人教九下第29章投影与视图小结教学设计
- 格式:doc
- 大小:264.63 KB
- 文档页数:4
小结学习目标1.理解投影、中心投影、平行投影、正投影的定义.2.理解中心投影与平行投影的区别.3.会画简单几何体的三视图,并运用进行相关计算.4.通过体验平面图形与立体图形互相转化的过程,进一步感受立体图形与平面图形之间的联系.学习过程一、知识回顾1.投影:(1)定义:一般地,用光线照射物体,在某个平面上得到的叫做物体的投影.(2)平行投影:由形成的投影.中心投影:由发出的光线形成的投影.(3)正投影:投影线投影面时产生的投影.2.三视图:在正面内得到的由前向后观察物体的视图,叫做.在水平面内得到的由上向下观察物体的视图,叫做.在侧面内得到的由左向右观察物体的视图,叫做.大小关系:长,宽,高.3.面积公式:(1)圆锥:侧面积=,全面积=.体积=.(2)圆柱:侧面积=,全面积=.体积=.(3)边长为a正六边形的面积=.二、典例剖析1.投影的应用【例1】如图,小军、小珠所在位置A,B之间的距离为2.8 m,小军、小珠在同一盏路灯P下的影长分别为1.2 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,(1)画出两人在路灯下的影子AC和BD;(2)求路灯的高PO.思路点拨:(1)直接利用中心投影的性质得出答案;(2)根据AE∥PO∥BF,得到△AEC∽△OPC,△BFD∽△OPD,根据相似三角形的性质可得出答案.解:2.画立体图形的三视图【例2】画出下面几何体的三视图.思路点拨:从正面看到的是正方形且右上角有三角形,从左面看是正方形(不要忽略看不见的轮廓线),从上面看是正方形且右下角处有直角三角形.解:3.由三视图得到立体图形【例3】一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球思路点拨:由主视图和左视图都是矩形,可知此立体图形不是圆锥或球,由俯视图是圆,可知此立体图形不是长方体,综合该物体的三种视图可得正确结论.解析:【例4】图中的三视图所对应的几何体是()思路点拨:对所给的四个几何体,分别从主视图和俯视图进行判断.解析:4.根据三视图求几何体的表面积或体积【例5】如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号).思路点拨:由几何体的三视图,得到它是一个六棱柱,求出其侧面积与表面积即可.解:三、学后反思1.总结全章知识之间的联系,你能画出知识结构图吗?答:2.在本章的学习过程中,你认为哪些知识需要重点把握?答:评价作业(满分100分)1.(6分)小乐用一块长方形硬纸板在阳光下做投影试验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形2.(6分)下列几何体中,其主视图不是中心对称图形的是()3.(6分)下列四个立体图形中,左视图为矩形的是()A.①③B.①④C.②③D.③④4.(6分)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2B.3C.5D.105.(6分)如图所示的是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π6.(8分)如图所示,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上的投影长度随着他离墙的距离变大而(填“变大”“变小”或“不变”).7.(8分)已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为m.8.(8分)一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.9.(8分)如图所示的是由一些小立方体所搭几何体的三视图,若在所搭几何体的基础上(不改变原几何体中小立方体的位置),继续添加相同的小立方体,以搭成一个大正方体,至少还需要个小立方体.10.(12分)画出下列几何体的三视图.11.(12分)如图所示的为某几何体的三视图(单位:cm),计算该几何体的表面积(结果保留π).12.(14分)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图所示,在同一时刻,身高为1.6 m的小明(AB)的影子BC长是3 m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6 m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH.参考答案学习过程一、知识回顾1.(1)影子(2)平行光线同一点(3)垂直于2.主视图俯视图左视图对正平齐相等3.(1)πrl πr 2+πrl 13πr 2h (2)2πrh 2πrh+2πr 2 πr 2h (3)3√32a 2二、典例剖析 1.投影的应用【例1】解:(1)如图,AC ,BD 即为所求. (2)如图,∵AE ∥PO ∥BF ,∴△AEC ∽△OPC ,△BFD ∽△OPD ,∴CC CC =CC CC ,CC CC =CC CC ,即 1.21.2+CC = 1.8CC , 1.51.5+2.8-CC = 1.5CC ,解得:PO=3.3 m .答:路灯的高为3.3 m .2.画立体图形的三视图 【例2】解:如图所示.3.由三视图得到立体图形【例3】解析:A.圆柱的三视图分别是长方形,长方形,圆,正确; B.圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误; C.长方体的三视图都是矩形,错误; D.球的三视图都是圆形,错误; 故选:A .【例4】解析:由主视图知A,C 错误,由俯视图知D 错误.故选B. 4.根据三视图求几何体的表面积或体积【例5】解:根据该密封纸盒的三视图知道它是一个六棱柱,∵其高为12 c m,底面边长为5 cm,∴其侧面积为6×5×12=360(cm 2), 密封纸盒的上、下底面的面积和为:12×5×√32×5×12=75√3(cm 2),∴其表面积为(75√3+360)cm 2.三、学后反思 1.答:2.答:(1)理解中心投影和平行投影、正投影的区别和联系.(2)理解三种视图的画法.(3)由三视图或俯视图得几何体的表面积或小正方体的个数时,要仔细观察,做好必要的讨论.(4)中心投影与位似相关,当被投影的平面图形与投影面平行时,得到的图象与原来的物体相似.评价作业1.A2.B3.B4.C5.B6.变大7.458.69.5410.解:几何体的三视图如图所示.11.解:这个几何体是一个简单组合体,它的下部是一个圆柱,且底面半径为6 cm,高为20 cm,它的上部是一个圆锥,且底面半径为6 cm,高为5 cm,则母线长为√61 cm.所以所求表面积S=π×62+2π×6×20+π×6×√61=276π+6√61π(cm2).12.解:(1)如图所示,CA与HE的延长线相交于G.(2)∵AB∥GH,∴△CBA∽△CHG,∴CCCC =CCCC.∵AB=1.6 m,BC=3 m,HB=6 m,∴33+6= 1.6CC,解得GH=4.8,∴路灯灯泡的垂直高度GH为4.8 m.。
人教版数学九年级下册第29章《投影与视图》课堂教案一. 教材分析《投影与视图》这一章主要让学生了解和掌握投影的性质和特点,以及如何通过不同的投影方式来得到物体的视图。
内容主要包括平行投影、中心投影的概念,三视图的绘制方法等。
通过这一章的学习,学生可以更好地理解和应用几何知识,提高空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对空间图形有一定的认识。
但一部分学生可能对空间图形的理解和想象能力较弱,因此在教学过程中需要注重引导学生通过实际操作来加深对知识的理解。
三. 教学目标1.了解投影的性质和特点,掌握平行投影和中心投影的概念。
2.学会通过不同的投影方式来得到物体的视图,提高空间想象能力。
3.能够运用所学知识解决实际问题。
四. 教学重难点1.投影的性质和特点2.平行投影和中心投影的概念3.三视图的绘制方法五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作来解决问题。
2.利用多媒体辅助教学,展示实物投影和视图,帮助学生直观理解。
3.采用小组合作学习,让学生在讨论和交流中提高对知识的理解。
六. 教学准备1.多媒体教学设备2.实物模型3.绘图工具七. 教学过程1.导入(5分钟)利用多媒体展示不同的实物投影和视图,让学生感受投影和视图的魅力,激发学生的学习兴趣。
2.呈现(10分钟)通过具体的实物模型,向学生展示不同的投影方式,引导学生总结投影的性质和特点。
3.操练(10分钟)学生分组讨论,每组选择一个实物,通过实际操作来绘制该实物的三视图。
教师在此过程中进行指导,帮助学生解决问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师进行讲解和答疑。
5.拓展(10分钟)教师提出一些实际问题,引导学生运用所学知识进行解决,提高学生的实际应用能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。
7.家庭作业(5分钟)布置一些有关投影与视图的练习题,让学生在课后进行巩固和提高。
人教版数学九年级下册第29章《投影与视图》课堂教学设计一. 教材分析人教版数学九年级下册第29章《投影与视图》是本册教材中的一个重要章节,主要介绍投影的概念、分类以及投影的基本性质。
通过本章的学习,使学生了解投影在数学、物理、艺术等领域的应用,培养学生的空间想象能力和抽象思维能力。
本章内容主要包括以下几个部分:1.投影的概念和分类2.正投影和斜投影3.投影的基本性质4.平行投影5.中心投影6.投影变换二. 学情分析学生在学习本章内容前,已经掌握了平面几何、立体几何的基本知识,具备了一定的空间想象能力和抽象思维能力。
但投影概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动形象的实例,引导学生直观地理解投影的概念,并通过大量的练习,使学生熟练掌握投影的性质和变换。
三. 教学目标1.了解投影的概念、分类和基本性质。
2.掌握正投影和斜投影的特点。
3.能够运用投影性质解决实际问题。
4.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.投影的概念和分类。
2.投影的基本性质。
3.投影变换。
五. 教学方法1.采用直观演示法,通过实物模型和多媒体动画,引导学生直观地理解投影的概念和性质。
2.运用讲解法,详细讲解投影的分类、基本性质和变换规律。
3.采用练习法,让学生在实践中巩固投影知识。
4.运用小组讨论法,培养学生合作学习的能力。
六. 教学准备1.投影仪、实物模型、多媒体动画。
2.投影习题、测验题。
3.投影实验材料。
七. 教学过程1.导入(5分钟)利用实物模型和多媒体动画,引导学生直观地了解投影的概念。
例如,用一个三角形模型在灯光下投影,让学生观察投影的特点。
2.呈现(10分钟)讲解投影的分类,包括正投影和斜投影。
通过示例,使学生了解正投影和斜投影的特点。
3.操练(10分钟)让学生进行投影练习,掌握投影的基本性质。
例如,让学生根据给定的物体,画出其正投影和斜投影。
4.巩固(10分钟)讲解投影变换,包括平行投影和中心投影。
人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。
这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。
本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。
但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。
另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。
三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。
2.让学生掌握视图的分类,学会画一视图、二视图、三视图。
3.培养学生空间想象能力,提高他们解决实际问题的能力。
四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。
2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。
3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。
六. 教学准备1.准备投影仪、实物、模型等教学道具。
2.准备相关的练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。
2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。
3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。
人教版数学九年级下册29.1《投影》教学设计一. 教材分析人教版数学九年级下册29.1《投影》是本册的一个重点章节,主要介绍了中心投影和平行投影的概念,以及物体在投影中的基本性质。
本节内容是学生学习立体几何的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何的知识有了一定的了解。
但投影的概念对学生来说较为抽象,不易理解。
因此,在教学过程中,教师需要利用实物和模型帮助学生建立投影的概念,并通过大量的练习让学生熟练掌握投影的性质和计算方法。
三. 教学目标1.了解中心投影和平行投影的概念,掌握它们的特点。
2.能够运用投影的性质解决一些简单的问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.投影的概念。
2.投影的性质。
3.中心投影和平行投影的区别。
五. 教学方法1.实物演示法:通过实物和模型展示投影的原理,让学生直观地理解投影的概念。
2.讲解法:对投影的性质和计算方法进行详细讲解,让学生掌握投影的基本知识。
3.练习法:布置适量的练习题,让学生在实践中巩固投影的知识。
六. 教学准备1.准备一些实物和模型,如立方体、球体等,用于展示投影的原理。
2.准备投影的PPT课件,用于辅助教学。
3.准备一些投影的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过展示一些实物和模型,如立方体、球体等,让学生观察它们在光线照射下的投影,引发学生对投影的兴趣。
然后提问:“你们知道什么是投影吗?”让学生回顾已知的投影知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT课件,向学生介绍中心投影和平行投影的概念,以及它们的特点。
同时,通过动画演示,让学生直观地理解投影的原理。
在此过程中,教师讲解投影的性质,如相似性、直线与平面的交角等。
3.操练(10分钟)教师布置一些投影的练习题,让学生独立完成。
人教初中数学九年级下册《29-1 投影》(教案)一. 教材分析人教初中数学九年级下册《投影》这一章节主要介绍了投影的概念、特点以及各种类型的投影。
通过学习,学生能够理解投影的定义,掌握正投影和斜投影的性质,能够运用投影的知识解决实际问题。
本节课的内容是学生对几何学习的一个拓展,也是对立体几何学习的铺垫。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何有较深入的了解。
但投影概念的引入,需要学生对三维空间有一定的认识,这对于学生来说是一个新的挑战。
因此,在教学过程中,需要引导学生从二维平面几何过渡到三维空间几何,建立空间观念。
三. 教学目标1.了解投影的概念,掌握正投影和斜投影的性质。
2.能够识别各种类型的投影,并运用投影的知识解决实际问题。
3.培养学生的空间观念,提高学生的几何思维能力。
四. 教学重难点1.投影的概念和性质。
2.不同类型投影的识别和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索、发现和解决问题。
2.利用多媒体教学,展示各种类型的投影,帮助学生建立空间观念。
3.采用合作学习的方式,让学生在讨论中加深对投影知识的理解。
六. 教学准备1.多媒体教学设备。
2.投影相关图片和实例。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的投影实例,如影子、建筑物的投影等,引导学生关注投影现象,激发学生的学习兴趣。
提问:你们对这些投影有什么观察和思考?2.呈现(10分钟)介绍投影的定义,展示正投影和斜投影的性质。
通过多媒体动画演示,让学生直观地感受不同类型的投影。
同时,给出一些投影的性质和规律,引导学生进行思考。
3.操练(10分钟)让学生分组讨论,识别给出的各种投影实例,并解释其投影类型。
每组选出一个代表进行汇报,其他组进行评价和补充。
4.巩固(10分钟)给出一些练习题,让学生独立完成。
题目包括判断题、选择题和解答题,涵盖投影的概念、性质以及应用。
第29章视图与投影 29、1 投影教学设计【学情分析】在学习本节课之前,学生差不多具有一定的关于平面图形与立体图形的知识,同时差不多数次接触过“从不同方向看物体”的内容,对投影和视图的知识已有初步的朦胧的了解,只是还没有明确的接触过一些基本的名词术语(投影,正投影),对有关规律还缺乏归纳总结。
教学中,要让学生能够结合具体例子说明有关概念,不需要给出这些概念的严格的抽象的定义、【教学内容】本节内容是人教版初中新教材第九册(下)第29章的第一节。
【教材分析】本节课的内容是依据《全日制义务教数学课程标准(实验稿)》第三学段(7~9年级)空间与图形领域中关于“视图与投影”的教学目标而具体设计的。
“投影原理”是绘制视图的基础,通过投影建立了立体图形和平面图形间的联系,为立体图形与平面图形的相互转化问题奠定了理论基础。
在本套教科书中,从七年级上册第三章“图形认识初步”开始,就不断的出现了有关视图的一些内容,只是在本节之前一直没有正式出现投影和视图的概念。
本节在学生已有有关投影的初步感性认识的基础之上,通过一些简单的物体的投影说明有关概念,归纳基本规律,使学生的认识水平再次提升,并结合具体问题进一步培养运用几何知识分析和解决实际问题的能力。
本节是为进一步研究视图作准备的,后面将要学习的三视图是同一物体在有特定位置关系的三个投影面上的投影,同时投影线与投影面的位置必须是垂直的。
本节的重点是让学生在已有知识的基础之上,对投影有一个最基本的认识。
1、本节的教学重点是:了解正投影的含义,能依照正投影的性质画出简单平面图形的正投影。
2、本节的教学难点是:归纳正投影的性质,正确画出简单平面图形的正投影、【教学目标】1、知识与技能⑴了解投影的有关概念,能依照光线的方向辨认物体的投影;⑵了解平行投影和中心投影的区别;⑶了解物体正投影的含义,能依照正投影的性质画出简单平面图形的正投影。
2、过程与方法⑴在探究物体与其投影关系的活动中,体会立体图形与平面图形相互转化的关系,发展学生空间观念。
人教版九年级下册第二十九章投影与视图29.1投影教学设计1. 教学目标1.了解投影的概念和分类;2.掌握影点、投影线的概念和基本性质;3.掌握多种图形的正射投影和斜投影方法。
2. 教学重点1.影点、投影线的概念和基本性质;2.多种图形的正射投影和斜投影方法。
3. 教学难点1.不同角度的图形的斜投影方法;2.综合运用正射投影和斜投影方法绘制复杂图形。
4. 教学准备1.投影仪、幻灯片;2.课本、习题册;3.范例图和实物模型。
5. 教学过程5.1 课前准备1.开始课前播放一段介绍投影基础概念的视频,让学生了解投影的概念和基本分类;2.播放范例图,引导学生理解影点、投影线的概念。
5.2 教学内容呈现1.结合投影仪展示示范投影图形和实物,让学生观察并理解图形在投影面上的映射情况,引导学生逐渐掌握影点、投影线的意义和性质;2.结合课本上的例题,让学生通过投影图形的实际操作,练习影点、投影线的计算方法和几何相关性质。
5.3 练习与巩固1.分组活动,让学生在小组内掌握正射投影和斜投影的基本方法,并共同绘制大型图形;2.结合习题册,让学生通过投影和视图的综合练习,提高投影分析思维和问题解决能力。
5.4 课后作业1.完成课本上的练习和部分习题册上的作业;2.搜集多种投影实例图,分析图形的投影特点和实际应用情况。
6. 教学反思针对本节课的教学过程,本文将投影的基础概念和基本分类、影点、投影线的概念和基本性质、多种图形的正射投影和斜投影方法纳入教学范畴,开展相应的课堂示范和练习活动。
在教学实践过程中,我们发现学生在理解斜投影方法时可能存在一定困难,需要对这部分内容进行重点讲解和练习。
同时,为丰富课堂氛围和提高学生的兴趣,我们将投影实例应用贴近生活实际,并进行相关的小组活动和搜集实例图等练习。
总的来说,此次教学取得了一定的成效,为学生掌握投影概念和方法提供了初步帮助。
人教版九年级数学下册《第二十九章投影与视图》教学设计一. 教材分析人教版九年级数学下册《第二十九章投影与视图》是学生在学习了平面几何、立体几何等相关知识后,对三维空间进行进一步探索的一章。
本章主要内容有:三视图、斜二测画法、简单几何体的直观图等。
通过本章的学习,使学生掌握投影的基本原理,提高学生的空间想象能力,培养学生运用几何知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何、立体几何有一定的了解。
但学生在空间想象力方面存在差异,部分学生对三维空间的认知仍较为困难。
此外,学生在学习过程中,往往对理论知识较感兴趣,但对实际操作、动手能力培养方面略显不足。
三. 教学目标1.理解投影的概念,掌握正投影、斜投影的性质及作法。
2.学会用三视图观察几何体,提高空间想象力。
3.掌握斜二测画法,能运用斜二测画法画出简单几何体的直观图。
4.能运用投影与视图的知识解决实际问题。
四. 教学重难点1.投影的基本原理及正投影、斜投影的性质。
2.三视图的作法及应用。
3.斜二测画法的原理及应用。
五. 教学方法1.采用讲授法,讲解投影的基本原理,正投影、斜投影的性质。
2.采用示范法,展示三视图的作法,引导学生动手实践。
3.采用案例分析法,分析实际问题,培养学生运用投影与视图知识解决问题的能力。
4.采用小组讨论法,分组探讨,提高学生的合作能力。
六. 教学准备1.准备投影仪、几何模型等教具。
2.制作多媒体课件,包括投影原理、三视图作法等教学内容。
3.准备实际问题案例,用于课堂讨论。
七. 教学过程1.导入(5分钟)利用投影仪展示几何模型,引导学生观察,提出问题:“请大家思考,这个几何体在投影过程中,会呈现出哪些特点?”从而引出投影的概念。
2.呈现(10分钟)讲解正投影、斜投影的性质,通过多媒体课件展示各种几何体在正投影、斜投影下的图像,让学生直观地理解投影的性质。
3.操练(10分钟)讲解三视图的作法,引导学生动手实践,尝试绘制简单几何体的三视图。
第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。
2、空间观念的形成是一个长期的过程。
本章是第七章内容的继续和发展。
二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。
2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。
3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。
4、能由三视图想象简单几何体。
难点:几何体与其投影的关系及由三视图想象几何体。
三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。
2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。
3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。
4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。
5、通过三视图的学习,培养学生识图、画图的基本技能。
6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。
四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。
很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。
在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。
(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。
29.1 投影第1课时平行投影与中心投影1.理解平行投影和中心投影的特征;(重点)2.在投影面上画出平面图形的平行投影或中心投影.(难点)一、情境导入北京故宫中的日晷闻名世界,是我国光辉灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.本节课学习有关投影的知识.二、合作探究探究点一:平行投影【类型一】判断影子的形状下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()解析:选项A.影子平行,且较高的树的影子长度大于较低的树的影子,正确;选项B.影子的方向不相同,错误;选项C.影子的方向不相同,错误;选项D.不同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误.故选A.方法总结:平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】平行投影作图在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.解析:过物体顶点作光线的平行线得到物体的平行投影,再根据平行投影中物体与投影面平行时的投影是全等的可找到XY的位置.解:连接AC,过点M作MP∥AC交NC于点P,则NP为MN的影子.过点B作BX∥AC,且BX=MP,过X作XY⊥NC交NC于点Y,则XY即为所求.方法总结:先根据物体投影确定光线,然后利用两个物体的顶端和各自影子的对应点的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定影子.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】平行投影的相关计算李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF 是1.6m,请你帮李航求出楼高AB.解析:过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.解:过点D 作DN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDME 、ACDN 是矩形,∴AN =ME =CD =1.2m ,DN =AC =30m ,DM =CE =0.6m ,∴MF =EF -ME =1.6-1.2=0.4m.∵EF ∥AB ,∴△DFM ∽△DBN ,DM DN =MF BN ,即0.630=0.4BN ,∴BN =20m ,∴AB =BN +AN=20+1.2=21.2m.答:楼高为21.2m.方法总结:在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 探究点二:中心投影【类型一】 判断是否是中心投影下面属于中心投影的是( )A .太阳光下的树影B .皮影戏C .月光下房屋的影子D .海上日出解析:中心投影的光源为灯光,平行投影的光源为阳光与月光.在各选项中只有B 选项得到的投影为中心投影.故选B.方法总结:判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】判断影长的情况晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长解析:晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.方法总结:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型三】中心投影作图如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,粗线分别表示三人的影子.请根据要求,进行作图(不写画法,但要保留作图痕迹).(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解析:(1)利用中心投影的图形的性质连接对应点得出灯泡位置即可;(2)根据灯泡位置即可得出小明的身高.解:(1)如图所示:O即为灯泡的位置;(2)如图所示:EF即为小明的身高.方法总结:连接物体和它影子的顶端所形成的直线必定经过点光源.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型四】中心投影的相关计算如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1m ,继续往前走3米到达E 处时,测得影子EF 的长为2m ,已知王华的身高是1.5m ,求路灯A 的高度AB .解析:根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的光线三者构成的两个直角三角形相似解答.解:当王华在CG 处时,Rt △DCG ∽Rt △DBA ,即CD BD =CGAB ;当王华在EH 处时,Rt △FEH ∽Rt △FBA ,即EF BF =EH AB =CG AB ,∴CD BD =EFBF .∵CG =EH =1.5m ,CD =1m ,CE =3m ,EF=2m ,设AB =x ,BC =y ,∴1y +1=2y +5,解得y =3,经检验y =3是原方程的根.∵CDBD =CG AB ,即1.5x =14,解得x =6m.即路灯A 的高度AB =6m. 方法总结:解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.平行投影的定义及应用;2.中心投影的定义及应用.本节以自主探索、合作交流为设计主线,从皮影戏、手影、日晷等学生熟悉的生活实际出发,引入物体投影的相关概念,通过观察图片等活动,使学生认识中心投影和平行投影的区别与联系,加强主动学习数学的兴趣,体现数学的应用价值.29.1 投影第2课时正投影1.理解正投影的概念;(重点)2.归纳正投影的性质,正确画出简单平面图形的正投影.(难点)一、情境导入观察下图,这三个图分别表示同一块三角尺在阳光照射下形成的投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系有什么区别?二、合作探究探究点:正投影【类型一】确定正投影的形状如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()解析:依题意,光线是垂直照下的,故只有D符合.故选D.方法总结:当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形.若投影面不是平面,则投影形状要复杂得多.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】物体与其正投影的关系木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m解析:正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2 m.故选D.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型三】画投影面上的正投影画出下列立体图形投影线从上方射向下方的正投影.解析:第一个图投影线从上方射向下方的正投影是长方形,第二个图投影线从上方射向下方的正投影也是长方形,第三个图投影线从上方射向下方的正投影是圆且有圆心.解:如图所示:方法总结:在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:正投影的综合应用【类型一】正投影与勾股定理的综合一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.(1)求影子A1B1的长度(如图①);(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B2(如图②).解析:根据平行投影和正投影的定义解答即可.解:如图①,A1B1=AB=8cm;如图③,作AE⊥BB2于E,则四边形AA2B2E是矩形,∴A2B2=AE,△ABE是直角三角形.∵AB=8cm,∠BAE=30°,∴BE=4cm,AE==4cm,∴A2B2=4cm.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】正投影与相似三角形的综合在长、宽都为4m,高为3m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)解析:根据题意画出图形,则AN=0.08m,AM=2m,由房间的地面为边长为4m的正方形可计算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边长为4m的正方形,则DE=4m.∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴BC≈0.23(m).答:灯罩的直径BC约为0.23m.方法总结:解决问题的关键是画出图形,根据图形相似的性质和判定解题.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.正投影的概念及性质;2.正投影的综合应用.本节课的学案设计,力求具体、生动、直观.因此,学生多以操作、观察实物模型和图片等活动为主.比如通过观察铁丝、圆柱、圆锥等图形在不同位置时的正投影特征,归纳出物体正投影的一般规律,并能根据此规律画出简单平面图形的正投影.在介绍投影概念时,借助太阳光线进行投影实例的观察,这样不仅直观而且富有真实感,能激发学生学习兴趣.。
《第29章投影与视图》单元教学设计
影的角度对如何用三视图这样的平面图形来表示三维立体图形进行进一步讨论.这有助于将学
生对于图形已有的认识加以提高,增强将平面图形与立体图形相互转化的.
(3)、教学中应重视联系实际问题.帮助学生克服立体几何知识的不足在本章的教学中,不可避免地要涉及立体几何中的一些基础知识,例如空间中直线与直线.简称线线,、直线与平面,简称线面。
、平面与平面,简称面面。
的位置关系、相交、垂直和平行,但是学生此前缺乏对这些知识的系统学习。
只是有一些感性认识。
在学习本章之前先系统补充立体几何基础知识是不合适的、因为这需要增加许多课时、而且扩大了课程标准规定的初中数学学习内容.教科书的编写者认为,解决这个问题的比较好的做法是重视相关内容与实际的联系,在不刻意追求对抽象概念有透彻理解的前提下,选择一些实例,利用直观的、感性的认识.
3.单元知识结构框架:。
“自学互帮导学法”课堂教学设计
课题投影与视图小结课时 1 课型复习修改意见教学目标对本章知识复习小结
教学重点视图与立体图形的联系
教学难点视图与立体图形的联系
空间想象能力较差。
学情分析
学法指导互助合作学习
教学过程
效果预测及
修改意见教学内容教师活动学生活动
补救措施
一、知识结构
二、回顾与思考……1、出示知识结构
图
1、引导学生回顾
投影方面的有关
知识。
2、引导学生回顾
三视图方面的有
关知识。
3、引导学生利用
三视图想象立体
图形。
4、引导学生了解
三视图与立体图
1、了解本章知识结构。
1、回顾投影方面的有关知识。
2、回顾三视图方面的有关知识。
3、利用三视图想象立体图形。
4、了解三视图与立体图形的联
系。
1、学生归纳能力较
差,教师加强引导。
1、学生空间想象努
力较差。
加强合作学
习。
[.Com]
2、效果良好。
3、效果良好。
4、学生空间想象努
力较差。
加强合作学
习。
形的联系。
板书设计
参考书目及
推荐资料
教学反思学生归纳能力、空间想象能力较差,教师应加强引导,同学之间要多交流、合作。