2015年贵州省铜仁市中考数学试题及解析
- 格式:doc
- 大小:614.50 KB
- 文档页数:21
贵州省铜仁市2015 年中考数学试卷一、选择题:(本大题共 10 个小题.每小题 4 分,共 40 分)本题每小题均有 A 、B 、C 、D四个备选答案.其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.( 4 分)( 2015?铜仁市) 2015 的相反数是( ) A . 2015B .﹣ 2015C .﹣D .考点:相反数.分析:根据相反数的含义, 可得求一个数的相反数的方法就是在这个数的前边添加“﹣ ”,据此解答即可.解答:解:根据相反数的含义,可得2015 的相反数是:﹣ 2015. 故选: B .点评:此题主要考查了相反数的含义以及求法, 要熟练掌握, 解答此题的关键是要明确: 相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加 “﹣ ”2.( 4 分)( 2015?铜仁市)下列计算正确的是()2 2 42 3 6A . a +a =2aB . 2a ×a =2aC . 3a ﹣ 2a=1236D .( a ) =a考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:2 2 2解: A 、应为 a +a =2a ,故本选项错误;B 、应为 2 3 52a ×a =2a ,故本选项错误; C 、应为 3a ﹣ 2a=1,故本选项错误;236D 、( a ) =a ,正确. 故选: D .点评:本题主要考查了合并同类项的法则, 幂的乘方的性质, 单项式的乘法法则,熟练掌握运算法则是解题的关键.3.( 4 分)( 2015?铜仁市)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是 4m时,这时水面宽度AB为()A .﹣ 20mB .10m C. 20m D.﹣ 10m考点:二次函数的应用.分析:根据题意,把y= ﹣ 4 直接代入解析式即可解答.解答:解:根据题意 B 的纵坐标为﹣ 4,把 y= ﹣ 4 代入 y= ﹣x 2,得x= ±10,∴A (﹣ 10,﹣ 4), B( 10,﹣ 4),∴A B=20m .即水面宽度 AB 为 20m.故选 C.点评:本题考查了点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.24.( 4 分)( 2015?铜仁市)已知关于 x 的一元二次方程3x +4x﹣ 5=0 ,下列说法不正确的是()A .方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定考点:根的判别式.分析:先求出△ 的值,再判断出其符号即可.解答:2解:∵△ =4 ﹣ 4×3×(﹣ 5) =76> 0,故选 B .点评:2本题考查的是根的判别式,熟知一元二次方程 ax +bx+c=0 ( a≠0)的根与△的关系是解答此题的关键.5.( 4 分)( 2015?铜仁市)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()A .B .C. D .考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解: A 、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选 C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180 度后与原图重合.60°,则这个多边形的边数是6.( 4 分)( 2015?铜仁市)如果一个多边形的每一个外角都是()A . 3B, 4 C.5 D.6考点:多边形内角与外角.分析:由一个多边形的每一个外角都等于 60°,且多边形的外角和等于 360°,即可求得这个多边形的边数.解答:解:∵一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,∴这个多边形的边数是:360÷60=6 .故选: D.点评:此题考查了多边形的外角和定理.此题比较简单,注意掌握多边形的外角和等于 360 度是关键.7.( 4 分)( 2015?铜仁市)在一次数学模拟考试中,小明所在的学习小组7 名同学的成绩分别为: 129, 136, 145, 136,148, 136, 150.则这次考试的平均数和众数分别为()A . 145, 136B. 140, 136C. 136, 148D. 136, 145考点:众数;加权平均数.分析:众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.解答:2015年中考真题解:在这一组数据中136 是出现次数最多的,故众数是136;他们的成绩的平均数为:(129+136+145+136+148+136+150)÷7=140.故选 B .点评:此题主要考查了众数以及平均数的求法,此题比较简单注意计算时要认真减少不必要的计算错误.8.( 4 分)( 2015?铜仁市)如图,在矩形11翻折,点 C 落在点 C 处, BC 交 ADABCD 中, BC=6 ,CD=3 ,将△ BCD于点 E,则线段 DE 的长为()沿对角线BDA . 3B.C. 5D.考点:翻折变换(折叠问题).分析:首先根据题意得到 BE=DE ,然后根据勾股定理得到关于线段 AB 、AE 、BE 的方程,解方程即可解决问题.解答:解:设 ED=x ,则 AE=8 ﹣x;∵四边形 ABCD 为矩形,∴AD ∥ BC ,∴∠ EDB= ∠DBC ;由题意得:∠ EBD= ∠DBC ,∴∠ EDB= ∠EBD ,∴E B=ED=x ;由勾股定理得:222BE =AB+AE ,222即 x=4 +( 8﹣ x),解得: x=5 ,∴ED=5 .故选: C.点评:本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.9.( 4 分)( 2015?铜仁市)如图,在平行四边形ABCD 中,点 E 在边1,连接 AE 交 BD 于点 F,则△ DEF 的面积与△ BAF 的面积之比为(DC上, DE : EC=3:)A . 3:4B. 9: 16C.9: 1 D .3: 1考点:相似三角形的判定与性质;平行四边形的性质.分析:可证明△ DFE∽△ BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.解答:解:∵四边形ABCD 为平行四边形,∴DC ∥ AB ,∴△ DFE ∽△ BFA ,∵DE : EC=3 : 1,∴DE : DC=1=3 :4,∴DE : AB=3 : 4,∴S△DFE: S△BFA=9: 16.故选: B.点评:本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方10.(4 分)( 2015?铜仁市)如图,在平面直角坐标系系中,直线y=k 1x+2与 x轴交于点 A ,与 y 轴交于点C,与反比例函数y=在第一象限内的图象交于点 B ,连接B0.若S△OBC=1,tan∠ BOC=,则k2的值是()A .﹣ 3B. 1C.2 D .3考点:反比例函数与一次函数的交点问题.分析:首先根据直线求得点 C 的坐标,然后根据△BOC 的面积求得 BD 的长,然后利用正切函数的定义求得 OD 的长,从而求得点 B 的坐标,求得结论.解答:解:∵直线y=k 1x+2 与 x 轴交于点 A ,与 y 轴交于点C,∴点 C 的坐标为( 0, 2),∴O C=2 ,∵S△OBC=1,∴B D=1 ,∵t an∠BOC= ,∴= ,∴O D=3 ,∴点 B 的坐标为( 1, 3),∵反比例函数y=在第一象限内的图象交于点 B ,∴k2=1 ×3=3 .故选 D .点评:本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点 B 的坐标,难度不大.二、填空题:(本题共8 个小题,每小题11.(4 分)( 2015?铜仁市) |﹣ 6.18|=4 分分,共6.18.32 分)考点:绝对值.分析:一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.解答:解:﹣ 6.18 的绝对值是 6.18.故答案为: 6.18.点评:此题考查绝对值问题,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.12.( 4 分)( 2015?铜仁市)定义一种新运算: x*y=,如2*1==2,则( 4*2 ) *(﹣ 1) = 0.考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出4*2=2 ,然后再根据新定义计算2* (﹣ 1)即可.解答:解: 4*2==2,2* (﹣ 1)==0.故( 4*2 ) * (﹣ 1)=0.故答案为: 0.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.13.( 4 分)( 2015?铜仁市)不等式5x﹣ 3< 3x+5 的最大整数解是3.考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:不等式的解集是x< 4,故不等式5x﹣ 3< 3x+5 的正整数解为则最大整数解为3.故答案为: 3.点评:本题考查了一元一次不等式的整数解,式应根据不等式的基本性质.1,2, 3,正确解不等式,求出解集是解答本题的关键.解不等14.( 4 分)(2015?铜仁市)已知点 P( 3,a)关于 y 轴的对称点为Q( b,2),则 ab=﹣6.考点:关于 x 轴、 y 轴对称的点的坐标.分析:根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得可得答案.解答:a=2, b=﹣ 3,进而解:∵点 P ( 3, a )关于 y 轴的对称点为 Q (b , 2),∴ a =2, b= ﹣3,∴ a b=﹣ 6, 故答案为:﹣ 6. 点评:此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律15.( 4 分)( 2015?铜仁市)已知一个菱形的两条对角线长分别为 6cm 和 8cm ,则这个菱形的面积为 24 cm 2. 考点:菱形的性质. 分析:根据菱形的面积等于两对角线乘积的一半求得其面积即可. 解答:解:∵一个菱形的两条对角线长分别为6cm 和 8cm ,∴这个菱形的面积= ×6×8=24( cm 2).故答案为: 24.点评:本题考查的是菱形的性质,熟知菱形的面积等于两对角线乘积的一半是解答此题的关键16.( 4 分)( 2015?铜仁市)小明掷一枚均匀的骰子,骰子的六个面上分别刻有5, 6 点,得到的点数为奇数的概率是.1,2,3, 4,考点:概率公式.分析:根据概率的求法,找准两点: ① 全部情况的总数; ② 符合条件的情况数目;二者的比值就是其发生的概率.解答:解:根据题意知,掷一次骰子6 个可能结果, 而奇数有 3 个,所以掷到上面为奇数的概率为.故答案为:.点评:本题考查概率的求法: 如果一个事件有 n 种可能, 而且这些事件的可能性相同,出现 m 种结果,那么事件A 的概率 P (A )=.其中事件A2015 年中考真题17.( 4 分)( 2015?铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD ,过点 B 作 BF∥ DE交AE的延长线于点F.若BF=10 ,则AB的长为8.考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点 D 是 AB 的中点, BF∥ DE 可知 DE 是△ ABF 的中位线,故可得出DE 的长,根据CE= CD 可得出 CD 的长,再根据直角三角形的性质即可得出结论.解答:解:∵点 D 是 AB 的中点, BF ∥ DE,∴DE 是△ ABF 的中位线.∵B F=10 ,∴D E= BF=5 .∵CE= CD ,∴CD=5 ,解得 CD=4 .∵△ ABC 是直角三角形,∴A B=2CD=8 .故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.2015 年中考真题18.( 4 分)( 2015?铜仁市)请看杨辉三角( 1),并观察下列等式(2):根据前面各式的规律,则(66542 3 32456.a+b)= a +6a b+15a b +20a b +15a b +6ab +b考点:完全平方公式;规律型:数字的变化类.分析:a+b)6的展开式为通过观察可以看出( 6 次 7 项式, a 的次数按降幂排列, b 的次数按升幂排列,各项系数分别为1、 6、 15、 20、 15、 6、 1.解答:665 4 233 2 456解:( a+b) =a +6a b+15a b +20a b +15a b +6ab +b故本题答案为:6542332456 a +6a b+15a b +20a b +15a b +6ab +b点评:此题考查数字的规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.二、解答题:(本题共 4 个小题,第19 题每小题20 分,第 20、 21、 22 题每小题20 分,共40分,要有解题的主要过程)19.( 20 分)( 2015?铜仁市)( 1)﹣÷|﹣ 2 ×sin45°|+(﹣﹣14× ))÷(﹣ 1(2)先化简(+)×,然后选择一个你喜欢的数代入求值.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.分析:(1)分别根据数的开方法则、特殊角的三角函数值、负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.解答:解:( 1)原式 =﹣ 2÷|2×|﹣ 2÷(﹣)=﹣2÷2﹣ 2×(﹣ 2)=﹣1+4=3;(2)原式 =?2015 年中考真题=?=,当x=1 时,原式 =1 .点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.( 10 分)( 2015?铜仁市)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于 1 小时,为了了解学生参加体育锻炼的情况,抽样调查了900 名学生每天参加体育锻炼的时间,并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为 1 小时的频数分布直方图.(2)求这次调查参加体育锻炼时间为 1.5 小时的人数.(3)这次调查参加体育锻炼时间的中位数是多少?考点:频数(率)分布直方图;扇形统计图;中位数.分析:(1)根据时间是 2 小时的有 90 人,占 10%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是 1 小时的一组的人数,即可作出直方图;(2)总数减去其它各组的人数即可求解;(3)根据中位数的定义就是大小处于中间位置的数,据此即可求解.解答:解:( 1)调查的总人数是好:90÷10%=900 (人),锻炼时间是 1 小时的人数是:900×40%=460(人).;(2)这次调查参加体育锻炼时间为1.5 小时的人数是: 900﹣ 270﹣360﹣ 90=180(人);(3)锻炼的中位数是: 1 小时.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.( 10 分)( 2015?铜仁市)已知,如图,点 D 在等边三角形ABC 的边 AB 上,点 F 在边AC 上,连接DF 并延长交BC 的延长线于点E, EF=FD .求证: AD=CE .考点:全等三角形的判定与性质;等边三角形的判定与性质.专题:证明题.分析:作DG∥ BC 交 AC 于 G,先证明△ DFG ≌△ EFC,得出 GD=CE ,再证明△ ADG 是等边三角形,得出 AD=GD ,即可得出结论.解答:证明:作 DG ∥ BC 交 AC 于 G,如图所示:则∠ DGF= ∠ ECF,在△ DFG 和△ EFC 中,,∴△ DFG ≌△ EFC( AAS ),∴GD=CE ,∵△ ABC 是等边三角形,∴∠ A= ∠ B= ∠ ACB=60 °,∵DG ∥ BC ,∴∠ ADG= ∠ B,∠ AGD= ∠ ACB ,∴∠ A= ∠ ADG= ∠ AGD ,∴△ ADG 是等边三角形,∴AD=GD ,∴AD=CE .点评:本题考查了全等三角形的判定与性质、等边三角形的判定与性质;熟练掌握等边三角形的判定与性质,并能进行推理论证是解决问题的关键.22.( 2015?铜仁市)如图,一艘轮船航行到 B 处时,测得小岛 A 在船的北偏东60°的方向,轮船从 B 处继续向正东方向航行 200 海里到达 C 处时,测得小岛 A 在船的北偏东 30°的方向.己知在小岛周围 170 海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)考点:解直角三角形的应用-方向角问题.分析:如图,直角△ ACD 和直角△ ABD 有公共边 AD ,在两个直角三角形中,利用三角函数即可用 AD 表示出 CD 与 BD ,根据 CB=BD ﹣ CD 即可列方程,从而求得AD 的长,与 170 海里比较,确定轮船继续向前行驶,有无触礁危险.解答:解:该轮船不改变航向继续前行,没有触礁危险理由如下:如图所示.则有∠ ABD=30 °,∠ ACD=60 °.∴∠ CAB= ∠ ABD ,∴BC=AC=200 海里.在 Rt△ ACD 中,设 CD=x 海里,则 AC=2x , AD=== x,在 Rt△ ABD 中, AB=2AD=2x,BD===3x,又∵ BD=BC+CD ,∴3x=200+x ,∴x=100 .∴AD=x=100≈173.2,∵173.2 海里> 170 海里,∴轮船不改变航向继续向前行使,轮船无触礁的危险.点评:本题主要考查了三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.四、解答题(共 1 小题,满分12 分)23.( 12 分)( 2015?铜仁市) 2015 年 5 月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20 件帐篷,且甲种货车装运1000 件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490 件,用甲、乙两种汽车共16 辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50 件,其它装满,求甲、乙两种汽车各有多少辆?考点:分式方程的应用;二元一次方程组的应用.分析:(1)可设甲种货车每辆车可装x 件帐蓬,乙种货车每辆车可装y 件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20 件帐篷;②甲种货车装运1000 件帐篷所用车辆与乙种货车装运800 件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z 辆,乙种汽车有(16﹣ z)辆,根据等量关系:这批帐篷有1490 件,列出方程求解即可.解答:解:( 1)设甲种货车每辆车可装x 件帐蓬,乙种货车每辆车可装y 件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100 件帐蓬,乙种货车每辆车可装80 件帐蓬;(2)设甲种汽车有z 辆,乙种汽车有(16﹣ z)辆,依题意有100z+80( 16﹣ z﹣ 1)+50=1490 ,解得 z=6,16﹣ z=16﹣ 6=10.故甲种汽车有 6 辆,乙种汽车有10 辆.点评:考查了分式方程的应用和二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出 2 个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.五、解答题(共 1 小题,满分12 分)24.( 12 分)(2015?铜仁市)如图,已知三角形 ABC 的边 AB 是⊙ 0 的切线,切点为 B .AC 经过圆心 0 并与圆相交于点 D、 C,过 C 作直线 CE 丄 AB ,交 AB 的延长线于点 E.2015 年中考真题(1)求证: CB 平分∠ ACE ;(2)若 BE=3 ,CE=4 ,求⊙ O 的半径.考点:切线的性质.分析:(1)证明:如图1,连接 OB,由 AB 是⊙ 0 的切线,得到OB⊥ AB ,由于 CE 丄 AB ,的OB∥ CE,于是得到∠ 1=∠3,根据等腰三角形的性质得到∠1=∠ 2,通过等量代换得到结果.(2)如图 2,连接 BD 通过△ DBC ∽△ CBE ,得到比例式,列方程可得结果.解答:(1)证明:如图 1,连接 OB,∵AB 是⊙ 0 的切线,∴OB ⊥ AB ,∵CE 丄 AB ,∴OB ∥ CE,∴∠ 1=∠ 3,∵OB=OC ,∴∠ 1=∠ 2,∴∠ 2=∠ 3,∴CB 平分∠ ACE ;(2)如图 2,连接 BD ,∵CE 丄 AB ,∴∠ E=90°,∴BC===5,∵CD 是⊙ O 的直径,∴∠ DBC=90 °,∴∠ E=∠DBC ,∴△ DBC ∽△ CBE ,∴,2∴BC =CD ?CE,∴CD==,∴OC==,。
贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×1083.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.167.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1 10.(4.00分)计算+++++……+的值为()A. B. C.D.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=.12.(4.00分)因式分解:a3﹣ab2=.13.(4.00分)一元一次不等式组的解集为.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=°.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为.三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000=1.17×107.故选:A.3.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.【分析】根据题意和题目中的数据可以求得点数为奇数的概率.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.7.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.8.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.(4.00分)计算+++++……+的值为()A. B. C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=﹣9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912.(4.00分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).13.(4.00分)一元一次不等式组的解集为x>﹣1.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,由①得:x>﹣1,由②得:x>﹣2,所以不等式组的解集为:x>﹣1.故答案为x>﹣1.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=150°.【分析】两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.【解答】解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°﹣∠4﹣∠5=30°,∴∠3=180°﹣∠6=150°,故答案为:150.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6.【分析】根据题目中的数据可以求得相应的平均数,从而可以求得相应的方差,本题得以解决.【解答】解:,∴=6,故答案为:6.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=4.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.【分析】由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE、∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.【解答】解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为(﹣1,﹣2)或(2,1).【分析】由三角形三边关系知|PA﹣PB|≥AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(1,0)、B(0,﹣1)代入,得:,解得:,∴直线AB的解析式为y=x﹣1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(﹣1,﹣2)或(2,1),故答案为:(﹣1,﹣2)或(2,1).三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.【分析】(1)先计算立方根、代入三角函数值、计算零指数幂和负整数指数幂,再分别计算乘法和加减运算可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=2﹣4×﹣1﹣2=2﹣2﹣1﹣2=﹣3;(2)原式=(﹣)÷=•=,当x=2时,原式==2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.【分析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得.【解答】解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)【分析】根据AB和∠ADB、AB和∠ACB可以求得DB、CB的长度,根据CD=CB ﹣DB可以求出AB的长度,即可解题.【解答】解:在Rt△ADB中,DB==AB,Rt△ACB中,CB==AB,∵CD=CB﹣DB,∴AB=≈23.7(米)答:电视塔AB的高度约23.7米.四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O 交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q 坐标.【解答】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.。
贵州省铜仁市2015年初中毕业生学业(升学)统一考试数 学第Ⅰ卷一、选择题1.【答案】B【解析】根据相反数的含义,可得2015的相反数是:2015-.故选:B .【提示】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可.【考点】相反数2.【答案】D【解析】A 、应为2222+=a a a ,故本选项错误;B 、应为23522⨯=a a a ,故本选项错误;C 、应为321-=a a ,故本选项错误;D 、26()3=a a ,正确.故选:D .【提示】根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方3.【答案】C【解析】根据题意B 的纵坐标为4-,把4=-y 代入2125=-y x ,得10=±x ,∴(10,4)--A ,(10,4)-B ,∴20m =AB .即水面宽度AB 为20m .故选C .【提示】根据题意,把4=-y 直接代入解析式即可解答.【考点】二次函数的应用4.【答案】B【解析】解:∵,∴方程有两个不相等的实数根.故选B .【提示】先求出∆的值,再判断出其符号即可.【考点】根的判别式5.【答案】C【解析】解:A 、是轴对称图形,不是中心对称图形.故错误;B 、是轴对称图形,不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;D 、是轴对称图形,不是中心对称图形.故错误.故选C .【提示】根据轴对称图形与中心对称图形的概念求解.【考点】中心对称图形;轴对称图形6.【答案】D【解析】解:∵一个多边形的每一个外角都等于60︒,且多边形的外角和等于360︒,∴这个多边形的边数是:360606÷=.故选:D .【提示】由一个多边形的每一个外角都等于60︒,且多边形的外角和等于360︒,即可求得这个多边形的边数.【考点】多边形内角与外角7.【答案】B【解析】解:在这一组数据中136是出现次数最多的,故众数是136;他们的成绩的平均数为:(129136145136148136150)7140++++++÷=.故选B .【提示】众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.【考点】众数,加权平均数8.【答案】C【解析】设=ED x ,则8=-AE x ;∵四边形ABCD 为矩形,∴∥AD BC ,∴∠=∠EDB DBC ;由题意得:∠=∠EBD DBC ,∴∠=∠EDB EBD ,∴==EB ED x ;由勾股定理得:222=+BE AB AE ,即2242(8)=+-x x ,解得:5=x ,∴5=ED .故选:C .【提示】首先根据题意得到=BE DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【考点】翻折变换(折叠问题)9.【答案】B【解析】∵四边形ABCD 为平行四边形,∴∥DC AB ,∴△∽△DFE BFA ,∵:31=:DE EC ,∴:134==:DE DC ,∴:34=:DE AB ,∴9:16=△△:DFE BFA S S .选:B .【提示】可证明△∽△DFE BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.【考点】相似三角形的判定与性质;平行四边形的性质10.【答案】D【解析】∵直线12=+y k x 与x 轴交于点A ,与y 轴交于点C ,∴点C 的坐标为(0,2),∴2=OC ,∵1=△OBC S ,∴1=BD ,∵1tan 3∠=BOC ,∴13=BD OD ,∴3=OD ,∴点B 的坐标为(1,3),∵反比例函数2=k y x在第一象限内的图象交于点B ,∴2133=⨯=k .选D .【提示】首先根据直线求得点C 的坐标,然后根据△BOC 的面积求得BD 的长,然后利用正切函数的定义求得OD 的长,从而求得点B 的坐标,求得结论.【考点】反比例函数与一次函数的交点问题第Ⅱ卷二、填空题11.【答案】6.18【解析】 6.18-的绝对值是6.18.答案为:6.18.【提示】一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.【考点】绝对值12.【答案】0 【解析】4224*224+⨯==,22(1)2*(1)02+⨯--==.故(4*2)*(1)0-=.答案为:0. 【提示】先根据新定义计算出4*22=,然后再根据新定义计算2*(1)-即可.【考点】有理数的混合运算13.【答案】3【解析】不等式的解集是4<x ,故不等式5335-+<x x 的正整数解为1,2,3,则最大整数解为3.故答案为:3.【提示】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【考点】一元一次不等式的整数解14.【答案】6-【解析】∵点(3,)P a 关于y 轴的对称点为(,2)Q b ,∴2=a ,3=-b ,∴6=-ab ,故答案为:6-.【提示】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得2=a ,3=-b ,进而可得答案.【考点】关于x 轴、y 轴对称的点的坐标15.【答案】24【解析】∵一个菱形的两条对角线长分别为6cm 和8cm ,∴这个菱形的面积216824(cm )2=⨯⨯=.故答案为:24.【提示】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【考点】菱形的性质16.【答案】12【解析】根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为12.故答案为:12. 【提示】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【考点】概率公式17.【答案】8【解析】∵点D 是AB 的中点,∥B F D E,∴DE 是△ABF 的中位线.∵10=BF ,∴152==DE BF .14=CE CD ,∴554=CD ,解得4=CD .△ABC 是直角三角形,∴28==AB CD .答案为:8.【提示】先根据点D 是AB 的中点,∥BF DE 可知DE 是△ABF 的中位线,故可得出DE 的长,根据14=CE CD 可得出CD 的长,再根据直角三角形的性质即可得出结论. 【考点】三角形中位线定理,直角三角形斜边上的中线18.【答案】654233245661520156++++++a a b a b a b a b ab b【解析】6642332456()651520156+=++++++a b a a b a b a b a b ab b ,本题答案为:654233245661520156++++++a a b a b a b a b ab b .【提示】通过观察可以看出6()+a b 的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【考点】完全平方公式,规律型,数字的变化三、解答题19.【答案】(1)原式||2212()2=-÷÷-- 222(2)=-÷-⨯-14=-+3=;(2)原式22452(2)(3)++++=++x x x x x x 23(3)2(2)(3)++=++x x x x x 3(2)=+x x , 当1=x 时,原式1=.【提示】(1)分别根据数的开方法则、特殊角的三角函数值、负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.【考点】分式的化简求值,实数的运算,负整数指数幂,特殊角的三角函数值20.【答案】(1)调查的总人数是好:9010%900÷=(人),锻炼时间是1小时的人数是:90040%460⨯=(人).;(2)这次调查参加体育锻炼时间为1.5小时的人数是:90027036090180---=(人);(3)锻炼的中位数是:1小时.【提示】(1)根据时间是2小时的有90人,占10%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是1小时的一组的人数,即可作出直方图;(2)总数减去其它各组的人数即可求解;(3)根据中位数的定义就是大小处于中间位置的数,据此即可求解.【考点】频数(率)分布直方图,扇形统计图,中位数21.【答案】证明:作∥DG BC 交AC 于G ,如图所示:则∠=∠DGF ECF ,在△DFG 和△EFC 中,∠=∠⎧⎪∠=∠⎨⎪=⎩DGF ECF DFG EFC FD EF ,∴()△≌△DFG EFC AAS ,∴=GD CE ,∵△ABC 是等边三角形,∴60∠=∠=∠=︒A B ACB ,∵∥DG BC ,∴∠=∠ADG B ,∠=∠AGD ACB ,∴∠=∠=∠A ADG AGD ,∴△ADG 是等边三角形,∴=AD GD ,∴=AD CE .【提示】作∥DG BC 交AC 于G ,先证明△≌△DFG EFC ,得出=GD CE ,再证明△ADG 是等边三角形,得出=AD GD ,即可得出结论.【考点】全等三角形的判定与性质,等边三角形的判定与性质22.【答案】该轮船不改变航向继续前行,没有触礁危险理由如下:如图所示.则有30∠=︒ABD ,60∠=︒ACD .∴∠=∠CAB ABD ,∴200==BC AC 海里.在Rt △ACD 中,设=CD x 海里,则2=AC x ,===AD ,在Rt △ABD 中,2==AB AD ,3==BD x ,又∵=+BD BC CD ,∴3200=+x x ,∴100=x .∴173.2==≈AD ,∵173.2170海里>海里,∴轮船不改变航向继续向前行使,轮船无触礁的危险.【提示】如图,直角△ACD 和直角△ABD 有公共边AD ,在两个直角三角形中,利用三角函数即可用AD 表示出CD 与BD ,根据=-CB BD CD 即可列方程,从而求得AD 的长,与170海里比较,确定轮船继续向前行驶,有无触礁危险.【考点】解直角三角形的应用-方向角问题23.【答案】(1)设甲种货车每辆车可装x 件帐蓬,乙种货车每辆车可装y 件帐蓬,依题意有201000800=+⎧⎪⎨=⎪⎩x y x y ,解得10080=⎧⎨=⎩x y , 经检验,10080=⎧⎨=⎩x y 是原方程组的解. 故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z 辆,乙种汽车有(16)-z 辆,依题意有10080(161)501490+--+=z z ,解得6=z ,1616610-=-=z .故甲种汽车有6辆,乙种汽车有10辆.【提示】(1)可设甲种货车每辆车可装x 件帐蓬,乙种货车每辆车可装y 件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z 辆,乙种汽车有(16)-z 辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【考点】分式方程的应用,二元一次方程组的应用24.【答案】(1)证明:如图1,连接OB ,∵AB 是O 的切线,∴⊥OB AB ,∵丄CE AB ,∴∥OB CE ,∴13∠=∠,∵=OB OC ,∴12∠=∠,∴23∠=∠,∴CB 平分∠ACE ;(2)如图2,连接BD ,∵丄CE AB ,∴90∠=︒E ,∴5===BC ,∵CD 是O 的直径,∴90∠=︒DBC ,∴∠=∠E DBC ,∴△∽△DBC CBE , ∴=CD BC BC CE, ∴2=BC CD CE , ∴252544==CD , ∴12528==OC CD , ∴O 的半径258=.【提示】(1)证明:如图1,连接OB ,由AB 是O 的切线,得到⊥OB AB ,由于丄CE AB ,的∥O B C E ,于是得到13∠=∠,根据等腰三角形的性质得到12∠=∠,通过等量代换得到结果.(2)如图2,连接BD 通过△∽△DBC CBE ,得到比例式=CD BC BC CE,列方程可得结果. 【考点】切线的性质25.【答案】(1)把(1,0)A 和(0,3)C 代入2=++y x bx c ,103++=⎧⎨=⎩b c c 解得:4=-b ,3=c ,∴二次函数的表达式为:243=-+y x x ;(2)令0=y ,则2430-+=x x ,解得:1=x 或3=x ,∴(3,0)B ,∴=BC点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当=CP CB 时,=PC 3=+=+OP OC PC 33=-=-OP PC OC∴1(0,3+P ,2(0,3-P ;②当=PB PC 时,3==OP OB ,∴3(3,0)-P ;③当=BP BC 时,∵3==OC OB∴此时P 与O 重合,∴4(0,0)P ;综上所述,点P 的坐标为:(0,3+或(0,3-或(3,0)-或(0,0);(3)如图2,设=AM t ,由2=AB ,得2=-BM t ,则2=DN t , ∴221(2)22(1)12=⨯-⨯=-+=--+△MNB S t t t t t , 当点M 出发1秒到达D 点时,△MNB 面积最大,试求出最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【提示】(1)代入(1,0)A 和(0,3)C ,解方程组即可;(2)求出点B 的坐标,再根据勾股定理得到BC ,当△PBC 为等腰三角形时分三种情况进行讨论:①=CP CB ;②=BP BC ;③=PB PC ;(3)设=AM t 则2=DN t ,由2=AB ,得2=-BM t ,21(2)222=⨯-⨯=-+△MNB S t t t t ,运用二次函数的顶点坐标解决问题;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【考点】二次函数综合题。
秘密★启用前铜仁市2015年初中毕业生学业(升学)统一考试理科综合试卷参考答案及评分标准评分说明:1.考生如按其他方法或步骤解答,正确的,同样给分;有错的,根据错误性质,参照评分参考中相应的规定评分。
2.计算题只有最后答案而无演算过程的,不给分;只写出一般公式但未能与试题所给的具体条件联系的,不给分。
第Ⅰ卷题号 1 2 3 4 5 6 7 8 9答案 A D C B C B D C A题号10 11 12 13 14 15 16 17 18答案 B D A D C D C B A 二、填空题:(共4个小题,每空1分,共17分。
)19.(4分)(1)3 (2)45 342 (3)1∶820.(5分)(1)①②10 ③分解反应(2)①Cu+2AgNO3Cu(NO3)2+2Ag②CO + CuO Cu+ CO2(与灼热的金属氧化物如氧化铁等方程式正确的均可给分)21.(3分)(1)34.0g (2)饱和溶液(3)KNO322.(5分)(1)CH4(2)CO2(3)NaHCO3(4)H2 O或C2H5OH 或C2H6O (5)O3三.简答题(共2个小题,每问1分,每小题3分,共6分。
)23.(3分)(1)①补充人体所需的碘元素,防止患甲状腺肿大。
②腌渍疏菜、鱼、肉、蛋等食品理科综合试卷答案第1页(共6页)(合理即可给分,注意:答成工业、农业或医疗上的用途不给分)(2)隔绝空气(或氧气)或降低温度(答对其中之一即可给分)24.(3分)(1)低碳就是较低二氧化碳排放(2)空气污染、粉尘污染等(答对其中之一,合理的即可给分)(3)生石灰或熟石灰四.实验探究题(共2个小题,每空1分,共13分。
)25.(6分)(1)锥形瓶、玻璃棒(2)A 2KMnO4K2MnO4 + MnO2 + O2↑或A 2KClO 3 2KCl + 3O2↑或B 2H2 O22H2 O + O2↑(3)C CO2 + Ca(OH)2CaCO3↓+H2O26. (7分)腐蚀性(1)CO2 + 2NaOH Na2CO3+H2O (2)B (3)OH—(4)C 2NaOH+ CuSO4Cu(OH)2↓+Na2SO4(5)硝酸钾(KNO3)五、计算题(本题包括1个小题,共6分)27.(6分)(1)根据图得碳酸钙的质量为:12g—2g=10 g (1分)(2)设生成二氧化碳的质量为x g,反应消耗稀盐酸溶质质量为y g 根据方程式得:CaCO3 + 2HCl CaCl2 + H2O + CO2↑(1分) 100 73 4410 g x y (1分)解得:x =4.4g (1分)y =7.3g (1分)(3)所用稀盐酸的溶质质量分数:(1分)答:略理科综合试卷答案第2页(共6页)物理一、选择题:(本题共18个小题,每小题2分,共36分。
一、选择题1.(2015四川省遂宁市,9,4分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均亩产量为1.5x万千克.根据题意列方程为().A.B.C.D.【答案】A.【解析】相等关系:原计划种植亩数-实际种植亩数=20.由题意可得方程.注意此类题并不难,同学们出错最多的地方就是审题不清,而误选其它答案.这样可以少出错:一是要明白x 的含义,而是要区分是谁与谁的差,这样不容易不错.2.(2015四川省自贡市,3,4分)方程=0的解是 ······································()A.1或-1 B.-1 C.0 D.1【答案】D3.(2015天津市,8,3分)分式方程的解是()A.x=0B.x=3C.x=5D.x=9【答案】D4. (2015年山东省济宁市)解分式方程时,去分母后变形正确的为()A. 2+(+2)=3(-1)B. 2-+2=3(-1)C. 2-(+2)=3D. 2-(+2)=3(-1)【答案】D5.(2015贵州遵义,7,3分)若x=3是分式方程的根,则a的值是()A.5 B.-5 C.3 D.-3【答案】A【解析】解:根据方程根的意义,将x=3代入分式方程得:,即转换成关于a的一元一次方程,解得a=5,故选A.6.(2015湖南常德,7,3分)分式方程的解为()A. 1B. 2C.D. 0【答案】A二、填空题1.(2015四川省巴中市,14,3分)分式方程的解x= .【答案】4.2.(2015山东省德州市,14,4分)方程的解为x= .【答案】23.(2015湖南省长沙市,16,3分)分式方程的解为________.【答案】4.(2015四川省凉山州市,16,4分)分式方程的解是.【答案】【解析】解:方程两边乘,得;移项,合并得,故答案为.5.(2015山东省威海市16,3分)分式方程的解为.【答案】x=4.【解析】方程两边同乘以(x-3),得1-x=-1-2(x-3).解得x=4.经检验,x=4是原方程的解.6.(2015浙江省温州市,14,5分)方程的根是________.【答案】x=27.(2015江苏淮安,9,3分)方程的解是。
贵州省贵阳市2015年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】根据“异号两数相加,取 绝对值较大的加数的符号,并用较大的数的绝对值减去较小的数的绝对值”,得341-+=,故选B.【考点】有理数的加法2.【答案】D【解析】两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,图中1∠的内错角是5∠,故选D.【考点】内错角的定义3.【答案】B【解析】科学记数法是将一个数写成10⨯n a 的形式,其中110≤<a ,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零),故选B.【考点】科学记数法4.【答案】B【解析】左视图是从物体左侧看到的物体的形状,看不见的棱或母线用虚线表示,故选B.【考点】三视图5.【答案】C【解析】众数是一组数据中出现次数最多的数,在这组数据中32出现了3次,是出现次数最多的数,故众数是32,故选C.【考点】众数6.【答案】C 【解析】因为相似三角形的面积比等于相似比的平方,所以面积比224=()39=,故选C. 【考点】相似三角形的性质7.【答案】A【解析】从鱼塘随机捕捞300条鱼,其中有标记的鱼有30条,则捕到有标记的鱼的概率大约是301=30010,设鱼塘里约有鱼n 条,根据概率公式即得150110=n ,解得1500=n ,故选A. 【考点】用样本估计总体8.【答案】B【解析】由条件可知△ADF 和△CBE 已有两边对应相等,若它们全等,则需说明“第三边对应相等”即“(SSS)=AF CE ”或“两边的夹角对应相等”即“(SAS)∠=∠D B ”,故选B.【考点】全等三角形的判定9.【答案】D【解析】由图象可知当0=x 时,10=y ,220=y ,所以1l 描述的是无月租费的收费方式,2l 描述的是有月租费的收费方式,①②正确;由图象可知当500=x 时,12>y y ,所以有月租费的收费方式省钱,③正确,故选D.【考点】一次函数图象的应用10.【答案】B【解析】因为二次函数23=-++y x x 的对称轴是直线1=x ,拋物线的开口向下,所以在对称轴右侧,即1>x 时,y 随x 的增大而减小.因为当2=x 时,222233=-+⨯+=y ,所以当21≥>x 时,3≤y ,故选B.【考点】二次函数的图象和性质 第Ⅱ卷二、填空题11.【答案】102=⎧⎨=⎩,x y 【解析】原方程即122+=⎧⎨=⎩①,②,x y y 将②式代入①式得212+=x ,解得10=x ,故原方程的解是102.=⎧⎨=⎩,x y 【考点】解二元一次方程组12.【答案】2π【解析】连接AC ,因为正方形的面积是4,则正方形的边长是2,对角线=AC 因为AC 是O 的直径,所以O 的半径2==AC r O 的面积22=ππ(2)2π==r . 【考点】圆的内接正多边形的性质13.【答案】12+a 【解析】将分式的分子、分母先分解因式,然后约去相同的因式,故212(2)2==+++a a a a a a a . 【考点】分式的化简14.【答案】15【解析】因为直角三角形的两条直角边长是2和1,所以小正方形的边长是21=1-,根据勾股定理,大正方1,大正方形的面积是5=,故飞镖小正方形区域的概率1=5=小正方形的面积大正方形的面积p . 【考点】勾股定理,概率的计算15.【解析】如图,光盘的圆心经过的距离'==+OO MG BM BG ,连接OM ,ON ,OB ,'O G ,'O H ,'O B .因为BA ,BC 是O 的切线,所以1302∠=∠=︒OBM ABE ,在Rt △OBM 中,tan60===︒OM BM .因为BA ,BD 是'O 的切线,所以1602'∠=∠=︒O BC ABC ,在Rt '△O BG 中,tan 60'===︒O G BG ,所以光盘的圆心经过的距离'==+==OO MG BM BG .【考点】切线的性质,解直角三角形,动圆问题三、解答题16.【答案】解:原式2233=1-+-+x x x x2=21-x ,当2=x 时,原式22217=⨯-=x .【考点】整式的化简、求值17.【答案】(1)400,补全条形统计图(如图)(2)3600.21=75.6⨯.(3)1162500=725400⨯(人). 答:去黔灵山公园的人数大约为725人.【解析】(1)400,补全条形统计图(如图)(2)3600.21=75.6︒⨯︒.(3)1162500=725400⨯(人). 答:去黔灵山公园的人数大约为725人.【考点】统计表与条形统计图的意义,样本估计总体18.【答案】解:(1)证明:∵∥AE CD ,∥CE AB ,又∴四边形ADCE 是平行四边形,又∵90∠=︒ACB ,D 是AB 的终点∴==CD BD AD ,∴平行四边形ADCE 是菱形.(2)解:过点D 作⊥DF CE ,垂足为点F ,如图所示:DF 即为菱形ADCE 的高,∵60∠=︒B ,=CD BD ,∴△BCD 是等边三角形,∴60∠=∠=︒BDC BCD ,6==CD BC ,∵∥CE AB ,∴60∠=∠=︒DCE BDC ,又∵6==CD BC ,∴在Rt △CDF 中,sin606=︒==DF CD【解析】(1)证明:∵∥AE CD ,∥CE AB ,又∴四边形ADCE 是平行四边形,又∵90∠=︒ACB ,D 是AB 的终点∴==CD BD AD ,∴平行四边形ADCE 是菱形.(2)解:过点D 作⊥DF CE ,垂足为点F ,如图所示:DF 即为菱形ADCE 的高,∵60∠=︒B ,=CD BD ,∴△BCD 是等边三角形,∴60∠=∠=︒BDC BCD ,6==CD BC ,∵∥CE AB ,∴60∠=∠=︒DCE BDC ,又∵6==CD BC ,∴在Rt △CDF 中,sin6062=︒=⨯=DF CD【考点】菱形的判定与性质19.【答案】(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P (恰好选中小丽)13=;列表或画树状图正确;所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P (小敏,小洁)21126==. 【解析】(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P (恰好选中小丽)13=;所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P (小敏,小洁)21126==. 【考点】列表法与树状图法20.【答案】(1)在Rt △BCD 中,15∠=︒CBD ,20=BD ,∴sin15=︒CD BD ,∴ 5.2≈CD (m ).答:小华与地面的垂直距离CD 的值是5.2m.(2)在Rt △AFE 中,45∠=AEF ,∴==AF EF BC ,由(1)知,cos1519.3=︒≈BC BD (m ),∴19.3 1.6 5.226.1=++≈++=AB AF DE CD (m ).答:楼房AB 的高度是26.1m.【解析】(1)在Rt △BCD 中,15∠=︒CBD ,20=BD ,∴sin15=︒CD BD ,∴ 5.2=CD (m ).答:小华与地面的垂直距离CD 的值是5.2m ;(2)在Rt △AFE 中,∵45∠=︒AEF ,∴==AF EF BC ,由(1)知,cos1519.3=︒≈BC BD (m ),∴19.3 1.6 5.226.1=++=++=AB AF DE CD (m )答:楼房AB 的高度是26.1m .【考点】解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题21.【答案】解:设传说故事的单价为x 元,则经典著作的单价为(8)+x 元.由题意,得8000120008=+x x , 解得16=x ,经检验16=x 是原方程的解,824+=x .答:传说故事的单价为16元,经典著作的单价为24元.【解析】设传说故事的单价为x 元,则经典著作的单价为(8)+x 元. 由题意,得8000120008=+x x , 解得16=x ,经检验16=x 是原方程的解,824+=x ,答:传说故事的单价为16元,经典著作的单价为24元.【考点】四点共圆,直线与圆的位置关系及证明,分式方程的应用22.【答案】解:(1)将(2,1)A 代入=k y x中,得212=⨯=k , ∴反比例函数的表达式为2=y k, 将(2,1)A 代入=+y x m 中,得21+=m ,∴1=-m ,∴一次函数的表达式为1=-y x .(2)(1,2)--B ;当1<-x 或02<<x 时,反比例函数的值大于一次函数的值.【考点】反比例函数与一次函数的交点问题23.【答案】解:(1)∵⊥OF AB ,∴90∠=︒BOF ,∵30∠=︒B ,=FO∴6=OB ,212==AB OB .(3分)又∵AB 为⊙O 的直径,∴90∠=︒ACB , ∴162==AC AB . (2)如图,由(1)可知,12=AB ,∴6=AO ,即=AC AO ,在Rt △ACF 和Rt △AOF 中,=AE AF ,=AC AO ,∴Rt Rt △≌△ACF AOF ,∴30∠=∠=︒FAO FAC ,∴60∠=︒DOB .过点D 作⊥DG AB 于点G ,∵6=OD ,∴=DG∴162+==⨯⨯=△△△ACF OFD AOD S S S即=阴影S 【解析】(1)∵⊥OF AB ,∴90∠=︒BOF ,∵30∠=︒B ,=FO∴6=OB ,212==AB OB .(3分)又∵AB 为⊙O 的直径,∴90∠=︒ACB , ∴162==AC AB . (2)如图,由(1)可知,12=AB ,∴6=AO ,即=AC AO ,在Rt △ACF 和Rt △AOF 中,=AE AF ,=AC AO ,∴Rt Rt △≌△ACF AOF ,∴30∠=∠=︒FAO FAC ,∴60∠=︒DOB .过点D 作⊥DG AB 于点G ,∵6=OD ,∴=DG∴162+==⨯⨯=△△△ACF OFD AOD S S S即=阴影S24.【答案】(1)0>a ,240->b ac ;(2)∵直线2=x 是对称轴,(2,0)-A ,∴(6,0)B ,∵点(0,4)-C ,将A ,B ,C 的坐标分别代入2=++y ax bx c , 解得:13=a ,43=-b ,4=-c , ∴抛物线的函数表达式为214433=--y x x ; (3)存在.(i )假设存在点E 使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形,过点C 作∥CE x 轴,交抛物线于点E ,如图1,过点E 作∥EF AC ,交x 轴于点F ,则四边形ACEF 即为满足条件的平行四边形, ∵抛物线214433=--y x x 关于直线2=x 对称, ∴由抛物线的对称性可知,E 点的横坐标为4,又∵4=OC ,∴E 的纵坐标为4-,∴存在点(4,4)-E ;(ii )假设在抛物线上还存在点E ′,使得以A ,C ,F ′,E ′为顶点所组成的四边形是平行四边形,如图2,过点E ′作''∥E F AC 交x 轴于点F ′,则四边形ACF ′E ′即为满足条件的平行四边形,∴=''AC E F ,''∥AC E F ,过点E ′作'⊥E G x 轴于点G ,∵''∥AC E F ,∴∠=∠''CAO E F G ,又∵90∠=∠''=︒COA E GF ,=''AC E F ,∴''△≌△CAO E F G ,∴4'==E G CO ,∴点E ′的纵坐标是4, ∴2144433=--x x ,解得:12=+x 22=-x∴点E ′的坐标为(2)+,同理可得点E ″的坐标为(2)-.【考点】二次函数综合题25.【答案】解:(1)在折叠纸片后,3==PD PH ,∴4===AB CD MH ,90∠=∠=︒H D ,∴5=MP .(2)如图1,作点M 关于AB 的对称点M ′,连接M ′E 交AB 于点F ,则点F 即为所求,∴4='=AM AM ,过点E 作⊥EN AD ,垂足为N ,则5==ME MP ,在Rt △ENM 中,3==MN ,由''△∽△AFM NEM , 得'='M A AF M N EN ,∴1611=AF , ∴当1611=AF 时,△MEF 的周长最小. (3)如图2,由(2)知点M ′是点M 关于AB 的对称点,在EN 上截取2=ER ,连接M ′R 交AB 于点G ,再过点E 作∥EQ RG ,交AB 于点Q ,则+MG EQ 最小,∴四边形MEQG 的周长最小,∵=ER GQ ,∥ER GQ ,∴四边形MEQG 是平行四边形,∴=QE GR ,'==M R ,∵5=ME ,2=GQ ,∴四边形MEQG 的最小周长值是7+【解析】(1)在折叠纸片后,3==PD PH ,∴4===AB CD MH ,90∠=∠=︒H D ,∴5=MP .(2)如图1,作点M 关于AB 的对称点M ′,连接M ′E 交AB 于点F ,则点F 即为所求,∴4='=AM AM ,过点E 作⊥EN AD ,垂足为N ,则5==ME MP ,在Rt △ENM 中,3==MN ,由''△∽△AFM NEM , 得'='M A AF M N EN ,∴1611=AF , ∴当1611=AF 时,△MEF 的周长最小. (3)如图2,由(2)知点M ′是点M 关于AB 的对称点,在EN 上截取2=ER ,连接M ′R 交AB 于点G ,再过点E 作∥EQ RG ,交AB 于点Q ,则+MG EQ 最小,∴四边形MEQG 的周长最小,∵=ER GQ ,∥ER GQ ,∴四边形MEQG 是平行四边形,∴=QE GR ,'==M R ,∵5=ME ,2=GQ ,∴四边形MEQG 的最小周长值是7+(2)如图1,作点M 关于AB 的对称点M ′,连接M ′E 交AB 于点F ,利用两点之间线段最短可得点F 即为所求,过点E 作⊥EN AD ,垂足为N ,则4=--=AM AD MP PD ,所以4='=AM AM ,再证明5==ME MP ,接着利用勾股定理计算出3=MN ,所以11'=NM ,然后证明''△∽△AFM NEM ,则可利用相似比计算出AF ;(3)如图2,由(2)知点M′是点M 关于AB 的对称点,在EN 上截取2=ER ,连接M ′R 交AB 于点G ,再过点E 作∥EQ RG ,交AB 于点Q ,易得=QE GR ,而='GM GM ,于是+='MG QE M R ,利用两点之间线段最短可得此时+MG EQ 最小,于是四边形MEQG 的周长最小,在Rt '△M RN 中,利用勾股定理计算出'=M R MEQG 的最小周长值是7+【考点】几何变换综合题。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前浙江省杭州市2015年初中毕业升学文化考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为( )A .411.410⨯B .41.1410⨯C .51.1410⨯ D .60.11410⨯ 2.下列计算正确的是( )A .369222+=B .363222--=C .639222⨯=D .632222÷= 3.下列图形是中心对称图形的是( )AB CD4.下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=-B .11x x x x--= C .2243(2)1x x x -+=-+D .21()1x x x x÷+=+5.圆内接四边形ABCD 中,已知°70A ∠=,则C ∠=( )A .°20B .°30C .°70D .°110 6.若1k k +(k 是整数),则k =( )A .6B .7C .8D .97.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )A .5420108x -=⨯%B .5420(108)x x -=+%C .5420162x -=⨯%D .10820(54)x x -=+%8.如图是某地2月18日到23日 2.5PM 浓度和空气质量指数AQI 的统计图(当AQI 不大于100时称空气质量为“优良”),由图可得下列说法:①18日的 2.5PM 浓度最低;②这六天中 2.5PM 浓度的中位数是3112μg/m ; ③这六天中有4天空气质量为“优良”; ④空气质量指数AQI 与 2.5PM 浓度有关. 其中正确的是( )A .①②③B .①②④C .①③④D .②③④9.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,( ) A .14B .25C .23D .5910.设二次函数112()()y a x x x x =--12(0,)a x x ≠≠的图象与一次函数2(y dx e d =+≠0)的图象交于点1(,0)x ,若函数12y y y =+的图象与x 轴仅有一个交点,则 ( )A .12()a x x d -=B .21()a x x d -=C .212()a x x d -=D .212()a x x d +=第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.数据1,2,3,5,5的众数是 ,平均数是 . 12.分解因式:34m n mn -= .13.函数221y x x =++,当0y =时,x = ;当12x <<时,y 随x 的增大而 (填写“增大”或“减小”).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)14.如图,点A ,C ,F ,B 在同一直线上,CD 平分ECB ∠,FG CD ∥.若ECA ∠为α度,则GFB ∠为 度(用关于α的代数式表示).15.在平面直角坐标系中,O 为坐标原点,设点(1,)P t 在反比例函数2y x=的图象上,过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP OP =.若反比例函数ky x=的图象经过点Q ,则k = .16.如图,在四边形纸片ABCD 中,AB AC =,AD CD =,90A C ∠=∠=,150B ∠=.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD = .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州市某一天收到的厨余垃圾的统计图.厨余垃圾统计图(1)试求出m 的值;(2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(本小题满分8分)如图,在ABC △中,已知AB AC =,AD 平分BAC ∠,点M ,N 分别在AB ,AC 边上,2AM MB =,2AN NC =.求证:DM DN =.19.(本小题满分8分)如图1,O 的半径为(0)r r >,若点P '在射线OP 上,满足2OP OP r '=,则称点P '是点P 关于O 的“反演点”.如图2,O 的半径为4,点B 在O 上,60BOA ∠=,8OA =,若点A ',B '分别是点A ,B 关于O 的反演点,求A B ''的长.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)20.(本小题满分10分)设函数(1)[(1)(3)]y x k x k =--+-(k 是常数).(1)当k 取1和2时的函数1y 和2y 的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数2y 的图象向左平移4个单位,再向下平移2个单位,得到的函数3y 的图象,求函数3y 的最小值.21.(本小题满分10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(,,)a b c ()a b c ≤≤表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a b c <<的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(本小题满分12分)如图,在ABC △中()BC AC >,90ABC ∠=,点D 在AB 边上,DE AC ⊥于点E .(1)若13AD DB =,2AE =,求EC 的长; (2)设点F 在线段EC 上,点G 在射线CB 上,以F ,C ,G 为顶点的三角形与EDC △有一个锐角相等,FG 交CD 于点P .问:线段CP 可能是CFG △的高线还是中线?或两者都有可能?请说明理由.23.(本小题满分12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地.设乙行驶的时间为(h)t ,甲乙两人之间的距离为(km)y ,y 与t 的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h ;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当2030y <<时,求t 的取值范围; (3)分别求出甲、乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过4h 3与乙相遇.问丙出发后多少时间与甲相遇?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
1. (2015江苏泰州,6,3分)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是 A .1对 B .2对 C .3对 D .4对【答案】D2. (2015浙江省绍兴市,7,4分)如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS第7题【答案】D【解析】本题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形常见判定方法.由图和条件可知:AB=AD ,BC=DC ,AC 是公共边,即AC=AC ,根据三角形全等的判定方法可得这两个三角形全等的依据是“边边边”,因此,本题的正确答案为D .3. (2015义乌7,3分)如图,小敏做了一个角平分仪 ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可说明△ABC ≌△ADC ,这样就有∠QAE =∠P AE .则此两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS【答案】D(第6题图)CAFODE1. (2015江西省,第9题,3分)如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA =OB .则图中有 对全等三角形.【答案】3【解析】∵∠POE=∠POF, ∠PEO=∠PFO=90°OP=OP,∴△POE ≌△POF(AAS), 又OA=OB,∠POA=∠POB,OP=OP,∴△POA ≌△POB(AAS), ∴PA=PB,∵PE=PF, ∴Rt △PAE ≌Rt △PBF(HL). ∴图中共有3对全的三角形. 故答案为32. (2015娄底市,13,3分)已知AB=BC ,要使△ABD ≌△CBD ,还需要加一个条件,你添加的条件是 .(只需写一个,不添加辅助线)【答案】AD=CD 或∠ABD=∠CBD 【解析】解:△ABD 和△CBD 中,AB=BC ,BD=BD ,根据全等三角形的判定定理可知AD=CD 或∠ABD=∠CBD 时,两三角形全等.3. (2015湖南省永州市,15,3分)如下图,在△ABC 中,己知∠1=∠2,BE =CD ,AB =5,AE =2,则CE=__ __12FA BCE D(第15题图)【答案】CE =3.【解析】解:∵∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD .∴AD =AE =2,AB =AC =5.∴CE =AC -AE=5-2=3.三、解答题1. (2015年四川省宜宾市,18,6分)如图,AC =DC ,BC =EC ,∠ACD =∠BCE 。
实用文档X, ★,•:由編徊仁市2015 4初中毕业生学业(升学)统一考试数学试题0名:准号证弓:4#緊崛,1.5询.卩"列汽蚀心米黑色祥字艳加己的姓名项考证沛典域" <| wak Me.i-ffiwv I :.2咨他I .们必础小曜把他3对白的答案回諜吸如霄改动■脚皮擦I ?n«.住涂II 絶泠*成;5必饭用心气制8色整字笔・将挥桀皆滔符心爆 定的伯汗I , A 技建産上伟悍无趣.3. 木成把春儿8贝・湛分1 so 分.专试m 闾口。
分钟•4. 匕试结束此遇谷相啓超X 5成剧—.选择題,(本大蛇共I 。
个小艇.每小義4分.共40分> 2SK 每小88均有人、B 、C 、。
四个备选答索.其中只有一个是正确的.谱保将正琳嘗累的序号填潦在梱应的答题卡上I. 20IS 的411反肘以(3.2北省足县的仓卅断的桥携是近似的弛物绶形,建立如图所示的平面宜角坐标系.H用改的关系式为尸-土宀当水面离轿拱顶的髙度DO 是和1时,这时水面宽度AB 为CA. —20mB. 10m G Mm D. -10m I"A. 2015B. -20152.卜羽计羿止焼的站< )A. / * 疽=2a 4 C. J?-2a = l-标D ・2015B. D.4^易题库www.rmicucN4.改幻"几0"3宀4< 5 0.卜列说山14的星A, *NfEM・d以的寸却H;虬力尊,两个不相普的实數風C沒fi'cE•帆I).妇JL焼定5.诂你収祁卜帕叶图炊JM価JWl"材阁形乂兄屮3•博阳泌的炬(), •骚*A |< C Dl&ftE6.wiT-个多边幣的机个外角都珞的'•.则女个多力彩的边敬是()A. JB. 4C. 5D. 67.在次教学校拟号试屮,小明所在的孕习小级7名同学的成绩分别丸129. 136. 145.】36, 148, 156. 150.则以次考试的f均動*女数分甥为《>A. L43.B6B. I4O.J36C.门6,149D. 136.1458.血囲,在矩形ABCD中,BO6, CD=).将△BCD若对用绶BD翻折,M 落在点廿处,BC'交“于右上,则炫投DE的长为()15oA. 3B.—C. 5 D史2 第德囹9.如图'在¥幷四边形ABCD中.貞E4边DC匕DE:EC=3: I,连接AE交BD于点F,则ADEF的面机与ABAF的面枳之比为(A. 3 ; 4 B. 9: 16C. 9 : ID. 3: 110.硒• I面砌堂心叫屮,徵尸“卄2与工鮫MA由)•轴心点C・与盐例觥,=勺在第一象的的图"干曄目。
贵阳市2015年初中毕业生学业考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-3+4的结果等于()A.7 B.-7 C.1 D.-1答案:C 【解析】本题考查有理数的加法,难度较小.根据“异号两数相加,取绝对值较大的加数的符号,并用较大的数的绝对值减去较小的数的绝对值”,得-3+4=1,故选C.2.如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠5答案:D 【解析】本题考查内错角的定义,难度较小.两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,图中∠1的内错角是∠5,故选D.3.2015年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B.4 C.5 D.6答案:B 【解析】本题考查科学记数法,难度较小.科学记数法是将一个数写成a×10n的形式,其中1≤|a|<10,n为整数.当原数的绝对值大于等于10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值小于1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).64000=6.4×10n,n=5-1=4,故选B.4.如图,一个空心圆柱体,其左视图正确的是()A B C D答案:B 【解析】本题考查三视图,难度较小.左视图是从物体左侧看到的物体的形状,看不见的棱或母线用虚线表示,故选B .5.小红根据2014年4~10月本班同学去孔子学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是 ( )A .46B .42C .32D .27答案:C 【解析】本题考查众数,难度较小.众数是一组数据中出现次数最多的数,在这组数据中32出现了3次,是出现次数最多的数,故众数是32,故选C .6.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是 ( )A .2:3B .C .4:9D .8:27答案:C 【解析】本题考查相似三角形的性质,难度较小.因为相似三角形的面积比等于相似比的平方,所以面积比=,故选C .7.王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有 ( )A .1500条B .1600条C .1700条D .3000条答案:A 【解析】本题考查用样本估计总体,难度较小.从鱼塘随机捕捞300条鱼,其中有标记的鱼有30条,则捕到有标记的鱼的概率大约是,设鱼塘里约有鱼n条,根据概率公式即得,解得n=1500,故选A.8.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE答案:B 【解析】本题考查全等三角形的判定,难度较小.由条件可知△ADF和△CBE已有两边对应相等,若它们全等,则需说明“第三边对应相等”即“AF=CE(SSS)”或“两边的夹角对应相等”即“∠D=∠B(SAS)”,故选B.9.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.3答案:D 【解析】本题考查一次函数图象的应用,难度较小.由图象可知当x=0时,y1=0,y2=20,所以l1描述的是无月租费的收费方式,l2描述的是有月租费的收费方式,①②正确;由图象可知当x=500时,y1>y2,所以有月租费的收费方式省钱,③正确,故选D.10.已知二次函数y=-x2+2x+3,当x≥2时,y的取值范围是()A.y≥3 B.y≤3 C.y>3 D.y<3答案:B 【解析】本题考查二次函数的图象和性质,难度中等.因为二次函数y=-x2+2x+3的对称轴是直线x=1,抛物线的开口向下,所以在对称轴右侧,即x>1时,y随x的增大而减小.因为当x=2时,y=-22+2×2+3=3,所以当x≥2>1时,y≤3,故选B.第Ⅱ卷(非选择题共120分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)11.方程组的解为________.答案:【解析】本题考查解二元一次方程组,难度较小.原方程即将②式代入①式得x+2=12,解得x=10,故原方程组的解是12.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于__________.答案:2π【解析】本题考查圆的内接正多边形的性质,难度较小.连接AC,因为正方形的面积是4,则正方形的边长是2,对角线.因为AC是⊙O的直径,所以⊙O的半径,所以.13.分式化简的结果为________.答案:【解析】本题考查分式的化简,难度较小.将分式的分子、分母先分解因式,然后约去相同的因式,故.14.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是____________.答案:【解析】本题考查勾股定理、概率的计算,难度中等.因为直角三角形的两条直角边长是2和1,所以小正方形的边长是2-1=1,根据勾股定理,大正方形的边长是,所以小正方形的面积是1,大正方形的面积是,故飞镖投到小正方形区域的概率.15.小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是__________.答案:【解析】本题考查切线的性质、解直角三角形、动圆问题,难度中等.如图,光盘的圆心经过的距离OO′=MG=BM+BG,连接OM,ON,OB,O′G,O′H,O′B.因为BA,BC是⊙O的切线,所以,在Rt△OBM中,.因为BA,BD是⊙O′的切线,所以,在Rt△O′BG中,,所以光盘的圆心经过的距离.三、解答题(本大题共10小题,共100分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分8分)先化简,再求值:(x+1)(x-1)+x2(1-x)+x3,其中x=2.答案:本题考查整式的化简、求值,难度较小.解:原式=x2-1+x2-x3+x3(4分)=2x2-1,(6分)当x=2时,原式=2×22-1=7.(8分)17.(本小题满分10分)近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表(1)此次共调查_________人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人.答案:本题考查统计表与条形统计图的意义、样本估计总体,难度较小.解:(1)400,(2分)补全条形统计图(如图).(4分)游客人数条形统计图(2)360°×0.21=75.6°.(7分)(3)(人).答:去黔灵山公园的人数大约为725人.(10分)18.(本小题满分10分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)答案:本题考查平行四边形的性质、菱形的判定与性质、直角三角形斜边上的中线性质、等边三角形的判定与性质等,难度较小.解:(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=BD=AD,∴平行四边形ADCE是菱形.(5分)(2)如图,过点D作DF⊥CE,垂足为点F,则DF为菱形ADCE的高,(6分)∵∠B=60°,CD=BD,∴△BCD是等边三角形.∵CE∥AB,∴∠BCE=120°,∴∠DCE=60°,又∵CD=BC=6,∴在Rt△CDF中,.(10分)19.(本小题满分10分)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.答案:本题考查概率公式及用列表法或画树状图求概率,难度较小.解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以.(5分)(2)列表如下:树状图如下:列表或画树状图正确;(8分)所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以.(10分)20.(本小题满分10分)小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20 m,到达坡顶D 处.已知斜坡的坡角为15°.(以下计算结果精确到0.1 m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6 m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.答案:本题考查解直角三角形的应用,难度较小.解:(1)在Rt△BCD中,∠CBD=15°,BD=20,∴CD=BD sin15°,(3分)∴CD≈5.2(m).答:小华与地面的垂直距离CD的值是5.2 m.(5分)(2)在Rt△AFE中,∠AEF=45°,∴AF=EF=BC,由(1)知BC=BD cos15°≈19.3(m),(8分)∴AB=AF+DE+CD≈19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1 m.(10分)21.(本小题满分8分)某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?答案:本题考查分式方程在实际生活中的应用,难度较小.解:设传说故事的单价为x元,则经典著作的单价为(x+8)元.(1分)由题意得,(4分)解得x=16,(6分)经检验x=16是原方程的解,(7分)x+8=24.答:传说故事的单价为16元,经典著作的单价为24元.(8分)22.(本小题满分10分)如图,一次函数y=x+m的图象与反比例函数的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.答案:本题考查待定系数法求反比例函数解析式、一次函数解析式,根据图象比较函数值的大小,难度较小.解:(1)将A(2,1)代入中,得k=2×1=2,∴反比例函数的表达式为,(2分)将A(2,1)代入y=x+m中,得2+m=1,∴m=-1,∴一次函数的表达式为y=x-1.(4分)(2)B(-1,-2);(6分)当x<-1或0<x<2时,反比例函数的值大于一次函数的值.(10分)23.(本小题满分10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)答案:本题考查三角函数、圆周角定理、全等三角形的判定与性质、三角形面积计算等,难度中等.解:(1)OF⊥AB,∴∠BOF=90°,(1分)∵∠B=30°,,∴OB=6,AB=2OB=12.(3分)又∵AB为⊙O的直径,∴∠ACB=90°,∴.(5分)(2)如图,由(1)可知AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,AF=AF,AC=AO,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°.过点D作DG⊥AB于点G,∵OD=6,∴,(8分)∴,即.(10分)24.(本小题满分12分)如图,经过点C(0,-4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(-2,0),B两点.(1)a________0,b2-4ac________0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x 轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.答案:本题考查二次函数的图象与性质、待定系数法求抛物线解析式、平行四边形的性质、全等三角形的判定与性质、点的存在性等,考查考生的阅读理解能力、分类讨论能力、逻辑推理能力,难度较大,解:(1)>,>.(4分)(2)∵直线x=2是对称轴,A(-2,0),∴B(6,0),∵点C(0,-4),将A,B,C的坐标分别代入y=ax2+bx+c,解得,c=-4,(7分)∴抛物线的函数表达式为.(8分)(3)存在.(9分)(ⅰ)假设存在点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,如图1,过点E作EF∥AC,交x轴于点F,则四边形ACEF 即为满足条件的平行四边形,∵抛物线关于直线x=2对称,∴由抛物线的对称性可知E点的横坐标为4,又∵OC=4,∴E的纵坐标为-4,∴存在点E(4,-4).(10分)(ⅱ)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,如图2,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC∥E′F′,过点E′作E′G⊥x轴于点G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴点E′的纵坐标是4,∴,解得,∴点E′的坐标为,同理可得点E′的坐标为.(12分)25.(本小题满分12分)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG 的周长最小时,求最小周长值.(计算结果保留根号)答案:本题考查折叠的性质、作对称点求最值、相似三角形的应用、勾股定理等,考查数形结合思想,难度较大,解:(1)在折叠纸片后,PD=PH=3,AB=CD=MH=4,∠H=∠D=90°,∴MP =5.(4分)(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,(6分)∴AM=AM′=4,过点E作EN⊥AD,垂足为N,则ME=MP=5,在Rt△ENM中,,∴NM′=11,由△AFM′∽△NEM′,得,∴,∴当时,△MEF的周长最小.(8分)(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,则MG+EQ最小,∴四边形MEQG的周长最小,(10分)∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,,∵ME=5,GQ=2,∴四边形MEQG的最小周长值是.(12分)综评:本套试卷难度中等,考查方程及其应用、整式和分式的化简、圆、解直角三角形、统计以及函数等中考重要知识.对于大部分考生来说,没有思维障碍,应该比较得心应手.对于有一定灵活性的解答题,也都设置了多个问题,由易到难,让不同层次的考生都能发挥自己的水平.试题蕴含着对数学概念理解,数学方法把握、思维能力水平的考查.如第15题考查图形的平移;第25题涉及重要的数学方法,本套试卷适合前期复习后的检测.。
2015年省市中考数学试卷一、选择题:(本大题共10个小题.每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案.其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.(4分)(2015•市)2015的相反数是()A.2015 B.﹣2015 C.﹣D.2.(4分)(2015•市)下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a63.(4分)(2015•市)省县的州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m4.(4分)(2015•市)已知关于x的一元二次方程3x2+4x﹣5=0,下列说法不正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定5.(4分)(2015•市)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(4分)(2015•市)如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3B.4C.5D.67.(4分)(2015•市)在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为()A.145,136 B.140,136 C.136,148 D.136,1458.(4分)(2015•市)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.C.5D.9.(4分)(2015•市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.(4分)(2015•市)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y 轴交于点C,与反比例函数y=在第一象限的图象交于点B,连接B0.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1C.2D.3二、填空题:(本题共8个小题,每小题4分分,共32分)11.(4分)(2015•市)|﹣6.18|= .12.(4分)(2015•市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .13.(4分)(2015•市)不等式5x﹣3<3x+5的最大整数解是.14.(4分)(2015•市)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab= .15.(4分)(2015•市)已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为cm2.16.(4分)(2015•市)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.17.(4分)(2015•市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.18.(4分)(2015•市)请看辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .二、解答题:(本题共4个小题,第19题每小题20分,第20、21、22题每小题20分,共40分,要有解题的主要过程)19.(20分)(2015•市)(1)﹣÷|﹣2×sin45°|+(﹣)﹣1÷(﹣14×)(2)先化简(+)×,然后选择一个你喜欢的数代入求值.20.(10分)(2015•市)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为1小时的频数分布直方图.(2)求这次调查参加体育锻炼时间为1.5小时的人数.(3)这次调查参加体育锻炼时间的中位数是多少?21.(10分)(2015•市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.22.(2015•市)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)四、解答题(共1小题,满分12分)23.(12分)(2015•市)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?五、解答题(共1小题,满分12分)24.(12分)(2015•市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.六、解答题25.(14分)(2015•市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.2015年省市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题4分,共40分)本题每小题均有A、B、C、D 四个备选答案.其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.(4分)(2015•市)2015的相反数是()A.2015 B.﹣2015 C.﹣D.考点:相反数.分析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解答:解:根据相反数的含义,可得2015的相反数是:﹣2015.故选:B.点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(4分)(2015•市)下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=1,故本选项错误;D、(a2)3=a6,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.3.(4分)(2015•市)省县的州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m考点:二次函数的应用.分析:根据题意,把y=﹣4直接代入解析式即可解答.解答:解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.故选C.点评:本题考查了点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.4.(4分)(2015•市)已知关于x的一元二次方程3x2+4x﹣5=0,下列说法不正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定考点:根的判别式.分析:先求出△的值,再判断出其符号即可.解答:解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选B.点评:本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.5.(4分)(2015•市)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(4分)(2015•市)如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3B.4C.5D.6考点:多边形角与外角.分析:由一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,即可求得这个多边形的边数.解答:解:∵一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,∴这个多边形的边数是:360÷60=6.故选:D.点评:此题考查了多边形的外角和定理.此题比较简单,注意掌握多边形的外角和等于360度是关键.7.(4分)(2015•市)在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为()A.145,136 B.140,136 C.136,148 D.136,145考点:众数;加权平均数.分析:众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.解答:解:在这一组数据中136是出现次数最多的,故众数是136;他们的成绩的平均数为:(129+136+145+136+148+136+150)÷7=140.故选B.点评:此题主要考查了众数以及平均数的求法,此题比较简单注意计算时要认真减少不必要的计算错误.8.(4分)(2015•市)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.C.5D.考点:翻折变换(折叠问题).分析:首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.解答:解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75故选:B.点评:本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.9.(4分)(2015•市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1考点:相似三角形的判定与性质;平行四边形的性质.分析:可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.解答:解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=1=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.点评:本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.(4分)(2015•市)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y 轴交于点C,与反比例函数y=在第一象限的图象交于点B,连接B0.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1C.2D.3考点:反比例函数与一次函数的交点问题.分析:首先根据直线求得点C的坐标,然后根据△BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论.解答:解:∵直线y=kx+2与x轴交于点A,与y轴交于点C,1∴点C的坐标为(0,2),∴OC=2,∵S△OBC=1,∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限的图象交于点B,∴k2=1×3=3.故选D.点评:本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标,难度不大.二、填空题:(本题共8个小题,每小题4分分,共32分)11.(4分)(2015•市)|﹣6.18|= 6.18 .考点:绝对值.分析:一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.解答:解:﹣6.18的绝对值是6.18.故答案为:6.18.点评:此题考查绝对值问题,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.(4分)(2015•市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= 0 .考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出4*2=2,然后再根据新定义计算2*(﹣1)即可.解答:解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.故答案为:0.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号的运算.13.(4分)(2015•市)不等式5x﹣3<3x+5的最大整数解是 3 .考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:不等式的解集是x<4,故不等式5x﹣3<3x+5的正整数解为1,2,3,则最大整数解为3.故答案为:3.点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.(4分)(2015•市)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab= ﹣6 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a=2,b=﹣3,进而可得答案.解答:解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=﹣3,∴ab=﹣6,故答案为:﹣6.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.15.(4分)(2015•市)已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为24 cm2.考点:菱形的性质.分析:根据菱形的面积等于两对角线乘积的一半求得其面积即可.解答:解:∵一个菱形的两条对角线长分别为6cm和8cm,∴这个菱形的面积=×6×8=24(cm2).故答案为:24.点评:本题考查的是菱形的性质,熟知菱形的面积等于两对角线乘积的一半是解答此题的关键.16.(4分)(2015•市)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为.故答案为:.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.(4分)(2015•市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为8 .考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=C D,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.18.(4分)(2015•市)请看辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.考点:完全平方公式;规律型:数字的变化类.分析:通过观察可以看出(a+b)6的展开式为6次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.解答:解:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6故本题答案为:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6点评:此题考查数字的规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.二、解答题:(本题共4个小题,第19题每小题20分,第20、21、22题每小题20分,共40分,要有解题的主要过程)19.(20分)(2015•市)(1)﹣÷|﹣2×sin45°|+(﹣)﹣1÷(﹣14×)(2)先化简(+)×,然后选择一个你喜欢的数代入求值.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.分析:(1)分别根据数的开方法则、特殊角的三角函数值、负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:(1)原式=﹣2÷|2×|﹣2÷(﹣)=﹣2÷2﹣2×(﹣2)=﹣1+4=3;(2)原式=•=•=,当x=1时,原式=1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2015•市)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为1小时的频数分布直方图.(2)求这次调查参加体育锻炼时间为1.5小时的人数.(3)这次调查参加体育锻炼时间的中位数是多少?考点:频数(率)分布直方图;扇形统计图;中位数.分析:(1)根据时间是2小时的有90人,占10%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是1小时的一组的人数,即可作出直方图;(2)总数减去其它各组的人数即可求解;(3)根据中位数的定义就是大小处于中间位置的数,据此即可求解.解答:解:(1)调查的总人数是好:90÷10%=900(人),锻炼时间是1小时的人数是:900×40%=360(人).;(2)这次调查参加体育锻炼时间为1.5小时的人数是:900﹣270﹣360﹣90=180(人);(3)锻炼的中位数是:1小时.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2015•市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.考点:全等三角形的判定与性质;等边三角形的判定与性质.专题:证明题.分析:作DG∥BC交AC于G,先证明△DFG≌△EFC,得出GD=CE,再证明△ADG是等边三角形,得出AD=GD,即可得出结论.解答:证明:作DG∥BC交AC于G,如图所示:则∠DGF=∠ECF,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS),∴GD=CE,∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,∵DG∥BC,∴∠ADG=∠B,∠AGD=∠ACB,∴∠A=∠ADG=∠A GD,∴△ADG是等边三角形,∴AD=GD,∴AD=CE.点评:本题考查了全等三角形的判定与性质、等边三角形的判定与性质;熟练掌握等边三角形的判定与性质,并能进行推理论证是解决问题的关键.22.(2015•市)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)考点:解直角三角形的应用-方向角问题.分析:如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长,与170海里比较,确定轮船继续向前行驶,有无触礁危险.解答:解:该轮船不改变航向继续前行,没有触礁危险理由如下:如图所示.则有∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=200海里.在Rt△ACD中,设CD=x海里,则AC=2x,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=200+x,∴x=100.∴AD=x=100≈173.2,∵173.2海里>170海里,∴轮船不改变航向继续向前行使,轮船无触礁的危险.点评:本题主要考查了三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.四、解答题(共1小题,满分12分)23.(12分)(2015•市)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?考点:分式方程的应用;二元一次方程组的应用.分析:(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.解答:解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.点评:考查了分式方程的应用和二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.五、解答题(共1小题,满分12分)24.(12分)(2015•市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.考点:切线的性质.分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥A B,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.解答:(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.点评:本题考查了切线的性质,勾股定理,相似三角形的判定和性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.六、解答题25.(14分)(2015•市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.考点:二次函数综合题.分析:(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.解答:解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当PB=PC时,OP=OB=3,∴P3(0,﹣3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数,等腰三角形的性质,轴对称的性质等知识,运用数形结合、分类讨论及方程思想是解题的关键.。
2015年全国中考数学试卷解析分类汇编专题1 有理数一.选择题1.(2015•安徽, 第1题4分)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B. 2 C.﹣1D. 3 2.(2015•安徽, 第3题4分)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B. 1.62×106C. 1.62×108D.0.162×109 3.(2015•海南, 第1题3分)﹣2015的倒数是()A.﹣ B. C.﹣2015 D. 20154.(2015•海南,第6题3分)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是() A. 4 B. 5 C. 6 D. 75.(2015•鄂州, 第1题3分)﹣的倒数是()A. B. 3 C.﹣3 D.﹣6.(2015•鄂州, 第2题3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. 3.9×104 B. 3.94×104 C.39.4×103 D. 4.0×1047.(2015•大连, 第1题3分)﹣2的绝对值是()A. 2 B.﹣2 C. D.8.(2015•湖北, 第2题3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A. 3.7×106 B. 3.7×105 C.37×104 D. 3.7×1049.(2015•宜昌,第3题3分)陆地上最高处是珠穆朗玛峰顶,高出海平面8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为4m记作+4m,那么向左运动4m记作()14. (2015江苏常州第1题2分)-3的绝对值是A .3B .-3C .31D .-31 15. (2015江苏淮安第1题)2的相反数是( )A 、21B 、21- C 、2 D 、-2 16. (2015江苏连云港第1题3分)-3的相反数是( )A .3B .-3C .13D .-1317. (2015江苏连云港第3题3分)2014年连云港高票当选全国“十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约18 000元.其中“18 000”用科学记数法表示为( )A .0.18×105B .1.8×103C .1.8×104D .18×10318. (2015江苏扬州第2题3分)2015年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( )A 、71049.7⨯B 、61049.7⨯C 、6109.74⨯D 、710749.0⨯ 020、(2015年浙江省义乌市中考,1,4分)计算3)1(⨯-的结果是A. -3B. -2C. 2D. 321、(2015年浙江省义乌市中考,2,4分)据报道,2015年第一季度,义乌电商实现交易额约为26 000 000 000元,同比增长22%,将26 000 000 000用科学计数法表示为A. 2.6×1010B. 2.6×1011C. 26×1010D. 0.26×101122、(2015年浙江舟山1,3分) 计算23-的结果是【 】A. -1B. 2-C. 1D. 223、(2015年浙江舟山3,3分) 截至今年4月10日,舟山全市蓄水量为84 327000m 3,数据84 327 000用科学计数法表示为【 】A. 0.8437×108B. 8.437×107C. 8.437×108D. 8437×10324.(2015•东营,第1题3分)|﹣|的相反数是()A. B.﹣C. 3 D.﹣3A.﹣2 B. 2 C.﹣ D.27.(2015•云南,第4题3分) 2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104C. 1.758×105D.1.758×10428.(2015•山东德州,第1题3分) ||的值是()A.B.1/2 C.﹣2 D. 229.(2015•山东德州,第3题3分)2014年德州市农村中小学校含标准化工程开工学校项目356个,开工面积56.2万平方米,开式面积量创历年最高,56.2万平方米用科学记数法表示正确的是()A.5.62×104m2 B. 56.2×104m2C. 5.62×105m2D.0.562×104m2 30.(2015•山东德州,第4题3分)下列运算正确的是()A.﹣=B.b2•b3=b6C.4a﹣9a=﹣5 D.(ab2)2=a2b4 31.(2015•山东莱芜,第1题3分)﹣3的相反数是()A. 3 B.﹣3 C. D.﹣32.(2015•山东莱芜,第2题3分)将数字2.03×10﹣3化为小数是()A. 0.203 B. 0.0203 C. 0.00203 D. 0.00020333.(2015•山东莱芜,第3题3分)下列运算正确的是()A.(﹣a2)•a3=﹣a6 B. a6÷a3=a2 C. a2+a3=a5 D.(a3)2=a634.(2015•山东泰安,第1题3分)若()﹣(﹣2)=3,则括号内的数是()A.﹣1 B. 1 C. 5 D.﹣535.(2015•山东泰安,第2题3分)下列计算正确的是()A.a4+a4=a8B.(a3)4=a7C.12a6b4÷3a2b﹣2=4a4b2D.(﹣a3b)2=a6b236.(2015•山东泰安,第4题3分)地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B. 5.1×109C. 5.1×108D.0.51×10737.(2015•四川巴中,第1题3分)﹣2的倒数是()A. 2 B. 1/2 C.-1/2 D.﹣238.(2015•四川巴中,第2题3分)下列计算正确的是()A.(a3)3=a6B. a6÷a3=a2C. 2a+3b=5ab D.a2•a3=a5 39.(2015•四川巴中,第4题3分)若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A. a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 40.(2015•四川成都,第1题3分)﹣3的倒数是()A.﹣1/3 B 1/3 C.﹣3 D.341.(2015•四川成都,第3题3分)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米,用科学记数法表示为()A.126×104B. 1.26×105C. 1.26×106D.1.26×10742.(2015•四川成都,第4题3分)下列计算正确的是()A.a2+a2=a4B. a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1 43.(2015•四川成都,第7题3分)实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()A.a+b B. a﹣b C. b﹣a D.﹣a﹣b44.(2015•怀化,第1题4分)某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃ B. 10℃ C. 14℃ D.﹣14℃45.(2015•娄底,第1题3分)2015的倒数为()A.﹣2015 B. 2015 C.﹣ D.46.(2015•娄底,第2题3分)若|a﹣1|=a﹣1,则a的取值范围是() A.a≥1 B.a≤1 C. a<1 D. a>147.(2015•长沙,第3题3分)2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线每天承动力约为185000人次,则数据185000用科学记数法表示为()A. 1.85×105 B. 1.85×104 C. 1.8×105 D.18.5×104 48.(2015•本溪,第1题3分)实数﹣的相反数是()A.1/2 B.-1/2 ﹣C. 2 D.﹣249.(2015•昆明第1题,3分)﹣5的绝对值是()A.5 B.﹣5 C.1/5 D.±550.(2015•曲靖第1题,3分)﹣2的倒数是()A.﹣1/2 B.﹣2 C.1/2 D.251。
2015年贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题.每小题4分,共40分)本题每小题均有A、B、C、D 四个备选答案.其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.(4分)(2015•铜仁市)2015的相反数是()D.A.2015 B.﹣2015 C.﹣2.(4分)(2015•铜仁市)下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6 3.(4分)(2015•铜仁市)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m4.(4分)(2015•铜仁市)已知关于x的一元二次方程3x2+4x﹣5=0,下列说法不正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定5.(4分)(2015•铜仁市)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(4分)(2015•铜仁市)如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3B.4C.5D.67.(4分)(2015•铜仁市)在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为()A.145,136 B.140,136 C.136,148 D.136,1458.(4分)(2015•铜仁市)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD 翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.C.5D.9.(4分)(2015•铜仁市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.(4分)(2015•铜仁市)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接B0.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1C.2D.3二、填空题:(本题共8个小题,每小题4分分,共32分)11.(4分)(2015•铜仁市)|﹣6.18|=.12.(4分)(2015•铜仁市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)=.13.(4分)(2015•铜仁市)不等式5x﹣3<3x+5的最大整数解是.14.(4分)(2015•铜仁市)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.15.(4分)(2015•铜仁市)已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为cm2.16.(4分)(2015•铜仁市)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.17.(4分)(2015•铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.18.(4分)(2015•铜仁市)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=.二、解答题:(本题共4个小题,第19题每小题20分,第20、21、22题每小题20分,共40分,要有解题的主要过程)19.(20分)(2015•铜仁市)(1)﹣÷|﹣2×sin45°|+(﹣)﹣1÷(﹣14×)(2)先化简(+)×,然后选择一个你喜欢的数代入求值.20.(10分)(2015•铜仁市)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为1小时的频数分布直方图.(2)求这次调查参加体育锻炼时间为1.5小时的人数.(3)这次调查参加体育锻炼时间的中位数是多少?21.(10分)(2015•铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.22.(2015•铜仁市)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)四、解答题(共1小题,满分12分)23.(12分)(2015•铜仁市)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?五、解答题(共1小题,满分12分)24.(12分)(2015•铜仁市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC 经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.六、解答题25.(14分)(2015•铜仁市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.2015年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题4分,共40分)本题每小题均有A、B、C、D 四个备选答案.其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.(4分)(2015•铜仁市)2015的相反数是()D.A.2015 B.﹣2015 C.﹣考点:相反数.分析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解答:解:根据相反数的含义,可得2015的相反数是:﹣2015.故选:B.点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(4分)(2015•铜仁市)下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=1,故本选项错误;D、(a2)3=a6,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.3.(4分)(2015•铜仁市)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m考点:二次函数的应用.分析:根据题意,把y=﹣4直接代入解析式即可解答.解答:解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.故选C.点评:本题考查了点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.4.(4分)(2015•铜仁市)已知关于x的一元二次方程3x2+4x﹣5=0,下列说法不正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定考点:根的判别式.分析:先求出△的值,再判断出其符号即可.解答:解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选B.点评:本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.5.(4分)(2015•铜仁市)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(4分)(2015•铜仁市)如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3B.4C.5D.6考点:多边形内角与外角.分析:由一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,即可求得这个多边形的边数.解答:解:∵一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,∴这个多边形的边数是:360÷60=6.故选:D.点评:此题考查了多边形的外角和定理.此题比较简单,注意掌握多边形的外角和等于360度是关键.7.(4分)(2015•铜仁市)在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为()A.145,136 B.140,136 C.136,148 D.136,145考点:众数;加权平均数.分析:众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.解答:解:在这一组数据中136是出现次数最多的,故众数是136;他们的成绩的平均数为:(129+136+145+136+148+136+150)÷7=140.故选B.点评:此题主要考查了众数以及平均数的求法,此题比较简单注意计算时要认真减少不必要的计算错误.8.(4分)(2015•铜仁市)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD 翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.C.5D.考点:翻折变换(折叠问题).分析:首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.解答:解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75故选:B.点评:本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.9.(4分)(2015•铜仁市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1考点:相似三角形的判定与性质;平行四边形的性质.分析:可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.解答:解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=1=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.点评:本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.(4分)(2015•铜仁市)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接B0.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1C.2D.3考点:反比例函数与一次函数的交点问题.分析:首先根据直线求得点C的坐标,然后根据△BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论.解答:解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,∵S△OBC=1,∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k2=1×3=3.故选D.点评:本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标,难度不大.二、填空题:(本题共8个小题,每小题4分分,共32分)11.(4分)(2015•铜仁市)|﹣6.18|= 6.18.考点:绝对值.分析:一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.解答:解:﹣6.18的绝对值是6.18.故答案为:6.18.点评:此题考查绝对值问题,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.(4分)(2015•铜仁市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)=0.考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出4*2=2,然后再根据新定义计算2*(﹣1)即可.解答:解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.故答案为:0.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.13.(4分)(2015•铜仁市)不等式5x﹣3<3x+5的最大整数解是3.考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:不等式的解集是x<4,故不等式5x﹣3<3x+5的正整数解为1,2,3,则最大整数解为3.故答案为:3.点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.(4分)(2015•铜仁市)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=﹣6.考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a=2,b=﹣3,进而可得答案.解答:解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=﹣3,∴ab=﹣6,故答案为:﹣6.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.15.(4分)(2015•铜仁市)已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为24cm2.考点:菱形的性质.分析:根据菱形的面积等于两对角线乘积的一半求得其面积即可.解答:解:∵一个菱形的两条对角线长分别为6cm和8cm,∴这个菱形的面积=×6×8=24(cm2).故答案为:24.点评:本题考查的是菱形的性质,熟知菱形的面积等于两对角线乘积的一半是解答此题的关键.16.(4分)(2015•铜仁市)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为.故答案为:.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.(4分)(2015•铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为8.考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.18.(4分)(2015•铜仁市)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.考点:完全平方公式;规律型:数字的变化类.分析:通过观察可以看出(a+b)6的展开式为6次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.解答:解:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6故本题答案为:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6点评:此题考查数字的规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.二、解答题:(本题共4个小题,第19题每小题20分,第20、21、22题每小题20分,共40分,要有解题的主要过程)19.(20分)(2015•铜仁市)(1)﹣÷|﹣2×sin45°|+(﹣)﹣1÷(﹣14×)(2)先化简(+)×,然后选择一个你喜欢的数代入求值.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.分析:(1)分别根据数的开方法则、特殊角的三角函数值、负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:(1)原式=﹣2÷|2×|﹣2÷(﹣)=﹣2÷2﹣2×(﹣2)=﹣1+4=3;(2)原式=•=•=,当x=1时,原式=1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2015•铜仁市)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为1小时的频数分布直方图.(2)求这次调查参加体育锻炼时间为1.5小时的人数.(3)这次调查参加体育锻炼时间的中位数是多少?考点:频数(率)分布直方图;扇形统计图;中位数.分析:(1)根据时间是2小时的有90人,占10%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是1小时的一组的人数,即可作出直方图;(2)总数减去其它各组的人数即可求解;(3)根据中位数的定义就是大小处于中间位置的数,据此即可求解.解答:解:(1)调查的总人数是好:90÷10%=900(人),锻炼时间是1小时的人数是:900×40%=360(人).;(2)这次调查参加体育锻炼时间为1.5小时的人数是:900﹣270﹣360﹣90=180(人);(3)锻炼的中位数是:1小时.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2015•铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.考点:全等三角形的判定与性质;等边三角形的判定与性质.专题:证明题.分析:作DG∥BC交AC于G,先证明△DFG≌△EFC,得出GD=CE,再证明△ADG是等边三角形,得出AD=GD,即可得出结论.解答:证明:作DG∥BC交AC于G,如图所示:则∠DGF=∠ECF,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS),∴GD=CE,∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,∵DG∥BC,∴∠ADG=∠B,∠AGD=∠ACB,∴∠A=∠ADG=∠AGD,∴△ADG是等边三角形,∴AD=GD,∴AD=CE.点评:本题考查了全等三角形的判定与性质、等边三角形的判定与性质;熟练掌握等边三角形的判定与性质,并能进行推理论证是解决问题的关键.22.(2015•铜仁市)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)考点:解直角三角形的应用-方向角问题.分析:如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长,与170海里比较,确定轮船继续向前行驶,有无触礁危险.解答:解:该轮船不改变航向继续前行,没有触礁危险理由如下:如图所示.则有∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=200海里.在Rt△ACD中,设CD=x海里,则AC=2x,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=200+x,∴x=100.∴AD=x=100≈173.2,∵173.2海里>170海里,∴轮船不改变航向继续向前行使,轮船无触礁的危险.点评:本题主要考查了三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.四、解答题(共1小题,满分12分)23.(12分)(2015•铜仁市)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?考点:分式方程的应用;二元一次方程组的应用.分析:(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.解答:解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.点评:考查了分式方程的应用和二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.五、解答题(共1小题,满分12分)24.(12分)(2015•铜仁市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC 经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.考点:切线的性质.分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.解答:(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.点评:本题考查了切线的性质,勾股定理,相似三角形的判定和性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.六、解答题25.(14分)(2015•铜仁市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.考点:二次函数综合题.分析:(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.解答:解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当PB=PC时,OP=OB=3,∴P3(0,﹣3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数,等腰三角形的性质,轴对称的性质等知识,运用数形结合、分类讨论及方程思想是解题的关键.第21页(共21页)。