2014中考数学:二次函数综合题解析1(遵义、铜仁、营口、攀枝花)
- 格式:doc
- 大小:237.20 KB
- 文档页数:6
二次函数的综合问题【教学目标】(一)培养学生灵活掌握和运用二次函数知识的能力;(二)提高分析问题和解决问题的能力.【重点、难点】重点:使学生初步会把二次函数概念和性质综合在一起灵活运用;熟悉数与形的相互联系,相辅相成.难点:善于选择恰当的解法;善于把问题与函数的有关性质联系起来.【知识要点】1.二次函数y=ax2+bx+c图象的顶点坐标是____.2.y=ax2+bx+c图象的顶点坐标公式.3.y=ax2+bx+c图象的画法.4.用待定系数法求二次函数的解析式.5.图象法解ax2+bx+c>0的几何意义.6.有关二次函数的最大值、最小值问题【经典例题】例1.已知y=x2-4x-9(1)把它配方成y=a(x+h)2+k形式;(2)写出它的开口方向、顶点M的坐标、对称轴方程和最值;(3)求出图象与y轴、x轴的交点坐标;(4)作出函数图象;(5)x取什么值时y>0,y<0;(6)设图象交x轴于A,B两点,求△AMB面积.例2.已知图22是二次函数y=ax2+bx+c的图象,判断以下各式的值是正值还是负值.(1)a;(2)b;(3)c;(4)b2-4ac;(5)2a+b;(6)a+b+c;(7)a-b+c.例3 .k取什么值时,对于任意实数x,二次不等式(4-k)x2-3x+k+4>0都成立.例4 .k取什么值时,对于任意实数x,二次不等式(4-k)x2-3x+k+4>0都成立.例5.如图32有一个半径为R的圆的内接等腰梯形,其下底是圆的直径.(1)写出周长y与腰长x的函数关系及自变量x的范围;(2)腰长为何值时周长最大,最大值是多少?例6.抛物线c+=2与x轴交于A、B两点,抛物线的顶点为P.axbxy+(1)若ABP∆为等边三角形,则∆= .(2)若ABP∆为等腰直角三角形,则∆= .例7.如图所示,ABC ∆为直角三角形,D AC BC C ,4,3,90==︒=∠为AC 上任意一点,E 在BC 上,G 、F 在AB 上,四边形DEFG 为矩形,设x CD =,四边形DEFG 的面积为y ,则y 与x 的函数关系式为 .例8.如图,抛物线2812y mx mx n =++与x 轴交于A 、B 两点(点A 在点B 的左边),在第二象限内抛物线上的一点C ,使△OCA ∽△OBC ,且:AC B C =,若直线AC 交y 轴于P 。
2014铜仁中考数学试题(解析版)D点评:本题考查了顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点.反向延长线等.5.(4分)(2014•铜仁)代数式有意义,则x 的取值范围是( )A . x ≥﹣1且x ≠1B . x ≠1C . x ≥1且x ≠﹣1D . x ≥﹣1考点: 二次根式有意义的条件;分式有意义的条件. 分析: 此题需要注意分式的分母不等于零,二次根式的被开方数是非负数. 解答: 解:依题意,得x+1≥0且x ﹣1≠0,解得 x ≥﹣1且x ≠1.故选:A .点评: 本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(4分)(2014•铜仁)正比例函数y=2x 的大致图象是( )A .B .C .D .考点: 正比例函数的图象. 分析: 正比例函数的图象是一条经过原点的直线,且当k >0时,经过一、三象限. 解答: 解:∵正比例函数的图象是一条经过原点的直线,且当k >0时,经过一、三象限.∴正比例函数y=2x 的大致图象是B . 故选:B .点评: 此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.(4分)(2014•铜仁)如图所示,点A ,B ,C 在圆O 上,∠A=64°,则∠BOC 的度数是( )A . 26°B . 116°C . 128°D . 154°考点: 圆周角定理. 分析: 根据圆周角定理直接解答即可. 解答: 解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选C .点评: 本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.8.(4分)(2014•铜仁)如图所示,所给的三视图表示的几何体是( )A . 三棱锥B . 圆锥C . 正三棱柱D . 直三棱柱考点: 由三视图判断几何体. 分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为直三棱柱.解答: 解:∵左视图和俯视图都是长方形,∴此几何体为柱体, ∵主视图是一个三角形,∴此几何体为直三棱柱.故选:D .点评: 考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.9.(4分)(2014•铜仁)将抛物线y=x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )A . y =(x ﹣B . y =(x ﹣C . y =D . y =2)2﹣12)2+1 (x+2)2+1 (x+2)2﹣1考点: 二次函数图象与几何变换. 分析: 根据二次函数图象左加右减,上加下减的平移规律进行求解. 解答: 解:抛物线y=x 2向右平移2个单位,得:y=(x ﹣2)2;再向下平移1个单位,得:y=(x ﹣2)2﹣1. 故选:A .点评: 主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.10.(4分)(2014•铜仁)如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE=3,AE=2,则MF 的长是( )A .B .C . 1D .考点: 相似三角形的判定与性质;角平分线的性质;勾股定理;矩形的性质. 分析: 设MD=a ,MF=x ,利用△ADM ∽△DFM ,得到∴,利用△DMF ∽△DCE ,∴.得到a 与x 的关系式,化简可得x 的值,得到D 选项答案. 解答: 解:∵AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,∠B=90°,∴AB=AM ,BE=EM=3,又∵AE=2, ∴, 设MD=a ,MF=x ,在△ADM 和△DFM 中,,∴△ADM ∽△DFM ,, ∴DM 2=AM •MF , ∴,在△DMF 和△DCE 中,, ∴.∴, ∴, 解之得:,故答案选:D .点评: 本题考查了角平分线的性质以及三角形相似的判定方法,解题的关键在于利用三角形相似构造方程求得对应边的长度.二、填空题(本题共共8小题,每小题4分,共32分)11.(4分)(2014•铜仁)cos60°= .考点: 特殊角的三角函数值. 分析: 根据特殊角的三角函数值计算. 解答: 解:cos60°=. 点评: 本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.12.(4分)(2014•铜仁)定义一种新运算:a ⊗b=b 2﹣ab ,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3= ﹣9 .考点: 有理数的混合运算. 专题: 新定义. 分析: 先根据新定义计算出﹣1⊗2=6,然后计算再根据新定义计算6⊗3即可. 解答: 解:﹣1⊗2=22﹣(﹣1)×2=6,6⊗3=32﹣6×3=﹣9.所以(﹣1⊗2)⊗3=﹣9.故答案为﹣9.点评: 本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.13.(4分)(2014•铜仁)在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图案中,是中心对称图形但不是轴对称图形的是 平行四边形 .考点: 中心对称图形;轴对称图形. 分析: 根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断. 解答: 解:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,符合题意.故答案为:平行四边形.点评: 本题考查了中心对称图形与轴对称图形的概念. (1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.14.(4分)(2014•铜仁)分式方程:=1的解是 x= .考点: 解分式方程. 专题: 计算题. 分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答: 解:去分母得:2x+1=3﹣x ,移项合并得:3x=2, 解得:x=,经检验x=是分式方程的解.故答案为:x=点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)(2014•铜仁)关于x 的一元二次方程x 2﹣3x+k=0有两个不相等的实数根,则k 的取值范围是 k < .考点: 根的判别式. 分析: 根据判别式的意义得到△=(﹣3)2﹣4k >0,然后解不等式即可. 解答: 解:根据题意得△=(﹣3)2﹣4k >0,解得k <.故答案为:k <.点评: 本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.(4分)(2014•铜仁)在某市五•四青年歌手大赛中,某选手得到评委打出的分数分别是:9.7,9.6,9.3,9.4,9.6,9.8,9.5,则这组数据的中位数是 9.6 .考点: 中位数. 分析: 根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可. 解答: 解:把这组数据从小到大排列为:9.3,9.4,9.5,9.6,9.6,9.7,9.8,最中间的数是9.6,则中位数是9.6,故答案为:9.6.点评: 本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).17.(4分)(2014•铜仁)已知圆锥的底面直径为20cm ,母线长为90cm ,则圆锥的表面积是 1000π cm 2.(结果保留π)考点: 圆锥的计算. 分析: 根据圆锥表面积=侧面积+底面积=底面周长×母线长+底面积计算.解答: 解:圆锥的表面积=10π×90+100π=1000πcm 2.故答案为:1000π.点评: 本题考查了圆锥的计算,解决本题的关键记准圆锥的侧面面积和底面面积公式.18.(4分)(2014•铜仁)一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n 的数为 (﹣1)n ﹣1 .考点: 规律型:数字的变化类. 分析: 首先发现奇数位置为正,偶数位置为负;且对应数字依次为0,0+1=1,0+1+2=3,0+1+2+3=6,0+1+2+3+4=0+10,0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,…第n 个数字为0+1+2+3+…+(n ﹣1)=,由此得出答案即可. 解答: 解:第n 个数字为0+1+2+3+…+(n ﹣1)=,符号为(﹣1)n ﹣1, 所以第n 个数为(﹣1)n ﹣1.故答案为:(﹣1)n ﹣1.点评:此题考查数字的变化规律,从数的绝对值的和正负情况两个方面考虑求解是解题的关键.三、解答题(本题共4小题,每小题10分,共40分)19.(10分)(2014•铜仁)(1)20140﹣(﹣1)2014+﹣|﹣3|(2)先化简,再求值:•﹣,其中x=﹣2.考点: 分式的化简求值;实数的运算;零指数幂. 专题: 计算题. 分析: (1)原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,将x 的值代入计算即可求出值. 解答: 解:(1)原式=1﹣1+2﹣3=﹣;(2)原式=•﹣=﹣=﹣, 当x=﹣2时,原式=.点评: 此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014•铜仁)为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A .只愿意就读普通高中;B .只愿意就读中等职业技术学校;C .就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生?(2)补全图一,并求出图二中B 区域的圆心角的度数;(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读中等职业技术学校的概率.考点: 条形统计图;扇形统计图;概率公式. 专题: 计算题. 分析: (1)根据C 的人数除以占的百分比,求出调查的学生总数即可; (2)求出B 的人数,补全图1,求出B 占的百分比,乘以360即可得到结果;(3)求出B 占的百分比,乘以2800即可得到结果. 解答: 解:(1)根据题意得:80÷=800(名),则调查的学生总数为800名;(2)B 的人数为800﹣(480+80)=240(名),B 占的度数为×360°=108°,补全统计图,如图所示:(3)根据题意得:=0.3,则估计该校学生只愿意就读中等职业技术学校的概率0.3.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014•铜仁)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC .(1)你添加的条件是 ∠B=∠C ;(2)请写出证明过程.考点: 全等三角形的判定与性质. 分析: (1)此题是一道开放型的题目,答案不唯一,如∠B=∠C 或∠ADB=∠ADC 等;(2)根据全等三角形的判定定理AAS 推出△ABD ≌△ACD ,再根据全等三角形的性质得出即可.解答: 解:(1)添加的条件是∠B=∠C ,故答案为:∠B=∠C ;(2)证明:在△ABD 和△ACD 中,∴△ABD ≌△ACD (AAS ),∴AB=AC .点评: 本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,全等三角形的对应角相等,对应边相等.22.(10分)(2014•铜仁)如图所示,AD ,BE 是钝角△ABC 的边BC ,AC 上的高,求证:=.考点: 相似三角形的判定与性质. 专题: 证明题. 分析: 由AD ,BE 是钝角△ABC 的边BC ,AC 上的高,可得∠D=∠E=90°,又由∠ACD=∠BCE ,即可证得△ACD ∽△BCE ,然后由相似三角形的对应边成比例,证得结论.解答: 证明:∵AD ,BE 是钝角△ABC 的边BC ,AC 上的高, ∴∠D=∠E=90°,∵∠ACD=∠BCE ,∴△ACD ∽△BCE , ∴=.点评: 此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.四、(本大题满分12分)23.(12分)(2014•铜仁)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?考点: 二元一次方程组的应用. 分析: (1)本题中的等量关系为:45×45座客车辆数+15=游客总数,60×(45座客车辆数﹣1)=游客总数,据此可列方程组求出第一小题的解;(2)需要分别计算45座客车和60座客车各自的租金,比较后再取舍.解答: 解:(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得, 解这个方程组,得.答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元), 租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).答:租用4辆60座客车更合算.点评: 此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.五、(本大题满分12分)24.(12分)(2014•铜仁)如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,D 是AB 延长线上一点,连接DC ,且AC=DC ,BC=BD .(1)求证:DC 是⊙O 的切线;(2)作CD 的平行线AE 交⊙O 于点E ,已知DC=10,求圆心O 到AE 的距离.考点: 切线的判定. 分析: (1)连接OC ,根据等腰三角形的性质求出∠CAD=∠D=∠BCD ,求出∠ABC=∠D+∠BCD=2∠CAD ,设∠CAD=x °,则∠D=∠BCD=x °,∠ABC=2x °,求出∠ACB=90°,推出x+2x=90,求出x ,求出∠OCD=90°,根据切线的判定得出即可;(2)求出OC ,得出OA 长,求出∠OAE ,根据含30度角的直角三角形性质求出OF 即可.解答: (1)证明:连接OC ,∵AC=DC ,BC=BD , ∴∠CAD=∠D ,∠D=∠BCD ,∴∠CAD=∠D=∠BCD ,∴∠ABC=∠D+∠BCD=2∠CAD ,设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,∵AB是⊙O的直径,∴∠ACB=90°,∴x+2x=90,x=30,即∠CAD=∠D=30°,∠CBO=60°,∵OC=OB,∴△BCO是等边三角形,∴∠COB=60°,∴∠OCD=180°﹣30°﹣60°=90°,即OC⊥CD,∵OC为半径,∴DC是⊙O的切线;(2)解:过O作OF⊥AE于F,∵在Rt△OCD中,∠OCD=90°,∠D=30°,CD=10,∴OC=CD×tan30°=10,OD=2OC=20,∴OA=OC=10,∵AE∥CD,∴∠FAO=∠D=30°,∴OF=AO ×sin30°=10×=5,即圆心O 到AE 的距离是5.点评: 本题考查了切线的判定,含30度角的直角三角形性质,解直角三角形,等腰三角形的性质,圆周角定理,三角形外角性质,解直角三角形的应用,主要考查学生综合运用定理进行推理和计算的能力,题目比较好.六、(本大题满分14分)25.(14分)(2014•铜仁)已知:直线y=ax+b 与抛物线y=ax 2﹣bx+c 的一个交点为A (0,2),同时这条直线与x 轴相交于点B ,且相交所成的角β为45°.(1)求点B 的坐标;(2)求抛物线y=ax 2﹣bx+c 的解析式;(3)判断抛物线y=ax 2﹣bx+c 与x 轴是否有交点,并说明理由.若有交点设为M ,N (点M 在点N 左边),将此抛物线关于y 轴作轴反射得到M 的对应点为E ,轴反射后的像与原像相交于点F ,连接NF ,EF 得△DEF ,在原像上是否存在点P ,使得△NEP 的面积与△NEF 的面积相等?若存在,请求出点P 的坐标;若不存在,请说明理由.考点: 二次函数综合题. 分析: (1)根据等腰直角三角形的性质即可求得;(2)利用待定系数法即可求得解析式; (3)利用b 2﹣4ac 确定抛物线有没有交点,因为轴反射后的像与原像相交于点F ,则F点即为A 点,则OF=2,由于△NEP 的面积与△NEF 的面积相等且同底,所以P 点的纵坐标为2或﹣2,代入y=﹣x 2﹣2x+2即可求得.解答: 解:(1)∵直线y=ax+b 过A (0,2),同时这条直线与x 轴相交于点B ,且相交所成的角β为45°,∴OA=OB ,∴当a >0时,B (﹣2,0),当a <0时,B (2,0);(2)把A (0,2),B (﹣2,0)代入直线y=ax+b 得;, 解得:, 把A (0,2),B (2,0)代入直线y=ax+b 得, 解得:,∵抛物线y=ax 2﹣bx+c 过A (0,2), ∴c=2,∴抛物线的解析式为:y=x 2+2x+2或y=﹣x2+2x+2.(3)存在.如图,抛物线为y=x2+2x+2时,b2﹣4ac=4﹣4×1×2<0,抛物线与x轴没有交点,抛物线为y=﹣x2+2x+2时,b2﹣4ac=4﹣4×(﹣1)×2>0,抛物线与x轴有两个交点;∵轴反射后的像与原像相交于点F,则F点即为A点,∴F(0,2)∵△NEP的面积与△NEF的面积相等且同底,∴P点的纵坐标为2或﹣2,当y=2时,﹣x2﹣2x+2=2,解得:x=﹣2或x=0(与点F重合,舍去);当y=﹣2时,﹣x2﹣2x+2=﹣2,解得:x=﹣1+,x=﹣1﹣,∴存在满足条件的点P ,点P 坐标为:(﹣2,2),(﹣1+,﹣2),(﹣1﹣,﹣2). 点评: 本题考查了待定系数法求解析式,二次函数的交点问题以及三角形面积的求解方法,问题考虑周全是本题的难点.。
2014年中考数学总复习《二次函数》一.解答题(共30小题)1.(2013•自贡)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD 交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q 点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.2.(2013•株洲)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.3.(2013•舟山)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?4.(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A 的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.5.(2013•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.6.(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.7.(2013•枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.8.(2013•岳阳)如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C 点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.(1)求A,B,C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;(3)已知M为抛物线上一动点(不与C点重合),试探究:①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.9.(2013•玉林)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.10.(2013•营口)如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.11.(2013•益阳)阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.12.(2013•烟台)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣,0),以0C为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.13.(2013•孝感)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.14.(2013•湘西州)如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.15.(2013•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.16.(2013•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?17.(2013•梧州)如图,抛物线y=a(x﹣h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x 轴交于点C.(1)求此抛物线的解析式.(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.18.(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.19.(2013•乌鲁木齐)如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.(1)求证:△OAD≌△EAB;(2)求过点O、E、B的抛物线所表示的二次函数解析式;(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.20.(2013•潍坊)如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,)在抛物线上,直线l是一次函数y=kx﹣2(k≠0)的图象,点O是坐标原点.(1)求抛物线的解析式;(2)若直线l平分四边形OBDC的面积,求k的值;(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.21.(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.22.(2013•铁岭)某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y(1的函数关系式:_________(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?23.(2013•天津)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;(2)当x24.(2013•泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.25.(2013•太原)综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.26.(2013•台州)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+k经过点A,其顶点为B,另一抛物线y=(x﹣h)2+2﹣h(h>1)的顶点为D,两抛物线相交于点C.(1)求点B的坐标,并说明点D在直线l上的理由;(2)设交点C的横坐标为m.①交点C的纵坐标可以表示为:_________或_________,由此进一步探究m关于h的函数关系式;②如图2,若∠ACD=90°,求m的值.27.(2013•遂宁)如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值.28.(2013•绥化)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.29.(2013•宿迁)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣3(a,b是常数)的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.(1)求a和b的值;(2)求t的取值范围;(3)若∠PCQ=90°,求t的值.30.(2013•深圳)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(_________,_________),抛物线的表达式为_________;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.。
二次函数综合板块一:旋转、翻折、平移1、点P为抛物线y=x2-2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A 在点B的上方),点Q为点P旋转后的对应点.(1)当m=2,点P横坐标为4时,求Q点的坐标;(2)设点Q(a,b),用含m、b的代数式表示a;(3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m时,求m的值.2、已知抛物线L1:23212-+=x x y 的顶点为C ,与x 轴交于A 、B ,将抛物线L1沿x 轴翻折得到抛物线L2(1)求抛物线L2的解析式及顶点M 的坐标. (2)点P 为y 轴右侧的抛物线L2上一点点Q 为抛物线L1上一点若以M 、C 、P 、Q 为顶点的四边形为矩形求点P 、Q 的坐标.(3)N 点在抛物线L2上以MN 为斜边作等腰直角三角形其直角顶点E 正好在x 轴上求N 点坐标.3、如图,直线33y x b =+经过点B(3-,2),且与x 轴交于点A .将抛物线213y x=沿x 轴作左右平移,记平移后的抛物线为C ,其顶点为P .(1)求∠BAO 的度数;(2)抛物线C 与y 轴交于点E ,与直线AB 交于两点,其中一个交点为F .当线段EF ∥x 轴时,求平移后的抛物线C 对应的函数关系式; (3)在抛物线213y x=平移过程中,将△PAB 沿直线AB 翻折得到△DAB ,点D 能否落在抛物线C 上?如能,求出此时抛物线C 顶点P 的坐标;如不能,说明理由.OABxyOABxy213y x =4、已知抛物线C1:y=-x2-2x+3与x轴的正半轴交于B,交y轴于C,将C1绕平面内的一点旋转180得到抛物线C2,且所得抛物线经过B,C两点.(1)求C2的解析式(2)将C2沿x轴平移得到抛物线C3,设C2的顶点为D,C3的顶点为E,抛物线 C3与C2交于M,若△MDE为等腰直角三角形。
2014年贵州省铜仁地区数学中考试卷一、选择题(本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上. 1.(4分)(2013•铜仁地区)|﹣2013|等于( )2.(4分)(2013•铜仁地区)下列运算正确的是( )3.(4分)(2013•铜仁地区)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )4.(4分)(2013•铜仁地区)如图,在下列条件中,能判断AD∥BC 的是( )5.(4分)(2013•铜仁地区)⊙O 的半径为8,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是( )6.(4分)(2013•铜仁地区)已知△ABC 的各边长度分别为3cm ,4cm ,5cm ,则连结各边中点的三角形的周长为( )7.(4分)(2013•铜仁地区)已知矩形的面积为8,则它的长y 与宽x 之间的函数关系用图象大致可以表示为( )8.(4分)(2013•铜仁地区)下列命题中,真命题是( )9.(4分)(2013•铜仁地区)张老师和李老花眼师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是x 米/分,则可列得方程为( )10.(4分)(2013•铜仁地区)如图,直线y=kx+b 交坐标轴于A (﹣2,0),B (0,3)两点,则不等式kx+b >0的解集是( )二、填空题(本大题共8个小题,每小题4分,共32分) 11.(4分)(2013•铜仁地区)4的平方根是 ±2 . 12.(4分)(2013•铜仁地区)方程的解是 y=﹣4 .13.(4分)(2013•铜仁地区)国家统计局于2013年4月15日发布初步核算数据,一季度中国国内生产总值(GDP )为119000亿元,同比增长7.7%.数据119000亿元用科学记数法表示为 1.19×105 亿元.14.(4分)(2013•铜仁地区)不等式2m ﹣1≤6的正整数解是 1,2,3 .15.(4分)(2013•铜仁地区)点P (2,﹣1)关于x 轴对称的点P′的坐标是 (2,1) . 16.(4分)(2013•铜仁地区)如图,在直角三角形ABC 中,∠C=90°,AC=12,AB=13,则sinB 的值等于.17.(4分)(2013•铜仁地区)某公司80名职工的月工资如下:则该公司职工月工资数据中的众数是 2000 .18.(4分)(2013•铜仁地区)如图,已知∠AOB=45°,A 1、A 2、A 3、…在射线OA 上,B 1、B 2、B 3、…在射线OB 上,且A 1B 1⊥OA,A 2B2⊥OA,…A n B n ⊥OA;A 2B 1⊥OB,…,A n+1B n ⊥OB(n=1,2,3,4,5,6…).若OA 1=1,则A 6B 6的长是 32 .三、解答题(本题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10分)(2013•铜仁地区)(1)计算(﹣1)2013+2sin60°+(π﹣3.14)0+|﹣|;(2)先化简,再求值:,其中.20.(10分)(2013•铜仁地区)如图,△ABC 和△ADE 都是等腰三角形,且∠BAC=90°,∠DAE=90°,B ,C ,D 在同一条直线上.求证:BD=CE .21.(10分)(2013•铜仁地区)为了测量旗杆AB 的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA 于A ,DC⊥EA 于C ,CD=a ,CA=b ,CE=c ;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE 于E ,BA⊥AE 于A ,BA⊥CD 于C ,DE=m ,AE=n ,∠BDC=α. (1)请你帮助甲同学计算旗杆AB 的高度(用含a 、b 、c 的式子表示); (2)请你帮助乙同学计算旗杆AB 的高度(用含m 、n 、α的式子表示).22.(10分)(2013•铜仁地区)某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图. (2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?四、(本题满分12分)23.(12分)(2013•铜仁地区)铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x 月的利润的月平均值w (万元)满足w=10x+90.(1)设使用回收净化设备后的1至x 月的利润和为y ,请写出y 与x 的函数关系式. (2)请问前多少个月的利润和等于1620万元? 五、(本题满分12分)24.(12分)(2013•铜仁地区)如图,AC 是⊙O 的直径,P 是⊙O 外一点,连结PC 交⊙O 于B ,连结PA 、AB ,且满足PC=50,PA=30,PB=18. (1)求证:△PAB∽△PCA; (2)求证:AP 是⊙O 的切线.六、(本题满分14分)25.(14分)(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.参考答案一、选择题(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.(4分)(2013•铜仁地区)|﹣2013|等于()2.(4分)(2013•铜仁地区)下列运算正确的是()3.(4分)(2013•铜仁地区)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是()=.4.(4分)(2013•铜仁地区)如图,在下列条件中,能判断AD∥BC 的是( )解答:(内错角相等,两直线平行)5.(4分)(2013•铜仁地区)⊙O 的半径为8,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是( ):∵⊙O的半径为6.(4分)(2013•铜仁地区)已知△ABC 的各边长度分别为3cm ,4cm ,5cm ,则连结各边中点的三角形的周长为( )BC AB7.(4分)(2013•铜仁地区)已知矩形的面积为8,则它的长y 与宽x 之间的函数关系用图象大致可以表示为( )(8.(4分)(2013•铜仁地区)下列命题中,真命题是()9.(4分)(2013•铜仁地区)张老师和李老花眼师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是x米/分,则可列得方程为()﹣10.(4分)(2013•铜仁地区)如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)(2013•铜仁地区)4的平方根是±2.12.(4分)(2013•铜仁地区)方程的解是y=﹣4 .13.(4分)(2013•铜仁地区)国家统计局于2013年4月15日发布初步核算数据,一季度中国国内生产总值(GDP)为119000亿元,同比增长7.7%.数据119000亿元用科学记数法表示为 1.19×105亿元.14.(4分)(2013•铜仁地区)不等式2m﹣1≤6的正整数解是1,2,3 .15.(4分)(2013•铜仁地区)点P(2,﹣1)关于x轴对称的点P′的坐标是(2,1).16.(4分)(2013•铜仁地区)如图,在直角三角形ABC 中,∠C=90°,AC=12,AB=13,则sinB 的值等于.,代入求出即可.=.,,.17.(4分)(2013•铜仁地区)某公司80名职工的月工资如下:则该公司职工月工资数据中的众数是 2000 .案为18.(4分)(2013•铜仁地区)如图,已知∠AOB=45°,A 1、A 2、A 3、…在射线OA 上,B 1、B 2、B 3、…在射线OB 上,且A 1B 1⊥OA,A 2B 2⊥OA,…A n B n ⊥OA;A 2B 1⊥OB,…,A n+1B n ⊥OB(n=1,2,3,4,5,6…).若OA 1=1,则A 6B 6的长是 32 .三、解答题(本题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10分)(2013•铜仁地区)(1)计算(﹣1)2013+2sin60°+(π﹣3.14)0+|﹣|;(2)先化简,再求值:,其中.2+2.20.(10分)(2013•铜仁地区)如图,△ABC 和△ADE 都是等腰三角形,且∠BAC=90°,∠DAE=90°,B ,C ,D 在同一条直线上.求证:BD=CE .专题:出21.(10分)(2013•铜仁地区)为了测量旗杆AB 的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA 于A ,DC⊥EA 于C ,CD=a ,CA=b ,CE=c ;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE 于E ,BA⊥AE 于A ,BA⊥CD 于C ,DE=m ,AE=n ,∠BDC=α. (1)请你帮助甲同学计算旗杆AB 的高度(用含a 、b 、c 的式子表示); (2)请你帮助乙同学计算旗杆AB 的高度(用含m 、n 、α的式子表示).=tan22.(10分)(2013•铜仁地区)某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图. (2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?=30%=.四、(本题满分12分)23.(12分)(2013•铜仁地区)铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x 月的利润的月平均值w (万元)满足w=10x+90.(1)设使用回收净化设备后的1至x 月的利润和为y ,请写出y 与x 的函数关系式. (2)请问前多少个月的利润和等于1620万元?五、(本题满分12分)24.(12分)(2013•铜仁地区)如图,AC 是⊙O 的直径,P 是⊙O 外一点,连结PC 交⊙O 于B ,连结PA 、AB ,且满足PC=50,PA=30,PB=18. (1)求证:△PAB∽△PCA; (2)求证:AP 是⊙O 的切线.,=,=六、(本题满分14分)25.(14分)(2013•铜仁地区)如图,已知直线y=3x ﹣3分别交x 轴、y轴于A 、B 两点,抛物线y=x 2+bx+c经过A 、B 两点,点C 是抛物线与x 轴的另一个交点(与A 点不重合). (1)求抛物线的解析式; (2)求△ABC 的面积;(3)在抛物线的对称轴上,是否存在点M ,使△ABM 为等腰三角形?若不存在,请说明理由;若存在,求出点M 的坐标.的坐标为(﹣,AC=4AC×OB=)),。
中考数学二次函数的综合复习含答案解析一、二次函数1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩,则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t=﹣32(t ﹣3)2+272,∴当t=3时,△PAB 的面积有最大值; (3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.2.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【答案】(1)y=x2﹣2x﹣3;(2)E 113+113+3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析.【解析】【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【详解】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,∴m2+3(m+1)=13,即m2+3m﹣10=0,解得m1=2,m2=﹣5.∵OA<OB,∴抛物线的对称轴在y轴右侧,∴m=2,∴抛物线的解析式为y=x2﹣2x﹣3;(2)连接BE、OE.∵在Rt△BCD中,∠CBD=90°,EC=ED,∴BE=12CD=CE.令y=x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵C(0,﹣3),∴OB=OC,又∵BE =CE ,OE =OE , ∴△OBE ≌△OCE (SSS ), ∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3, 得m =m 2﹣2m ﹣3,解得m =113±, ∵点E 在第四象限, ∴E 点坐标为(1132+,﹣1132+); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S △ACQ =2S △AOC , ∴S △ACF =2S △AOC , ∴AF =2OA =2, ∴F (1,0).∵A (﹣1,0),C (0,﹣3), ∴直线AC 的解析式为y =﹣3x ﹣3. ∵AC ∥FQ ,∴设直线FQ 的解析式为y =﹣3x +b , 将F (1,0)代入,得0=﹣3+b ,解得b =3, ∴直线FQ 的解析式为y =﹣3x +3.联立22333y x x y x ⎧=--⎨=-+⎩,解得11312x y =-⎧⎨=⎩,2223x y =⎧⎨=-⎩,∴点Q 的坐标为(﹣3,12)或(2,﹣3). 【点睛】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.3.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.4.如图,抛物线y =12x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是抛物线对称轴上的一个动点,当MC +MA 的值最小时,求点M 的坐标.【答案】(1)抛物线的解析式为y =213x -22x ﹣2,顶点D 的坐标为 (32,﹣258);(2)△ABC 是直角三角形,证明见解析;(3)点M 的坐标为(32,﹣54). 【解析】 【分析】(1)因为点A 在抛物线上,所以将点A 代入函数解析式即可求得答案;(2)由函数解析式可以求得其与x 轴、y 轴的交点坐标,即可求得AB 、BC 、AC 的长,由勾股定理的逆定理可得三角形的形状;(3)根据抛物线的性质可得点A 与点B 关于对称轴x 32=对称,求出点B ,C 的坐标,根据轴对称性,可得MA =MB ,两点之间线段最短可知,MC +MB 的值最小.则BC 与直线x 32=交点即为M 点,利用得到系数法求出直线BC 的解析式,即可得到点M 的坐标. 【详解】(1)∵点A (﹣1,0)在抛物线y 212x =+bx ﹣2上,∴2112⨯-+()b ×(﹣1)﹣2=0,解得:b 32=-,∴抛物线的解析式为y 21322x =-x ﹣2. y 21322x =-x ﹣212=(x 2﹣3x ﹣4 )21325228x =--(),∴顶点D 的坐标为 (32528,-). (2)当x =0时y =﹣2,∴C (0,﹣2),OC =2. 当y =0时,21322x -x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB =5.∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)∵顶点D的坐标为(32528,-),∴抛物线的对称轴为x32=.∵抛物线y12=x2+bx﹣2与x轴交于A,B两点,∴点A与点B关于对称轴x32=对称.∵A(﹣1,0),∴点B的坐标为(4,0),当x=0时,y21322x=-x﹣2=﹣2,则点C 的坐标为(0,﹣2),则BC与直线x32=交点即为M点,如图,根据轴对称性,可得:MA=MB,两点之间线段最短可知,MC+MB的值最小.设直线BC的解析式为y=kx+b,把C(0,﹣2),B(4,0)代入,可得:240bk b=-⎧⎨+=⎩,解得:122kb⎧=⎪⎨⎪=-⎩,∴y12=x﹣2.当x32=时,y1352224=⨯-=-,∴点M的坐标为(3524-,).【点睛】本题考查了待定系数法求二次函数解析式、一次函数的解析式、直角三角形的性质及判定、轴对称性质,解决本题的关键是利用待定系数法求函数的解析式.5.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N 为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1(1132+,0)、N1(13,﹣1);M2(1132+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.【详解】(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:203a a cc++=⎧⎨=⎩,解得:13ac=-⎧⎨=⎩,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4);(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴33,则点B′的坐标为(m+1,0),点G′的坐标为(1,3m ), 将点B′、G′的坐标代入y=﹣(x ﹣1)2+4﹣k ,得:24043m k k m⎧-+-=⎪⎨-=⎪⎩, 解得:1104m k =⎧⎨=⎩(舍),2231m k ⎧=⎪⎨=⎪⎩,∴k=1;(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2), ∴PQ=OA=1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y=﹣1于点H ,则∠QHN=∠OMQ=90°, 又∵△AOQ ≌△PQN , ∴OQ=QN ,∠AOQ=∠PQN , ∴∠MOQ=∠HQN , ∴△OQM ≌△QNH (AAS ), ∴OM=QH ,即x=﹣x 2+2x+2+1, 解得:x=1132± 当113+HN=QM=﹣x 2131-M 113+,0), ∴点N 113+131-1131); 113+131-1),即(1,﹣1); 如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(113+,0)、N1(13,﹣1);M2(113+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.6.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.7.如图1,在平面直角坐标系中,直线AB :y =kx +b (k <0,b >0),与x 轴交于点A 、与y 轴交于点B ,直线CD 与x 轴交于点C 、与y 轴交于点D .若直线CD 的解析式为y =﹣1k(x+b ),则称直线CD 为直线AB 的”姊线”,经过点A 、B 、C 的抛物线称为直线AB 的“母线”.(1)若直线AB 的解析式为:y =﹣3x +6,求AB 的”姊线”CD 的解析式为: (直接填空);(2)若直线AB 的”母线”解析式为:2142y x x =-+,求AB 的”姊线”CD 的解析式; (3)如图2,在(2)的条件下,点P 为第二象限”母线”上的动点,连接OP ,交”姊线”CD 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求y 的最大值;(4)如图3,若AB 的解析式为:y =mx +3(m <0),AB 的“姊线”为CD ,点G 为AB 的中点,点H 为CD 的中点,连接OH ,若GH =5,请直接写出AB 的”母线”的函数解析式.【答案】(1)1(6)3y x =+;(2)(2,0)、(0,4)、(﹣4,0);(3)当m =﹣32,y 最大值为338;(4)y =x 2﹣2x ﹣3. 【解析】 【分析】(1)由k ,b 的值以及”姊线”的定义即可求解;(2)令x =0,得y 值,令y =0,得x 值,即可求得点A 、B 、C 的坐标,从而求得直线CD 的表达式;(3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 从而求得直线OP 的表达式,将直线OP 和CD 表达式联立并解得点Q 坐标, 由此求得P Q y y ,从而求得y =﹣12m 2﹣32m+3,故当m =﹣32,y 最大值为338; (4)由直线AB 的解析式可得AB 的“姊线”CD 的表达式y =﹣1m(x+3),令x =0,得 y值,令y =0,得x 值,可得点C 、D 的坐标,由此可得点H 坐标,同理可得点G 坐标, 由勾股定理得:m 值,即可求得点A 、B 、C 的坐标,从而得到 “母线”函数的表达式. 【详解】(1)由题意得:k =﹣3,b =6, 则答案为:y =13(x+6); (2)令x =0,则y =4,令y =0,则x =2或﹣4,点A 、B 、C 的坐标分别为(2,0)、(0,4)、(﹣4,0), 则直线CD 的表达式为:y =12(x+4)=12x+2; (3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 则直线OP 的表达式为:y =n mx , 将直线OP 和CD 表达式联立得122ny x my x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:点Q (2438m m m --+,222838m m m m +-+-)则P Q y y =﹣12m 2﹣32m+4, y =1P Q P Q Q y y y PQ OQ y y -==-=﹣12m 2﹣32m+3, 当m =﹣32,y 最大值为338; (4)直线CD 的表达式为:y =﹣1m(x+3), 令x =0,则y =﹣3m,令y =0,则x =﹣3, 故点C 、D 的坐标为(﹣3,0)、(0,﹣3m ),则点H (﹣32,﹣32m), 同理可得:点G (﹣32m ,32), 则GH 2=(32+32m )2+(32﹣32m)22, 解得:m =﹣3(正值已舍去),则点A 、B 、C 的坐标分别为(1,0)、(0,3)、(﹣3,0), 则“母线”函数的表达式为:y =a (x ﹣1)(x+3)=a (x 2﹣2x ﹣3),即:﹣3a =﹣3,解得:a =1,故:“母线”函数的表达式为:y =x 2﹣2x ﹣3. 【点睛】此题是二次函数综合题目,考查了“姊线”的定义,待定系数法求二次函数解析式,二次函数的最值问题,掌握二次函数的有关性质是解答此题的关键.8.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ). (1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式; (2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围. 【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】 【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c aam bm c b⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =-(3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+ 把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤-224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.9.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.10.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5) (1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.11.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果;②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果.试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=,当△EFP为直角三角形时,①当∠EPF=90°时,,即,解得:m=2,②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在,③当∠PEF=90°时,,即,解得:m=7,综上所述,F(3,2),(3,7).考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题.12.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D (8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.【答案】(1)点A的坐标为(4,8)将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx得8=16a+4b0=64a+8b解得a=,b=4∴抛物线的解析式为:y=-x2+4x(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=AP=t.PB=8-t.∴点E的坐标为(4+t,8-t).∴点G 的纵坐标为:-(4+t )2+4(4+t )=-t 2+8.∴EG=-t 2+8-(8-t)=-t 2+t.∵-<0,∴当t=4时,线段EG 最长为2.②共有三个时刻:t 1=163, t 2=4013,t 3=8525+. 【解析】(1)根据题意即可得到点A 的坐标,再由A 、C 两点坐标根据待定系数法即可求得抛物线的解析式;(2)①在Rt △APE 和Rt △ABC 中,由tan ∠PAE ,即可表示出点E 的坐标,从而得到点G 的坐标,EG 的长等于点G 的纵坐标减去点E 的纵坐标,得到一个函数关系式,根据函数关系式的特征即可求得结果;②考虑腰和底,分情况讨论.13.如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值. 【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t 的值为1或4.【解析】 【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论. 【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x Q =-+=--, ∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=,∴点C 的坐标为()0,3.Q 点B 的坐标为()3,0,BC ∴==,BD ==,CD ==22220BC BD CD +==Q ,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠, 将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x ty x x =-++⎧⎨=-+⎩,解得:1132322x t y ⎧+=⎪⎪⎨+-⎪=⎪⎩,2232322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M 的坐标为,点N 的坐标为,3294)2t t+++.Q 点A 的坐标为()1,0,()22223943294105719422t t t AM t t t t ⎛⎫⎛⎫+++-+∴=-+-=++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()22223943294105719422t t t AN t t t t ⎛⎫⎛⎫-++++=-+-=+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,222394394329432941882222t t t t t tMN t ⎛⎫⎛⎫-+++++++-+=-+-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. AMN ∆Q 为直角三角形, ∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即()()225719457194188t t t t t t t t t ++-++++++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去); ②当90AMN ∠=︒时,有222AM MN AN +=,即()()225719418857194t t t t t t t t t ++-++++=+++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去); ③当90ANM ∠=︒时,有222AN MN AN +=,即()()225719418857194t t t t t t t t t +++++++=++-++,整理,得:()941940t t t ++++=.0t >Q ,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4. 【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.14.一次函数y =x 的图象如图所示,它与二次函数y =ax 2-4ax +c 的图象交于A 、B 两点(其中点A 在点B 的左侧),与这个二次函数图象的对称轴交于点C .(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.【答案】(1)点C(2,);(2)①y=x2-x;②y=-x2+2x+.【解析】试题分析:(1)求得二次函数y=ax2-4ax+c对称轴为直线x=2,把x=2代入y=x求得y=,即可得点C的坐标;(2)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax2-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A 点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax2-4ax+c即可求得函数表达式.试题解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函数图像的对称轴为直线x =2.当x=2时,y=x=,∴C(2,).(2)①∵点D与点C关于x轴对称,∴D(2,-),∴CD=3.设A(m,m)(m<2),由S△ACD=3,得×3×(2-m)=3,解得m=0,∴A(0,0).由A(0,0)、 D(2,-)得解得a=,c=0.∴y=x2-x.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,AC==(2-m),∵CD=AC,∴CD=(2-m).由S△ACD=10得×(2-m)2=10,解得m=-2或m=6(舍去),∴m=-2.∴A(-2,-),CD=5.若a>0,则点D在点C下方,∴D(2,-),由A(-2,-)、D(2,-)得解得∴y=x2-x-3.若a<0,则点D在点C上方,∴D(2,),由A(-2,-)、D(2,)得解得∴y=-x2+2x+.考点:二次函数与一次函数的综合题.15.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.【答案】解:(1)y=x2﹣1(2)详见解析(3)详见解析【解析】【分析】(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
20####省铜仁市中考数学试卷一、选择题〔本大题共10小题,每小题4分,共40分〕1.〔4分〕〔2014•##〕的相反数是〔〕A.B.C.﹣D.﹣2.〔4分〕〔2014•##〕下列计算正确的是〔〕A.4a2+a2=5a4B.3a﹣a=2a C.a6÷a2=a3D.〔﹣a3〕2=﹣a6 3.〔4分〕〔2014•##〕有一副扑克牌,共52张〔不包括大、小王〕,其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是〔〕A.B.C.D.4.〔4分〕〔2014•##〕下列图形中,∠1与∠2是对顶角的是〔〕A.B.C.D.5.〔4分〕〔2014•##〕代数式有意义,则x的取值范围是〔〕A.x≥﹣1且x≠1 B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣16.〔4分〕〔2014•##〕正比例函数y=2x的大致图象是〔〕A.B.C.D.7.〔4分〕〔2014•##〕如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是〔〕A.26°B.116°C.128°D.154°8.〔4分〕〔2014•##〕如图所示,所给的三视图表示的几何体是〔〕A.三棱锥B.圆锥C.正三棱柱D.直三棱柱9.〔4分〕〔2014•##〕将抛物线y=x2向右平移2个单位,再向下平移1个单位,所得的抛物线是〔〕A.y=〔x﹣2〕2﹣1 B.y=〔x﹣2〕2+1 C.y=〔x+2〕2+1 D.y=〔x+2〕2﹣1 10.〔4分〕〔2014•##〕如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC 于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是〔〕A.B.C.1D.二、填空题〔本题共共8小题,每小题4分,共32分〕11.〔4分〕〔2014•##〕cos60°=.12.〔4分〕〔2014•##〕定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则〔﹣1⊗2〕⊗3=.13.〔4分〕〔2014•##〕在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图案中,是中心对称图形但不是轴对称图形的是.14.〔4分〕〔2014•##〕分式方程:=1的解是.15.〔4分〕〔2014•##〕关于x的一元二次方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.16.〔4分〕〔2014•##〕在某市五•四青年歌手大赛中,某选手得到评委打出的分数分别是:9.7,9.6,9.3,9.4,9.6,9.8,9.5,则这组数据的中位数是.17.〔4分〕〔2014•##〕已知圆锥的底面直径为20cm,母线长为90cm,则圆锥的表面积是cm2.〔结果保留π〕18.〔4分〕〔2014•##〕一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n的数为.三、解答题〔本题共4小题,每小题10分,共40分〕19.〔10分〕〔2014•##〕〔1〕20140﹣〔﹣1〕2014+﹣|﹣3|〔2〕先化简,再求值:•﹣,其中x=﹣2.20.〔10分〕〔2014•##〕为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:〔1〕本次活动共调查了多少名学生?〔2〕补全图一,并求出图二中B区域的圆心角的度数;〔3〕若该校八、九年级学生共有2800名,请估计该校学生只愿意就读中等职业技术学校的概率.21.〔10分〕〔2014•##〕如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.〔1〕你添加的条件是;〔2〕请写出证明过程.22.〔10分〕〔2014•##〕如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.四、〔本大题满分12分〕23.〔12分〕〔2014•##〕某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:〔1〕这批游客的人数是多少?原计划租用多少辆45座客车?〔2〕若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?五、〔本大题满分12分〕24.〔12分〕〔2014•##〕如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.〔1〕求证:DC是⊙O的切线;〔2〕作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.六、〔本大题满分14分〕25.〔14分〕〔2014•##〕已知:直线y=ax+b与抛物线y=ax2﹣bx+c的一个交点为A〔0,2〕,同时这条直线与x轴相交于点B,且相交所成的角β为45°.〔1〕求点B的坐标;〔2〕求抛物线y=ax2﹣bx+c的解析式;〔3〕判断抛物线y=ax2﹣bx+c与x轴是否有交点,并说明理由.若有交点设为M,N〔点M 在点N左边〕,将此抛物线关于y轴作轴反射得到M的对应点为E,轴反射后的像与原像相交于点F,连接NF,EF得△DEF,在原像上是否存在点P,使得△NEP的面积与△NEF的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.20####省##市中考数学试卷一.选择题〔本大题共10小题,每小题4分,共40分〕1.〔4分〕分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:的相反数是﹣,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.〔4分〕考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,可判断A、B,根据同底数的除法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相减,故C错误;D、负1的平方是1,故D错误;故选:B.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.3.〔4分〕考点:概率公式.分析:由有一副扑克牌,共52张〔不包括大、小王〕,其中梅花、方块、红心、黑桃四种花色各有13张,直接利用概率公式求解即可求得答案.解答:解:∵有一副扑克牌,共52张〔不包括大、小王〕,其中梅花、方块、红心、黑桃四种花色各有13张,∴随意抽取一张,抽得红心的概率是:=.故选B.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.〔4分〕考点:对顶角、邻补角.分析:根据对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,进而得出答案.解答:解:利用对顶角的定义可得出:符合条件的只有C,故选:C.点评:本题考查了顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点.反向延长线等.5.〔4分〕考点:二次根式有意义的条件;分式有意义的条件.分析:此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.解答:解:依题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故选:A.点评:本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.6.〔4分〕考点:正比例函数的图象.分析:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.解答:解:∵正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.∴正比例函数y=2x的大致图象是B.故选:B.点评:此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.〔4分〕考点:圆周角定理.分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.8.〔4分〕考点:由三视图判断几何体.分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为直三棱柱.解答:解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为直三棱柱.故选:D.点评:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.9.〔4分〕考点:二次函数图象与几何变换.分析:根据二次函数图象左加右减,上加下减的平移规律进行求解.解答:解:抛物线y=x2向右平移2个单位,得:y=〔x﹣2〕2;再向下平移1个单位,得:y=〔x﹣2〕2﹣1.故选:A.点评:主要考查的是函数图象的平移,用平移规律"左加右减,上加下减"直接代入函数解析式求得平移后的函数解析式.10.〔4分〕考点:相似三角形的判定与性质;角平分线的性质;勾股定理;矩形的性质.分析:设MD=a,MF=x,利用△ADM∽△DFM,得到∴,利用△DMF∽△DCE,∴.得到a与x的关系式,化简可得x的值,得到D选项答案.解答:解:∵AE平分∠BAF交BC于点E,且DE⊥AF,∠B=90°,∴AB=AM,BE=EM=3,又∵AE=2,∴,设MD=a,MF=x,在△ADM和△DFM中,,∴△ADM∽△DFM,,∴DM2=AM•MF,∴,在△DMF和△DCE中,,∴.∴,∴,解之得:,故答案选:D.点评:本题考查了角平分线的性质以与三角形相似的判定方法,解题的关键在于利用三角形相似构造方程求得对应边的长度.二、填空题〔本题共共8小题,每小题4分,共32分〕11.〔4分〕考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.12.〔4分〕考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出﹣1⊗2=6,然后计算再根据新定义计算6⊗3即可.解答:解:﹣1⊗2=22﹣〔﹣1〕×2=6,6⊗3=32﹣6×3=﹣9.所以〔﹣1⊗2〕⊗3=﹣9.故答案为﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.13.〔4分〕考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.解答:解:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,符合题意.故答案为:平行四边形.点评:本题考查了中心对称图形与轴对称图形的概念.〔1〕如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.〔2〕如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.14.〔4分〕考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是"转化思想",把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.〔4分〕考点:根的判别式.分析:根据判别式的意义得到△=〔﹣3〕2﹣4k>0,然后解不等式即可.解答:解:根据题意得△=〔﹣3〕2﹣4k>0,解得k<.故答案为:k<.点评:本题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.〔4分〕考点:中位数.分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.解答:解:把这组数据从小到大排列为:9.3,9.4,9.5,9.6,9.6,9.7,9.8,最中间的数是9.6,则中位数是9.6,故答案为:9.6.点评:本题考查了中位数,中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕.17.〔4分〕考点:圆锥的计算.分析:根据圆锥表面积=侧面积+底面积=底面周长×母线长+底面积计算.解答:解:圆锥的表面积=10π×90+100π=1000πcm2.故答案为:1000π.点评:本题考查了圆锥的计算,解决本题的关键记准圆锥的侧面面积和底面面积公式.18.〔4分〕考点:规律型:数字的变化类.分析:首先发现奇数位置为正,偶数位置为负;且对应数字依次为0,0+1=1,0+1+2=3,0+1+2+3=6,0+1+2+3+4=0+10,0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,…第n个数字为0+1+2+3+…+〔n﹣1〕=,由此得出答案即可.解答:解:第n个数字为0+1+2+3+…+〔n﹣1〕=,符号为〔﹣1〕n﹣1,所以第n个数为〔﹣1〕n﹣1.故答案为:〔﹣1〕n﹣1.点评:此题考查数字的变化规律,从数的绝对值的和正负情况两个方面考虑求解是解题的关键.三、解答题〔本题共4小题,每小题10分,共40分〕19.〔10分〕考点:分式的化简求值;实数的运算;零指数幂.专题:计算题.分析:〔1〕原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;〔2〕原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.点评:此题考查了分式的化简求值,以与实数的运算,熟练掌握运算法则是解本题的关键.20.〔10分〕考点:条形统计图;扇形统计图;概率公式.专题:计算题.分析:〔1〕根据C的人数除以占的百分比,求出调查的学生总数即可;〔2〕求出B的人数,补全图1,求出B占的百分比,乘以360即可得到结果;〔3〕求出B占的百分比,乘以2800即可得到结果.解答:解:〔1〕根据题意得:80÷=800〔名〕,则调查的学生总数为800名;〔2〕B的人数为800﹣〔480+80〕=240〔名〕,B占的度数为×360°=108°,补全统计图,如图所示:〔3〕根据题意得:=0.3,则估计该校学生只愿意就读中等职业技术学校的概率0.3.点评:此题考查了条形统计图,扇形统计图,以与用样本估计总体,弄清题意是解本题的关键.21.〔10分〕考点:全等三角形的判定与性质.分析:〔1〕此题是一道开放型的题目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;〔2〕根据全等三角形的判定定理AAS推出△ABD≌△ACD,再根据全等三角形的性质得出即可.解答:解:〔1〕添加的条件是∠B=∠C,故答案为:∠B=∠C;〔2〕证明:在△ABD和△ACD中,∴△ABD≌△ACD〔AAS〕,∴AB=AC.点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.22.〔10分〕考点:相似三角形的判定与性质.专题:证明题.分析:由AD,BE是钝角△ABC的边BC,AC上的高,可得∠D=∠E=90°,又由∠ACD=∠BCE,即可证得△ACD∽△BCE,然后由相似三角形的对应边成比例,证得结论.解答:证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.四、〔本大题满分12分〕23.〔12分〕考点:二元一次方程组的应用.分析:〔1〕本题中的等量关系为:45×45座客车辆数+15=游客总数,60×〔45座客车辆数﹣1〕=游客总数,据此可列方程组求出第一小题的解;〔2〕需要分别计算45座客车和60座客车各自的租金,比较后再取舍.解答:解:〔1〕设这批游客的人数是x人,原计划租用45座客车y辆.根据题意,得,解这个方程组,得.答:这批游客的人数240人,原计划租45座客车5辆;〔2〕租45座客车:240÷45≈5.3〔辆〕,所以需租6辆,租金为220×6=1320〔元〕,租60座客车:240÷60=4〔辆〕,所以需租4辆,租金为300×4=1200〔元〕.答:租用4辆60座客车更合算.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.五、〔本大题满分12分〕24.〔12分〕考点:切线的判定.分析:〔1〕连接OC,根据等腰三角形的性质求出∠CAD=∠D=∠BCD,求出∠ABC=∠D+∠BCD=2∠CAD,设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,求出∠ACB=90°,推出x+2x=90,求出x,求出∠OCD=90°,根据切线的判定得出即可;〔2〕求出OC,得出OA长,求出∠OAE,根据含30度角的直角三角形性质求出OF即可.解答:〔1〕证明:连接OC,∵AC=DC,BC=BD,∴∠CAD=∠D,∠D=∠BCD,∴∠CAD=∠D=∠BCD,∴∠ABC=∠D+∠BCD=2∠CAD,设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,∵AB是⊙O的直径,∴∠ACB=90°,∴x+2x=90,x=30,即∠CAD=∠D=30°,∠CBO=60°,∵OC=OB,∴△BCO是等边三角形,∴∠COB=60°,∴∠OCD=180°﹣30°﹣60°=90°,即OC⊥CD,∵OC为半径,∴DC是⊙O的切线;〔2〕解:过O作OF⊥AE于F,∵在Rt△OCD中,∠OCD=90°,∠D=30°,CD=10,∴OC=CD×tan30°=10,OD=2OC=20,∴OA=OC=10,∵AE∥CD,∴∠FAO=∠D=30°,∴OF=AO×sin30°=10×=5,即圆心O到AE的距离是5.点评:本题考查了切线的判定,含30度角的直角三角形性质,解直角三角形,等腰三角形的性质,圆周角定理,三角形外角性质,解直角三角形的应用,主要考查学生综合运用定理进行推理和计算的能力,题目比较好.六、〔本大题满分14分〕25.〔14分〕考点:二次函数综合题.分析:〔1〕根据等腰直角三角形的性质即可求得;〔2〕利用待定系数法即可求得解析式;〔3〕利用b2﹣4ac确定抛物线有没有交点,因为轴反射后的像与原像相交于点F,则F 点即为A点,则OF=2,由于△NEP的面积与△NEF的面积相等且同底,所以P点的纵坐标为2或﹣2,代入y=﹣x2﹣2x+2即可求得.解答:解:〔1〕∵直线y=ax+b过A〔0,2〕,同时这条直线与x轴相交于点B,且相交所成的角β为45°,∴OA=OB,∴当a>0时,B〔﹣2,0〕,当a<0时,B〔2,0〕;〔2〕把A〔0,2〕,B〔﹣2,0〕代入直线y=ax+b得;,解得:,把A〔0,2〕,B〔2,0〕代入直线y=ax+b得,解得:,∵抛物线y=ax2﹣bx+c过A〔0,2〕,∴c=2,∴抛物线的解析式为:y=x2+2x+2或y=﹣x2+2x+2.〔3〕存在.如图,抛物线为y=x2+2x+2时,b2﹣4ac=4﹣4×1×2<0,抛物线与x轴没有交点,抛物线为y=﹣x2+2x+2时,b2﹣4ac=4﹣4×〔﹣1〕×2>0,抛物线与x轴有两个交点;∵轴反射后的像与原像相交于点F,则F点即为A点,∴F〔0,2〕∵△NEP的面积与△NEF的面积相等且同底,∴P点的纵坐标为2或﹣2,当y=2时,﹣x2﹣2x+2=2,解得:x=﹣2或x=0〔与点F重合,舍去〕;当y=﹣2时,﹣x2﹣2x+2=﹣2,解得:x=﹣1+,x=﹣1﹣,∴存在满足条件的点P,点P坐标为:〔﹣2,2〕,〔﹣1+,﹣2〕,〔﹣1﹣,﹣2〕.点评:本题考查了待定系数法求解析式,二次函数的交点问题以与三角形面积的求解方法,问题考虑周全是本题的难点.。
第16题QP N Oyx初中二次函数综合题专项讲解引言:二次函数综合题题目难度较大,也称压轴题。
解压轴题有三个步骤:认真审题;理解题意、探究解题思路;正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
二次函数一般会出现在选择题(或填空题)、解答题的倒数几个题目中。
选择题和填空题时易时难。
解答题较难,一般有2—3小题。
第1小题通常是求解析式:这一小题简单,直接找出坐标或者用线段长度而确定坐标,进而用待定系数法求出解析式即可。
第2—3小题通常是以动点为切入口,结合三角形、四边形、圆、平移、对称、解方程(组)与不等式(组)等知识呈现,知识面广,难度大;解这类题要善于运用转化、数形结合、分类讨论等数学思想,认真分析条件和结论、图形的几何特征与代数式的数量结构特征的关的关系,系,确定解题的思路和方法;同时需要心态平和,切记急躁:当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系;既要防止钻牛角尖,又要防止轻易放弃。
一、重庆一中13—14学年度上期半期考试二次函数习题1212..如图,直线y kx c =+与抛物线2y ax bx c =++的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线1x =,且OA OD =直线y kx c =+与x 轴交于点C (点C 在点B 的右侧)则下列命题中正确命题的个数是(下列命题中正确命题的个数是( )). ①0abc >; ; ②②30a b +>; ; ③③10k -<<; ④k a b >+; ; ⑤⑤0ac k +>A .1 B .2 C .3 D .4 16.如右图是二次函数2y ax bx c =++的部分图象,由图象可知20ax bx c ++>时x 的取值范围是的取值范围是_______________________________________________________________________________________..1818.已知抛物线.已知抛物线2122y x x =-+的图象如左图所示,点N 为抛物线的顶点,直线ON 上有两个动点P 和Q ,且满足22PQ =,在直线x=1DCBAoyx第12题xy OEB A第25题 xyOEBA备用图备用图轴的对称图象的解析式为轴的对称图象的解析式为 ________关于关于对称图象的解析式为对称图象的解析式为 __________________,关于顶点旋转______ 对称轴为 _ ____ _ ____ x 时,时,Yy x O 22x21(轴的交点:抛物线与的图像与轴的两个交点的横坐标、轴的交点情况可以由对应的一元二次方程的①有两个交点抛物线与24b acx a-③没有交点抛物线与)直线与抛物线的交点:一次函数:一次函数与二次函数的交点, 与与212212)()(y y x x -+- 元的苹果,物价部门规定每箱元的价格调查,平均每天销售90箱,价箱)之间的函数关系式.(3分)分)开口方向0112Oxy 对称轴对称轴在对称轴在与;与轴交于正半轴;与25.已知二次函数()22a +b=0+b=0;;的横坐标分别为的横坐标分别为-1,3-1,3-1,3,,0;②20a b +=; ③⑤只有 D.5x)三点. ,)三点.x,)过点xA 72x = B(0,4) A(6,0) E F xyO 为斜边且一个角为30的直角三角形?若存,5-4-3-2-1-1 2 3 4 5 5 4 3 2 1 AEBC¢1-O2l1lx y【陈老师*专用】二次函数综合题21 轴的另一个交点为B ,过B 作⊙作⊙A A 的切线L.(1)以直线l 为对称轴的抛物线过点A 及点(及点(00,9),求此抛物线的解析式;,求此抛物线的解析式;(2)抛物线与x 轴的另一个交点为D ,过D 作⊙作⊙A A 的切线DE DE,,E 为切点,求此切线长;为切点,求此切线长;(3)点F 是切线DE 上的一个动点,当△上的一个动点,当△BFD BFD 与EAD EAD△相似时,求出△相似时,求出BF 的长的长 .。
中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
2014中考数学二次函数综合训练1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线mxy+=与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;AB上是否存在一点P,使得四边形DCEP是平行四边P点的坐标;若不存在,请说明理由.2、如图2,已知二次函数24y ax x c=-+的图像经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的图13、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C.(1) 求这条抛物线的函数关系式.(2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S.① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状;③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由.4、某公司推出了一种高效环保型除草剂,年初上市后,公司经历了从亏损到盈利的过程. 图4的二次函数图象(部分)刻车了该公司年初以来累积利润S (万元)与时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系). 根据图象提供信息,解答下列问题:(1)公司从第几个月末开始扭亏为盈;(2)累积利润S 与时间t 之间的函数关系式;(3)求截止到几月末公司累积利润可达30万元;(4)求第8个月公司所获利是多少元?5、如图5,已知抛物线cxbxay++=2的顶点坐标为E(1,0),与y轴的交点坐标为(0,1).(1)求该抛物线的函数关系式.(2)A、B是x轴上两个动点,且A、B间的距离为AB=4,A在B的左边,过A作AD⊥x轴交抛物线于D,过B作BC⊥x 轴交抛物线于C. 设A点的坐标为(t,0),四边形ABCD的面积为S.P,使得△PAE的周长最小,若存在,请求出点.图5 备用图6)如图6,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。
二次函数一、选择题1. (2014•上海,第3题4分)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()2. (2014•四川巴中,第10题3分)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c 考点:二次函数的图象和符号特征.分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.解答:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a ﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3. (2014•山东威海,第11题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()该抛物线的对称轴是:4. (2014•山东枣庄,第11题3分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:则该二次函数图象的对称轴为()=5. (2014•山东烟台,第11题3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数的图象与性质.解答:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x 的增大而减小.解答:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,所以③正确;∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,所以④错误.故选B.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.(2014山东济南,第15题,3分)二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤,即81<≤-t ,故选C .7. (2014•山东聊城,第12题,3分)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,x =﹣1是对称轴,有下列判断:①b ﹣2a =0;②4a ﹣2b +c <0;③a ﹣b +c =﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )=8.(2014年贵州黔东南9.(3分))已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D. 2015考点:抛物线与x轴的交点.菁优网分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.9. (2014年贵州黔东南9.(4分))如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.菁优网分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.10.11. (2014•江苏苏州,第8题3分)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()12. (2014•年山东东营,第9题3分)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B.0或2 C.2或﹣2 D.0,2或﹣2考点:抛物线与x轴的交点.菁优网分析:分为两种情况:函数是二次函数,函数是一次函数,求出即可.解答:解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数时一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选D.点评:本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.13. (2014•山东临沂,第14题3分)在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为C1,C1关于原点对称的图象为C2,则直线y=a(a为常数)与C1、C2的交点共有()14. (2014•山东淄博,第8题4分)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.菁优网专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.15. (2014•山东淄博,第12题4分)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.菁优网专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.16.(2014•四川南充,第10题,3分)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b]=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b]=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.17.(2014•甘肃白银、临夏,第9题3分)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()18.(2014•甘肃兰州,第6题4分)抛物线y=(x﹣1)2﹣3的对称轴是()19.(2014•甘肃兰州,第11题4分)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()20.(2014•甘肃兰州,第14题4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是(),得二、填空题1. (2014•浙江杭州,第15题,4分)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.=+2. *(2014年河南9.(4分))已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.答案:8.解析:根据点A到对称轴x=2的距离是4,又点A、点B关于x=2对称,∴AB=8.3. (2014年湖北咸宁15.(3分))科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4 ﹣2 0 1 4植物高度增长量l/mm41 49 49 46 25科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为﹣1℃.考点:二次函数的应用.菁优网分析:首先利用待定系数法求二次函数解析式解析式,在利用二次函数最值公式求法得出即可.解答:解:设y=ax2+bx+c(a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以y与x之间的二次函数解析式为:y=﹣x2﹣2x+49,当x=﹣=﹣1时,y有最大值50,即说明最适合这种植物生长的温度是﹣1℃.故答案为:﹣1.点评:此题主要考查了二次函数的应用以及待定系数法求二次函数解析式,得出二次函数解析式是解题关键.3.4.5.6.7.8.三、解答题1. (2014•上海,第24题12分)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x 轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.,2. (2014•山东威海,第25题12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA 的度数.=.×==,.,,=4. (2014•山东枣庄,第25题10分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值..=,解得,5. (2014•山东潍坊,第24题13分)如图,抛物线y=ax2+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。
实用文档2014年贵州省铜仁市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)铜仁)的相反数是( 2014?)(1.(4分)A. B. C. D.﹣﹣分析据只有符号不同的两个数互为相反数,可得一个数的相反数解答解:的相反数是﹣,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)(2014?铜仁)下列计算正确的是()224623326 A. B. 3a﹣a=2a C. D.﹣a)=﹣a a÷a=a(4a+a=5a考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,可判断A、B,根据同底数的除法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相减,故C错误;D、负1的平方是1,故D错误;故选:B.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.3.(4分)(2014?铜仁)有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是()D.. C. B A.考点:概率公式.分析:由有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,直接利用概率公式求解即可求得答案.解答:解:∵有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,∴随意抽取一张,抽得红心的概率是:=.故选B.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)(2014?铜仁)下列图形中,∠1与∠2是对顶角的是()大全.实用文档. D.A . B. C顶角、邻补角.考点:对两条直线相交后所得的只有一个公共顶点且两个角的两边互为反据对顶角的定义,分析:根向延长线,这样的两个角叫做对顶角,进而得出答案解答:利用对顶角的定义可得出符合条件的只故选题考查了顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一点评公共顶点.反向延长线等x铜仁)代数式有意义,则的取值范围是()5.(4分)(2014?1 ≥﹣. xxC. x≥1且≠﹣1 D1 xA . x≥﹣1且≠1 B. x≠次根式有意义的条件;分式有意义的条件考点此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.分析:解:依题意,得解答: 0,0x+1≥且x﹣1≠.≠解得 x≥﹣1且x1 .故选:A函数自变量的范围一般从三点评:本题考查了二次根式有意义的条件和分式有意义的条件.个方面考虑: 1()当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.)铜仁)正比例函数6.(4分)(2014?y=2x的大致图象是(.. B. C DA .考点:正比例函数的图象.0时,经过一、三象限.k分析:正比例函数的图象是一条经过原点的直线,且当>时,经过一、三象限.:∵正比例函数的图象是一条经过原点的直线,且当解答:解k>0∴正比例函数.y=2x的大致图象是B .B故选:点评:此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.大全.实用文档7.(4分)(2014?铜仁)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26° B. 116° C. 128° D. 154°考周角定理分析据圆周角定理直接解答即可解答:∵A=6°∴BOC=A=6=12°故点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.8.(4分)(2014?铜仁)如图所示,所给的三视图表示的几何体是()A.三棱锥 B.圆锥 C.正三棱柱 D.直三棱柱考点:由三视图判断几何体.分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为直三棱柱.解答:解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为直三棱柱.故选:D.点评:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.2个单位,所得的个单位,再向下平移1y=x向右平移2分).(4(2014?铜仁)将抛物线9 )抛物线是(2222. DB . C. A.1 )﹣=(x+2))+1 y)y(=x﹣2﹣1 =(x+2+1 y﹣y=(x2 :二次函数图象与几何变换.考点根据二次函数图象左加右减,上加下减的平移规律进行求解.分析:22解答:解 2);(向右平移:抛物线y=x2个单位,得:y=x﹣2.﹣2xy=1再向下平移个单位,得:(﹣)1大全.实用文档A.故选:主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解点评:析式求得平移后的函数解析式.BC交AE平分∠BAFABCD中,F是DC上一点,10.(4分)(2014?铜仁)如图所示,在矩形),AE=2,则MF的长是(,于点E,且DE⊥AF,垂足为点MBE=3. DC. 1 A. B.似三角形的判定与性质;角平分线的性质;勾股定理;矩形的性质考分析:,∴DCEDMF,得到∴,利用△∽△MD=a,MF=x,利用△ADM∽△DFM设选项答案.x 的值,得到D.得到a与x的关系式,化简可得 B=90°,DE⊥AF,∠,且:∵解答:解AE平分∠BAF交BC于点E BE=EM=3,∴AB=AM, AE=2,又∵∴,中,DFM,在△ADM和△设, MD=a,MF=x,DFM,∴△ADM∽△2,?MF=AM∴DM∴,中,和△, DCEDMF在△∴.,∴∴,,解之得:大全.实用文档.故答案选:D解题的关键在于利用三角形题考查了角平分线的性质以及三角形相似的判定方法,点评:本相似构造方程求得对应边的长度.32分)8小题,每小题4分,共二、填空题(本题共共.铜仁)cos60°= .(4分)(2014?11殊角的三角函数值.考点:据特殊角的三角函数值计算分析cos6解答题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要点评握特殊角度的三角函数值22,则(﹣×2=2,如:1?2=2﹣1(4分)(2014?铜仁)定义一种新运算:a?b=b﹣ab12. 9 .2)?3= ﹣1?考理数的混合运算.专题:新定义. 6?3即可.先分析:根据新定义计算出﹣1?2=6,然后计算再根据新定义计算2解答:解)×2=6, 1:﹣?2=2﹣(﹣12.3=﹣9﹣6?3=36× 93=﹣.所以(﹣1?2)?故答案为﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.铜仁)在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图案中,2014?.(4分)(13 .是中心对称图形但不是轴对称图形的是平行四边形考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.解答:解:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,符合题意.故答案为:平行四边形.题考查了中心对称图形与轴对称图形的概念.点评:本)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图(1 形,这条直线叫做对称轴.那么这个图形就叫做中心°后能够与自身重合,2)如果一个图形绕某一点旋转180(对称图形,这个点叫做对称中心..x= 铜仁)分式方程:2014分)(14.4(?的解是=1大全.实用文档解分式方程.考点:计算题.专题:的值,经检验即可得到分式方程去分母转化为整式方程,求出整式方程的解得到x分析:分式方程的解. x,解:去分母得:2x+1=3﹣解答:,移项合并得:3x=2 ,解得:x= 是分式方程的解.经检验xx=故答案为,把分式方程转化题考查了解分式方程,解分式方程的基本思想是“转化思想点评整式方程求解.解分式方程一定注意要验根2k有两个不相等的实数根,则的一元二次方程x﹣3x+k=0(4分)(2014?铜仁)关于x15.. k <的取值范围是考的判别式.2分析:,然后解不等式即可.4k>0根据判别式的意义得到△=(﹣3)﹣2解答:解,>0 =(﹣3)﹣4k:根据题意得△解得k<.故答案为:k<.22点评:本:当△>0,0)的根的判别式△=b﹣4acax题考查了一元二次方程+bx+c=0(a≠,方程没=0,方程有两个相等的实数根;当△<0方程有两个不相等的实数根;当△有实数根.四青年歌手大赛中,某选手得到评委打出的分数分别铜仁)在某市五?4分)(2014?16.(.9.5,,则这组数据的中位数是 9.6 9.6,9.3,9.4,9.6,9.8是:9.7,考点:中位数.分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.,9.8,最中间的9.79.5,9.6,9.6,9.4解答:解:把这组数据从小到大排列为:9.3,,,则中位数是9.6,数是9.6 故答案为:9.6.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).,则圆锥的表面积90cm?2014铜仁)已知圆锥的底面直径为20cm,母线长为17.(4分)(2(结果保留π) cm.是1000π圆锥的计算.考点: +底面积=底面周长×母线长底面积计算.+根分析:据圆锥表面积=侧面积2解答:解. =1000=10:圆锥的表面积π×90+100ππcm π.故答案为:1000 题考查了圆锥的计算,解决本题的关键记准圆锥的侧面面积和底面面积公式.点评:本大全.实用文档18.(4分)(2014?铜仁)一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n的1﹣n 1).数为(﹣考点:规律型:数字的变化类.分析:首先发现奇数位置为正,偶数位置为负;且对应数字依次为0,0+1=1,0+1+2=3,0+1+2+3=6,0+1+2+3+4=0+10,0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,…第n个数字为0+1+2+3+…+(n﹣1)=,由此得出答案即可.解答1﹣n解:第n个数字为0+1+2+3+…+(n,符号为(﹣1)﹣1)=,1n﹣.所以第n个数为(﹣1)1n﹣.)故答案为:(﹣1点评:此题考查数字的变化规律,从数的绝对值的和正负情况两个方面考虑求解是解题的关键.三、解答题(本题共4小题,每小题10分,共40分)02014+﹣|﹣3|﹣(﹣?铜仁)(1)20141)(19.(10分)2014﹣,其中x=﹣2)先化简,再求值:?.(2考点:分式的化简求值;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:(1)原式=1﹣1+2﹣3=﹣;(2)原式=?﹣=﹣=﹣,当x=﹣2时,原式=.点评:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014?铜仁)为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生?(2)补全图一,并求出图二中B区域的圆心角的度数;大全.实用文档(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读中等职业技术学校的概率.考形统计图;扇形统计图;概率公式专算题分析)根的人数除以占的百分比,求出调查的学生总数即可)求的人数,补全,求占的百分比,乘36即可得到结果)求占的百分比,乘280即可得到结果解答:解:(1)根据题意得:80÷=800(名),则调查的学生总数为800名;(2)B的人数为800﹣(480+80)=240(名),B占的度数为×360°=108°,补全统计图,如图所示:(3)根据题意得:=0.3,则估计该校学生只愿意就读中等职业技术学校的概率0.3.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014?铜仁)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是∠B=∠C ;(2)请写出证明过程.大全.实用文档等三角形的判定与性质.考点:AD等或)此题是一道开放型的题目,答案不唯一,如BADB分析,再根据全等三角形的性AC推出AB≌)根据全等三角形的判定定AA得出即可B)添加的条件是解答B故答案为:和AC)证明:在ABD,,AAS)ABD≌△ACD(∴△.∴AB=AC SAS题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有,点评:本 SSS,全等三角形的对应角相等,对应边相等.ASA,AAS,.上的高,求证:=ACBE是钝角△ABC的边BC,AD(22.10分)(2014?铜仁)如图所示,,:相似三角形的判定与性质.考点证明题.:专题 BCE,E=90°,又由∠ACD=∠上的高,可得∠BE是钝角△ABC的边BC,ACD=∠,分析:由AD BCE,然后由相似三角形的对应边成比例,证得结论.即可证得△ACD∽△ AC上的高,的边BE是钝角△ABCBC,,解答:证明:∵AD E=90°,D=∴∠∠,BCE∵∠ACD=∠,∽△BCEACD∴△ =.∴此题比较简单,注意掌握数形结合思想的应用.此点评:题考查了相似三角形的判定与性质.大全.实用文档四、(本大题满分12分)23.(12分)(2014?铜仁)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?考点:二元一次方程组的应用.分析)本题中的等量关系为44座客车辆+15游客总数6×4座客车辆游客总数,据此可列方程组求出第一小题的解)需要分别计4座客车6座客车各自的租金,比较后再取舍解答)设这批游客的人数人,原计划租4座客辆根据题意,得,解这个方程组,得.答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元),租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).答:租用4辆60座客车更合算.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.五、(本大题满分12分)24.(12分)(2014?铜仁)如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.(1)求证:DC是⊙O的切线;(2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.考点:切线的判定.分析:(1)连接OC,根据等腰三角形的性质求出∠CAD=∠D=∠BCD,求出∠ABC=∠D+∠BCD=2∠CAD,设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,求出∠ACB=90°,推出x+2x=90,求出x,求出∠OCD=90°,根据切线的判定得出即可;(2)求出OC,得出OA长,求出∠OAE,根据含30度角的直角三角形性质求出OF即可.解答:(1)证明:连接OC,大全.实用文档,AC=DC∵,BC=BD ,D=∠BCD∴∠CAD=∠D,∠,D=∠BCD∴∠CAD=∠,BCD=2∠CAD∴∠ABC=∠D+∠°,°,∠ABC=2xCAD=x°,则∠D=∠BCD=x设∠的直径,是⊙O∵AB °,∴∠ACB=90 ,∴x+2x=9x=3CBO=6°°,即CADD=3OC=OBC是等边三角形∴COB=6°∴=9°°6∴OCD=18°3CO为半径O的切线D是O)解:A2,CD=10OCD=90°,∠D=30°,Rt∵在△OCD中,∠,°=10∴OC=CD×tan30 OD=2OC=20,OA=OC=10,∴,∵AE∥CD ∠∴∠FAO=D=30°,,×=5°∴OF=AO×sin30=10 .到即圆心OAE的距离是5度角的直角三角形性质,解直角三角形,等腰三角形题考查了切线的判定,含点评:本30的性质,圆周角定理,三角形外角性质,解直角三角形的应用,主要考查学生综合运用定理进行推理和计算的能力,题目比较好.大全.实用文档六、(本大题满分14分)2,0A(y=ax﹣bx+c的一个交点为(14分)(2014?铜仁)已知:直线y=ax+b与抛物线25. 45°.x,同时这条直线与轴相交于点B,且相交所成的角β为2) B的坐标;(1)求点2的解析式;)求抛物线y=ax﹣bx+c(22M(点轴是否有交点,并说明理由.若有交点设为M,N3)判断抛物线y=ax ﹣bx+c与x(,轴反射后的像与原像相E轴作轴反射得到M的对应点为在点N左边),将此抛物线关于y的面积NEF使得△NEP的面积与△EF得△DEF,在原像上是否存在点P,,交于点F连接NF, P相等?若存在,请求出点的坐标;若不存在,请说明理由.考次函数综合题分析)根据等腰直角三角形的性质即可求得)利用待定系数法即可求得解析式,4a确定抛物线有没有交点,因为轴反射后的像与原像相交于)利点NE的面积相等且同底,所点,OF=,由于NE的面积与点即2x+即可求得y纵坐标或,代,且相交所,同时这条直线轴相交于)∵直y=ax+解答°的角β45 ,∴OA=OB 0);时,B(2,0(﹣∴当a>0时,B2,0),当a<,0)代入直线y=ax+b得;,0A(,2),B(﹣22()把,解得:把A(0,2),B(, 2,0)代入直线y=ax+b得解得:,2∵抛物线y=ax﹣bx+c过A(0,2),∴c=2,22 +2x+2﹣或y=x∴抛物线的解析式为:+2x+2y=x.大全.实用文档)存在.(322轴没有交点,2<0,抛物线与x+2x+2时,b﹣4ac=4﹣4×1×如图,抛物线为y=x22,抛物线与x轴有两个交点;×(﹣1)×2>04﹣抛物线为y=x+2x+2时,b﹣4ac=4﹣点点即∵轴反射后的像与原像相交于,的面积与NE的面积相等且同底∵NEP 或﹣2,∴P点的纵坐标为22;x=0(与点F重合,舍去)2y=2当时,﹣x﹣2x+2=2,解得:x=﹣或2 x=1+,﹣1﹣,x=2x+2=2当y=﹣时,﹣x﹣﹣2,解得:﹣).2﹣(﹣),﹣(﹣),(﹣P,∴存在满足条件的点P点坐标为:22,1+2,1,﹣点评:本题考查了待定系数法求解析式,二次函数的交点问题以及三角形面积的求解方法,问题考虑周全是本题的难点.大全.。
与《二次函数》有关的中考综合题一.解答题(共30小题)1.(雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E 的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.2.(孝感)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.3.(铜仁地区)铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w (万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?4.(泰州)已知:关于x的二次函数y=﹣x2+ax(a>0),点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在这个二次函数的图象上,其中n为正整数.(1)y1=y2,请说明a必为奇数;(2)设a=11,求使y1≤y2≤y3成立的所有n的值;(3)对于给定的正实数a,是否存在n,使△ABC是以AC为底边的等腰三角形?如果存在,求n的值(用含a的代数式表示);如果不存在,请说明理由.5.(十堰)已知抛物线y=x2﹣2x+c与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣1,0).(1)求D点的坐标;(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;(3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.6.(晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________ ,点E的坐标为_________ ;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(3)如图,若点E的纵坐标为﹣1,抛物线(a≠0且a 为常数)的顶点落在△ADE的内部,求a的取值范围.7.(济南)如图1,抛物线y=﹣x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB与点D,过点B作直线l∥AC,与抛物线和⊙M的另一个交点分别是E,F.(1)求该抛物线的函数表达式;(2)求点C的坐标和线段EF的长;(3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB 上的两个动点(点P在点Q的右侧,且不与N重合),线段PQ与EF 的长度相等,连接DP,CQ,四边形CDPQ的周长是否有最小值?若有,请求出此时点P的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.8.(湘潭)如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.9.(宁德)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合(1)直接写出点A、B的坐标:A(_________ ,_________ )、B(_________ ,_________ );(2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________ ;(3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由;(4)当≤x≤7时,在抛物线上存在点P,使△AB P得面积最大,求△ABP面积的最大值.10.(眉山)已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.(1)求过A、B、C三点的抛物线的解析式;(2)若直线CD∥AB交抛物线于D点,求D点的坐标;X|k |B | 1 .c |O |m(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.11.(莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B 两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.12.(河池)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M 和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.13.(贵港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,﹣1),交x轴于点A、B两点,交y轴于点C,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式;(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数.14.(抚顺)如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上.(1)求此抛物线的解析式;(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E.①用含y的代数式表示CD2,并猜想CD2与DE2之间的数量关系,请给出证明;②在此抛物线上是否存在点D,使∠EDC=120°?如果存在,请直接写出D点坐标;如果不存在,请说明理由.15.(恩施州)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.16.(大连)如图,抛物线y=ax2+bx+c经过A(﹣,0)、B(3,0)、C(0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E.(1)求该抛物线的解析式;(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果).17.(朝阳)已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(﹣1,0).(1)求点C的坐标;(2)求过A、B、C三点的抛物线的解析式和对称轴;(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S 最大时点P的坐标;(4)在抛物线对称轴上,是否存在这样的点M,使得△MPC(P为上述(3)问中使S最大时的点)为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.18.(徐州)如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:_________;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.19.(台州)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+k经过点A,其顶点为B,另一抛物线y=(x﹣h)2+2﹣h(h>1)的顶点为D,两抛物线相交于点C.(1)求点B的坐标,并说明点D在直线l上的理由;(2)设交点C的横坐标为m.①交点C的纵坐标可以表示为:_________或_________,由此进一步探究m关于h的函数关系式;②如图2,若∠ACD=90°,求m的值.20.(齐齐哈尔)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3)(1)求此二次函数的解析式;(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.21.(宁夏)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.22.(唐山一模)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足z=﹣3x+3000(1)求出政府补贴政策实施后,种植亩数y与政府补贴数额x 之间的函数关系式;(2)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(3)要使全市这种蔬菜的总收益W(元)最大,政府应将每亩补贴数额X定为多少?并求出总收益W的最大值.(4)该市希望这种蔬菜的总收益不低于7200 000元,请你在坐标系中画出3中的函数图象的草图,利用函数图象帮助该市确定每亩补贴数额的范围,在此条件下要使总收益最大,说明每亩补贴数额应定为多少元合适?23.(上海模拟)某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加(或减少)10千克,设该产品每千克售价为x(元),日销售量为y(千克),日销售利润为w(元).(1)求y关于x的函数解析式,并写出函数的定义域;(2)写出w关于x的函数解析式及函数的定义域;(3)若日销售量为300千克,请直接写出日销售利润的大小.24.(溧水县二模)我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理.当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x(元),年销售量为y(万件),年获利为W(万元).(年利润=年销售总额﹣生产成本﹣投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利W与x之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?25.(高淳县二模)某批发商以40元/千克的价格购入了某种水果500千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y=60+2x,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需40元的费用.(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为_________(元/千克),获得的总利润为_________(元);(2)设批发商将这批水果保存x天后一次性卖出,试求批发商所获得的总利润w(元)与保存时间x(天)之间的函数关系式;(3)求批发商经营这批水果所能获得的最大利润.26.(大丰市二模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?27.(遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.28.(威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.29.(呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为_________;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.30.(鄂州)在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).(1)若M(﹣2,5),请直接写出N点坐标.(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.九年级数学《二次函数》综合练习题参考答案与试题解析一.解答题(共30小题)1.(雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,﹣m2﹣2m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;故△PBC周长的最小值为3+.(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AG=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础.2.(孝感)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)取AB的中点G,连接EG,利用ASA能得到△AGE与△ECF全等;(2)①在AB上截取AM=EC,证得△AME≌△ECF即可证得AE=EF;②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,则FH=a﹣1,然后表示出点F的坐标,根据点F恰好落在抛物线y=﹣x2+x+1上得到有关a的方程求得a值即可求得点F的坐标;解答:(1)解:如图1,取AB的中点G,连接EG.△AGE与△ECF全等.(2)①若点E在线段BC上滑动时AE=EF总成立.证明:如图2,在AB上截取AM=EC.∵AB=BC,∴BM=BE,∴△MBE是等腰直角三角形,∴∠AME=180°﹣45°=135°,又∵CF平分正方形的外角,∴∠ECF=135°,∴∠AME=∠ECF.而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AME≌△ECF.∴AE=EF.②过点F作FH⊥x轴于H,由①知,FH=BE=CH,设BH=a,则FH=a﹣1,∴点F的坐标为F(a,a﹣1)∵点F恰好落在抛物线y=﹣x2+x+1上,∴a﹣1=﹣a2+a+1,∴a2=2,(负值不合题意,舍去),∴.∴点F的坐标为.点评:本题考查了二次函数的综合知识,题目中涉及到了全等的知识,还渗透了方程思想,是一道好题.3.(铜仁地区)铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?考点:一元二次方程的应用;根据实际问题列二次函数关系式.专题:压轴题.分析:(1)利用“总利润=月利润的平均值×月数”列出函数关系式即可;(2)根据总利润等于1620列出方程求解即可.解答:解:(1)y=w•x=(10x+90)x=10x2+90x(x为正整数),(2)设前x个月的利润和等于1620万元,10x2+90x=1620即:x2+9x﹣162=0得x=x1=9,x2=﹣18(舍去),答:前9个月的利润和等于1620万元.点评:本题考查了一元二次方程的应用及根据实际问题列出二次函数关系式的知识,解题的关键是弄清总利润与月平均利润和月数之间的关系.4.(2013•泰州)已知:关于x的二次函数y=﹣x2+ax(a>0),点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在这个二次函数的图象上,其中n为正整数.(1)y1=y2,请说明a必为奇数;(2)设a=11,求使y1≤y2≤y3成立的所有n的值;(3)对于给定的正实数a,是否存在n,使△ABC是以AC为底边的等腰三角形?如果存在,求n的值(用含a的代数式表示);如果不存在,请说明理由.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)将点A和点B的坐标代入二次函数的解析式,利用y1=y2得到用n表示a的式子,即可得到答案;(2)将a=11代入解析式后,由题意列出不等式组,求得此不等式组的正整数解;(3)本问为存在型问题.如解答图所示,可以由三角形全等及等腰三角形的性质,判定点B为抛物线的顶点,点A、C关于对称轴对称.于是得到n+1=,从而可以求出n=﹣1.解答:解:(1)∵点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在二次函数y=﹣x2+ax(a>0)的图象上,∴y1=﹣n2+an,y2=﹣(n+1)2+a(n+1)∵y1=y2,∴﹣n2+an=﹣(n+1)2+a(n+1)整理得:a=2n+1∴a必为奇数;(2)当a=11时,∵y1≤y2≤y3∴﹣n2+11n≤﹣(n+1)2+11(n+1)≤﹣(n+2)2+11(n+2)化简得:0≤10﹣2n≤18﹣4n,解得:n≤4,∵n为正整数,∴n=1、2、3、4.(3)假设存在,则BA=BC,如右图所示.过点B作BN⊥x轴于点N,过点A作AD⊥BN于点D,CE⊥BN于点E.∵x A=n,x B=n+1,x C=n+2,∴AD=CE=1.在Rt△ABD与Rt△CBE中,,∴Rt△ABD≌Rt△CBE(HL).∴∠ABD=∠CBE,即BN为顶角的平分线.由等腰三角形性质可知,点A、C关于BN对称,∴BN为抛物线的对称轴,点B为抛物线的顶点,∴n+1=,∴n=﹣1.∴a为大于2的偶数,存在n,使△ABC是以AC为底边的等腰三角形,n=﹣1.点评:本题考查了二次函数的综合知识,涉及二次函数的图象与性质、等腰三角形、全等三角形、因式分解、解不等式等知识点,有一定的难度,是一道好题.5.(十堰)已知抛物线y=x2﹣2x+c与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣1,0).(1)求D点的坐标;(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;(3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.考点:二次函数综合题.专题:压轴题.分析:(1)将点A的坐标代入到抛物线的解析式求得c值,然后配方后即可确定顶点D的坐标;(2)连接CD、CB,过点D作DF⊥y轴于点F,首先求得点C的坐标,然后证得△DCB∽△AOC得到∠CBD=∠OCA,根据∠ACB=∠CBD+∠E=∠OCA+∠OCB,得到∠E=∠OCB=45°;(3)设直线PQ交y轴于N点,交BD于H点,作DG⊥x轴于G点,增大△DGB∽△PON后利用相似三角形的性质求得ON的长,从而求得点N的坐标,进而求得直线PQ的解析式,设Q(m,n),根据点Q在y=x2﹣2x﹣3上,得到﹣m﹣2=m2﹣2m﹣3,求得m、n的值后即可求得点Q的坐标.解答:解:(1)把x=﹣1,y=0代入y=x2﹣2x+c得:1+2+c=0∴c=﹣3∴y=x2﹣2x﹣3=y=(x﹣1)2﹣4∴顶点坐标为(1,﹣4);(2)如图1,连接CD、CB,过点D作DF⊥y轴于点F,由x2﹣2x﹣3=0得x=﹣1或x=3∴B(3,0)当x=0时,y=x2﹣2x﹣3=﹣3∴C(0,﹣3)∴OB=OC=3∵∠BOC=90°,∴∠OCB=45°,BC=3又∵DF=CF=1,∠CFD=90°,∴∠FCD=45°,CD=,∴∠BCD=180°﹣∠OCB﹣∠FCD=90°.∴∠BCD=∠COA又∵∴△DCB∽△AOC,∴∠CBD=∠OCA又∵∠ACB=∠CBD+∠E=∠OCA+∠OCB∴∠E=∠OCB=45°,(3)如图2,设直线PQ交y轴于N点,交BD于H点,作DG⊥x轴于G点∵∠PMA=45°,∴∠EMH=45°,∴∠MHE=90°,∴∠PHB=90°,∴∠DBG+∠OPN=90°又∴∠ONP+∠OPN=90°,∴∠DBG=∠ONP∴∠DGB=∠PON=90°,∴△DGB∽△PON∴=,即:=∴ON=2,∴N(0,﹣2)设直线PQ的解析式为y=kx+b则解得:∴y=﹣x﹣2设Q(m,n)且n<0,∴n=﹣m﹣2又∵Q(m,n)在y=x2﹣2x﹣3上,∴n=m2﹣2m﹣3∴﹣m﹣2=m2﹣2m﹣3解得:m=2或m=﹣∴n=﹣3或n=﹣∴点Q的坐标为(2,﹣3)或(﹣,﹣).点评:本题考查了二次函数的综合知识,难度较大,题目中渗透了许多的知识点,特别是二次函数与相似三角形的结合,更是一个难点,同时也是中考中的常考题型之一.6.(晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为(3,4),点E的坐标为(0,1);(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(3)如图,若点E的纵坐标为﹣1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)根据点A、点D、点C的坐标和矩形的性质可以得到点B和点E的坐标;(2)由折叠的性质求得线段DE和AE的长,然后利用勾股定理得到有关m的方程,求得m的值即可;(3)过点E作EF⊥AB于F,EF分别与AD、OC交于点G、H,过点D作DP⊥EF于点P,首先利用勾股定理求得线段DP的长,从而求得线段BF的长,再利用△AFG∽△ABD得到比例线段求得线段FG的长,最后求得a的取值范围.解答:解:(1)点B的坐标为(3,4),点E的坐标为(0,1);(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为矩形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得:DE=BD=OA﹣CD=4﹣1=3,AE=AB=OC=m,如图1,假设点E恰好落在x轴上,在Rt△CDE中,由勾股定理可得,则有,在Rt△AOE中,OA2+OE2=AE2即解得…(7分)(3)如图2,过点E作EF⊥AB于F,EF分别与AD、OC交于点G、H,过点D作DP⊥EF于点P,则EP=PH+EH=DC+EH=2,在Rt△PDE中,由勾股定理可得∴,在Rt△AEF中,,EF=5,AE=m∵AF2+EF2=AE2∴解得,∴,,E(,﹣1)∵∠AFG=∠ABD=90°,∠FAG=∠BAD∴△AFG∽△ABD∴即,解得FG=2,∴EG=EF﹣FG=3∴点G的纵坐标为2,∵∴此抛物线的顶点必在直线上,又∵抛物线的顶点落在△ADE的内部,∴此抛物线的顶点必在EG上,∴﹣1<10﹣20a<2,解得故a的取值范围为.点评:本题考查了二次函数的综合知识,是一道有关折叠的问题,主要考查二次函数、矩形、相似形等知识,试题中贯穿了方程思想和数形结合的思想,请注意体会.7.(济南)如图1,抛物线y=﹣x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB与点D,过点B作直线l∥AC,与抛物线和⊙M的另一个交点分别是E,F.(1)求该抛物线的函数表达式;(2)求点C的坐标和线段EF的长;(3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB上的两个动点(点P在点Q的右侧,且不与N重合),线段PQ与EF的长度相等,连接DP,CQ,四边形CDPQ的周长是否有最小值?若有,请求出此时点P 的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.考点:二次函数综合题.分析:(1)根据点A的坐标和tan∠BAO=2求得AO=2,BO=4,从而求得点B的坐标为(0,4),利用待定系数法求得二次函数的解析式即可.(2)首先根据抛物线的对称轴求得点A的对称点C的坐标,然后求得点B的对称点E的坐标为(﹣1,4),从而求得BE的长,得到EF的长即可;(3)作点D关于直线l的对称点D1(1,6),点C向右平移2个单位得到C1(﹣1,0),连接C1D1与直线l交于点P,点P向左平移两个单位得到点Q,四边形CDPQ即为周长最小的四边形.解答:解:(1)∵点A(2,0),tan∠BAO=2,∴AO=2,BO=4,∴点B的坐标为(0,4).∵抛物线y=﹣x2+bx+c过点A,B,∴,解得,。
一、选择题1.抛物线y=ax2+bx+c(a≠0)的图象大致如图所示,下列说法:①2a+b=0;②当﹣1<x<3时,y<0;③若(x1,y1)(x2,y2)在函数图象上,当x1<x2时,y1<y2;④9a+3b+c=0,其中正确的是()A.①②④B.①④C.①②③D.③④2.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.3.如图等边ABC的边长为4cm,点P,点Q同时从点A出发点,Q沿AC以1cm/s--以2cm/s的速度也向点C运动,直到到达点C时停的速度向点C运动,点P沿A B CS,点Q的运动时间为()s t,则下列最能反映S与t之止运动,若APQ的面积为()2cm间大致图象是().A.B.C .D .4.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D . 5.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个6.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t << 7.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .38.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .49.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( )A .16q <B .16q >C .16q ≤D .16q ≥ 10.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++11.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)- 12.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,113.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+14.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+ B .2(1)1y x =-+ C .2(2)2y x =-+ D .2(1)3y x =-+ 15.对于二次函数2(2)7y x =---,下列说法正确的是( )A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题16.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).17.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.18.若二次函数26y x x c =-+的图象经过()11,A y -,()22,B y ,()33C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)19.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________20.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.21.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.22.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______.23.已知二次函数2(0)y ax bx c a =++≠的对称轴为直线1x =-,与x 轴的一个交点B 的坐标为()1,0其图象如图所示,下列结论:①0abc <;②20a b -=;③当0y >时,1x >;④320b c +>;⑤当0x <时,y 随x 的增大而减小;其中正确的有____.(只填序号)24.如图,抛物线2y x 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移42个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.25.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)26.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)三、解答题27.如图,在平面直角坐标系中,抛物线2y xbx c =++与x 轴交于点A ,B (点A 在B的左侧),与y 轴交于点C .(1)若OB=OC=3,求抛物线的解析式及其对称轴;(2)在(1)的条件下,设点P 在抛物线的对称轴上,求PA+PC 的最小值和点P 的坐标.28.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?29.如图,直线:33l y x =-+与x 轴,y 轴分别相交于A,B 两点,抛物线224(0)y ax ax a a =-++<经过点B .(1)求该抛物线的解析式及顶点坐标;(2)连结BD,以AB,BD 为一组邻边的平行四边形ABDE,顶点E 是否在抛物线上?(3)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 横坐标为m,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.30.地摊经济开放以来,小王以每个40元的价格购进一种玩具,计划以每个60元的价格销售,后来为了尽快回本决定降价销售.已知这种玩具销售量y (个)与每个降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数解析式.(2)该玩具每个降价多少元时,小王获利最大?最大利润是多少元?。
二次函数一、选择题1. ( 2014•广东,第10题3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A、函数有最小值B、对称轴是直线x =C、当x <,y随x的增大而减小D、当﹣1<x<2时,y>02. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx +与反比例函数y =在同一坐标系内的大致图象是()A BC D3.(2014年四川资阳,第10题3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()(第3题图) (第4题图)A.4个B.3个C.2个D.1个4.(2014年天津市,第12 题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.3 5.(2014•新疆,第6题5分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A、开口向下 B、对称轴是x=﹣1 C、顶点坐标是(1,2) D、与x轴有两个交点6.(2014•舟山,第10题3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A 、B 、或C、2或D、2或﹣或7.(2014•毕节地区,第11题3分)抛物线y=2x2,y=﹣2x2,共有的性质是()的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A、1B、2C、3D、4 9.(2014·台湾,第26题3分)已知a、h、k 为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10,8)两点.若a<0,0<h<10,则h之值可能为下列何者?( ) A.1 B.3 C.5 D.7~ 1 ~10.(2014·浙江金华,第9题4分)如图是二次函数2y x 2x 4=-++的图象,使y 1≤成立的x 的取值范围是【 】A .1x 3-≤≤B .x 1≤-C .x 1≥D .x 1≤-或x 3≥ 11.(2014•浙江宁波,第12题4分)已知点A(a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( ) A 、(﹣3,7) B 、(﹣1,7) C 、(﹣4,10) D 、(0,10)12.(2014•菏泽第8题3分)如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,C 、D 两点不重合,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A BC D13.(2014•济宁,第8题3分)“如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( )A 、m <a <b <nB 、a <m <n <bC 、a <m <b <nD 、m <a <n <b 14.(2014年山东泰安,第17题3分)已知函数y =(x ﹣m )(x ﹣n )(其中m <n )的图象如图所示,则一次函数y =mx +n 与反比例函数y =的图象可能是( )A . BCD .15.(2014年山东泰安,第20题3分)二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与yy 的值随x 值的增大而减小.(3)3是方程ax 2+(b ﹣1)x +c =0的一个根;(4)当﹣1<x <3时,ax 2+(b ﹣1)x +c >0.其中正确的个数为( ) A .4个 B .3个 C .2个 D .1个 16.(2014•滨州,第9题3分)下列函数中,图象经过原点的是( )A 、y =3xB 、y =1﹣2xC 、y =D 、y =x 2﹣1二.填空题~ 3 ~1. ( 2014•安徽省,第12题5分)某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为2.(2014年云南,第16题3分)抛物线y =x 2﹣2x +3的顶点坐标是 . 3.(2014•浙江湖州,第16题4分)已知当x 1=a ,x 2=b ,x 3=c 时,二次函数y =x 2+mx 对应的函数值分别为y 1,y 2,y 3,若正整数a ,b ,c 恰好是一个三角形的三边长,且当a <b <c 时,都有y 1<y 2<y 3,则实数m 的取值范围是 . 4. (2014•株洲,第16题,3分)如果函数y =(a ﹣1)x 2+3x +的图象经过平面直角坐标系的四个象限,那么a 的取值范围是 . 5. (2014年江苏南京,第16题,2分)已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分的取值范围是 .6. (2014•扬州,第16题,3分)如图,抛物线y =ax 2+bx+c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 .7.(2014•菏泽,第12题3分)如图,平行于x轴的直线AC 分别交抛物线y 1=x 2(x ≥0)与y 2=(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则= _______.(第7题图) (第8题图) 8. ( 2014•珠海,第9题4分)如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,則它的对称轴为 .三.解答题1. ( 2014•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2﹣4mx +2m 2+1和y 2=ax 2+bx +5,其中y 1的图象经过点A (1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求出当0≤x ≤3时,y 2的最大值.2. ( 2014•福建泉州,第22题9分)如图,已知二次函数y =a (x ﹣h )2+的图象经过原点O (0,0),A (2,0).(1)写出该函数图象的对称轴; (2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点?3. ( 2014•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F 分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.4. ( 2014•广东,第25题9分)如图,在△ABC 中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P 到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP 的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.5. ( 2014•珠海,第22题9分)如图,矩形OABC 的顶点A(2,0)、C(0,2).将矩形OABC~ 5 ~绕点O 逆时针旋转30°.得矩形OEFG ,线段GE 、FO 相交于点H ,平行于y 轴的直线MN 分别交线段GF 、GH 、GO 和x 轴于点M 、P 、N 、D ,连结MH . (1)若抛物线l :y =ax 2+bx +c 经过G 、O 、E 三点,则它的解析式为: y =x 2﹣x ;(2)如果四边形OHMN 为平行四边形,求点D 的坐标;(3)在(1)(2)的条件下,直线MN 与抛物线l 交于点R ,动点Q 在抛物线l 上且在R 、E 两点之间(不含点R 、E )运动,设△PQH 的面积为s ,当时,确定点Q的横坐标的取值范围.6. 2014•广西贺州,第26题12分)二次函数图象的顶点在原点O ,经过点A (1,14);点F (0,1)在y 轴上.直线y =﹣1与y 轴交于点H . (1)求二次函数的解析式;(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线y =﹣1交于点M ,求证:FM 平分∠OFP ;(3)当△FPM是等边三角形时,求P 点的坐标.7. (2014•广西玉林市、防城港市,第26题12分)给定直线l :y =kx ,抛物线C :y =ax 2+bx +1. (1)当b =1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.8.(2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.9.(2014年四川资阳,第24题12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.10.(2014•温州,第21题10分)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.11.(2014•舟山,第22题10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:~ 7 ~①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.12.(2014•舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.(1)当m =时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S =时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.13.(2014年广东汕尾,第25题10分)如图,已知抛物线y =x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.14.(2014•毕节地区,第27题16分)如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线Ac的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.15.(2014•武汉2014•武汉,第29题10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?~ 9 ~(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.16.(2014•武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y =x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C 坐标;(2)当k=﹣0.5时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.17.(2014•襄阳,第26题12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C (3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x 轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF ⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?18.(10分)(2014•孝感,第22题10分)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.19.(2014•孝感,第25题12分)如图1,矩形ABCD的边AD在y轴上,抛物线y=x2﹣4x+3经过点A、点B,与x轴交于点E、点F,且其顶点M 在CD上.(1)请直接写出下列各点的坐标:A,B,C,D;(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB 交于点G,与直线BD交于点H,如图2.①当线段PH=2GH时,求点P的坐标;②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.20.(2014•邵阳,第26题10分)在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.~ 11 ~21.(2014•浙江宁波,第23题10分)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.22.(2014•四川自贡,第24题14分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.23.(2014•浙江湖州,第23题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC =AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4)①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A 的坐标;若不存在,请说明理由.24. (2014•湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF =,求此圆直径.~ 13 ~25. (2014•湘潭,第26题)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.26. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.27. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D 为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.28. (2014•株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x +和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x 轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;~ 15 ~(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.29. (2014年江苏南京,第24题)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x 轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?31. (2014•扬州,第27题,12分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?32.(2014•呼和浩特,第25题12分)如图,已知直线l的解析式为y =x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,)三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB 的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.33.(2014•滨州,第23题9分)已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.34.(2014•德州,第24题12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.~ 17 ~35.(2014•菏泽,第21题10分)在平面直角坐标系xOy中,已知抛物线y=x2﹣2mx+m2﹣9.(1)求证:无论m为何值,该抛物线与x轴总有两个交点;(2)该抛物线与x轴交于A,B两点,点A在点B的左侧,且OA<OB,与y轴的交点坐标为(0,﹣5),求此抛物线的解析式;(3)在(2)的条件下,抛物线的对称轴与x轴的交点为N,若点M是线段AN上的任意一点,过点M作直线MC⊥x轴,交抛物线于点C,记点C 关于抛物线对称轴的对称点为D,点P是线段MC 上一点,且满足MP=MC,连结CD,PD,作PE⊥PD 交x轴于点E,问是否存在这样的点E,使得PE=PD?若存在,求出点E的坐标;若不存在,请说明理由.36.(2014•济宁,第22题11分)如图,抛物线y =x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.37.(2014年山东泰安,第29题)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.~ 19 ~。
二次函数y=ax 2+bx+c 的图象 【教学目标】1、使学生会用公式求抛物线y=ax 2+bx+c 的对称轴与顶点。
2、了解抛物线的另一种形式y=a (x-x 1)(x-x 2)【重点、难点】重点:用公式求抛物线y=ax 2+bx+c 的对称轴与顶点坐标;难点:抛物线y=ax 2+bx+c 的对称轴与顶点的求法及有关性质。
【知识要点】1.二次函数解析式的一般形式是2(0)y ax bx c a =++≠经过配方得到:22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中对称轴为直线2b x a =-,顶点坐标为(2b a -,244ac b a -),当已知顶点坐标或对称轴时,可设顶点为2()(0),(,)y a x h k a h k =-+≠是顶点坐标。
2.当240b ac -≥,图象与x 轴有交点,其中12,x x 是方程20(0)ax bx c a ++=≠的两个根,于是二次函数解析式又可写为2212()()b c y ax bx c a x x a x x x x a a ⎛⎫=++=++=-- ⎪⎝⎭即12()()y a x x x x =--,即两根式。
【典型例题】例1.指出下列抛物线的开口方向、求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x 轴的交点坐标。
(1)322++-=x x y (2) 1432-+=x x y(3) 852+-=x x y (4)1542-+-=x x y例2.已知抛物线12212+-=x x y , (1)当x 为何值时 y>0, y=0, y<0?(2)当x 为何值时,函数y 随x 的增大而增大?(3)当x 为何值时,函数y 随x 的增大而减小?(4)当x 为何值时,函数y 有最大值或最小值?是多少?例3.已知二次函数的图象经过(-1,10),(1,4),(2,7)三点,求二次函数解析式例4已知二次函数的图象的顶点坐标是(-1,2),且过点(2,-3),求二次函数解析式例5.已知二次函数的图象与x轴交点的横坐标分别是-4,6,且过点(2,2),求二次函数解析式例6.已知二次函数的图象与x轴交点坐标分别(-2,0),(5,0),在y轴上的截距是-2,求二次函数解析式例7 已知二次函数2=++的最大值为2,顶点在直线1y ax bx c=+上,并且图象经过点(3,y x-6),求解析式。
铜仁中考数学试题解析版SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#2014年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2014铜仁)的相反数是()A.B.C.﹣D.﹣分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:的相反数是﹣,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)(2014铜仁)下列计算正确的是()A.4a2+a2=5a4B.3a﹣a=2a C.a6÷a2=a3D.(﹣a3)2=﹣a6考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,可判断A、B,根据同底数的除法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相减,故C错误;D、负1的平方是1,故D错误;故选:B.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.3.(4分)(2014铜仁)有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是()A.B.C.D.考点:概率公式.分析:由有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,直接利用概率公式求解即可求得答案.解答:解:∵有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,∴随意抽取一张,抽得红心的概率是:=.故选B.点此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.评:4.(4分)(2014铜仁)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,进而得出答案.解答:解:利用对顶角的定义可得出:符合条件的只有C,故选:C.点评:本题考查了顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点.反向延长线等.5.(4分)(2014铜仁)代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1B.x≠1C.x≥1且x≠﹣1D.x≥﹣1考点:二次根式有意义的条件;分式有意义的条件.分析:此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.解答:解:依题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故选:A.点评:本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(4分)(2014铜仁)正比例函数y=2x的大致图象是()A.B.C.D.考点:正比例函数的图象.分析:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.解解:∵正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.答:∴正比例函数y=2x的大致图象是B.故选:B.点评:此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.(4分)(2014铜仁)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A.26°B.116°C.128°D.154°考点:圆周角定理.分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.8.(4分)(2014铜仁)如图所示,所给的三视图表示的几何体是()A.三棱锥B.圆锥C.正三棱柱D.直三棱柱考点:由三视图判断几何体.分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为直三棱柱.解答:解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为直三棱柱.故选:D.点评:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.9.(4分)(2014铜仁)将抛物线y=x2向右平移2个单位,再向下平移1个单位,所得的抛物线是()A.y=(x﹣2)2﹣1B.y=(x﹣2)2+1C.y=(x+2)2+1D.y=(x+2)2﹣1考点:二次函数图象与几何变换.分析:根据二次函数图象左加右减,上加下减的平移规律进行求解.解答:解:抛物线y=x2向右平移2个单位,得:y=(x﹣2)2;再向下平移1个单位,得:y=(x﹣2)2﹣1.故选:A.点评:主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.10.(4分)(2014铜仁)如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是()A.B.C.1D.考点:相似三角形的判定与性质;角平分线的性质;勾股定理;矩形的性质.分析:设MD=a,MF=x,利用△ADM∽△DFM,得到∴,利用△DMF∽△DCE,∴.得到a与x的关系式,化简可得x的值,得到D选项答案.解答:解:∵AE平分∠BAF交BC于点E,且DE⊥AF,∠B=90°,∴AB=AM,BE=EM=3,又∵AE=2,∴,设MD=a,MF=x,在△ADM和△DFM中,,∴△ADM∽△DFM,,∴DM2=AMMF,∴,在△DMF和△DCE中,,∴.∴,∴,解之得:,故答案选:D.点评:本题考查了角平分线的性质以及三角形相似的判定方法,解题的关键在于利用三角形相似构造方程求得对应边的长度.二、填空题(本题共共8小题,每小题4分,共32分)11.(4分)(2014铜仁)cos60°=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.解答:解:cos60°=.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.12.(4分)(2014铜仁)定义一种新运算:ab=b2﹣ab,如:12=22﹣1×2=2,则(﹣12)3= ﹣9 .考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出﹣12=6,然后计算再根据新定义计算63即可.解答:解:﹣12=22﹣(﹣1)×2=6,63=32﹣6×3=﹣9.所以(﹣12)3=﹣9.故答案为﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.13.(4分)(2014铜仁)在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图案中,是中心对称图形但不是轴对称图形的是平行四边形.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.解答:解:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,符合题意.故答案为:平行四边形.点评:本题考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.14.(4分)(2014铜仁)分式方程:=1的解是x= .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x+1=3﹣x,移项合并得:3x=2,解得:x=,经检验x=是分式方程的解.故答案为:x=点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)(2014铜仁)关于x的一元二次方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<.考点:根的判别式.分析:根据判别式的意义得到△=(﹣3)2﹣4k>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4k>0,解得k<.故答案为:k<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.(4分)(2014铜仁)在某市五四青年歌手大赛中,某选手得到评委打出的分数分别是:,,,,,,,则这组数据的中位数是.考点:中位数.分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.解答:解:把这组数据从小到大排列为:,,,,,,,最中间的数是,则中位数是,故答案为:.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).17.(4分)(2014铜仁)已知圆锥的底面直径为20cm,母线长为90cm,则圆锥的表面积是1000πcm2.(结果保留π)考点:圆锥的计算.分析:根据圆锥表面积=侧面积+底面积=底面周长×母线长+底面积计算.解答:解:圆锥的表面积=10π×90+100π=1000πcm2.故答案为:1000π.点评:本题考查了圆锥的计算,解决本题的关键记准圆锥的侧面面积和底面面积公式.18.(4分)(2014铜仁)一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n 的数为(﹣1)n﹣1.考点:规律型:数字的变化类.分析:首先发现奇数位置为正,偶数位置为负;且对应数字依次为0,0+1=1,0+1+2=3,0+1+2+3=6,0+1+2+3+4=0+10,0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,…第n个数字为0+1+2+3+…+(n﹣1)=,由此得出答案即可.解答:解:第n个数字为0+1+2+3+…+(n﹣1)=,符号为(﹣1)n﹣1,所以第n个数为(﹣1)n﹣1.故答案为:(﹣1)n﹣1.点评:此题考查数字的变化规律,从数的绝对值的和正负情况两个方面考虑求解是解题的关键.三、解答题(本题共4小题,每小题10分,共40分)19.(10分)(2014铜仁)(1)20140﹣(﹣1)2014+﹣|﹣3|(2)先化简,再求值:﹣,其中x=﹣2.考点:分式的化简求值;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:(1)原式=1﹣1+2﹣3=﹣;(2)原式=﹣=﹣=﹣,当x=﹣2时,原式=.点评:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014铜仁)为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生(2)补全图一,并求出图二中B区域的圆心角的度数;(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读中等职业技术学校的概率.考点:条形统计图;扇形统计图;概率公式.专题:计算题.分析:(1)根据C的人数除以占的百分比,求出调查的学生总数即可;(2)求出B的人数,补全图1,求出B占的百分比,乘以360即可得到结果;(3)求出B占的百分比,乘以2800即可得到结果.解答:解:(1)根据题意得:80÷=800(名),则调查的学生总数为800名;(2)B的人数为800﹣(480+80)=240(名),B占的度数为×360°=108°,补全统计图,如图所示:(3)根据题意得:=,则估计该校学生只愿意就读中等职业技术学校的概率.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014铜仁)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是∠B=∠C;(2)请写出证明过程.考点:全等三角形的判定与性质.分析:(1)此题是一道开放型的题目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;(2)根据全等三角形的判定定理AAS推出△ABD≌△ACD,再根据全等三角形的性质得出即可.解答:解:(1)添加的条件是∠B=∠C,故答案为:∠B=∠C;(2)证明:在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.22.(10分)(2014铜仁)如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.考点:相似三角形的判定与性质.专题:证明题.分析:由AD,BE是钝角△ABC的边BC,AC上的高,可得∠D=∠E=90°,又由∠ACD=∠BCE,即可证得△ACD∽△BCE,然后由相似三角形的对应边成比例,证得结论.解答:证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.四、(本大题满分12分)23.(12分)(2014铜仁)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少原计划租用多少辆45座客车(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算考点:二元一次方程组的应用.分析:(1)本题中的等量关系为:45×45座客车辆数+15=游客总数,60×(45座客车辆数﹣1)=游客总数,据此可列方程组求出第一小题的解;(2)需要分别计算45座客车和60座客车各自的租金,比较后再取舍.解答:解:(1)设这批游客的人数是x人,原计划租用45座客车y辆.根据题意,得,解这个方程组,得.答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈(辆),所以需租6辆,租金为220×6=1320(元),租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).答:租用4辆60座客车更合算.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.五、(本大题满分12分)24.(12分)(2014铜仁)如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.(1)求证:DC是⊙O的切线;(2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.考点:切线的判定.分析:(1)连接OC,根据等腰三角形的性质求出∠CAD=∠D=∠BCD,求出∠ABC=∠D+∠BCD=2∠CAD,设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,求出∠ACB=90°,推出x+2x=90,求出x,求出∠OCD=90°,根据切线的判定得出即可;(2)求出OC,得出OA长,求出∠OAE,根据含30度角的直角三角形性质求出OF即可.解答:(1)证明:连接OC,∵AC=DC,BC=BD,∴∠CAD=∠D,∠D=∠BCD,∴∠CAD=∠D=∠BCD,∴∠ABC=∠D+∠BCD=2∠CAD,设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,∵AB是⊙O的直径,∴∠ACB=90°,∴x+2x=90,x=30,即∠CAD=∠D=30°,∠CBO=60°,∵OC=OB,∴△BCO是等边三角形,∴∠COB=60°,∴∠OCD=180°﹣30°﹣60°=90°,即OC⊥CD,∵OC为半径,∴DC是⊙O的切线;(2)解:过O作OF⊥AE于F,∵在Rt△OCD中,∠OCD=90°,∠D=30°,CD=10,∴OC=CD×tan30°=10,OD=2OC=20,∴OA=OC=10,∵AE∥CD,∴∠FAO=∠D=30°,∴OF=AO×sin30°=10×=5,即圆心O到AE的距离是5.点评:本题考查了切线的判定,含30度角的直角三角形性质,解直角三角形,等腰三角形的性质,圆周角定理,三角形外角性质,解直角三角形的应用,主要考查学生综合运用定理进行推理和计算的能力,题目比较好.六、(本大题满分14分)25.(14分)(2014铜仁)已知:直线y=ax+b与抛物线y=ax2﹣bx+c的一个交点为A (0,2),同时这条直线与x轴相交于点B,且相交所成的角β为45°.(1)求点B的坐标;(2)求抛物线y=ax2﹣bx+c的解析式;(3)判断抛物线y=ax2﹣bx+c与x轴是否有交点,并说明理由.若有交点设为M,N(点M 在点N左边),将此抛物线关于y轴作轴反射得到M的对应点为E,轴反射后的像与原像相交于点F,连接NF,EF得△DEF,在原像上是否存在点P,使得△NEP的面积与△NEF的面积相等若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据等腰直角三角形的性质即可求得;(2)利用待定系数法即可求得解析式;(3)利用b2﹣4ac确定抛物线有没有交点,因为轴反射后的像与原像相交于点F,则F点即为A点,则OF=2,由于△NEP的面积与△NEF的面积相等且同底,所以P点的纵坐标为2或﹣2,代入y=﹣x2﹣2x+2即可求得.解答:解:(1)∵直线y=ax+b过A(0,2),同时这条直线与x轴相交于点B,且相交所成的角β为45°,∴OA=OB,∴当a>0时,B(﹣2,0),当a<0时,B(2,0);(2)把A(0,2),B(﹣2,0)代入直线y=ax+b得;,解得:,把A(0,2),B(2,0)代入直线y=ax+b得,解得:,∵抛物线y=ax2﹣bx+c过A(0,2),∴c=2,∴抛物线的解析式为:y=x2+2x+2或y=﹣x2+2x+2.(3)存在.如图,抛物线为y=x2+2x+2时,b2﹣4ac=4﹣4×1×2<0,抛物线与x轴没有交点,抛物线为y=﹣x2+2x+2时,b2﹣4ac=4﹣4×(﹣1)×2>0,抛物线与x轴有两个交点;∵轴反射后的像与原像相交于点F,则F点即为A点,∴F(0,2)∵△NEP的面积与△NEF的面积相等且同底,∴P点的纵坐标为2或﹣2,当y=2时,﹣x2﹣2x+2=2,解得:x=﹣2或x=0(与点F重合,舍去);当y=﹣2时,﹣x2﹣2x+2=﹣2,解得:x=﹣1+,x=﹣1﹣,∴存在满足条件的点P,点P坐标为:(﹣2,2),(﹣1+,﹣2),(﹣1﹣,﹣2).点评:本题考查了待定系数法求解析式,二次函数的交点问题以及三角形面积的求解方法,问题考虑周全是本题的难点.。
2014中考数学:二次函数综合题解析11(2013•遵义)如图,已知抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(4,-32 ),且与y 轴交于点C (0,2),与x 轴交于A ,B 两点(点A 在点B的左边).(1)求抛物线的解析式及A 、B 两点的坐标;(2)在(1)中抛物线的对称轴l 上是否存在一点P ,使AP+CP 的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由;(3)以AB 为直径的⊙M 相切于点E ,CE 交x 轴于点D ,求直线CE 的解析式.分析:(1)利用顶点式求得二次函数的解析式后令其等于0后求得x 的值即为与x 轴交点坐标的横坐标;(2)线段BC 的长即为AP+CP 的最小值;(3)连接ME ,根据CE 是⊙M 的切线得到ME ⊥CE ,∠CEM=90°,从而证得△COD ≌△MED ,设OD=x ,在RT △COD 中,利用勾股定理求得x 的值即可求得点D 的坐标,然后利用待定系数法确定线段CE 的解析式即可.解:(1)由题意,设抛物线的解析式为y=a (x-4)2 -32 (a ≠0) ∵抛物线经过(0,2) ∴a (0 - 4)2 -32 =2 解得:a=61 ∴y= 61(x-4)2 - 32即:y=61 x 2 - 34 x + 2 当y=0时,61 x 2 - 34 x + 2=0 解得:x=2 或x=6∴A (2,0),B (6,0);(2)存在,如图2,由(1)知:抛物线的对称轴l 为x=4,因为A 、B 两点关于l 对称,连接CB 交l 于点P ,则AP=BP ,所以AP+CP=BC 的值最小 ∵B (6,0),C (0,2)∴OB=6,OC=2∴BC=210,∴AP+CP=BC=210∴AP+CP 的最小值为210 ;(3)如图3,连接ME∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE∵在△COD 与△MED 中∠COA =∠DEM ,∠ODC =∠MDE , OC =ME∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x ,则CD=DM=OM - OD = 4 - x则RT △COD 中,OD 2+OC 2=CD 2,∴x 2+22=(4-x )2∴x=23 ,∴D (23 ,0) 设直线CE 的解析式为y=kx+b (k ≠0),∵直线CE 过C (0,2),D (23 ,0)两点, 则方程组,23 k+b =0 ,b =2 解得: k =−34,b =2 ∴直线CE 的解析式为y= -34 x+2; 点评:本题考查了二次函数的综合知识,特别是用顶点式求二次函数的解析式,更是中考中的常考内容。
相比于2011和2012年的中考二次函数压轴题而言,难度有逐渐下降的趋势,但特别考察学生知识的全面性、综合性、灵活性。
因此,见多识广,举一反三仍是学习的最好要领。
2(2013•营口)如图,抛物线与x 轴交于A (1,0)、B (-3,0)两点,与y 轴交于点C (0,3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标.(2)试判断△BCD 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.分析:(1)利用待定系数法即可求得函数的解析式;(2)利用勾股定理求得△BCD 的三边的长,然后根据勾股定理的逆定理即可作出判断;(3)分p 在x 轴和y 轴两种情况讨论,舍出P 的坐标,根据相似三角形的对应边的比相等即可求解.解:(1)设抛物线的解析式为y=ax 2+bx+c由抛物线与y 轴交于点C (0,3),可知c=3.即抛物线的解析式为y=ax 2+bx+3.把点A (1,0)、点B (-3,0)代入,得 方程组a+b+3=0 ,9a −3b+3=0 解得a=-1,b=-2 ∴抛物线的解析式为y=-x 2-2x+3.∵y=-x 2-2x+3=-(x+1)2 + 4∴顶点D 的坐标为(-1,4);(2)△BCD 是直角三角形.理由如下:解法一:过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F .∵在Rt △BOC 中,OB=3,OC=3,∴BC 2=OB 2+OC 2=18在Rt △CDF 中,DF=1,CF=OF-OC=4 -3 =1,∴CD 2=DF 2+CF 2=2在Rt △BDE 中,DE=4,BE=OB-OE=3 - 1=2,∴BD 2=DE 2+BE 2=20∴BC 2+CD 2=BD 2∴△BCD 为直角三角形.解法二:过点D 作DF ⊥y 轴于点F .在Rt △BOC 中,∵OB=3,OC=3∴OB=OC ∴∠OCB=45°∵在Rt △CDF 中,DF=1,CF=OF-OC=4-3=1∴DF=CF ∴∠DCF=45°∴∠BCD=180°-∠DCF-∠OCB=90°∴△BCD 为直角三角形.(3)①△BCD 的三边,BC CD =232=31,又OC OA =31 ,故当P 是原点O 时,△ACP ∽△DBC ;②当AC 是直角边时,若AC 与CD 是对应边,设P 的坐标是(0,a ),则PC=3-a ,AC /CD =PC /BD ,即 解得:a= - 9,则P 的坐标是(0,-9),三角形ACP 不是直角三角形,则△ACP ∽△CBD 不成立;③当AC 是直角边,若AC 与BC 是对应边时,设P 的坐标是(0,b ),则PC=3-b ,则AC /BC =PC /BD ,即 ,解得:b=-1 /3 ,故P 是(0,-1 /3 )时,则△ACP ∽△CBD 一定成立; ④当P 在x 轴上时,AC 是直角边,P 一定在B 的左侧,设P 的坐标是(d ,0).则AP=1-d ,当AC 与CD 是对应边时,AC/ CD =AP /BC ,即 ,解得:d=1-310 ,此时,两个三角形不相似;⑤当P 在x 轴上时,AC 是直角边,P 一定在B 的左侧,设P 的坐标是(e ,0).则AP=1-e ,当AC 与DC 是对应边时,AC /CD =AP /BD ,解得:e=-9,符合条件. 综上,符合条件的点P 的坐标为:P1(0,0),P2(0,−1/ 3 ),P3(−9,0).点评:本题是相似三角形的判定与性质,待定系数法,勾股定理以及其逆定理的综合应用。
而相似三角形的考题也越来越与二次函数相结合,并成为压轴题的趋势明显。
3(2013•铜仁地区)如图,已知直线y=3x-3分别交x 轴、y 轴于A 、B 两点,抛物线y=x 2+bx+c 经过A 、B 两点,点C 是抛物线与x 轴的另一个交点(与A 点不重合).(1)求抛物线的解析式;(2)求△ABC 的面积;(3)在抛物线的对称轴上,是否存在点M ,使△ABM 为等腰三角形?若不存在,请说明理由;若存在,求出点M 的坐标.分析:(1)根据直线解析式求出点A 及点B 的坐标,然后将点A 及点B 的坐标代入抛物线解析式,可得出b 、c 的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点C 的坐标,继而求出AC 的长度,代入三角形的面积公式即可计算;(3)根据点M 在抛物线对称轴上,可设点M 的坐标为(-1,m ),分三种情况讨论,①MA=BA ,②MB=BA ,③MB=MA ,求出m 的值后即可得出答案.解:(1)∵直线y=3x-3分别交x 轴、y 轴于A 、B 两点,∴可得A (1,0),B (0,-3),把A 、B 两点的坐标分别代入y=x 2+bx+c 得方程组: 1+b+c =0, c =−3 ,解得: b =2 ,c =−3 .∴抛物线解析式为:y=x 2+2x-3.(2)令y=0得:0=x 2+2x-3,解得:x 1=1,x 2= -3,则C 点坐标为:(-3,0),AC=4,故可得S △ABC =21AC ×OB=21×4×3=6. (3)抛物线的对称轴为:x=-1,假设存在M (-1,m )满足题意:讨论:①当MA=AB 时, 22+m 2 = 102 ,解得:m =± 6 ,∴M 1(-1, 6 ),M 2(-1,- 6 );②当MB=BA 时, 12+(m+3)2 = 102 ,解得:M 3=0,M 4=-6,∴M 3(-1,0),M 4(-1,-6)(不合题意舍去),③当MB=MA 时, 22+m 2 = 12+(m+3)2 ,解得:m= -1,∴M 5(-1,-1),答:共存在4个点M 1(-1, 6 ),M 2(-1,- 6 ),M 3(-1,0),M 4(-1,-1)使△ABM 为等腰三角形.点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解.4(2013•攀枝花)如图,抛物线y=ax 2+bx+c 经过点A (-3,0),B (1.0),C (0,-3).(1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.分析:(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P 作x 轴的垂线,交AC 于点N ,先运用待定系数法求出直线AC 的解析式,设P 点坐标为(x ,x2+2x-3),根据AC 的解析式表示出点N 的坐标,再根据S △PAC =S △PAN +S △PCN 就可以表示出△PAC 的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A 为直角顶点;②以D 为直角顶点;③以M 为直角顶点;设点M 的坐标为(0,t ),根据勾股定理列出方程,求出t 的值即可.解:(1)由于抛物线y=ax2+bx+c 经过A (-3,0),B (1,0),可设抛物线的解析式为:y=a (x+3)(x-1),将C 点坐标(0,-3)代入,得:a (0+3)(0-1)=-3,解得 a=1,则y=(x+3)(x-1)=x 2+2x-3,所以抛物线的解析式为:y=x 2+2x-3;(2)过点P 作x 轴的垂线,交AC 于点N .设直线AC 的解析式为y=kx+m ,由题意,得方程组−3k+m =0 m =−3 解得k =−1 ,m =−3 ,∴直线AC 的解析式为:y=-x-3.设P 点坐标为(x ,x 2+2x-3),则点N 的坐标为(x ,-x-3),∴PN=PE-NE=-(x 2+2x-3)+(-x-3)=-x 2-3x .∵S △PAC = S △PAN + S △PCN ,∴S=21PN •OA =21 ×3(-x 2-3x )= -23(x+ 23)2+ 827, ∴当x=-23 时,S 有最大值827 ,此时点P 的坐标为(- 23,-415 );(3)在y 轴上是存在点M ,能够使得△ADM 是直角三角形.理由如下:∵y=x 2+2x-3=y=(x+1)2-4,∴顶点D 的坐标为(-1,-4),∵A (-3,0),∴AD2=(-1+3)2+(-4-0)2=20.设点M 的坐标为(0,t ),分三种情况进行讨论:①当A 为直角顶点时,如图3①,由勾股定理,得AM 2+AD 2=DM 2,即(0+3)2+(t-0)2+20=(0+1)2+(t+4)2,解得t=23 , 所以点M 的坐标为(0,23 ); ②当D 为直角顶点时,如图3②,由勾股定理,得DM 2+AD 2=AM 2,即(0+1)2+(t+4)2+20=(0+3)2+(t-0)2, 解得t= - 27 , 所以点M 的坐标为(0,-27); ③当M 为直角顶点时,如图3③,由勾股定理,得AM 2+DM 2=AD 2,即(0+3)2+(t-0)2+(0+1)2+(t+4)2=20,解得t=- 1或 -3,所以点M 的坐标为(0,-1)或(0,-3);综上,在y 轴上存在点M ,能够使得△ADM 是直角三角形,此时点M 的坐标为(0,23 )或(0,- 27)或(0,-1)或(0,-3).点评:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.。