹣1)的定义域为()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)【考点】函数的定义域及其求法.【分析】根据函数成立的条件即可求函数的定义域.【解答】解:要使函数有意义,则﹣1>0,即>1,则0<x<1,即函数的定义域为(0,1),故选:B.3.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥βD.若α∥β,则l∥m 【考点】空间中直线与平面之间的位置关系.【分析】A根据线面垂直的判定定理得出A正确;B根据面面垂直的性质判断B错误;C根据面面平行的判断定理得出C错误;D根据面面平行的性质判断D错误.【解答】解:对于A,∵l⊥β,且l⊂α,根据线面垂直的判定定理,得α⊥β,∴A正确;对于B,当α⊥β,l⊂α,m⊂β时,l与m可能平行,也可能垂直,∴B错误;对于C,当l∥β,且l⊂α时,α与β可能平行,也可能相交,∴C错误;对于D,当α∥β,且l⊂α,m⊂β时,l与m可能平行,也可能异面,∴D错误.故选:A.4.等差数列{a n}的前n项和为S n,若a2+a4+a6=12,则S7的值是()A.21 B.24 C.28 D.7【考点】等差数列的性质;等差数列的前n项和.【分析】根据等差数列的性质由a2+a4+a6=12得到a4=4,然后根据等差数列的前n项和公式,即可得到结论.【解答】解:∵a2+a4+a6=12,∴a2+a4+a6=12=3a4=12,即a4=4,则S7=,故选:C.5.已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10【考点】斜率的计算公式.【分析】因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.【解答】解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2,m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选B.6.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【考点】不等式比较大小.【分析】直接判断a,b的大小,然后求出结果.【解答】解:由题意可知1>a=0.60.6>b=0.61.5,c=1.50.6>1,可知:c>a>b.故选:C.7.函数y=sin(2x+)的图象可由函数y=sin2x的图象()A.向左平移个单位长度而得到B.向右平移个单位长度而得到C.向左平移个单位长度而得到D.向右平移个单位长度而得到【考点】函数y=Asin(ωx+φ)的图象变换.【分析】设出平移量φ,根据函数图象的平移变换法则,构造关于φ的方程,解方程可得平移量,进而得到平移方式.【解答】解:设由函数y=sin 2x的图象向左平移φ个单位得到函数y=sin (2x+)的图象则y=sin 2(x+φ)=sin (2x+2φ)=sin (2x+)故2φ=解得φ=故将函数y=sin 2x的图象向左平移个单位长度得到函数y=sin (2x+)的图象故选A8.某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【考点】由三视图求面积、体积.【分析】由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项【解答】解:由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C9.根据如图框图,当输入x为6时,输出的y=()A.1 B.2 C.5 D.10【考点】循环结构.【分析】模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣3时不满足条件x ≥0,计算并输出y的值为10.【解答】解:模拟执行程序框图,可得x=6x=3满足条件x≥0,x=0满足条件x≥0,x=﹣3不满足条件x≥0,y=10输出y的值为10.故选:D.10.直线xcosα﹣y+1=0的倾斜角的取值范围是()A.[0,] B.[0,π)C.[,]D.[0,]∪[,π)【考点】直线的倾斜角.【分析】设直线xcosα﹣y+1=0的倾斜角为θ,可得:tanθ=cosα,由于cos∈[﹣1,1].可得﹣1≤tanθ≤1.即可得出.【解答】解:设直线xcosα﹣y+1=0的倾斜角为θ,则tanθ=cosα,∵cos∈[﹣1,1].∴﹣1≤tanθ≤1.∴θ∈[0,]∪[,π).故选:D.11.在平面直角坐标系xOy中,直线3x+4y﹣5=0与圆x2+y2=4相交于A、B两点,则弦AB 的长等于()A.3B.2C.D.1【考点】直线与圆相交的性质. 【分析】由直线与圆相交的性质可知,,要求AB ,只要求解圆心到直线3x +4y ﹣5=0的距离【解答】解:由题意可得,圆心(0,0)到直线3x +4y ﹣5=0的距离,则由圆的性质可得,,即.故选B12.若直线=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2B .3C .4D .5【考点】基本不等式在最值问题中的应用.【分析】将(1,1)代入直线得: +=1,从而a +b=(+)(a +b ),利用基本不等式求出即可.【解答】解:∵直线=1(a >0,b >0)过点(1,1),∴+=1(a >0,b >0),所以a +b=(+)(a +b )=2++≥2+2=4,当且仅当=即a=b=2时取等号,∴a +b 最小值是4,故选:C .二、填空题:本大题共4小题,每小题5分,满分20分.13.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:7,现用分层抽样的方法抽出一个样本,样本中A 型号的产品共有10件,那么此样本容量共 60 件. 【考点】分层抽样方法.【分析】求出抽样比,然后求解n 的值即可.【解答】解:某工厂生产的A 、B 、C 三种不同型号产品的数量之比为2:3:7, 分层抽样的方法抽取一个容量为n 的样本,则A 被抽的抽样比为:=,A 产品有10件,所以n==60,故答案为:60.14.已知函数f(x)=,则f(5)=4.【考点】分段函数的应用;函数的值.【分析】由已知中函数f(x)=,将x=5代入可得答案;【解答】解:∵函数f(x)=,∴f(5)=f(f(5+5))=f(7)=4,故答案为:415.过点(1,2)且在两坐标轴上的截距相等的直线的方程2x﹣y=0或x+y﹣3=0.【考点】直线的两点式方程.【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,2)代入所设的方程得:a=3,则所求直线的方程为x+y=3即x+y﹣3=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,2)代入所求的方程得:k=2,则所求直线的方程为y=2x即2x﹣y=0.综上,所求直线的方程为:2x﹣y=0或x+y﹣3=0.故答案为:2x﹣y=0或x+y﹣3=016.已知正方体的外接球的体积是,则这个正方体的棱长是.【考点】球的体积和表面积;球内接多面体.【分析】先求球的半径,直径就是正方体的对角线,然后求出正方体的棱长.【解答】解:正方体外接球的体积是,则外接球的半径R=1,所以正方体的对角线的长为2,棱长等于,故答案为:.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【考点】余弦定理的应用;二倍角的正弦.【分析】(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.18.等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求a n(II)由==,利用裂项求和即可求解【解答】解:(I)设等差数列{a n}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴s n===19.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)利用三角形的中位线得出OM ∥VB ,利用线面平行的判定定理证明VB ∥平面MOC ;(2)证明:OC ⊥平面V AB ,即可证明平面MOC ⊥平面V AB(3)利用等体积法求三棱锥V ﹣ABC 的体积.【解答】(1)证明:∵O ,M 分别为AB ,V A 的中点,∴OM ∥VB ,∵VB ⊄平面MOC ,OM ⊂平面MOC ,∴VB ∥平面MOC ;(2)∵AC=BC ,O 为AB 的中点,∴OC ⊥AB ,∵平面VAB ⊥平面ABC ,OC ⊂平面ABC ,∴OC ⊥平面VAB ,∵OC ⊂平面MOC ,∴平面MOC ⊥平面V AB(3)在等腰直角三角形ACB 中,AC=BC=,∴AB=2,OC=1,∴S △V AB =,∵OC ⊥平面VAB ,∴V C ﹣V AB =•S △V AB =,∴V V ﹣ABC =V C ﹣V AB =.20.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【考点】频率分布直方图.【分析】(1)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;(2)对该部门评分不低于80的即为90和100,的求出频率,估计概率;(3)求出评分在[40,60]的受访职工和评分都在[40,50]的人数,随机抽取2人,列举法求出所有可能,利用古典概型公式解答.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.21.已知圆C经过A(3,2)、B(1,6),且圆心在直线y=2x上.(Ⅰ)求圆C的方程.(Ⅱ)若直线l经过点P(﹣1,3)与圆C相切,求直线l的方程.【考点】直线与圆的位置关系.【分析】(Ⅰ)根据已知设出圆的标准方程,将点A,B的坐标代入标准方程,解方程组即可求出圆心及半径,从而得到圆C的方程.(Ⅱ)根据已知设出直线方程,利用直线与圆相切的性质d=r即可求出直线斜率k,从而求出直线方程.【解答】解:(Ⅰ)∵圆心在直线y=2x上,故可设圆心C(a,2a),半径为r.则圆C的标准方程为(x﹣a)2+(y﹣2a)2=r2.∵圆C经过A(3,2)、B(1,6),∴.解得a=2,r=.∴圆C的标准方程为(x﹣2)2+(y﹣4)2=5.(Ⅱ)由(Ⅰ)知,圆C的圆心为C(2,4),半径r=.直线l经过点P(﹣1,3),①若直线斜率不存在,则直线l:x=﹣1.圆心C(2,4)到直线l的距离为d=3<r=,故直线与圆相交,不符合题意.②若直线斜率存在,设斜率为k,则直线l:y﹣3=k(x+1),即kx﹣y+k+3=0.圆心C(2,4)到直线l的距离为d==.∵直线与圆相切,∴d=r,即=.∴(3k﹣1)2=5+5k2,解得k=2或k=.∴直线l的方程为2x﹣y+5=0或x+2y﹣5=0.22.设函数f(x)=(1)若a=1,求f(x)的最小值;(2)若f(x)恰有2个零点,求实数a的取值范围.【考点】分段函数的应用.【分析】(1)a=1时,分别探讨y=2x﹣1(x<1)与y=4(x﹣1)(x﹣2)=4(x2﹣3x+2)(x ≥1)的单调性与最值,即可求得f(x)的最小值;(2)分①g(x)=2x﹣a在x<1时与x轴有一个交点,h(x)=4(x﹣a)(x﹣2a)与x轴有一个交点,②函数g(x)=2x﹣a与x轴无交点,h(x)=4(x﹣a)(x﹣2a)与x轴有两个交点两类讨论,即可求得实数a的取值范围.【解答】解:(1)a=1时,f(x)=,当x<1时,函数f(x)在(﹣∞,1)上为增函数,函数值f(x)∈(﹣1,1);当x≥1时,函数f(x)在[1,]为减函数,在[,+∞)为增函数,当x=时,f(x)取得最小值为﹣1;故a=1,f(x)的最小值﹣1,(2)①若函数g(x)=2x﹣a在x<1时与x轴有一个交点,则a>0,并且当x=1时,g(1)=2﹣a>0,即0<a<2,函数h(x)=4(x﹣a)(x﹣2a)与x轴有一个交点,所以2a≥1且a<1⇒≤a<1;②若函数g(x)=2x﹣a与x轴无交点,则函数h(x)=4(x﹣a)(x﹣2a)与x轴有两个交点,当a≤0时,g(x)=2x﹣a与x轴无交点,h(x)=4(x﹣a)(x﹣2a)在x≥1时与x轴无交点,不合题意;当h(1)=2﹣a≥0时,a≥2,h(x)=4(x﹣a)(x﹣2a)与x轴有两个交点,x=a和x=2a,由于a≥2,两交点的横坐标均满足x≥1,综上所述,a的取值范围为:≤a<1和a≥2.2017年1月1日。
汕头市 2015 年一般高中毕业班教课质量监测文科数学参照公式: 锥体体积公式为 V1Sh ,此中 S 为锥体的底面积、 h 为锥体的高;3球的表面积公式为 S 4 R 2 ,此中 R 为球的半径; 方差公式为 s 21x 1 x2x 2 x2x n x2.n一、选择题(本大题共 10 小题,每题 5 分,满分 50 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的. )1、会合1,0,1 ,的子集中,含有元素 0 的子集共有( )A .8 个B .4 个C .3个D .2 个2、复数2的实部与虚部之和为()A . 1 1 iB . 2C . 1D . 03、如图是某几何体的三视图,此中正视图和侧视图是半径为的半圆,1俯视图是个圆,则该几何体的全面积为( )A .B . 2C . 3D . 4x y 24、已知实数 x , y 知足不等式组 xy 4 ,则 z2x y 的最小值x2是( )A . 2r B . 4C . 6rrD . 7rrrr2 r r 、已知平面向量a ,b 知足 a3 ,b,且a ba ,则 a 与 b5的夹角为( )A .B .C .2D .563366、设 l , m 是两条不一样直线, , 是两个不一样平面,则以下命题中 正确的选项是( ) A .若 l // , I m ,则 l //m B .若 l // , m l ,则 m C .若 l // , m// ,则 l //mD .若 l, l // ,则7、如图,在程序框图中,若输入 n 3 ,则输出 k 的值是( ) A . 2 B . 3 C . 4 D . 5 8、以下说法中,正确的选项是( ) A .命题“若 am 2 bm 2 ,则 a b ”的抗命题是真命题B .命题“ x R , x 2 x 0 ”的否认是“ x R , x 2 x 0 ”C .命题“ p 或 q ”为真命题,则命题“ p ”和命题“ q ”均为真命题D .已知 x R ,则“ x 1 ”是“ x 2 ”的充足不用要条件- 1 -9、设函数 f x sin 2x6,则以下结论正确的选项是()A . f x 的图象对于直线 x对称3B . f x 的图象对于点,0 对称6C . f x 的最小正周期为,且在 0,上为增函数12D .把 fx 的图象向右平移个单位,获得一个偶函数的图象1210、设 f x 与 g x 是定义在同一区间a,b 上的两个函数,若函数 y f x g x在 x a, b 上有两个不一样的零点,则称f x 和g x 在 a,b 上是“关系函数”,区 间 a, b 称为“关系区间”.若 f x x 2 3x 4与 g x2xm 在 0,3 上是“关系函数”,则 m 的取值范围为( )A .9 , 2 B .1,0C ., 24D .9,4二、填空题(本大题共 5 小题,考生作答 4 小题,每题 5 分,满分 20 分.)(一)必做题( 11~ 13 题)11、为了认识某地域高三学生的身体发育状况,抽查了该地域 100 名年纪为 17.5 岁 : 18 岁的男生体重( kg ),获得频次散布直方图如右图:依据右图可得这 100名学生中体重在60.5,64.5 的学生人数是.12、已知 C 中,角 , ,C 所对的边分别是 a ,b ,c ,60o , c 2 ,且C 的面积为3 , 则 a 边的长为2.13、已知函数 f x mx 2nx 2( m0 , n0 )的一个零点是 2 ,则 12的最 小值为 .m n(二)选做题( 14、 15 题,考生只好从中选做一题)14、(坐标系与参数方程选做题)在平面直角坐标系中,直线 l 的参数方程为 x t3(参数 t R ),圆的参数方程为 x 2cos(参 y 3 ty 2sin1数0,2 ),则圆心到直线 l 的距离为 .15、(几何证明选讲选做题) 如图,在 C 中, D // C , DF// C ,2 , C 1 , C 4,则 F .三、解答题(本大题共 6 小题,共 80 分.解答应写出文字说明、证明过程或演算- 2 -步骤.)16、(本小题满分 12 分)已知等差数列 a n 知足 a 2 3 , a 3 a 4 12 .1 求 a n 的通项公式;2 设 b n 2a n 1 ,求数列 b n 的前 n 项和n .17、(本小题满分 12 分)以下茎叶图记录了甲组 3 名同学寒假假期中去图书室 学习的次数和乙组 4 名同学寒假假期中去图书室 学习的次数,乙组记录中有一个数据模糊,没法确认,在图中以 x 表示. 1 假如 x 6 ,求乙组同学去图书室学习次数的均匀数和方差;2 假如 x 7 ,从学习次数大于 7 的学生中选两名同学,求选出的两名同学恰巧分别在不一样组且这两名同学学习的次数之和不小于 20 的概率.(、本小题满分分)已知向量rrr r14 a ,sin 2x, 3,函数 f x a b . 18 1,cos2 x b1 若 x r3 ,求 a ;2 若 f226,求 f5 的值;3 5123 若 x0,,求函数 fx 的值域.219、(本小题满分 14 分)如图,已知 F 平面 CD ,四边形 F 为矩形,四 边形 CD 为直角梯形, D 90o , //CD , D F CD 2 , 4 . 1 求证: F//平面 C ;2求证:C 平面 C ;3 求三棱锥CF 的体积.20、(本小题满分 14 分)设函数 g x 1 x33线 2x y 0 .记g x的导函数为 f x .1 求函数 f x 的分析式;2 记正项数列a n的前n项和为S n,且n ax2的图象在 x 1 处的切线平行于直, S n1f a n,求 a n;23 对于数列 b知足: b1, b f b ,当 n 2 ,n时,求证:n12n 1n1112.11 b2 1 b n1 b121、(本小题满分 14 分)已知函数 f x12ax (a0 ).2 a ln xx1当 a0 时,求 f x的极值;2当 a0 时,议论 f x 的单一性;3若 a3, 2 ,x1, x2 1,3 ,有 m ln3 a 2ln3 f x1 f x2,务实数m的取值范围.汕头市 2015 届高三教课质量监控测评文科数学参照答案一、选择题:本大题共10 小题,每题 5 分,共 50 分.在每题的4 个选项中 , 只有一项为哪一项切合题目要求的 .题次12345678910答案B B C B A D C B C A 二、填空:本大共5小 ,考生作答4小,每小 5 分,共 20分 .11. 2412.313. 814.524 215.3三、解答:本大共6小 , 共 80 分 . 解答写出文字明、明程或演算步.16.解:【答案】解 :(1) 等差数列a n的公差d . 由意知a1d3⋯⋯ 2 分(每式 1 分)a12d a13d12解得 , a11, d 2 ⋯⋯ 4 分(每式 1 分)∴ a n2n 1 ( n N )⋯⋯6分(2) 由意知 ,b n2a n 122n( n N),⋯⋯7 分T n22 2 42622n4(14n )⋯⋯10 分144 (4n1) ⋯⋯12 分317. 解 (1) 当x=6 , 由茎叶可知 , 乙同学去学次数是:6,7,8,11 , ⋯⋯ 1 分_67811所以均匀数x 2 分48 ⋯⋯17方差s2[( 68) 2(78)2(88)2(118)2 ]⋯⋯ 5分42(列式 2 分,答案 1 分)(2)甲中学次数大于 7 的同学有 3 名, A1,A 2 ,A 3, 他去学次数挨次 9,11,12;乙中学次数大于7 的同学有 2 名,B1,B 2, 他去学次数挨次8,11 ;⋯⋯6分从学次数大于7 的学生中两名学生, 全部可能的果有10 个 , 它是 :A1A2,A 1A3,A 1B1,A 1B2,A 2A3,A 2B1,A 2B2,A 3B1,A 3B2,B 1 B2⋯⋯8分用事件 C 表示 : “ 出的两名同学恰巧分在不一样且两名同学学的次数之和不小于20” 一事件 , C 中的果有 4 个 , 它是 :A 1B2,A 2B2,A 3B1,A 3B2,⋯⋯10 分故依据古典概型,出的两名同学恰巧分在不一样且两名同学学的次数之和不小于20的概率42⋯⋯12 分P(C)51018. 解:(1)a (1, cos 2)(1,1) ,⋯⋯1 分32| a |12( 1)25 ⋯⋯ 2分22( 2) f ( x)sin 2x 3 cos2x 2 sin(2x) ⋯⋯ 3 分22 3f (2 sin[2()] 2sin() ⋯⋯4分)323232 sin6sin3 5 分5,⋯⋯ 5所以,f (5 ) 2sin[ 2(5 ) ] 2 sin(2 )⋯⋯6分2 cos2 ⋯⋯7分1212 322(1 2 sin 2 ) ⋯⋯8 分2[1 2( 3)2 ] 14 ⋯⋯ 9 分5 25 , 2( 3)x [0, ]2x 3 [ 3 ] ⋯⋯10 分23sin( 2x) [ 3 ,1]⋯⋯ 12 分23f ( x) [ 3,2] ,⋯⋯13 分即 f (x) 的 域是 [3,2] .⋯⋯14 分19. 解:(1)因 四 形ABEF 矩形,所以 AF // BE,BE平面 BCE , AF平面 BCE ,所以 AF // 平面 BCE .⋯⋯ 3 分(2)C 作CM AB ,垂足 M ,因 ADDC , 所以四 形ADCM 矩形.FEAMBDC所以 AM MB2 ,又因 AD2, AB4所以 AC2 2,CM2,BC 2 2所以 AC 2BC 2AB 2 ,所以 ACBC ;⋯⋯5 分因 AF平面 ABCD , AF // BE, 所以 BE 平面 ABCD ,所以 BE AC ,⋯⋯7分又因 BE平面 BCE , BC 平面 BCE , BE BCB所以AC平面 BCE .⋯⋯9 分(3)因AF平面 ABCD , 所以 AF CM ,⋯⋯10 分广东省汕头市2015届高三毕业班教学质量监测数学文试题Word 版含答案又因CMAB , AF平面 ABEF , AB平面 ABEF , AFABA所以 CM平面 ABEF .⋯⋯12 分VE BCFV C BEF⋯113 分CM1 1 BE EF CM1 483 S BEF3 2221S BEF CM1 118⋯14分6FBE EF CM 2 4 23326320. 解 : ( 1)∵函数 g( x) 1 x 3 ax 2 的 函数f ( x)x 2 2ax ,⋯⋯ 1分3因为在 x 1 的切 平行于 2 x y 0 ,∴ 1 2a2解出: a1 ⋯⋯2 分2x 2即 f ( x) x ⋯⋯ 3 分 ( 2) S n1(a n 2 a n )21n 1, a 1 S 1(a 1 2 a 1 ) ,得 a 11 或 a 10 (舍去)⋯⋯ 4 分2n 2, S n 12a n 1 )1(a n 121[( a nS n S n 12 an 1 2 )( a n a n1 )] ,⋯⋯ 5 分2即有 2a n(a n 2 a n 1 2 ) (a na n 1 )(a na n 1 )( a n a n 11) 0⋯⋯6分因 a n0 ,故 a na n 1 1⋯⋯7分所以数列 { a n } 是首1,公差1 的等差数列,a n 1 (n 1)n⋯⋯8分(3)∵b n 1b n (b n 1)∴ 11 1 1 ,⋯⋯ 9分即有11 1 ⋯10 分b n 1b n (b n 1) b n 1 b n1 b n b n b n 1∴11 1 , 1 1 1 , 1 11, ...,1 1 1,1 b 1b 1 b 2 1 b 2b 2 b 3 1 b 3 b 3 b 4 1 b n b n bn 1∴T n1 1 ...1 1 1 1 1 ...1 1211 b 1 1 b2 1 b n b 1 b 2 b 2b 3bn 1⋯11 分b nbn 12 ⋯⋯12 分1 1 1 11而当 n2 时 , T n...⋯13 分1 b 11 b2 1 b n1 b 1 1 b 22 4 26 137211 1 1∴ 1...2⋯14分1 b 1 1b 21b n21. 解:( 1)当 a0 , fx2ln x1, f x2 1 2x 1 ( x 0).⋯⋯ 2 分 xx x 2 x 2(求 1 分、 出定 域1 分)广东省汕头市2015届高三毕业班教学质量监测数学文试题Word 版含答案由 f x2x 11x 20 , 解得 x.2∴ fx 在 0, 1 上是减函数,在1 , 上是增函数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分22∴ f x的极小 f1 22ln 2 ,无极大 . ⋯⋯⋯⋯4 分2( 2) f x2 a 1 2a2ax 22 a x 1 ax 1 2x1(x 0) .⋯6 分xx2x2x2① 当2 a0 , fx 在0,1和1 , 上是减函数,在1 , 1 上是增函2a2a数;⋯⋯⋯ 7 分②当 a2 , f x 在 0, 上是减函数;⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分③当 a2 , fx 在 1,和0,1 上是减函数,在 1 , 1 上是增函数 .9 分2a a 2( 3)当 3 a2 ,由( 2)可知 fx 在 1,3 上是减函数,⋯10 分∴ fx 1f x 2f1 f 32 4aa 2 ln 3 .⋯⋯⋯⋯⋯⋯ 11 分3由 m ln3 a 2ln3 f x 1 f x 2 随意的 a 3, 2 , x 1 , x 21,3 恒建立,∴ m ln3 a 2ln3fx 1f x 2 max⋯⋯⋯⋯⋯⋯⋯12 分即 mln 3 a 2ln 3 2 4aa2 ln3 随意3 a2 恒建立,32即 m4随意 3 a 2 恒建立,⋯⋯⋯⋯⋯ 13 分3a因为当 3 a2 ,13 2 38,∴ m13 349.⋯⋯⋯⋯⋯ 14 分3a3。
一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1. 已知集合{}1,2,3,4A =,集合{}2,4B =,则AB =( )A.{}2,4B.{}1,3C.{}1,2,3,4D.∅ 2.若p 是真命题,q 是假命题,则 ( )A .p q ∧是真命题B .p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题3.函数f (x ) ( )A. (0,1]- B . 1(,]2-∞ C. (-∞ D. 4. 设ϕ∈R ,则“0ϕ=”是“()cos()f x x ϕ=+ (x ∈R)为偶函数”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.在△ABC 中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( )A .正三角形B .直角三角形C .等腰三角形D .等腰或直角三角形6. 已知函数⎩⎨⎧≤->-=)0(1)0(log )(22x x x x x f ,则不等式0)(>x f 的解集为( )A.}10|{<<x x B }01|{≤<-x x C. }11|{<<-x x D.}1|{->x x7.已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式()()0f x xf x '+<成立, 若0.30.33311993(3),(log 3)(log 3),(log )(log )a f b f c f ππ=⋅=⋅=⋅,则c b a ,,的大小关系是( )A. a b c >>B. c a b >>C. c b a >>D. b c a >>8. 设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”[即对任意的a ,b ∈S ,对于有序元素对(a ,b ),在S 中有唯一确定的元素a ﹡b 与之对应]。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数i2i +等于A .12i 55+B . 12i 55-+C .12i 55-D .12i 55--2.命题“2,11x x ∀∈+≥R ”的否定是 A .2,11x x ∀∈+<R B .2,11x x ∃∈+≤R C .2,11x x ∃∈+<R D .2,11x x ∃∈+≥R 3.某程序框图如图所示,该程序运行后,输出s 的值是 A .10 B .15 C .20 D .304.若a ∈R ,则“3a = ”是“29a = ”的( )条件A .充分且不必要B .必要且不充分C .充分且必要D .既不充分又不必要5.已知数列{a n }满足a 1=2,a n+1 - a n +1=0,(n ∈N), 则此数列的通项a n 等于 ( )A .n 2+1B .n+1C .1-nD .3-n6.已知(1,2)=a ,(0,1)=b ,(,2)k =-c ,若(2)+⊥a b c ,则k = A .2 B . 2- C .8 D .8-7.已知实数,x y 满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值为A .3-B .12 C .5 D .68.已知集合{}2log (1)2M x x =-<,{}6N x a x =<< ,且()2,MN b =,则a b +=A .4B .5C .6D .7开始s=0 i=1i<5? i=i+1输出s结束YNs=s+2i9.已知双曲线的顶点与焦点分别是椭圆的22221y xa b+=(0a b>>)焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为A.13B.12C.D.10.一个长方体被一个平面截去一部分后所剩几何体的正视图和俯视图如图所示,则该几何体的侧视图可以为A.B.C.D.二、填空题:本大共4小题.每小题5分,满分20分.11.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市的个数分别为4、12、8.若用分层抽样的方法抽取6个城市,则丙组中应抽取的城市数为.______________ _________.12.函数sin sin3y x xπ⎛⎫=+-⎪⎝⎭的最小正周期为___ _________ .13、若曲线4y x=的一条切线l与直线480x y+-=垂直,则l的方程为._________ 。
潮师高中2017届高三上学期数学(文科)期中考试(本试卷共4页,21小题,满分150分。
考试用时120分钟)注意事项:非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一、选择题(每小题5分,总50分)1.已知集合{}|3M x x =<,{}2|680N x x x =-+<,则MN =( )A .∅B .{}|03x x <<C .{}|13x x <<D .{}|23x x <<2.已知命题P 是:“对任意的x ∈R ,3210x x -+≤”,那么p ⌝是( )A .不存在x ∈R ,3210x x -+≤B .存在x ∈R ,3210x x -+≤C .存在x ∈R ,3210x x -+> D .对任意的x ∈R ,3210x x -+> 3.2(sin cos )1y x x =+-是( )A. 最小正周期为2π的奇函数B. 最小正周期为2π的偶函数C. 最小正周期为π的奇函数D. 最小正周期为π的偶函数4.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞C.1(,0)(0,)2-⋃+∞D.1(,2)2-6. 函数f (x )=A sin(ωx +φ)( A >0,ω>0,20πϕ<<)的部分图象如图所示,则f (0)的值是( )A.23B.43C.26D.467. 在平面直角坐标系中,不等式组0401x y x y x +≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域面积是( ).A .3B .6C . 92D .9 8. 已知31)4sin(=-πα,则)4cos(απ+的值等于( )A .232 B .232- C .31D .31- 9. 已知函数1x y a -=(0a >,且1a ≠)的图象恒过定点A ,若点A 在函数y mx n =+的图象上,其中,0m n >,则11m n+的最小值为 A .1 B .4 C .D .210.⎪⎩⎪⎨⎧>+-≤<=10,621100|,lg |)(x x x x x f 已知函数 , 若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(每小题5分,总20分,其中14、15题为选做题)11.已知函数⎩⎨⎧≥+-<=)4(,2)1()4(,2)(x x f x x f x , 则(5)f = _____________.12. cos24cos36cos66cos54︒︒︒︒-的值等于________.13.一个空间几何体的三视图及部分数据如图所示,则这个几何体 的体积是14.(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为_ _.15.(几何证明选讲选做题)已知PA 是圆O 的切线,切点为A , 直线PO 交圆O 于,B C 两点,2AC =,120PAB ∠=,则圆O 的面积为 .PABOC三、解答题(共80分)16.(本小题满分12分)已知函数()sin()sin()2f x x x ππ=+++,(1)求函数()f x 的最小正周期; (2)求()f x 的最大值和最小值; (3)若1()4f x =,求sin 2x 的值 17.(本小题满分12分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(2)若第一次随机抽1张卡片,放回后再随机抽取1张卡片,求两次抽取中至少一次抽到数字2的概率.18.(14分)如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,PA =2,∠PDA=45°,点E 、F 分别为棱AB 、PD 的中点.(1)求证:AF ∥平面PCE ;(2)求证:平面PCE ⊥平面PCD ;19.(本小题满分14分) 已知函数f(x) =x 2—lnx.(1)求曲线f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的单调递减区间:(3)设函数g(x)=f(x)-x 2+ax, a>0,若x ∈ (O ,e]时,g(x)的最小值是3,求实数a 的值. (e 是为自然对数的底数)20.(本小题满分14分)在经济学中,函数()f x 的边际函数()Mf x 定义为()(1)()Mf x f x f x =+-,某公司每月生产x 台某种产品的收入为()R x 元,成本为()C x 元,且2()300020R x x x =-,*()6004000()C x x x N =+∈,现已知该公司每月生产该产品不超过100台,(利润=收入-成本)(1)求利润函数()P x 以及它的边际利润函数()MP x ; (2)求利润函数的最大值与边际利润函数的最大值之差。
潮师高中2018届高三上学期期中考试数 学 (文科)一、选择题(每小题5分,总50分) 1。
已知集合{1}A x x =>,2{20}B x xx =-<,则A B ⋂=()A 。
{0}x x >B 。
{1}x x >C 。
{12}x x <<D.{02}x x <<2.下列函数中,既是偶函数又在区间0,+∞()上单调递增的函数为( )A .1y x -= B .||y x = C . 2log y x = D .2y x =-3.设i 为虚数单位,则复数2ii +等于( )A .1255i +B .1255i -+C .1255i -D .1255i --4.设)(x f 为奇函数,当0>x 时,x x x f +=2)(,则()=-1f ( )A 。
2- B.0 C.2 D 。
1- 5。
某几何体的三视图如右图所示,它的体积为( )A.π72B.π48C.π36D.π126.已知函数)0(11)(<++=x xx x f ,则)(x f 的( )A.最小值为3 B 。
最大值为3 C 。
最小值为1- D 。
最大值为1-7.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()f x 的图像,则只要将()sin 2g x x =的图像 ( )第7题图A .向左平移6π个单位长度B .向右平移6π个单位长度C .向左平移3π个单位长度D .向右平移3π个单位长度8.如右上图,在ABC ∆中,点D 是BC 边上靠近B等分点,则=AD ( )A .AC AB 3132- B .AC AB 3132+C .AC AB 3231+ D .AC AB 3231- 9。
已知O 是坐标原点,点A(-1,1) ,若点 M (x,y ) 为平面区域⎪⎩⎪⎨⎧≤≤≥+2y 12x y x 上的一个动点,则OMOA ⋅ 的取值范围是( )A. [-1,0] B 。
广东省汕头市潮师高中2015届高三上学期期中数学试卷(文科)一、选择题(每小题5分,总50分)1.(5分)已知集合A={x|x>1},B={x|x2﹣2x<0},则A∩B=()A.{x|x>0} B.{x|x>1} C.{x|1<x<2} D.{x|0<x<2}2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=log2x C.y=|x| D.y=﹣x23.(5分)设i为虚数单位,则复数等于()A.B.C.D.4.(5分)设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(﹣1)=()A.﹣2 B.0 C.2 D.﹣15.(5分)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.36πD.12π6.(5分)已知函数f(x)=x+1(x<0),则f(x)的()A.最小值为3 B.最大值为3 C.最小值为﹣1 D.最大值为﹣1 7.(5分)函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.(5分)如图,在△ABC中,点D是BC边上靠近B的三等分点,则=()A.B.C.D.9.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值范围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]10.(5分)设函数f(x)=x3﹣4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是()A.x1>﹣1 B.x2<0 C.0<x2<1 D.x3>2二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a∈(﹣,0),且sin(+a)=,则tana=.12.(5分)直线y=﹣x+b是函数f(x)=的切线,则实数b=.13.(5分)设函数,若f(x0)>1,则x0的取值范围是.14.(5分)向量在正方形网格中的位置如图所示.设向量=,若,则实数λ=.三、解答题(共80分)15.(12分)已知函数的周期是π.(1)求ω和的值;(2)求函数的最大值及相应x的集合.16.(12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如下所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为.(1)请完成列联表;组别达标不达标总计甲班8乙班54合计120(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.17.(14分)已知=(sinB,1﹣cosB),且与=(1,0)的夹角为,其中A,B,C是△ABC的内角.(1)求角B的大小;(2)求sinA+sinC的取值范围.18.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B﹣AA1C1D的体积.19.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求f(x)的极值;(Ⅲ)讨论f(x)的单调区间.20.(14分)已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.广东省汕头市潮师高中2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,总50分)1.(5分)已知集合A={x|x>1},B={x|x2﹣2x<0},则A∩B=()A.{x|x>0} B.{x|x>1} C.{x|1<x<2} D.{x|0<x<2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即B={x|0<x<2},∵A={x|x>1},∴A∩B={x|1<x<2}.故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=log2x C.y=|x| D.y=﹣x2考点:奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:根据y=x﹣1=在区间(0,+∞)上单调递减,得A项不符合题意;根据y=log2x的定义域不关于原点对称,得y=log2x不是偶函数,得B项不符合题意;根据y=﹣x2的图象是开口向下且关于x=0对称的抛物线,得y=﹣x2的在区间(0,+∞)上为减函数,得D项不符合题意.再根据函数单调性与奇偶性的定义,可得出只有C项符合题意.解答:解:对于A,因为函数y=x﹣1=,在区间(0,+∞)上是减函数不满足在区间(0,+∞)上单调递增,故A不符合题意;对于B,函数y=log2x的定义域为(0,+∞),不关于原点对称故函数y=log2x是非奇非偶函数,故B不符合题意;对于C,因为函数y=|x|的定义域为R,且满足f(﹣x)=f(x),所以函数y=|x|是偶函数,而且当x∈(0,+∞)时y=|x|=x,是单调递增的函数,故C符合题意;对于D,因为函数y=﹣x2的图象是开口向下的抛物线,关于直线x=0对称所以函数y=﹣x2的在区间(0,+∞)上为减函数,故D不符合题意故选:C点评:本题给出几个基本初等函数,要求我们找出其中的偶函数且在区间(0,+∞)上单调递增的函数,着重考查了基本初等函数的单调性与奇偶性等知识,属于基础题.3.(5分)设i为虚数单位,则复数等于()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以2﹣i,然后整理成a+bi(a,b∈R)的形式即可.解答:解:=.故选A.点评:本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.4.(5分)设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(﹣1)=()A.﹣2 B.0 C.2 D.﹣1考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:由奇函数的性质可得f(﹣1)=﹣f(1),再根据已知表达式可求得f(1).解答:解:∵f(x)为奇函数,∴f(﹣1)=﹣f(1),又当x>0时,f(x)=x2+x,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选A.点评:本题考查函数奇偶性的性质及其应用,属基础题,定义是解决问题的基本方法.5.(5分)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.36πD.12π考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知:该几何体是一个倒置的圆锥,其底面的直径为6,母线长为5.如图所示:底面上的高PO==4.据此可计算出其体积.解答:解:由三视图可知:该几何体是一个倒置的圆锥,其底面的直径为6,母线长为5.如图所示:底面上的高PO==4.∴V==12π.故选D.点评:由三视图正确恢复原几何体是解决问题的关键.6.(5分)已知函数f(x)=x+1(x<0),则f(x)的()A.最小值为3 B.最大值为3 C.最小值为﹣1 D.最大值为﹣1考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式即可得出.解答:解:∵x<0,∴函数f(x)=x+1=+1=﹣1,当且仅当x=﹣1时取等号.因此f(x)有最大值﹣1.故选:D.点评:本题考查了基本不等式的应用,属于基础题.7.(5分)函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由已知函数的图象求出函数解析式,然后看自变量x的变化得答案.解答:解:由图可知,A=1,,∴,即ω=2.由五点作图的第三点可知,+φ=π,得φ=(|φ|<),则f(x)=sin(2x+)=sin2(x+).∴为了得到f(x)的图象,则只要将g(x)=sin2x的图象向左平移个单位长度.故选:C.点评:本题考查由函数的部分图象求函数解析式,考查了函数图象的平移,解答的关键是利用五点作图的某一点求初相,是基础题.8.(5分)如图,在△ABC中,点D是BC边上靠近B的三等分点,则=()A.B.C.D.考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:利用向量的三角形法则和向量共线定理即可得出.解答:解:===.故选C.点评:熟练掌握向量的三角形法则和向量共线定理是解题的关键.9.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值范围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]考点:简单线性规划的应用;平面向量数量积的运算.专题:数形结合.分析:先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入•分析比较后,即可得到•的取值范围.解答:解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,•=﹣1×1+1×1=0当x=1,y=2时,•=﹣1×1+1×2=1当x=0,y=2时,•=﹣1×0+1×2=2故•和取值范围为[0,2]解法二:z=•=﹣x+y,即y=x+z当经过P点(0,2)时在y轴上的截距最大,从而z最大,为2.当经过S点(1,1)时在y轴上的截距最小,从而z最小,为0.故•和取值范围为[0,2]故选:C点评:本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.10.(5分)设函数f(x)=x3﹣4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是()A.x1>﹣1 B.x2<0 C.0<x2<1 D.x3>2考点:根的存在性及根的个数判断.专题:计算题;函数的性质及应用.分析:利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.解答:解:∵函数f (x)=x3﹣4x+a,0<a<2,∴f′(x)=3x2﹣4.令f′(x)=0,得x=±.∵当x<﹣时,f′(x)>0;在(﹣,)上,f′(x)<0;在(,+∞)上,f′(x)>0.故函数在(﹣∞,﹣)上是增函数,在(﹣,)上是减函数,在(,+∞)上是增函数.故f(﹣)是极大值,f()是极小值.再由f (x)的三个零点为x1,x2,x3,且x1<x2<x3,得 x1<﹣,﹣<x2<,x3>.根据f(0)=a>0,且f()=a﹣<0,得>x2>0.∴0<x2<1.故选C.点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a∈(﹣,0),且sin(+a)=,则tana=﹣.考点:两角和与差的正切函数.专题:三角函数的求值.分析:先由诱导公式求出cosα的值,再根据角的范围求出sinα,从而可求tana的值.解答:解:sin(+a)=⇒cosα=,∵a∈(﹣,0),=﹣,故tana===﹣.故答案为:﹣.点评:本题主要考察了诱导公式的应用,考察了同角三角函数的关系式的应用,属于基础题.12.(5分)直线y=﹣x+b是函数f(x)=的切线,则实数b=1或﹣1.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:设切点为P(m,n),求出函数f(x)=的导数,得切线斜率为﹣,再根据切点P既在切线y=﹣x+b上又在函数f(x)=的图象上,列出关于m、n、b的方程组,解之即可得到实数b之值.解答:解:由于函数f(x)=的导数,若设直线y=﹣x+b与函数f(x)=相切于点P(m,n),则解之得m=2,n=,b=1或m=﹣2,n=﹣,b=﹣1综上所述,得b=±1故答案为:1或﹣1点评:本题给出已知函数图象的一条切线,求参数b的值,着重考查了导数的运算公式与法则和利用导数研究曲线上某点切线方程等知识,属于基础题.13.(5分)设函数,若f(x0)>1,则x0的取值范围是(﹣∞,﹣1)∪(1,+∞).考点:指数函数的单调性与特殊点;幂函数的单调性、奇偶性及其应用.专题:计算题;分类讨论.分析:根据函数表达式分类讨论:①当x0≤0时,可得2﹣x﹣1>1,得x<﹣1;②当x0>0时,x0.5>1,可得x>1,由此不难得出x0的取值范围是(﹣∞,﹣1)∪(1,+∞).解答:解:①当x0≤0时,可得2﹣x0﹣1>1,即2﹣x0>2,所以﹣x0>1,得x0<﹣1;②当x0>0时,x00.5>1,可得x0>1.故答案为(﹣∞,﹣1)∪(1,+∞)点评:本题考查了基本初等函数的单调性和值域等问题,属于基础题.利用函数的单调性,结合分类讨论思想解题,是解决本题的关键.14.(5分)向量在正方形网格中的位置如图所示.设向量=,若,则实数λ=3.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据正方形网格确定向量的长度和两个向量的夹角,然后利用,可以求实数λ.解答:解:设正方形的边长为1,则AB=1,AC=,∴cos∠CAB=,∵,=,∴,即,∴,解得λ=3.故答案为:3.点评:本题主要考查平面数量积的应用,利用向量垂直和数量积的关系即可求出λ,要根据表格确定向量是解决本题的关键.三、解答题(共80分)15.(12分)已知函数的周期是π.(1)求ω和的值;(2)求函数的最大值及相应x的集合.考点:三角函数的周期性及其求法;三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:(1)根据函数的周期公式即可求ω和的值;(2)将函数g(x)进行化简,然后利用三角函数的性质即可求函数的最大值.解答:解:(1)∵函数的周期是π,且ω>0,∴,解得ω=2.∴.∴.(2)∵=,∴当,即时,g(x)取最大值.此时x的集合为.点评:本题主要考查三角函数的图象和性质,要求熟练掌握函数的周期性和函数最值的求解方法.16.(12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如下所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为.(1)请完成列联表;组别达标不达标总计甲班8乙班54合计120(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(1)根据在全部学生中随机抽取1人为不达标的概率为,总人数为120,故不达标的人数为12,达标的人数为108,乙班不达标为4人,甲班达标的人数为54,故可得结论;(2)用分层抽样的方法,可求甲班、乙班抽取的人数;(3)利用枚举法确定基本事件的个数,根据古典概型概率公式,可得结论.解答:解:(1)在全部学生中随机抽取1人为不达标的概率为,总人数为120,故不达标的人数为12,达标的人数为108,乙班不达标为4人,甲班达标的人数为54,故有组别达标不达标总计甲班54 8 62乙班54 4 58合计108 12 120…(3分)(2)由表可知:用分层抽样的方法从甲班抽取的人数为人,…(4分)从乙班抽取的人数为人…(5分)(3)设从甲班抽取的人为a,b,c,d,从乙班抽取的人为1,2;“抽到的两个人恰好都来自甲班”为事件A.…(6分)所得基本事件共有15种,即:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12…(8分)其中事件A包含基本事件ab,ac,ad,bc,bd,cd,共6种,…(10分)由古典概型可得…(12分)点评:本题考查概率知识的运用,考查分层抽样,考查枚举法的运用,考查学生分析解决问题的能力,属于中档题.17.(14分)已知=(sinB,1﹣cosB),且与=(1,0)的夹角为,其中A,B,C是△ABC的内角.(1)求角B的大小;(2)求sinA+sinC的取值范围.考点:平面向量数量积的运算.专题:三角函数的求值.分析:(1)根据两向量的夹角及两向量的求出两向量的数量积,然后再利用平面向量的数量积的运算法则计算,两者计算的结果相等,两边平方且利用同角三角函数间的基本关系化简,得到关于cosB的方程,求出方程的解即可得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出B的度数;(2)由B的度数,把所求的式子利用三角形的内角和定理化为关于A的式子,再利用两角差的正弦函数公式及特殊角的三角函数值化简,最后利用两角和的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由A的范围求出这个角的范围,根据正弦函数的图象可知正弦函数值的范围,进而得到所求式子的范围.解答:解:(1)∵=(sinB,1﹣cos B),且与=(1,0)的夹角为,∴=2sinB,又=×1×cos=,∴2sinB=,化简得:2cos2B﹣cosB﹣1=0,∴cos B=1(舍去)或cosB=﹣,又∵B∈(0,π),∴B=;(2)sinA+sinC=sinA+sin(﹣A)=sinA+cosA﹣sinA=sinA+cosA=sin(A+),∵0<A<,∴,则,∴sin A+sin C∈(,1].点评:此题考查了平面向量的数量积的运算,向量的数量积表示向量的夹角,三角函数的恒等变换以及同角三角函数间基本关系的运用.学生做题时注意角度的范围,熟练掌握三角函数公式,牢记特殊角的三角函数值,掌握正弦函数的值域.18.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B﹣AA1C1D的体积.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.专题:计算题;证明题.分析:(1)欲证AB1∥平面BC1D,根据线面平行的判定定理可知只需证AB1与平面BC1D内一直线平行,连接B1C,设B1C与BC1相交于点O,连接OD,根据中位线定理可知OD∥AB1,OD⊂平面BC1D,AB1⊄平面BC1D,满足定理所需条件;(2)根据面面垂直的判定定理可知平面ABC⊥平面AA1C1C,作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,然后求出棱长,最后根据四棱锥B﹣AA1C1D的体积求出四棱锥B﹣AA1C1D的体积即可.解答:解:(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD,∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.∵D为AC的中点,∴OD为△AB1C的中位线,∴OD∥AB1.(3分)∵OD⊂平面BC1D,AB1⊄平面BC1D,∴AB1∥平面BC1D.(6分)(2)∵AA1⊥平面ABC,AA1⊂平面AA1C1C,∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC.作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,(8分)∵AB=BB1=2,BC=3,在Rt△ABC中,,,(10分)∴四棱锥B﹣AA1C1D的体积(12分)==3.∴四棱锥B﹣AA1C1D的体积为3.(14分)点评:本题主要考查了线面平行的判定定理,以及棱锥的体积的度量,同时考查了空间想象能力,计算能力,以及转化与化归的思想,属于基础题.19.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求f(x)的极值;(Ⅲ)讨论f(x)的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)由求导公式求出导函数,求出切线的斜率f′(1)及f(1)的值,代入点斜式方程再化为一般式方程;(Ⅱ)先求出函数的定义域,再对导函数进行化简,判断出导函数的符号,即可得函数的单调性即极值情况;(Ⅲ)先对导函数进行化简,再对a进行分类讨论,利用列表格判断出导函数的符号,即可得函数的单调区间.解答:解:(I)当a=1时,f(x)=x+lnx,则,﹣﹣﹣(1分)所以f′(1)=2,且f(1)=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以切线方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)函数的定义域为(0,+∞),由(1)得=,﹣﹣﹣﹣﹣(6分)∵x>0,∴f′(x)>0恒成立﹣﹣﹣﹣﹣(8分)∴f(x)在(0,∞)上单调递增,没有极值﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)由题意得,(x>0)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当a≥0时,在(0,∞)时,f′(x)>0,所以f(x)的单调增区间是f′(x)>0;﹣﹣﹣﹣﹣(11分)当a<0时,函数f(x)与f′(x)在定义域上的情况如下:x (0,a)﹣a (﹣a,+∞)f′(x)﹣0 +f(x)↘极小值↗﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)综上,当a≥0时,f(x)的单调增区间是(0,+∞);当a<0时,f(x)的单调增区间是(﹣a,+∞),减区间是(0,a).﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题考查导数的几何意义,切线方程的求法,以及导数与函数的单调性、极值的应用,考查了分类讨论思想,注意一定先求出函数的定义域,以及把导函数化到最简.20.(14分)已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.考点:利用导数研究函数的单调性;二次函数的性质;二次函数在闭区间上的最值.专题:计算题.分析:(1)当a=2时,由g(x)=,x∈[0,3],利用二次函数的性质求出它的值域.(2)利用函数f(x)的导数的符号,分类讨论f(x)单调性,从而求出f(x)的最小值.(3)令 h(x)==﹣,通过h′(x)=的符号研究h(x)的单调性,求出h(x)的最大值为h(1)=﹣.再由f(x)=xlnx在(0,+∞)上的最小值为﹣,且f(1)=0大于h(1),可得在(0,+∞)上恒有f(x)>h(x),即.解答:解:(1)当a=2时,g(x)=,x∈[0,3],当x=1时,;当x=3时,,故g(x)值域为.(2)f'(x)=lnx+1,当,f'(x)<0,f(x)单调递减,当,f'(x)>0,f(x)单调递增.①若,t无解;②若,即时,;③若,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt,所以 f(x)min=.(3)证明:令 h(x)==﹣,h′(x)=,当 0<x<1时,h′(x)>0,h(x)是增函数.当1<x时.h′(x)<0,h(x)是减函数,故h(x)在(0,+∞)上的最大值为h(1)=﹣.而由(2)可得,f(x)=xlnx在(0,+∞)上的最小值为﹣,且当h(x)在(0,+∞)上的最大值为h(1)时,f(x)的值为ln1=0,故在(0,+∞)上恒有f(x)>h(x),即.点评:本题主要考查利用导数研究函数的单调性,二次函数的性质,函数的恒成立问题,属于中档题.。
2015年汕头市普通高考第二次模拟考试试题文 科 数 学一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合{}U 1,2,3,4=,{}1,2A =,{}2,4B =,则()UBA =ð( )A .{}2B .{}4C .{}1,2,4D .{}1,4 2、已知i 是虚数单位,若31ii z+=-,则复数z 的共轭复数是( ) A .12i - B .24i - C .222i - D .12i + 3、若a ,b 是两个非零的平面向量,则“a b =”是“()()0a b a b +⋅-=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4、为了得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需把函数sin 2y x =的图象( )A .向左平移3π个单位长度B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 5、设{}n a 是首项为12-,公差为d (0d ≠)的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则d =( )A .1-B .12-C .18D .126、已知直线1:l ()120m x y -++=,2:l ()()8110x m y m +++-=,且12//l l ,则m =( )A .79B .3±C .3D .3-7、设不等式组22042x y x y -+≥⎧⎪≤⎨⎪≥-⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到直线20y +=的距离大于2的概率是( ) A .413 B .513 C .825D .9258、程序框图如图所示,若其输出结果是30,则判断框中填写的是( ) A .7?i < B .5?i < C .7?i > D .5?i >9、已知双曲线2214x y a -=的渐近线方程为233y x =±,则此双曲线的离心率是( )A .72 B .133 C .53 D .21310、设集合()(){},F ,0x y x y M ==为平面直角坐标系x y O 内的点集,若对于任意()11,x y ∈M ,存在()22,x y ∈M ,使得12120x x y y +<,则称点集M 满足性质P .给出下列四个点集:①(){}R ,sin 10x y x y =-+= ②(){},ln 0S x y x y =-= ③(){}22,10x y xy T =+-= ④(){}W ,10x y xy =-=其中所有满足性质P 的点集的序号是( )A .①②B .③④C .①③D .②④ 二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题) 11、函数()()2log 11x f x x+=-的定义域是 .12、图2是甲、乙两名篮球运动员2014年赛季每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是 .13、若某几何体的三视图如图3所示,则该几何体的体积是 . (二)选做题(14、15题,考生只能从中选做一题) 14、(坐标系与参数方程选做题)在直角坐标系x y O 中,圆C的参数方程为12cos2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系,则圆C 的极坐标方程是 .15、(几何证明选讲选做题)如图,已知AB 是O 的弦,P 是AB 上一点,62AB =,42PA =,3OP =,则O 的半径R = .三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分12分)已知函数()3sin cos f x x a x =-(R x ∈)的图象经过点2,13π⎛⎫⎪⎝⎭.()1求函数()f x 的解析式;()2设α,0,2πβ⎡⎤∈⎢⎥⎣⎦,665f πα⎛⎫-= ⎪⎝⎭,510613f πβ⎛⎫+=- ⎪⎝⎭,求()cos αβ-的值.17、(本小题满分12分)我省城乡居民社会养老保险个人年缴费分100,200,300,400,500, 600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了72名居民,按缴费在100500元,6001000元,以及年龄在2039岁,4059岁之间进行了统计,相关数据如下:()1用分层抽样的方法在缴费100500元之间的居民中随机抽取6人,则年龄在2039岁之间应抽取几人?()2在缴费100500元之间抽取的6人中,随机选取2人进行到户走访,求这2人的年龄都在4059岁之间的概率.18、(本小题满分14分)如图5,在多面体CD F AB E 中,四边形CD AB 是菱形,C A 、D B 相交于点O ,F//E AB ,2F AB =E ,平面CF B ⊥平面CD AB ,F CF B =,点G 为C B 的中点.()1证明:直线G//O 平面FCD E ;()2求证:直线C A ⊥平面D O E .19、(本小题满分14分)已知数列{}n a 满足114a =,()1141n n a a +=-.()1设221n n b a =-,求证:数列{}n b 为等差数列; ()2求证:3121234n n a a a n a a a +++⋅⋅⋅+<+.20、(本小题满分14分)如图6,在平面直角坐标系x y O 中,椭圆C :22221x y a b+=(0a b >>)的离心率为22,左顶点A 与上顶点B 的距离为6.()1求椭圆C 的标准方程;()2过原点O 的动直线(与坐标轴不重合)与椭圆C 交于P 、Q 两点,直线PA 、Q A 分别与y 轴交于M 、N 两点,问以MN 为直径的圆是否经过定点?请证明你的结论.21、(本小题满分14分)已知函数()()3231312a f x x x ax +=-++,R a ∈. ()1若函数()f x 在点()()2,2f 处的切线与直线90x y +=垂直,求实数a 的值;()2若函数()f x 在()0,4x ∈内存在最小值1,求实数a 的值.2015年汕头市普通高考第二次模拟考试试题文科数学参考答案一、选择题(本大题共10小题,每小题5分,共50分) 二、填空题(本大题共做4小题,每小题5分,共20分)11. ()1,1- 12. 54 13. 20 14. 2cos 3ρρθ=+2 15. 5三、解答题:本大题共6题,满分80分. 16.(本小题满分12分) 解:(1)由函数()f x 的图象经过点(,1)32π, 题号1 2 3 4 5 67 8 9 10 答案 BA C D A C DBDB则3sincos 133a 2π2π-=.解得1a =- 因此()3sin cos f x x x =+.(2)()3sin cos f x x x =+312(sin cos )22x x =+ 2sin()6x π=+6()2sin()2sin 6665f ππαααπ-=-+==∴3s i n5α=. ()5510()2sin()2sin 2sin 66613f πβπβαπβπ+=++=+=-=-5sin 13β∴=.又,[0,]2παβ∈24cos 1sin 5αα∴=-=,12cos 1sin 13ββ=-=. ()63cos cos cos sin sin 65αβαβαβ∴-=+=17.(本小题满分12分)解:(1)设年龄在2039岁之间应抽取x 人,则63612x=,解得2x = 所以年龄在2039岁之间应抽取2人(2)记在缴费100500元之间抽取的6人中,年龄在2039岁的2人为12,a a ;年龄在4059岁的4人为1234,,,b b b b .所以随机抽取2人的所有结果有:()12,a a ,()11,a b ,()12,a b ,()13,a b ,()14,a b ,()21,a b ,()22,a b ,()23,a b ,()24,a b ,()12,b b ,()13,b b ,()14,b b ,()23,b b ,()24,b b ,()34,b b ;共15种.设这2人的年龄都在4059岁之间的事件为A,则事件为A 包含的基本事件有:()12,b b ,()13,b b ,()14,b b ,()23,b b ,()24,b b ,()34,b b ;共6种.所以()62155P A == 答:这2人的年龄都在4059岁之间的概率为2518.(本小题满分14分) 证明:(1)∵四边形ABCD 是菱形,AC BD O =,∴点O 是BD 的中点; ∵点G 为BC 的中点,∴//OG CD ,又∵OG ⊄平面EFCD ,CD ⊂平面EFCD , ∴直线//OG 平面EFCD .(2)∵BF CF =,点G 为BC 的中点,∴FG BC ⊥; ∵平面BCF ⊥平面ABCD ,平面BCF 平面ABCD BC =,FG ⊂平面BCF ,FG BC ⊥, ∴FG ⊥平面ABCD ;∵AC ⊂平面ABCD ,∴FG AC ⊥;∵1//, 2OG AB OG AB =,1//, 2EF AB EF AB =,∴//, OG EF OG EF =; ∴四边形EFGO 为平行四边形,∴//FG EO ;∵FG AC ⊥,//FG EO ,∴AC EO ⊥; ∵四边形ABCD 是菱形,∴AC DO ⊥;∵AC EO ⊥,AC DO ⊥EO DO O =,EO DO 、在平面ODE 内, ∴AC ⊥平面ODE .19.(本小题满分14分)解:(1) ()1141n n a a +=-()112222222121141n n n n n b b a a a ++∴===-=-----12n nb b +∴-=-又114a =,112421b a ∴==-- ∴数列{}n b 为等差数列,且首项为4-,公差为2-(2)由(1)知()()41222n b n n =-+--=--即22221n n a =--- ()1122221n na n n ∴=-=++ 由于()()()()()212111111111222222k k k k a k a k k k k k k k k ++++⎛⎫=⋅==+=+- ⎪++++⎝⎭31212111111123242n n a a a n a a a n n +⎛⎫∴++⋅⋅⋅+=+-+-++- ⎪+⎝⎭11113122124n n n n ⎛⎫=++--<+ ⎪++⎝⎭ 20.(本小题满分14分)解:(1)由题意得 22222226c a a b a b c ⎧=⎪⎪⎪+=⎨⎪-=⎪⎪⎩解得2, 2a b ==∴椭圆C 的标准方程为: 22142x y +=.(2)以MN 为直径的圆过定点(2, 0)F ±.设00(, )P x y ,则00(, )Q x y --,且2200142x y +=,即22024x y +=, ∵(2, 0)A -,∴直线PA 方程为:00(2)2y y x x =++,∴002(0,)2y M x +;∴直线QA 方程为:00(2)2y y x x =+-,∴002(0, )2y N x -; 以MN 为直径的圆为:000022(0)(0)()()022y y x x y y x x --+--=+-, 即222000220044044x y y x y y x x +-+=--, ∵220042x y -=-,∴220220x x y y y ++-=, 令0y =,得220x -=,解得:2x =±, ∴以MN 为直径的圆过定点:(2, 0)F ±.21. (本小题满分14分)解:(1)2'()33(1)3f x x a x a =-++,因为函数()f x 在点(2,(2))f 处的切线与直线92y x =-平行,所以'(2)9f =,2323(1)239a a ⨯-+⨯+=,1a =-,a 的值为1-.(2)2'()33(1)3f x x a x a =-++,令'()0f x =得1,x x a ==①当0a ≤时,()f x 在(0,1)单调递减,在(1,4)单调递增, 所以当1x =时,(1)f 是()f x 在()0,4x ∈内的最小值,则13(1)=122f a =+ 解得13a = 不符合题意舍去②当01a <<时,()f x 在(0,)a 和(1,4)单调递增,在(,1)a 单调递减,(1)(0)01f f a ≤⎧∴⎨<<⎩即3(1)1311201a a a +⎧-++≤⎪⎨⎪<<⎩,解得103a <≤ 当103a <≤时,使(1)f 是()f x 在()0,4x ∈内的最小值;则13(1)=122f a =+ 解得13a = 符合题意③当1a =时,2'()3(1)0f x x =-≥,()f x 在(0,4)单调递增,则函数()f x 在()0,4x ∈内不存在最小值;④当14a <<时,()f x 在(0,1)和(,4)a 单调递增,在(1,)a 单调递减,()(0)14f a f a ≤⎧∴⎨<<⎩即3223(1)311214a a a a a +⎧-++≤⎪⎨⎪<<⎩ 解得314a a ≥⎧⎨<<⎩所以34a ≤<所以当x a =时,函数()f x 在()0,4x ∈内存在最小值 则()1f a =,解得3a =⑤当4a ≥时,()f x 在(0,1)单调递增,在(1,4)单调递减,则函数()f x 在()0,4x ∈内不存在最小值综上得,13a =或3a =。
潮师高中2018届高三上学期期中考试数 学 (文科)一、选择题(每小题5分,总50分)1.已知集合{1}A x x =>,2{20}B x x x =-<,则A B ⋂=( )A. {0}x x >B. {1}x x >C. {12}x x <<D. {02}x x <<2.下列函数中,既是偶函数又在区间0,+∞()上单调递增的函数为( )A .1y x -=B . ||y x =C . 2log y x =D .2y x =- 3.设i 为虚数单位,则复数2ii+等于( ) A .1255i + B . 1255i -+ C .1255i - D .1255i --4.设)(x f 为奇函数,当0>x 时,x x x f +=2)(,则()=-1f ( ) A.2- B.0 C.2 D.1-5.某几何体的三视图如右图所示,它的体积为( ) A.π72 B.π48 C.π36 D.π126.已知函数)0(11)(<++=x xx x f ,则)(x f 的( ) A.最小值为3 B.最大值为3 C.最小值为1- D.最大值为1-7.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()f x 的图像,则只要将()sin 2g x x =的图像 ( ) A .向左平移6π个单位长度 B .向右平移6π个单位长度 C .向左平移3π个单位长度 D .向右平移3π个单位长度第7题图8.如右上图,在ABC ∆中,点D 是BC 边上靠近B 的三 等分点,则=( ) A .3132- B .3132+C .3231+ D . AC AB 3231-9.已知O 是坐标原点,点A(-1,1) ,若点 M(x,y) 为平面区域⎪⎩⎪⎨⎧≤≤≥+2y 12x y x 上的一个动点,则OM OA ⋅ 的取值范围是( )A. [-1,0]B. [0,1]C. [0,2]D. [-1,2] 10.设函数3()4(02)f x x x a a =-+<<有三个零点123,,x x x , 且123x x x <<则下列结论正确的是( ) A .11x >- B .20x < C .201x << D .32x >二、填空题:本大题共4小题,每小题5分,满分20分. 11.已知α)0,2(π-∈,且4sin(),25πα+=则tan α=12.直线y =13. 设函数f 14. 向量,AB 设向量=a三、解答题(共80分) 15.(本小题满分12分)已知函数()sin(),(0)6f x x πωω=+>的周期是π.(1)求ω和()12f π的值;(2)求函数()()()612g x f x f x ππ=++-的最大值及相应x 的集合.16.(本小题满分12分)某学校甲、乙两个班参加体育达标测试,统计 测试成绩达标人数情况得到如图所示的列联表,已知 为110. 在全部学生中随机抽取1人为不达标的概率(1)请完成上面的列联表;(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.17. (本小题满分14分)已知向量=(sin B,1-cos B),且与向量=(1,0)的夹角为3π错误!未找到引用源。
绝密★启用前2017—2018年上学期高二期中考试 数学(文科) 第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1。
已知集合{|2}A x y x ==-,2{|20}B x x x =-<,则A∩B=A 。
(0,2]B 。
(0,2)C 。
(,2]-∞D 。
(2,)+∞ 2。
直线3310x y ++=的倾斜角是()A.56πB. 3π C 。
23π D.6π3。
如图,ABCD -A1B1C1D1为正方体,下面结论错误的是( )A 。
BD ∥平面CB1D1 B. AC1⊥BDC 。
AC1⊥平面CB1D1 D. 异面直线AD 与CB1所成的角为60° 4.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm3B .100cm3C .92cm3D .84cm35.不等式组11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩所表示的平面区域的面积为A .94B . 29C .23 D .36. 直线kx -y +1-3k =0,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1)7.在下列条件中,可判断平面α与β平行的是( ) A. γα⊥,且γβ⊥B. n m ,是两条异面直线,且ββ//,//n m,αα//,//n m C.n m ,是α内的两条直线,且ββ//,//n mD. α内存在不共线的三点到β的距离相等8.如图,在边长为a 的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n ,则图形Ω面积的估计值为( ) A . B . C .D .9.已知函数f (x)=sin(ωx +φ)(ω>0,0<φ<π),直线x=是它的一条对称轴, 且(,0)是离该轴最近的一个对称中心,则φ=( )A .B .C .D .10.经过点(2,1)的直线l 到A (1,1)、B(3,5)两点的距离相等,则直线l 的方程为( )A .2x -y -3=0B .x =2C .2x -y -3=0或x =2D .以上都不对11.已知球O表面上有三个点A、B、C满足3AB BC CA===,球心O到平面ABC的距离等于球O半径的一半,则球O的表面积为A。
目录广东省广州市执信中学2015届高三上学期期中考试数学(文) Word 版含答案.doc 广东省广州市海珠区2015届高三摸底考试数学文试题 Word 版含解析.doc广东省广州市第六中学2015届高三上学期第一次质量检测数学文试题 Word 版含解析.doc 广东省广州市荔湾区2015届高三11月调研测试(二)数学文试题 Word 版含答案.doc 广东省惠州市2015届高三第二次调研考试数学(文)试题 Word 版含解析.doc广东省揭阳市一中、潮州金山中学、广大附中2015届高三上学期期中考试文数学Word 版答案 广东省汕头市金山中学2015届高三第一学期期中考试数学(文)含部分答案 Word 版含答案.doc 广东省中山一中、潮阳一中等2015届高三七校联考数学(文) Word 版含解析.doc 广东省六校联盟2015届高三第二次联考数学(文)试题 Word 版含答案.doc广州市第六中学高三上学期第一次质量检测数学(文)【试卷综析】本试卷是高三文科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、向量、导数的综合应用、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、简单的线性规划、立体几何、充分条件与必要条件等;考查学生解决实际问题的综合能力,是份较好的试卷.一、选择题(共10小题,每小题5分,共50分)【题文】1、已知全集U=R ,则正确表示集合M={-1,0,1}和{}20N x x x =+=关系的韦恩图是( )【知识点】集合的关系A1【答案解析】B 解析:因为{}{}201,0N x x x =+==-,所以N M ⊂,则选B.【思路点拨】先求出集合N ,再结合两个集合的关系判断其韦恩图即可.【题文】2、已知(3,2),(1,0)a b =- =- ,向量a b λ+ 与b 垂直,则实数λ的值为( ) A .3- B .3 C .13- D .13【知识点】向量的数量积F3【答案解析】A 解析:因为向量a b λ+ 与b 垂直,则()230a b b a b b λλλ+∙=∙+=+=,得λ=-3,所以选A.【思路点拨】由两向量垂直,则两向量的数量积等于0,是解答本题的关键. 【题文】3、“”是“且”的( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件【知识点】充分条件与必要条件A2 【答案解析】A解析:因为“”不一定有“且”,若“且”,由不等式的性质可知必有“”,所以选A.【思路点拨】判断充要条件时,可先分清命题的条件与结论,若由条件能推出结论,则充分性满足,若由结论能推出条件,则必要性满足. 【题文】4、已知角α为第二象限角,且3tan 4α=-,则sin()2πα+的值为( ) A .45 B .45- C .35 D .35-【知识点】诱导公式,同角三角函数基本关系式C2【答案解析】B 解析:因为3tan 4α=-,所以22sin 3cos 4sin cos 1αααα⎧=-⎪⎨⎪+=⎩,又因为角α为第二象限角,所以解得4cos 5α=-,则4sin()cos 25παα+==-,所以选B. 【思路点拨】由角的正切求其余弦,可通过同角三角函数关系式的商数关系及平方关系得到正弦和余弦的方程组,解方程组即可.【题文】5、已知各项为正的等比数列}{n a 满足3a ·9a =254a ,2a =1,则1a = ( )A .12 B .2 C .22D .2 【知识点】等比数列D3【答案解析】A 解析:因为2239654a a a a ∙==,又数列的各项为正数,所以公比652a q a ==,则2112a a q ==,所以选A . 【思路点拨】在遇到等比数列时,可先通过项数观察有无性质特征,有性质的用性质进行解答,无性质特征的用公式进行转化.【题文】6、设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+( )A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值 【知识点】简单的线性规划E5【答案解析】B 解析:因为不等式组24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩表示的平面区域如图ABCD 区域,显然当动直线z x y =+经过点A (2,0)时,目标函数取最小值为2,无最大值,所以选B..【思路点拨】解答线性规划问题,主要是利用数形结合的方法寻求目标函数的最值. 【题文】7、若函数2()()af x x a x=+∈R ,则下列结论正确的是( ) A .a ∀∈R ,()f x 在(0,)+∞上是增函数B .a ∀∈R ,()f x 在(0,)+∞上是减函数 C .a ∃∈R ,()f x 是偶函数 D .a ∃∈R ,()f x 是奇函数 【知识点】导数的应用、函数的单调性与奇偶性B3 B4 B12【答案解析】C 解析:因为()22'2a x af x x x x-=-= ,所以当a ≤0时,导数大于0,()f x 在(0,)+∞上是增函数,当a >0时,函数在(0,+∞)上不是单调函数,所以排除A,B ,当a=0时函数为偶函数,所以C 正确,当a ≠0时既不是奇函数也不是偶函数,所以D错误,综上知选C.【思路点拨】已知解析式判断函数的单调性,可利用导数进行判断,判断函数的奇偶性可利用其定义进行判断.【题文】8、给出四个函数,分别满足①)()()(y f x f y x f +=+;②)()()(y g x g y x g ⋅=+; ③)()()(y x y x ϕϕϕ+=⋅;④)()()(y x y x ωωω⋅=⋅,又给出四个函数的图象如下:则正确的配匹方案是 ( )A .①—M ②—N ③—P ④—QB .①—N ②—P ③—M ④—QC .①—P ②—M ③—N ④—QD .①—Q ②—M ③—N ④—P【知识点】指数函数、对数函数、幂函数B6 B7 B8 【答案解析】D 解析:图像M 为指数函数图像,由指数的运算性质得M 与②对应,则排除A,B,又图像Q 为过原点的一次函数,设f(x)=ax,则有f(x+y)=a(x+y)=ax+ay=f(x)+f(y),所以Q 与①对应,则排除C,所以选D. 【思路点拨】抓住指数函数、对数函数及幂函数的图像特征及对应的运算法则,利用排除法,即可确定选项.【题文】9、已知等差数列}{n a 的前n 项和S n 满足1021S S =,则下列结论正确的是( ) A. 数列{}n S 有最大值 B. 数列{}n S 有最小值C. 150a =D. 160a = 【知识点】等差数列D2【答案解析】D 解析:因为1021S S =,结合等差数列的前n 项和的二次函数特征得函数的对称轴为102111522x +==,则15161516S S S a ==+,得160a =,所以选D. 【思路点拨】抓住等差数列n 项和的二次函数特征,利用对称性解答即可. 【题文】10、定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2015)的值为( )A. -1B. 0C.1D. 2【知识点】函数的周期性、分段函数B4【答案解析】C 解析:因为x >0时,f(x)=f(x ﹣1) ﹣f(x ﹣2),所以x >1时,f(x ﹣1)=f(x ﹣2) ﹣f(x ﹣3),则有f(x)=f(x ﹣1) ﹣f(x ﹣2)= ﹣f(x ﹣3)=f(x ﹣6), 所以当x >4时以6为周期,则f (2015)=f(336×6-1)=f(-1)=1,所以选C.【思路点拨】由递推关系求自变量较大的函数值时,可考虑利用递推关系发现其周期特征,再进行解答.二、填空题(共4小题,每题5分,共20分)【题文】11、不等式260x x --+>的解集是_______________.x yOM xyOQ xy ON xy ON P【知识点】一元二次不等式E3【答案解析】()3,2- C 解析:由不等式260x x --+>得260x x +-< ,解得32x -<<,所以不等式的解集为()3,2-.【思路点拨】解一元二次不等式,一般先把不等式转化为二次项系数大于0,再结合对应的二次函数的图像进行解答.【题文】12、函数()cos f x x x =在点(,ππ -)处的切线方程是_______________. 【知识点】导数的应用B12【答案解析】y=-x 解析:因为()'cos sin f x x x x =-,所以切线的斜率为cos sin 1πππ-=-,则所求的切线方程为()y x ππ+=--即y=-x.【思路点拨】抓住切线的斜率等于在切点处的导数值,即可求出切线斜率,进而得出切线方程.【题文】13、数列{}n a 的通项公式为n a n nλ=+,若{}n a 为递增数列,则实数λ的取值范围是___________.【知识点】数列的单调性D1【答案解析】(),2-∞解析:因为数列{}n a 的通项公式为n a n nλ=+,{}n a 为递增数列,所以()1101n n a a n n λ+-=->+,即()1n n λ<+,而()12n n +≥,所以2λ<.【思路点拨】数列单调递增的充要条件是对于任意的n *N ∈,10n n a a +-=>恒成立,再利用不等式恒成立求λ的范围即可.【题文】14、如图,平行四边形ABCD 中,E 为CD 中点,F 在线段BC 上,且BC=3BF 。
2014-2015学年广东省汕头市潮师高中高二(上)期中数学试卷一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.(5分)设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,4},则()A.U=A∪B B.U=(∁U A)∪B C.U=A∪(∁U B)D.U=(∁U A)∪(∁U B)2.(5分)已知直线l1的倾斜角为30°,直线l1⊥l2,则直线l2的斜率是()A.B.C.D.3.(5分)点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=04.(5分)已知a>b,则下列不等式中正确的是()A.B.ac>bc C.D.a2+b2>2ab5.(5分)在等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则S9=()A.66 B.99 C.144 D.2976.(5分)已知变量x,y满足约束条件,则z=x+2y的最小值为()A.3 B.1 C.﹣5 D.﹣67.(5分)执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.18.(5分)如图为一个几何体的三视图,其中俯视图为正三角形,A1B1=2,AA1=4,则该几何体的表面积为()A.6+B.24+C.24+2D.32二、填空题:本大题共6小题,每小题5分,满分30分.请将答案填在答题卡相应位置.9.(5分)已知两条直线l1:ax+3y﹣3=0,l2:4x+6y﹣1=0.若l1∥l2,则a=.10.(5分)若等比数列{a n}满足a2a4=,则a1a32a5=.11.(5分)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.12.(5分)设x、y∈R+且=1,则x+y的最小值为.13.(5分)已知圆C:(x+5)2+y2=r2(r>0)和直线l:3x+y+5=0.若圆C与直线l没有公共点,则r的取值范围是.14.(5分)一个红色的棱长是4cm的立方体,将其适当分割成棱长为1cm的小正方体,则两面涂色的小正方体共有个.三、解答题:(共6小题,共80分,解答题应写出文字说明,以及必要的证明过程或演算过程)15.(12分)设直线2x+3y+1=0和圆x2+y2﹣2x﹣3=0相交于点A、B.(1)求弦AB的垂直平分线方程;(2)求弦AB的长.16.(12分)已知函数f(x)=Asin(3x+φ)(A>0,x∈(﹣∞,+∞),0<φ<π)在时取得最大值4.(1)求f(x)的最小正周期;(2)求f(x)的解析式;(3)若,求si nα.17.(14分)已知圆C过三点O(0,0),M(1,1),N(4,2)(1)求圆C的方程;(2)求圆C的圆心坐标及半径.18.(14分)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F﹣DEG的体积V F.﹣DEG19.(14分)已知一几何体的三视图如图(甲)示,(三视图中已经给出各投影面顶点的标记)(1)在已给出的一个面上(图乙),画出该几何体的直观图;(2)设点F、H、G分别为AC,AD,DE的中点,求证:FG∥平面ABE;(3)求该几何体的全面积.20.(14分)已知数列{a n}是等差数列,a2=6,a5=18;数列{b n}的前n项和是T n,且T n+b n=1.(1)求数列{a n}的通项公式;(2)求证:数列{b n}是等比数列;(3)记c n=•b n,求{c n}的前n项和S n.2014-2015学年广东省汕头市潮师高中高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.(5分)设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,4},则()A.U=A∪B B.U=(∁U A)∪B C.U=A∪(∁U B)D.U=(∁U A)∪(∁U B)【解答】解:因为U={1,2,3,4,5,6},A={1,3,5},B={2,4},所以C U A={2,4,6},C U B={1,3,5,6}.所以(C U A)∪(C U B)={2,4,6}∪{1,3,5,6}={1,2,3,4,5,6}.所以U=(C U A)∪(C U B).故选:D.2.(5分)已知直线l1的倾斜角为30°,直线l1⊥l2,则直线l2的斜率是()A.B.C.D.【解答】解:∵直线l1的倾斜角为30°,直线l1⊥l2,∴直线l2的倾斜角是α=30°+90°=120°,∴直线l2的斜率是k=tan120°=﹣;故选:B.3.(5分)点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=0【解答】解:∵AB是圆(x﹣1)2+y2=25的弦,圆心为C(1,0)∴设AB的中点是P(2,﹣1)满足AB⊥CP因此,AB的斜率k===1可得直线AB的方程是y+1=x﹣2,化简得x﹣y﹣3=0故选:C.4.(5分)已知a>b,则下列不等式中正确的是()A.B.ac>bc C.D.a2+b2>2ab【解答】解:运用排除法,A项,若ab>0则不成立.B项,若c=0则不成立.C项,a<0,b<0时不成立.∴D项正确.5.(5分)在等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则S9=()A.66 B.99 C.144 D.297【解答】解:由a1+a4+a7=3a1+9d=39,得a1+3d=13①,由a3+a6+a9=3a1+15d=27,得a1+5d=9②,②﹣①得d=﹣2,把d=﹣2代入①得到a1=19,则前9项的和S9=9×19+×(﹣2)=99.故选:B.6.(5分)已知变量x,y满足约束条件,则z=x+2y的最小值为()A.3 B.1 C.﹣5 D.﹣6【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B时,直线y=﹣的截距最小,此时z最小.由,解得,即B(﹣1,﹣2),代入目标函数z=x+2y得z=﹣1+2×(﹣2)=﹣5.即目标函数z=x+2y的最小值为﹣5.故选:C.7.(5分)执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.1【解答】解:如图所示的循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i﹣1)∴输入n的值为6时,输出s的值s=1×3×5=15.故选:C.8.(5分)如图为一个几何体的三视图,其中俯视图为正三角形,A1B1=2,AA1=4,则该几何体的表面积为()A.6+B.24+C.24+2D.32【解答】解:三视图复原的几何体是一个底面是正三角形,边长为:2,棱柱的高为:4的正三棱柱,所以它的表面积为:2×=24+2故选:C.二、填空题:本大题共6小题,每小题5分,满分30分.请将答案填在答题卡相应位置.9.(5分)已知两条直线l1:ax+3y﹣3=0,l2:4x+6y﹣1=0.若l1∥l2,则a=2.【解答】解:已知两条直线l1:ax+3y﹣3=0,l2:4x+6y﹣1=0.l1∥l2,,则a=210.(5分)若等比数列{a n}满足a2a4=,则a1a32a5=.【解答】解:∵等比数列{a n}满足=,则,故答案为.11.(5分)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为160.【解答】解:∵有男生560人,女生420人,∴年级共有560+420=980∵用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,∴每个个体被抽到的概率是=,∴要从男生中抽取560×=160,故答案为:16012.(5分)设x、y∈R+且=1,则x+y的最小值为16.【解答】解:∵=1,x、y∈R+,∴x+y=(x+y)•()==10+≥10+2=16(当且仅当,x=4,y=12时取“=”).故答案为:16.13.(5分)已知圆C:(x+5)2+y2=r2(r>0)和直线l:3x+y+5=0.若圆C与直线l没有公共点,则r的取值范围是.【解答】解:圆C:(x+5)2+y2=r2(r>0)的圆心(﹣5,0)圆心到直线3x+y+5=0的距离圆C与直线l没有公共点:故答案为:14.(5分)一个红色的棱长是4cm的立方体,将其适当分割成棱长为1cm的小正方体,则两面涂色的小正方体共有24个.【解答】解:位于大正方体的12条棱处的小正方体,除了顶点处的小正方体外,其它的小正方体有2面涂有红色,总共有2×12=24个;故答案为:24三、解答题:(共6小题,共80分,解答题应写出文字说明,以及必要的证明过程或演算过程)15.(12分)设直线2x+3y+1=0和圆x2+y2﹣2x﹣3=0相交于点A、B.(1)求弦AB的垂直平分线方程;(2)求弦AB的长.【解答】解:(1)圆方程可整理为:(x﹣1)2+y2=4,圆心坐标为(1,0),半径r=2,易知弦AB的垂直平分线l过圆心,且与直线AB垂直,而,∴.所以,由点斜式方程可得:,整理得:3x﹣2y﹣3=0.(2)圆心(1,0)到直线,故.16.(12分)已知函数f(x)=Asin(3x+φ)(A>0,x∈(﹣∞,+∞),0<φ<π)在时取得最大值4.(1)求f(x)的最小正周期;(2)求f(x)的解析式;(3)若,求sinα.【解答】解:(1)由周期计算公式,可得T=(2)由f(x)的最大值是4知,A=4,即sin()=1∵0<ρ<π,∴∴,∴∴f(x)=4sin(3x+)(3)f()=4sin[3()+]=,即sin[3()+]=,,,,.17.(14分)已知圆C过三点O(0,0),M(1,1),N(4,2)(1)求圆C的方程;(2)求圆C的圆心坐标及半径.【解答】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0,1分则,6分解得,9分所求圆的方程是x2+y2﹣8x+6y=0,10分(2)圆的方程化为(x﹣4)2+(y+3)2=25,12分所以圆心坐标是(4,﹣3),半径是5.14分18.(14分)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F﹣DEG的体积V F.﹣DEG【解答】解:(1)在等边三角形ABC中,AD=AE,∴,在折叠后的三棱锥A﹣BCF中也成立,∴DE∥BC.又∵DE⊄平面BCF,BC⊂平面BCF,∴DE∥平面BCF.(2)在等边三角形ABC中,F是BC的中点,所以AF⊥BC,即AF⊥CF ①,且.∵在三棱锥A﹣BCF中,,∴BC2=BF2+CF2,∴CF⊥BF②.又∵BF∩AF=F,∴CF⊥平面ABF.(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.∴=.19.(14分)已知一几何体的三视图如图(甲)示,(三视图中已经给出各投影面顶点的标记)(1)在已给出的一个面上(图乙),画出该几何体的直观图;(2)设点F、H、G分别为AC,AD,DE的中点,求证:FG∥平面ABE;(3)求该几何体的全面积.【解答】解:(1)该几何体的直观图如图示:(2)证明:由图(甲)知四边形CBED为正方形∵F、H、G分别为AC,AD,DE的中点∴FH∥CD,HG∥AE∵CD∥BE∴FH∥BE∵BE⊂面ABE,FH⊄面ABE∴FH∥面ABE同理可得HG∥面ABE又∵FH∩HG=H∴平面FHG∥平面ABE又∵FG⊂面FHG∴FG∥平面ABE(3)由图甲知AC⊥CD,AC⊥BC,BC⊥CD∴CD⊥平面ACB,∴CD⊥AB同理可得ED⊥AD∵S=S△ACD,S△ABE=S△ADE=×2×2=2,S CBED=4,△ACB∴该几何体的全面积S=S△ACB+S△ACD+S△ABE+S△ADE+S CBED=2+2+4+4=4(2+).20.(14分)已知数列{a n}是等差数列,a2=6,a5=18;数列{b n}的前n项和是T n,且T n+b n=1.(1)求数列{a n}的通项公式;(2)求证:数列{b n}是等比数列;(3)记c n=•b n,求{c n}的前n项和S n.【解答】解:(1)设等差数列{a n}的公差为d,则.∴a n=a2+4(n﹣2)=6+4n﹣8=4n﹣2;(2)由T n+b n=1 ①,得,.②,①﹣②得:,即.∴数列{b n}是以为首项,以为公比的等比数列;(3)由(2)得,.∴c n=•b n==.则.令..两式作差得:=.∴.。
广东省汕头市潮师高级中学2015届高三上学期期中考试数学(文)试题一、选择题(每小题5分,总50分)1.已知集合{1}A x x =>,2{20}B x x x =-<,则A B ⋂=( )A. {0}x x >B. {1}x x >C. {12}x x <<D. {02}x x << 2.下列函数中,既是偶函数又在区间0,+∞()上单调递增的函数为( ) A .1y x -= B . ||y x = C . 2log y x = D .2y x =- 3.设i 为虚数单位,则复数2ii+等于( ) A .1255i + B . 1255i -+ C .1255i - D .1255i --4.设)(x f 为奇函数,当0>x 时,x x x f +=2)(,则()=-1f ( )A.2-B.0C.2D.1- 5.某几何体的三视图如右图所示,它的体积为( ) A.π72 B.π48 C.π36 D.π126.已知函数)0(11)(<++=x xx x f ,则)(x f 的( ) A.最小值为3 B.最大值为3 C.最小值为1- D.最大值为1-7.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()f x 的图像,则只要将()sin 2g x x =的图像 ( )A .向左平移6π个单位长度 B .向右平移6π个单位长度 C .向左平移3π个单位长度 D .向右平移3π个单位长度第7题图8.如右上图,在ABC ∆中,点D 是BC 边上靠近B 的三 等分点,则=AD ( )A .AC AB 3132- B .AC AB 3132+ C .AC AB 3231+ D . AC AB 3231- 9.已知O 是坐标原点,点A(-1,1) ,若点 M(x,y) 为平面区域⎪⎩⎪⎨⎧≤≤≥+2y 12x y x 上的一个动点,则OM OA ⋅ 的取值范围是( )A. [-1,0]B. [0,1]C. [0,2]D. [-1,2] 10.设函数3()4(02)f x x x a a =-+<<有三个零点123,,x x x , 且123x x x <<则下列结论正确的是( )A .11x >-B .20x <C .201x <<D .32x >二、填空题:本大题共4小题,每小题5分,满分20分. 11.已知α)0,2(π-∈,且4sin(),25πα+=则tan α=12.直线14y x b =-+是函数1()f x x=的切线,则实数b = . 13. 设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是14. 向量,AB AC 在正方形网格中的位置如图所示.设向量AC AB λ=-a ,若AB ⊥a ,则实数λ=__________.三、解答题(共80分) 15.(本小题满分12分)已知函数()sin(),(0)6f x x πωω=+>的周期是π.(1)求ω和()12f π的值; CABABCD(2)求函数()()()612g x f x f x ππ=++-的最大值及相应x 的集合.16.(本小题满分12分)某学校甲、乙两个班参加体育达标测试,统计 测试成绩达标人数情况得到如图所示的列联表,已知 在全部学生中随机抽取1人为不达标的概率为110.(1)请完成上面的列联表;(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.17. (本小题满分14分)已知向量m =(sin B,1-cos B),且与向量n =(1,0)的夹角为3π错误!未找到引用源。
,其中A,B,C 是△ABC 的内角. (1)求角B 的大小;(2)求sin A+sin C 的取值范围.组别 达标不达标 总计甲班 8 乙班 54 合计120DC 1A 1B 1CBA18. (本小题满分14分)如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,,AB BC D ⊥为AC 的中点,12A A AB ==,3BC =.(1)求证:1//AB 平面1BC D ; (2) 求四棱锥11B AAC D -的体积.19.(本小题满分14分)已知函数()ln f x x a x =+(I )当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )在(I )的条件下,求()f x 的极值; (III )讨论()f x 的单调区间。
20.(本小题满分14分)已知,ln )(x x x f =a x x x g +-=221)(. (1)当2=a 时,求]3,0[)(在函数x g y =上的值域; (2) 求函数()f x 在[,2](0)t t t +>上的最小值; (3) 证明: 对一切(0,)x ∈+∞,都有()12ln x g x x x e e'+>-成立2015届高三上学期期中数学(文科)考试参考答案16.解:(1)……………………3分(2)由表可知:用分层抽样的方法从甲班抽取的人数为86=412⨯人,……………4分 从乙班抽取的人数为46=212⨯人……………………………………………5分 (3)设从甲班抽取的人为d c b a ,,,,从乙班抽取的人为1,2;“抽到的两个人恰好都来自甲班”为事件A .………………………………………6分 所得基本事件共有15种,即:12,2,1,2,1,,2,1,,,2,1,,,d d c c cd b b bd bc a a ad ac ab ……………………………8分其中事件A 包含基本事件,,,,,ab ac ad bc bd cd ,共6种,……………………10分 由古典概型可得62()155P A == ……………………………………………………12分 17.解:(1)∵m=(sin B,1-cos B),且与向量n=(1,0)的夹角为, ∴cos===, …………3分∴2sin 2B=1-cos B, …………4分组别 达标 不达标 总计甲班 54 8 62 乙班 54 4 58 合计 108 12 120∴2cos 2B-cos B-1=0, …………5分∴cos B=1或cos B=-…………6分 又0<B<π,∴B=.…………7分(2)由(1)可得A+C=,∴sin A+sin C=sin A+Sin ( -A )=sin A+cos A=sin (A+), ……10分∵0<A<, ∴<A+<,…………11分∴sinA+∈,…………13分∴sin A+sin C ∈.…………14分18. (1)证明:连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形, ∴点O 为1B C 的中点.∵D 为AC 的中点,∴OD 为△1AB C 的中位线, ∴ 1//OD AB . ……………………… 3分 ∵OD ⊂平面1BC D ,1AB ⊄平面1BC D ,∴1//AB 平面1BC D . …………………………………… 6分 (2)解法1: ∵1AA ⊥平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , …………… 8分 ∵12AB BB ==,3BC =, 在Rt △ABC 中,224913AC AB BC =+=+=,613AB BC BE AC ==,… 10分 ∴四棱锥11B AAC D -的体积()1111132V A C AD AA BE =⨯+ …… 12分 1361326213=⨯⨯⨯3=.∴四棱锥11B AAC D -的体积为3. …… 14分 解法2:提示111CBC D D C AA B V V V ---=三棱柱 19.解:(I )当1a =时,()ln f x x x =+,1'()1(0)f x x x=+>------------------------------1分 (1)1f =,'(1)2f = -------------------------------3分 所以切线方程为210x y --= --------------------------------5分(2)函数的定义域为),0(+∞,由(1)得xx x f 1)('+= ,-----6分 ∵x>0 ∴0)('>x f 恒成立 -----8分∴f(x)在),0(+∞上单调递增,没有极值 ---------9分 (3)'()(0)x af x x x+=> -----------------------------10分 当0a ≥时,在(0,)x ∈+∞时'()0f x >,所以()f x 的单调增区间是(0,)+∞;-11分 当0a <时,函数()f x 与'()f x 在定义域上的情况如下:x(0,)a - a -(,)a -+∞'()f x -0 + ()f x↘极小值↗------------------------------------13分综上,当0a ≥时, ()f x 的单调增区间是(0,)+∞;当a<0时,()f x 的单调增区间是(,)a -+∞,减区间是(0,)a -。
---------------14分21.(本小题满分14分)解:(1)∵)(x g =23)1(212+-x , x ∈[0,3] ………….. 1分 当1=x 时,23)1()(min ==g x g ;当3=x 时,27)3()(max ==g x g故)(x g 值域为]27,23[ ………………. 3分(2)'()ln 1f x x =+,当1(0,)x e ∈,'()0f x <,()f x 单调递减,当1(,)x e∈+∞,'()0f x >,()f x 单调递增. …………………………. 5分① 102t t e <<+<,t 无解; …………… 6分 ② 102t t e <<<+,即10t e <<时,min 11()()f x f e e ==-; ………………. 7分③ 12t t e ≤<+,即1t e≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ==;……8分所以min110()1ln t e ef x t t t e ⎧-<<⎪⎪=⎨⎪≥⎪⎩, ,. ………………. 9分。