七一华源中学2014-2015学年上学期 九年级数学周练(九)(扫描版)
- 格式:doc
- 大小:3.81 MB
- 文档页数:3
2024届湖北省武汉市江岸区武汉七一华源中学九年级数学第一学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.直角三角形两直角边之和为定值,其面积与一直角边之间的函数关系大致图象是下列中的()A.B.C.D.2.如图,等边ABC的边长为8,AD是BC边上的中线,点E是AC边上的中点. 如果点P是AD上的动点,那 的最小值为()么EP CPA.4B.23C.33D.33.《朗读者》是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用.为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:平均数中位数众数方差8.58.38.18.15对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是()A.平均数B.中位数C.众数D.方差4.抛物线y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .ab <0B .a +b +2c ﹣2>0C .b 2﹣4ac <0D .2a ﹣b >05.二次函数y =ax 2+bx +c 的图象如图所示,在ab 、ac 、b 2﹣4ac ,2a +b ,a +b +c ,这五个代数式中,其值一定是正数的有( )A .1个B .2个C .3个D .4个6.两个连续奇数的积为323,求这两个数.若设较小的奇数为x ,则根据题意列出的方程正确的是( ) A .()1323+=x xB .()2323+=x xC .()2323-=x xD .()()2121323+-=x x7.二次函数y =﹣x 2+2x ﹣4,当﹣1<x <2时,y 的取值范围是( )A .﹣7<y <﹣4B .﹣7<y≤﹣3C .﹣7≤y <﹣3D .﹣4<y≤﹣38.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能 ( )A .4个B .6个C .34个D .36个 9.如图,AB 是O 的直径,CD 是O 的弦,若56ABD ∠=︒,则BCD ∠=( ).A .32︒B .34︒C .44︒D .46︒10.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A .12B .13C .14D .16 二、填空题(每小题3分,共24分) 11.若关于x 的一元二次方程21x x m 204-+-=有实数根,则m 的取值范围是___________. 12.在平面直角坐标系中,点O 为原点,抛物线22y x x c =--+与y 轴交于点P ,以OP 为一边向左作正方形OPBC ,点A 为抛物线的顶点,当ABP △是锐角三角形时,c 的取值范围是__________.13.抛物线y=(x-1)2-7的对称轴为直线_________.14.如图,AC 是矩形ABCD 的对角线,⊙O 是△ABC 的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,点F ,G 分别在AD ,BC 上,连结OG ,DG ,若OG ⊥DG ,且⊙O 的半径长为1,则BC+AB 的值______.15.如图三角形ABC 的两条高线BD ,CE 相交于点F ,已知∠ABC 等于60度,AB a ,CF=EF ,则三角形ABC 的面积为________(用含a 的代数式表示).16.已知关于x 的方程220x x m -+=有两个不相等的实数根,则m 的取值范围是________.17.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t (秒),满足关系:h=20t-5t 2,当小球达到最高点时,小球的运动时间为第_________秒时.18.点P 在线段AB 上,且BP AP AP AB=.设4AB cm =,则BP =__________cm . 三、解答题(共66分)19.(10分)解方程:(x+2)(x-5)=1. 20.(6分)已知二次函数的顶点坐标为()22-,,且其图象经过点()11-,,求此二次函数的解析式.21.(6分)如图,一次函数3y x =-+的图象与反比例函数(0)k y k x=≠在第一象限的图象交于(1,)A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式; (2)若点P 在x 轴上,且APC ∆的面积为5,求点P 的坐标.22.(8分)某品牌手机去年每台的售价y (元)与月份x 之间满足函数关系:y =﹣50x+2600,去年的月销量p (万台)与月份x 之间成一次函数关系,其中1﹣6月份的销售情况如下表: 月份(x ) 1月 2月3月 4月 5月 6月销售量(p ) 3.9万台4.0万台4.1万台 4.2万台 4.3万台 4.4万台 (1)求p 关于x 的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m 的值.23.(8分)图1和图2中的正方形ABCD 和四边形AEFG 都是正方形.(1)如图1,连接DE ,BG ,M 为线段BG 的中点,连接AM ,探究AM 与DE 的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG 绕点A 逆时针方向旋转到图2的位置,连结DE 、BG ,M 为线段BG 的中点,连结AM ,探究AM 与DE 的数量关系和位置关系,并证明你的结论.24.(8分)如图,在四边形ABCD 中,//AB CD ,AB AD =,90C ∠=︒.分别以点B ,D 为圆心,大于12BD 长为半径作弧,两弧交于点E ,作直线AE 交CD 于点F ,交BD 于点O .请回答:(1)直线AE 与线段BD 的关系是_______________.(2)若3AB =,4CD =,求BC 的长.25.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B .(1)求证:△ADF ∽△DEC ;(2)若AB=4,AD=33, AF=23, 求AE 的长.26.(10分)长城汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台. (1)设当月该型号汽车的销售量为x 辆(x≤30,且x 为正整数),实际进价为y 万元/辆,求y 与x 的函数关系式; (2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润45万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)参考答案一、选择题(每小题3分,共30分)1、A【解题分析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【题目详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y = ,以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.【题目点拨】考查了现实中的二次函数问题,考查了学生的分析、解决实际问题的能力.2、D【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【题目详解】连接BE,与AD交于点G.∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点C关于AD的对称点为点B,∴BE就是EP+CP的最小值.∴G点就是所求点,即点G与点P重合,∵等边△ABC的边长为8,E为AC的中点,∴CE=4,BE ⊥AC ,在直角△BEC 中,=∴EP+CP 的最小值为故选D.【题目点拨】此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题. 3、B【分析】根据方差、平均数、众数和中位数的定义进行判断.【题目详解】解:对9位评委所给的分数,去掉一个最高分和一个最低分后,中位数一定不发生变化.故选B .【题目点拨】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数和中位数.4、D【解题分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴在y 轴的左侧得到b >0,则可对A 选项进行判断;利用x =1时,y =2得到a +b =2﹣c ,则a +b +2c ﹣2=c <0,于是可对B 选项进行判断;利用抛物线与x 轴有2个交点可对C 选项进行判断;利用﹣1<﹣2b a<0可对D 选项进行判断. 【题目详解】∵抛物线开口向上,∴a >0,∵抛物线的对称轴在y 轴的左侧,∴a 、b 同号,即b >0,∴ab >0,故A 选项错误;∵抛物线与y 轴的交点在x 轴下方,∴c <0,∵x =1时,y =2,∴a +b +c =2,∴a +b +2c ﹣2=2+c ﹣2=c <0,故B 选项错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,故 C 选项错误;∵﹣1<﹣2b a<0, 而a >0, ∴﹣2a <﹣b ,即2a ﹣b >0,所以D 选项正确.故选:D .【题目点拨】本题主要考查二次函数解析式的系数的几何意义,掌握二次函数解析式的系数与图象的开口方向,对称轴,图象与坐标轴的交点的位置关系,是解题的关键.5、B【解题分析】试题分析:根据图象可知:a 0b 0c 0><<,,,则ab 0ac 0<<,;图象与x 轴有两个不同的交点,则24ac 0b ->;函数的对称轴小于1,即12b a-<,则2a b 0+>;根据图象可知:当x=1时,y 0<,即a b c 0++<;故本题选B .6、B【分析】根据连续奇数的关系用x 表示出另一个奇数,然后根据乘积列方程即可.【题目详解】解:根据题意:另一个奇数为:x +2∴()2323+=x x故选B .【题目点拨】此题考查的是一元二次方程的应用,掌握数字之间的关系是解决此题的关键.7、B【分析】先求出二次函数的对称轴,再根据二次函数的增减性求出最小值和最大值即可.【题目详解】解:∵y =﹣x 2+2x ﹣4,=﹣(x 2﹣2x+4)=﹣(x ﹣1)2﹣1,∴二次函数的对称轴为直线x =1,∴﹣1<x <2时,x =1取得最大值为﹣1,x =﹣1时取得最小值为﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y 的取值范围是﹣7<y≤﹣1.故选:B .【题目点拨】本题考查了二次函数与不等式,主要利用了二次函数的增减性和对称性,确定出对称轴从而判断出取得最大值和最小值的情况是解题的关键.8、B【解题分析】试题解析:∵摸到红色球的频率稳定在15%左右,∴口袋中红色球的频率为15%,故红球的个数为40×15%=6个.故选B.点睛:由频数=数据总数×频率计算即可.9、B【分析】根据AB是⊙O的直径得出∠ADB=90°,再求出∠A的度数,由圆周角定理即可推出∠BCD的度数.【题目详解】∵AB是⊙O的直径,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故选B .【题目点拨】本题考查圆周角定理及其推论,熟练掌握圆周角定理是解题的关键.10、D【解题分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【题目详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、m 9≤ 【分析】根据根的判别式可得方程21x x m 204-+-=有实数根则Δ0≥,然后列出不等式计算即可. 【题目详解】根据题意得:()221Δb 4ac 141m 204⎛⎫∴=-=--⨯⨯-≥ ⎪⎝⎭ 解得:m 9≤故答案为:m 9≤【题目点拨】本题考查的是一元二次方程的根的判别式,根据一元二次方程的根的情况确定24b ac - 与0的关系是关键.12、21c -<<-或12c <<【分析】首先由抛物线解析式求出顶点A 的坐标,然后再由对称轴可判定△AHP 为等腰直角三角形,故当ABP △是锐角三角形时,12BP <<,即可得出c 的取值范围. 【题目详解】∵22y x x c =--+∴顶点A 的坐标为()1,1c -+令PB 与对称轴相交于点H ,如图所示∴PH=AH ,即△AHP 为等腰直角三角形 ∴当ABP △是锐角三角形时,12BP <<, ∴BP=OP ,P (0,c )∴21c -<<-或12c <<故答案为21c -<<-或12c <<.【题目点拨】此题主要考查二次函数图象与几何图形的综合运用,解题关键是找出临界点直角三角形,即可得出取值范围. 13、x=1【分析】根据抛物线y=a (x-h )2+k 的对称轴是x=h 即可确定所以抛物线y=(x-1)2-7的对称轴.【题目详解】解:∵y=(x-1)2-7∴对称轴是x=1故填空答案:x=1.【题目点拨】本题主要考查了二次函数的性质,熟记二次函数的对称轴,顶点坐标是解答此题的关键.14、4+23 【分析】如图所示:设圆O 与BC 的切点为M ,连接OM .由切线的性质可知OM ⊥BC ,然后证明△OMG ≌△GCD ,得到OM=GC=3,CD=GM=BC ﹣BM ﹣GC=BC ﹣3.设AB=a ,BC=a+3,AC=3a ,从而可求得∠ACB=20°,从而得到33AB BC =,故此可求得AB=31+,则BC=3+2.求得AB+BC=4+23. 【题目详解】解:解:如图所示:设圆0与BC 的切点为M ,连接OM .∵BC 是圆O 的切线,M 为切点,∴OM ⊥BC .∴∠OMG=∠GCD=90°.由翻折的性质可知:OG=DG .∵OG ⊥GD ,∴∠OGM+∠DGC=90°.又∵∠MOG+∠OGM=90°,∴∠MOG=∠DGC .在△OMG 和△GCD 中,90OMG DCG MOG DGC OG DG ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△OMG ≌△GCD .∴OM=GC=3.CD=GM=BC-BM-GC=BC-3.∵AB=CD ,∴BC-AB=3.设AB=a ,则BC=a+3.∵圆O 是△ABC 的内切圆,∴AC=AB+BC-3r .∴AC=3a . ∴12AB AC =. ∴∠ACB=20°.∴1,23AB BC AB ==+=,∴4AB BC +=+.故答案为:4+.考点:3、三角形的内切圆与内心;3、矩形的性质;2、翻折变换(折叠问题)152 【分析】连接AF 延长AF 交BC 于G .设EF=CF=x ,连接AF 延长AF 交BC 于G .设EF=CF=x ,因为BD 、CE 是高,所以AG ⊥BC ,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt △AEF 中,由EF=x ,∠EAF=30°,可得AE =在Rt △BCE 中,由EC=2x ,∠CBE=60°可得BE =.由AE+BE=ABa =,代入12ABC S AB CE ∆=⋅⋅即可解决问题. 【题目详解】解:连接AF 延长AF 交BC 于G ,设CF =EF =x ,BD CE 、是高,AG BC ∴⊥,60ABC ∠=︒,90AGB ∠=︒,30BAG ∴∠=︒,在Rt AEF 中,EF x =,30EAF ∠=︒, 3AE x ∴=, 在Rt BCE 中,2EC x =,60CBE ∠=︒,233BE x ∴=, 2333x x a ∴+=, 35x a ∴=,235CE a =, 2112332255ABC S AB CE a a a ∆∴=⋅⋅=⋅⋅=.【题目点拨】本题考查了勾股定理,含30度角的直角三角形,掌握勾股定理和30°直角三角形是解题的关键.16、1m <【题目详解】根据题意得:△=(﹣2)2-4×m=4-4m >0, 解得m<1.故答案为m<1.【题目点拨】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.17、1【解题分析】h=10t-5t 1=-5(t-1)1+10,∵-5<0,∴函数有最大值,则当t=1时,球的高度最高.故答案为1.18、(6-【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【题目详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±∴16x =-264x =+>(舍去).故答案为:6-.【题目点拨】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.三、解答题(共66分)19、x 1=7,x 2=-2【解题分析】化为一般形式,利用因式分解法求得方程的解即可.【题目详解】解:(x+2)(x-5)=1,x 2-3x-28=0,(x-7)(x+2)=0∴x-7=0,x+2=0解得:x 1=7,x 2=-2.【题目点拨】此题考查解一元二次方程的方法,根据方程的特点,灵活选用适当的方法求得方程的解即可.20、()222y x =--【分析】根据已知顶点坐标,利用待定系数法可设二次函数的解析式为()2y a x h k =-+,代入坐标求解即可求得二次函数的解析式.【题目详解】解:因为二次函数的顶点坐标为()2,2-,所以可设二次函数的解析式为:()222y a x =--因为图象经过点(1,1),所以()21122a -=--,解得1a =,所以,所求二次函数的解析式为:()222y x =--.【题目点拨】本题考查了用待定系数法求二次函数的解析式,一般设解析式为2y ax bx c =++;当已知二次函数的顶点坐标时,可设解析式为()2y a x h k =-+;当已知二次函数图象与x 轴的两个交点坐标时,可设解析式为()12()=--y a x x x x . 21、(1)2y x= (2)P 的坐标为(2,0)-或(8,0) 【分析】(1)利用点A 在3y x =-+上求a ,进而代入反比例函数()0k y k x =≠求k 即可; (2)设(),0P x ,求得C 点的坐标,则3PC x =-,然后根据三角形面积公式列出方程,解方程即可.【题目详解】(1)把点()1,A a 代入3y x =-+,得2a =,∴()1,2A把()1,2A 代入反比例函数k y x =, ∴122k =⨯=; ∴反比例函数的表达式为2y x=; (2)∵一次函数3y x =-+的图象与x 轴交于点C ,∴()3,0C ,设(),0P x , ∴3PC x =-, ∴13252APC S x ∆=-⨯=, ∴2x =-或8x =,∴P 的坐标为()2,0-或()8,0.【题目点拨】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.22、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【题目详解】(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:3.9 24.0, k bk b+=⎧⎨+=⎩解得:0.13.8 kb=⎧⎨=⎩,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=100,p=5,1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=53(舍去),m2%=15,∴m=1,答:m的值为1.【题目点拨】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.23、(1)AM=12DE,AM⊥DE,理由详见解析;(2)AM=12DE,AM⊥DE,理由详见解析.【解题分析】试题分析:(1)AM=12DE,AM⊥DE,理由是:先证明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根据直角三角形斜边的中线的性质得AM=12BG,AM=BM,则AM=12DE,由角的关系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=12DE,AM⊥DE,理由是:作辅助线构建全等三角形,证明△MNG≌△MAB和△AGN≌△EAD可以得出结论.试题解析:(1)AM=12DE,AM⊥DE,理由是:如图1,设AM交DE于点O,∵四边形ABCD和四边形AEFG都是正方形,∴AG=AE,AD=AB,∵∠DAE=∠BAG,∴△DAE≌△BAG,∴DE=BG,∠AED=∠AGB,在Rt△ABG中,∵M为线段BG的中点,∴AM=12BG,AM=BM,∴AM=12 DE,∵AM=BM,∴∠MBA=∠MAB,∵∠AGB+∠MBA=90°,∴∠MAB+∠AED=90°,∴∠AOE=90°,即AM⊥DE;(2)AM=12DE,AM⊥DE,理由是:如图2,延长AM到N,使MN=AM,连接NG,∵MN=AM,MG=BM,∠NMG=∠BMA,∴△MNG≌△MAB,∴NG=AB,∠N=∠BAN,由(1)得:AB=AD,∴NG=AD,∵∠BAN+∠DAN=90°,∴∠N+∠DAN=90°,∴NG⊥AD,∴∠AGN+∠DAG=90°,∵∠DAG+∠DAE=∠EAG=90°,∴∠AGN=∠DAE,∵NG=AD,AG=AE,∴△AGN≌△EAD,∴AN=DE,∠N=∠ADE,∵∠N+∠DAN=90°,∴∠ADE+∠DAN=90°,∴AM⊥DE.考点:旋转的性质;正方形的性质.24、(1)AE垂直平分BD;(2)22【分析】(1)根据基本作图,可得AE垂直平分BD;(2)连接FB,由垂直平分线的性质得出FD=FB.再根据AAS证明△AOB≌△FOD,那么AB=FD=3,利用线段的和差关系求出FC,然后在直角△FBC中利用勾股定理求出BC的长.【题目详解】(1)根据作图方法可知:AE垂直平分BD;(2)如图,连接BF,∵AE垂直平分BD,∴OB=OD,∠AOB=∠FOD=90°,FD=FB,又∵AB ∥CD ,∴∠OAB=∠OFD ,在△AOB 和△FOD 中,OAB OFD AOB FOD OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△FOD (AAS ),∴AB=FD=3,∴31FB FD CF CD FD ===-=,,在Rt △BCF中,BC ===.【题目点拨】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与FD 是解题的关键.25、(1)答案见解析;(2)AF =【解题分析】试题分析:(1)△ADF 和△DEC 中,易知∠ADF=∠CED (平行线的内错角),而∠AFD 和∠C 是等角的补角,由此可判定两个三角形相似;(2)在Rt △ABE 中,由勾股定理易求得BE 的长,即可求出EC 的值;从而根据相似三角形得出的成比例线段求出AF 的长.试题解析:(1)∵四边形ABCD 是平行四边形,∴AD BC ,AB CD ,∴ADF CED ∠∠=,B C 180∠∠+=︒,∵AFE AFD 180∠∠+=︒, AFE B ∠∠=,∴AFD C ∠∠=,∴ADF DEC ∽.(2)四边形ABCD 是平行四边形,∴AD BC ,CD AB 4==,又∵AE BC ⊥,∴AE AD ⊥,在Rt ADE 中,DE 6==,∵ADF DEC ∽, ∴AD AF DE CD=,∴AF =26、(1)当0≤x≤5时,y=30;当5<x≤30时,y=﹣0.1x+30.5;(2)该月需售出15辆汽车.【解题分析】试题分析:(1)根据分段函数可以表示出当05530x x ≤≤<≤,时由销售数量与进价的关系就可以得出结论;(2)由销售利润=销售价-进价,由(1)的解析式建立方程就可以求出结论.试题解析:(1)由题意,得当05x ≤≤时y =30.当530x <≤时,y =30−0.1(x −5)=−0.1x +30.5.∴30(05)0.130.5(530)x y x x <≤⎧=⎨-+<≤⎩;(2)当05x ≤≤时,(32−30)×5=10<25,不符合题意,当530x <≤时,[32−(−0.1x +30.5)]x =45,解得:121530x x ==-,(不合题意舍去).答:该月需售出15辆汽车.。
2023―2024学年度上学期九月归纳小结九年级数学试题(2023.9.8)一、选择题(共10小题,每小题3分,共30分)1.将方程3x²+1=6x化为一元二次方程的一般形式,其中二次项系数为3,则一次项系数、常数项分别是()A.-6、1B.6、1C.6、-1D.-6、-12.已知x₁、x₂为方程.x²+3x-2=0的两根,则x₁·x₂的值是()A.-3B.3C.-2D.23.将抛物线y=2x²向上平移3个单位长度,得到的抛物线是()A.y=2x²-3B.y=2x²+3C.y=2(x-3)²D.y=2(x+3)²4.用配方法解方程x²-4x+1=0,下列配方正确的是()A.(x+2)²=3B.(x+2)²=5C.(x-2)²=3D.(x-2)²=55.关于二次函数.y=(x+1)²-3,下列说法错误的是()A.图象的开口方向向上B.函数的最小值为-3C.图象的顶点坐标为(1,-3) D.当x<-1时,y随x的增大而减小6.某品牌手机原来每部售价为1999元,经过连续两次降价后,该手机每部售价为1360元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.1999x²=1360B.1999(1-x²)=1360C.1999(1-x)²=1360D.1999(1-2x)=13607.已知二次函数.y=x²-2x+a(c为常数)的图象上有三点A(-2,y₁),B(1,y₂),C(3,y₃),则y₁,y₂,y₃的大小关系是()A.y₁<y₂<y₃B.y₁<y₃<y₂C.y₂<y₁<y₃D.y₂<y₃<y₁8.二次函数.y=x²,当一1<x<2时,y的取值范围是()A.1<y<4B.0≤y<4C.-1<y<4D.0<y<49.一个菱形两条对角线长的和是10cm,面积是12cm²,则菱形的周长为()A.2√13cm B.4√13cm C.2√37cm D.4√37cm10.我们定义:若点A在某一个函数的图象上,且点A的横纵坐标相等,我们称点A为这个函数的“好点”.若关于x的二次函数.y=ax²+tx-3t对于任意的常数t,恒有两个“好点”,则a的取值范围为()A.0<a<13B.0<a<12C.13<a<12D.12<a<1二、填空题(共6小题,每小题3分,共18分)11.若x=2是方程x²-c=0的一个根,则c的值为_____________.12.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛.设共有x个队参加比赛,则依题意可列方程为_____________.13.抛物线.y=2x²-4x+3的顶点坐标是_____________.14.设m、n是一元二次方程.x²-3x-1=0的两个根,则2m²-5m+n的值为_____________.15.二次函数y=ax²+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=12,且经过点(-1,0).下列说法:①abc>0;②-2b+c=0;③点(t−32,y1),(t+32,y2)在抛物线上,则当t>13时,y₁>y₂;④14b+c≤m(am+b)+c(m为任意实数).其中一定正确的是_____________.(填写序号)。
2015-2016学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(x+1)2=4的解是()A.x1=2,x2=﹣2 B.x1=3,x2=﹣3 C.x1=1,x2=﹣3 D.x1=1,x2=﹣22.(3分)对于抛物线y=﹣2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)3.(3分)已知一个直角三角形的两条直角边长恰好是方程x2﹣14x+48=0的两根,则此三角形的斜边长为()A.6 B.8 C.10 D.144.(3分)王刚同学在解关于x的方程x2﹣3x+c=0时,误将﹣3x看作+3x,结果解得x1=1,x2=﹣4,则原方程的解为()A.x1=﹣1,x2=﹣4 B.x1=1,x2=4 C.x1=﹣1,x2=4 D.x1=2,x2=35.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+26.(3分)某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,则有()A.500(1+x2)=720 B.500(1+x)2=720C.500(1+2x)=720 D.720(1+x)2=5007.(3分)三条笔直的公路两两相交,若要建一座仓库,使它到三条公路的距离相等,则可供选择的点有()A.1个B.2个C.3个D.4个8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列四个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0.错误的个数有()A.1个B.2个C.3个D.4个9.(3分)如图,矩形ABDC中,∠BAD的平分线交BC于E.若AB=4,AD=7,则S=()△DECA.6 B.7 C.8 D.1110.(3分)如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,BD=4,则AC的长度为()A.8 B.4C.6 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)在一次男子马拉松长跑比赛中,抽得12名选手的成绩如下(单位:分):136 140 129 180 124 154146 145 158 175 165 148则该12名选手成绩的中位数是.12.(3分)观察下列图形和所给表格中的数据后回答问题:梯形个数12345…图形周长58111417…当梯形个数为n时,这时图形的周长为.13.(3分)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.14.(3分)已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于.15.(3分)请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.16.(3分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C 的横坐标最小值为﹣3,则点D的横坐标最大值为.三、解答题(共8题,共72分)17.(8分)解方程:x2+4x=218.(8分)已知一元二次方程x2﹣3x+m=0.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根.19.(8分)某中学为了美化校园,决定在一个长是宽1.5倍的矩形空地中间修建两个全等的矩形花坛(如图所示),在空白的地带修建宽都为2米的花径,花径的面积占整个空地面积的,求这块空地的长为多少米?20.(8分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF,求证:DE=BF.21.(8分)已知二次函数y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三边.(1)当抛物线与x轴只有一个交点时,判断△ABC是什么形状;(2)当x=﹣时,该函数有最大值,判断△ABC是什么形状.22.(10分)如图,Rt△ABC中,∠C=90°,BC=a,AC=b(a<b),AB=5,a,b 是方程x2﹣(m﹣1)x+(m+4)=0的两根(1)求a,b;(2)P,Q两点分别从A,C出发,分别以每秒2个单位,1个单位的速度沿边AC,BC向终点C,B运动,(有一个点达到终点则停止运动),求经过多长时间后PQ=2?23.(10分)已知正方形ABCD中,AB=6,E为线段BC上一动点,NF⊥AE,交线段AB于F,交线段CD于N.(1)求证:AE=NF.(2)连接BD交线段AE于点M,当NF经过点M时,探究∠EAN是否为定值?若是,求其值;若不是,说明理由.(3)在(2)的条件下,连接NE,若∠BAE=30°,则S=.△AEN24.(12分)如图,已知抛物线C1:y=ax2+4ax+4a﹣5的顶点为D,与x轴相交于A、B两点(点A在点B的左边),且AB=6.(1)求抛物线C1的解析式及顶点D的坐标;(2)将直线y=﹣x沿y轴向下平移m个单位(m>0),若平移后的直线与抛物线C1相交于点M、N(点M在点N的左边),且MN=,求m的值;(3)点P是x轴正半轴上一点,将抛物线C1绕点P旋转180°后得到抛物线C2,抛物线C2的顶点为C,与x轴相交于E、F两点(点E在F的左边),当以点D、C、F为顶点的三角形是直角三角形时,求点P的坐标.2015-2016学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(x+1)2=4的解是()A.x1=2,x2=﹣2 B.x1=3,x2=﹣3 C.x1=1,x2=﹣3 D.x1=1,x2=﹣2【分析】利用直接开平方的方法解一元二次方程得出答案.【解答】解:(x+1)2=4则x+1=±2,解得:x1=﹣1+2=1,x2=﹣1﹣2=﹣3.故选:C.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.2.(3分)对于抛物线y=﹣2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)【分析】根据二次函数的图象与系数的关系及其顶点坐标进行解答即可.【解答】解:∵抛物线y=﹣2(x+5)2+3中k=﹣2<0,∴此抛物线开口向下,顶点坐标为:(﹣5,3),故选:C.【点评】本题考查的是二次函数的性质,熟知二次函数的图象与系数的关系及顶点坐标公式是解答此题的关键.3.(3分)已知一个直角三角形的两条直角边长恰好是方程x2﹣14x+48=0的两根,则此三角形的斜边长为()A.6 B.8 C.10 D.14【分析】先解方程x2﹣14x+48=0,得出两根,再利用勾股定理来求解即可.【解答】解:∵x2﹣14x+48=0,∴(x﹣6)(x﹣8)=0,∴x=6或8;∴两直角边为6和8,∴此三角形的斜边长==10,故选:C.【点评】本题考查一元二次方程的解法,用到的知识点是因式分解法和勾股定理,关键是根据方程的特点选择合适的解法.4.(3分)王刚同学在解关于x的方程x2﹣3x+c=0时,误将﹣3x看作+3x,结果解得x1=1,x2=﹣4,则原方程的解为()A.x1=﹣1,x2=﹣4 B.x1=1,x2=4 C.x1=﹣1,x2=4 D.x1=2,x2=3【分析】利用根与系数的关系求得c的值;然后利用因式分解法解原方程即可.【解答】解:依题意得关于x的方程x2+3x+c=0的两根是:x1=1,x2=﹣4.则c=1×(﹣4)=﹣4,则原方程为x2﹣3x﹣4=0,整理,得(x+1)(x﹣4)=0,解得x1=﹣1,x2=4.故选:C.【点评】本题考查了根与系数的关系.此题解得c的值是解题的关键.5.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+2【分析】根据图象向下平移减,向右平移减,可得答案.【解答】解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.【点评】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.6.(3分)某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,则有()A.500(1+x2)=720 B.500(1+x)2=720C.500(1+2x)=720 D.720(1+x)2=500【分析】由于某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,那么二、三月份分别生产500(1+x)吨、500(1+x)2,由此即可列出方程.【解答】解:依题意得500(1+x)2=720.故选:B.【点评】此题主要考查了一元二次方程的应用,是增长率的问题,解题的关键利用了增长率的公式a(1+x)2=b.7.(3分)三条笔直的公路两两相交,若要建一座仓库,使它到三条公路的距离相等,则可供选择的点有()A.1个B.2个C.3个D.4个【分析】利用角平线性质知角平分线上的点到角两边距离相等,通过三角形内心为其内切圆的圆心来解得.【解答】解:根据三条路线构成的三角形知,三角形的内心为三角形内角角平分线的交点.∵由三角形内心为该三角形内切圆的圆心,∴所以符合货物中转站到各路的距离相等.这样的点可找到一个.两外角平分线的交点,到三条公路的距离也相等,可找到三个.故选:D.【点评】本题考查角平分线性质,以及三角形内心为其内切圆的圆心解得.8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列四个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0.错误的个数有()A.1个B.2个C.3个D.4个【分析】根据对称轴方程,抛物线开口方向、与y轴交点坐标位置确定a、b、c 的负号,根据图象知x=﹣1与x=1时所对应的y的负号进行判断.【解答】解:如图所示,∵抛物线开口方向向下,∴a<0.又对称轴﹣1<x=﹣<0,∴b<0,且b>2a,则2a﹣b<0.故①正确;∵抛物线与y轴交于负半轴,∴c<0,∴abc<0.故②正确;如图所示,当x=1时,y<0,即a+b+c<0.故③正确;④如图所示,当x=﹣1时,y<0,即a﹣b+c<0.故④错误.综上所述,错误的个数是1.故选:A.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(3分)如图,矩形ABDC中,∠BAD的平分线交BC于E.若AB=4,AD=7,则S=()△DECA.6 B.7 C.8 D.11【分析】由矩形的性质得出∠BAD=∠B=∠C═90°,BC=AD=7,CD=AB=4,证明△ABE是等腰直角三角形,得出BE=AB=4,因此CE=BC﹣BE=3,S△DEC=CE•CD,即可得出结果.【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C═90°,BC=AD=7,CD=AB=4,∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴BE=AB=4,∴CE=BC﹣BE=3,∴S=CE•CD=×3×4=6;△DEC故选:A.【点评】本题考查了矩形的性质、等腰直角三角形的性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形是等腰直角三角形得出CE是解决问题的关键.10.(3分)如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,BD=4,则AC的长度为()A.8 B.4C.6 D.【分析】取AC的中点O,连接OD、OB,根据题意得到A、B、C、D四点共圆,根据圆周角定理和等腰直角三角形的性质解答即可.【解答】解:取AC的中点O,连接OD、OB,由Rt△ABC和Rt△ADC可知,A、B、C、D四点共圆,AC为圆的直径,∵∠BCD=45°,∴∠BOD=90°,又BD=4,∴OD=OB=2,∴AC=4,故选:B.【点评】本题考查的是圆周角定理、等腰直角三角形的性质,掌握90°的圆周角所对的弦是直径是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)在一次男子马拉松长跑比赛中,抽得12名选手的成绩如下(单位:分):136 140 129 180 124 154146 145 158 175 165 148则该12名选手成绩的中位数是147.【分析】题目中数据共有12个,故中位数是按从小到大排列后,第6,第7两个数的平均数作为中位数.【解答】解:把数据按从小到大排列后,这组数据的第6,第7个数分别是146,148,它们的平均数=(146+148)=147.所以中位数为147.故填147.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.12.(3分)观察下列图形和所给表格中的数据后回答问题:梯形个数12345…图形周长58111417…当梯形个数为n时,这时图形的周长为3n+2.【分析】梯形个数为1时,周长为5,梯形个数为2时,周长为5+3,梯形个数为3时,周长为5+2×3…据此可得梯形个数为n时,图形的周长.【解答】解:n=1时,图形的周长为5;n=2时,图形的周长为5+3;n=3时,图形的周长为5+2×3;…当梯形个数为n时,这时图形的周长为5+(n﹣1)×3=3n+2.故答案为:3n+2.【点评】本题考查了根据相应图形找规律;得到变化的量与n的关系及不变的量是解决本题的关键.13.(3分)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了12人.【分析】设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有169人患了流感,列方程求解.【解答】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=﹣14(舍去).平均一人传染12人.故答案为:12.【点评】本题考查理解题意的能力,关键是看到两轮传染,从而可列方程求解.14.(3分)已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于﹣2.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2,x1•x2=﹣1,然后变形+得,再把x1+x2=2,x1•x2=﹣1整体代入计算即可.【解答】解:∵x1,x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.15.(3分)请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x﹣2)2﹣1.【分析】已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.【解答】解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.【点评】此题是开放题,考查了学生的综合应用能力,解题时要注意别漏条件.已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.16.(3分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C 的横坐标最小值为﹣3,则点D的横坐标最大值为8.【分析】当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.【解答】解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D (8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故答案为:8.【点评】本题主要考查了二次函数的性质,用待定系数法求二次函数的解析式,用直接开平方法解一元二次方程等知识点,理解题意并根据已知求二次函数的解析式是解此题的关键,此题是一个比较典型的题目.三、解答题(共8题,共72分)17.(8分)解方程:x2+4x=2【分析】先将原方程化为一般式,然后再用公式法进行求解.【解答】解:将原方程化为一般式,得:x2+4x﹣2=0,因为b2﹣4ac=24,所以x==﹣2±;即x1=﹣2+,x2=﹣2﹣.【点评】用公式法解一元二次方程的一般步骤是:①把方程化为一般形式,确定a、b、c的值;②求出b2﹣4ac的值;③若b2﹣4ac≥0,则把a、b、c及b2﹣4ac的值代入一元二次方程的求根公式x=,求出x1、x2;若b2﹣4ac<0,则方程没有实数根.18.(8分)已知一元二次方程x2﹣3x+m=0.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根.【分析】(1)利用方程有两个不相等的实数根,则△>0,建立关于m的不等式,求出m的取值范围;(2)首先根据方程有两个相等的实数根求出m的值,进而解方程求出方程的根.【解答】解:(1)∵一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=9﹣4m>0,∴m<;(2)∵一元二次方程x2﹣3x+m=0有两个相等的实数根,∴△=b2﹣4ac=9﹣4m=0,∴m=;∴x2﹣3x+=0,∴x1=x2=.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.19.(8分)某中学为了美化校园,决定在一个长是宽1.5倍的矩形空地中间修建两个全等的矩形花坛(如图所示),在空白的地带修建宽都为2米的花径,花径的面积占整个空地面积的,求这块空地的长为多少米?【分析】根据题意表示出花坛的面积,进而列出一元二次方程求解即可.【解答】解:设这块空地的宽为x米,则长为1.5x,根据题意得,(1.5x﹣6)(x﹣4)=1.5x2×(1﹣),解得:x1=20,x2=(不合题意,舍去),则1.5x=30(m)答:这块空地的长为30米.【点评】本题考查了一元二次方程的应用,利用花径的面积占整个空地面积的得出等式是解题关键.20.(8分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF,求证:DE=BF.【分析】根据平行四边形性质得出∠A=∠C,AB=CD,根据全等三角形的判定得出△EAD≌△FCB,即可得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△EAD和△FCB中∴△EAD≌△FCB(SAS),∴DE=BF.【点评】本题考查了平行四边形的性质和全等三角形的判定,能求出△EAD≌△FCB是解此题的关键.21.(8分)已知二次函数y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三边.(1)当抛物线与x轴只有一个交点时,判断△ABC是什么形状;(2)当x=﹣时,该函数有最大值,判断△ABC是什么形状.【分析】(1)由题意得出△=0,得出c2+a2=b2,由勾股定理的逆定理得出△ABC 是直角三角形即可;(2)由x=﹣时函数有最大值为,可知顶点的横坐标为﹣,纵坐标为,根据顶点坐标公式列方程求解即可.【解答】解:(1)当抛物线与x轴只有一个交点时,△ABC是直角三角形;理由如下:当抛物线与x轴只有一个交点时,△=0,即(﹣2c)2﹣4×[﹣(a+b](a﹣b)=0,整理得c2+a2=b2,∴△ABC是直角三角形;(2)△ABC是等边三角形;理由如下:根据题意得:﹣=﹣,即c=时,有=,整理,得2b2﹣a2﹣2c2+ab=0,将c=代入,得a2=b2,∵a>0,b>0,∴a=b=c,即△ABC是等边三角形.【点评】本题考查了抛物线与x轴的交点特征、判别式的运用、二次函数的最值、勾股定理的逆定理、等边三角形的判定等知识;熟练掌握二次函数的综合运用是解决问题的关键,本题综合性强,难度适中.22.(10分)如图,Rt△ABC中,∠C=90°,BC=a,AC=b(a<b),AB=5,a,b 是方程x2﹣(m﹣1)x+(m+4)=0的两根(1)求a,b;(2)P,Q两点分别从A,C出发,分别以每秒2个单位,1个单位的速度沿边AC,BC向终点C,B运动,(有一个点达到终点则停止运动),求经过多长时间后PQ=2?【分析】(1)利用根与系数的关系,结合勾股定理可先求出m的值,再求得a、b即可;(2)设经过x秒后PQ=2,求得CP、CQ,利用勾股定理建立方程求得答案即可.【解答】解:(1)∵a、b是方程的x2﹣(m﹣1)x+(m+4)=0两个根,∴a+b=m﹣1,ab=m+4.又∵a2+b2=c2,∴(m﹣1)2﹣2(m+4)=52∴m=8,m=﹣4(舍去),∴原方程为x2﹣7x+12=0,解得:a=3,b=4.(2)设经过x秒后PQ=2,则CP=4﹣2x,CQ=x,由题意得(4﹣2x)2+x2=22解得:x1=,x2=2(P点到达C点,不合题意,舍去),答:设经过秒后PQ=2.【点评】此题考查一元二次方程的实际运用,一元二次方程根与系数的关系,勾股定理的运用,利用根与系数的关系求得直角三角形的边是解决问题的前提.23.(10分)已知正方形ABCD中,AB=6,E为线段BC上一动点,NF⊥AE,交线段AB于F,交线段CD于N.(1)求证:AE=NF.(2)连接BD交线段AE于点M,当NF经过点M时,探究∠EAN是否为定值?若是,求其值;若不是,说明理由.=36﹣12.(3)在(2)的条件下,连接NE,若∠BAE=30°,则S△AEN【分析】(1)如图1,作平行线构造全等三角形,由全等三角形的对应边相等证得结论;(2)如图2,作作MG⊥MD交DA的延长线于点G,证全等即可;(3)如图3,求出线段BE、DN的长度后,再求三角形的面积.【解答】(1)证明:过点N作MN∥AD,∵四边形ABCD为正方形,∴∠DAM=∠D=90°,AD=AB=BC=CD,∴∠AMN═90°,∴四边形AMND是矩形,∴MN=AD=AB,∵NF⊥AE,∴∠MNF+∠2=90°,∵∠BAE+∠1=90°,∠1=∠2,∴∠MNF=∠BAE,在△MNF与△BAE中,,∴△MNF≌△BAE(SAS),∴NF=AE;(2)解:45°.如图2,作MG⊥MD交DA的延长线于点G,∵∠GDB=45°,MG⊥MD,∴∠MGA=∠MDG=45°,MG=MD,∵∠AMN=90°,∴∠AMG=∠DMG﹣∠AMD=90°﹣∠AMD,∠NMD=∠AMN﹣∠AMD=90°﹣∠AMD,∴∠AMG=∠NMD,在△AGM与△DNM中,,∴△AGM≌△DNM(SAS),∴AM=NM,∵∠AMN=90°,∴△AMN为等腰直角三角形,∴∠MAN=45°,即∠EAN=45°;(3)解:∵∠BAE=30°,AB=6,∴BE=AB•tan30°=6×=2.如图3,将△ADN绕点A顺时针旋转75°,得到△ABK.则S△ABK =S△ADN,AN=AK,DN=BK.∵在△ADE与△ANE中,,∴△ADE≌△ANE(SAS),∴NE=KE.又∵在直角△ECN中,由勾股定理得到:NE2=CN2+CE2,∴(BE+DN)2=CN2+CE2,即(2+DN)2=(6﹣DN)2+(6﹣2)2,解得DN=12﹣6.∴S△AEN=S□ABCD﹣S△ABE﹣S△ECN﹣S△ADN,=6×6﹣×6×2﹣×(6﹣2)×(6﹣DN)﹣×6×DN,=18﹣DN,=18﹣(12﹣6),=36﹣12.故答案是:36﹣12.【点评】本题考查了四边形综合题,此题涉及到了正方形的性质,全等三角形的判定与性质,三角形的面积公式以及等腰直角三角形的判定与性质,解题的难点是作出辅助线,构建全等三角形,利用全等三角形的判定与性质求得相关角的度数、相关线段的长度.24.(12分)如图,已知抛物线C1:y=ax2+4ax+4a﹣5的顶点为D,与x轴相交于A、B两点(点A在点B的左边),且AB=6.(1)求抛物线C1的解析式及顶点D的坐标;(2)将直线y=﹣x沿y轴向下平移m个单位(m>0),若平移后的直线与抛物线C1相交于点M、N(点M在点N的左边),且MN=,求m的值;(3)点P是x轴正半轴上一点,将抛物线C1绕点P旋转180°后得到抛物线C2,抛物线C2的顶点为C,与x轴相交于E、F两点(点E在F的左边),当以点D、C、F为顶点的三角形是直角三角形时,求点P的坐标.【分析】(1)根据函数值相等的两点关于对称轴对称,可得A、B点坐标,根据待定系数法,可得函数解析式;(2)根据消元解方程组,可得5x2+23x+9m﹣25=0,根据根与系数的关系,可得(x1﹣x2)2=(x1+x2)2﹣4x1x2,根据勾股定理,可得关于m的方程,根据解方程,可得答案;(3)根据勾股定理,可得MN2=(n+2)2+(5+5)2,ME2=(n+5)2+52,NE2=(n+3﹣n)2+52=34,根据勾股定理的逆定理,可得关于n的方程,根据解方程,可得n的值,可得C点坐标.【解答】解:(1)抛物线y=a(x+2)2﹣5,得对称轴为x=﹣2.由抛物线y=a(x+2)2﹣5与x轴相交于A、B两点,且AB=6,得﹣2+3=1,即B(1,0),﹣2﹣3=﹣5,即A(﹣5,0),将A点坐标代入函数解析式,得9a﹣5=0,解得m=,抛物线的解析式y=(x+2)2﹣5,顶点D(﹣2,﹣5);(2)如图1,设MN的解析式为y=﹣x﹣m,M(x1,y1),N(x2,y2).联立MN与抛物线,得,化简,得5x2+23x+9m﹣25=0.x1+x2=﹣,x1x2=.(x1﹣x2)2=(x1+x2)2﹣4x1x2=(﹣)2﹣4×.(y1﹣y2)2=(kx1﹣kx2)2=k2(x1+x2)2=(﹣)2[(﹣)2﹣4×]由MN=,得(﹣)2﹣4×+(﹣)2[(﹣)2﹣4×]=10,化简,得180m=804,解得m=;(3)由旋转的性质,得C(n,5),F(n+3,0),P(n﹣3,0).F、A关于P点对称,得点坐标(,0).DC2=(n+2)2+(5+5)2,DF2=(n+5)2+52,CF2=(n+3﹣n)2+52=34;①当CD2+DF2=CF2时,(n+2)2+(5+5)2+(n+5)2+52=34,化简,得n2+7n+60=0,△=72﹣4×1×60=﹣191<0,方程无解;②如图2,当CD2+CF2=DF2时,(n+2)2+(5+5)2+34=(n+5)2+52,化简,得6n=88,解得n=,==,此时C点坐标为(,0);③如图3,当CF2+DF2=CD2时,(n+5)2+52+34=(n+2)2+(5+5)2,化简,得6n=20,解得n=,==,此时C点坐标为(,0).综上所述:若以点M、N、E为顶点的三角形是直角三角形时,点C的坐标(,0),(,0).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出A、B点坐标是解题关键,又利用了待定系数法求函数解析式;利用代入消元法得出5x2+23x+9m﹣45=0是解题关键,又利用了勾股定理得出关于m的方程;利用了旋转的性质,利用勾股定理得出关于n的方程是解题关键,要分类讨论,以防遗漏。
七一华源中学2014~2015学年度上学期七年级数学周练10,(1)七一华源中学2014~2015学年度上学期七年级数学周练10共一、选择题(共10小题,每小题3分,共30分)1.51的相反数是()A.-5B.5C.51D.512.下列说法:①0是最小的有理数;②相反数小于本身的数是正数;③数轴上原点两侧的数互为相反数;④两个负数比较,绝对值大的反而小,其中正确结论的个数是()A.1B.2C.3D.43.如图,数轴上A、B两点分别对应有理数a、b,则下列结论正确的是()A.a+b>0B.ab>0C.a-b>0D.|a|-|b|>04.下列方程中,以为解的是()A.2x-4=0B.2x-1=x+1C.3-4x=2x-3D.2x-1=05.国家体育场鸟巢的建筑面积达258000m2,这个数用科学记数法表示为()A.258103B.2.58105C.2.58106D.0.2581076.如图是一个正方体展开图,把展开图折叠成正方体后,你字一面相对面上的字是()A.段B.中C.国D.梦7.若一个角的余角是40,则这个角的补角的度数为()A.50B.130C.140D.908.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为()A.赚6元B.不亏不赚C.亏4元D.亏24元9.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()10.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M3处,第二次从M3跳到OM3的中点M2处,第三次从点M2跳到OM2的中点M1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为()A.21nB.121nC.1)21(nD.n21共二、填空题(本大题共6个小题,每小题3分,共18分)11.把向南走4米记作+4米,那么向北走6米可表示为__________12.若单项式75ax2y3n+1与axmy4的差仍是单项式,则m-2n=__________13.已知关于x的方程ax+4=1-2x的解恰好为方程2x -1=5d的解,则a=__________14.一艘轮船航行于甲、乙两地之间,顺水航行需用3小时,逆水航行比顺水航行要多用30分钟.已知船在静水中的速度是每小时26千米,则水流速度为每小时__________千米15.如图,是几个相同的小正方体搭成的几何体的三种试图,则搭成这个几何体的小正方体的个数是__________16.如图,AOB=90,BOC=30,OP平方AOC,OQ平方BOC,则POQ=______共三、解答题(共8题,共72分)17.(本题8分)计算与化简:(1)-14-6(-2)31-|-9+5|(2)6a2-2ab-2(3a2+21ab)18.(本题8分)解方程:(1)4-3(x-3)=x+10(2)15.01.02.0xx19.(本题8分)化简求值:已知|x-1|+(y+2)2=0,求2(3x2y-xy2)-(xy2-6x2y)+1的值20.(本题8分)如图,A、B、C、D四点不在同一直线上,读句画图(1)画射线AD(2)画直线CD(3)延长线段AB到E,使BE=21AB(4)延长线段BC,交射线AD于P21.(本题8分)(1)如图,C是线段AB的中点,点D在CB上,且AD-BD=10,求CD的长(2)如图,OC是AOB的平分线,射线OD在BOC内部,且AOD-BOD=40,求COD的度数22.(本题10分)囧(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个囧字图案(阴影部分)设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示右图中囧的面积(2)当y=21x =4时,求此时囧的面积23.(本题10分)我市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度估计小明家下月总用电量为200度,(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?(3)到下月付费时,小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?24.(本题12分)如图,已知数轴上点A表示的数为6,B是数轴上位于A左侧一点,且AB=10.动点P从点A出发,以6个单位长度/秒的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒(1)点B表示的数是__________,点P表示的数是__________(用含t的式子表示)(2)M 为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长度(3)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,动点R从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动.若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动,那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?七一中学2015-2016学年度上学期七年级数学周练(十)参考答案一、1D2B3C4D5B6D7B8C910D二、11.-6米12.-413.-314.215.616.45三、17.(1)-4(2)ab318.(1)43x(2)154x19.131222xyyx-3720.略21.(1)CD=5(2)COD=2022.(1)S=xy2400(2)39623.(1)甲种方式:,10653.0200乙种方式:8236.0)50200(56.050106-82=24(元)乙种方式较划算,省24元(2)设峰时用电x度36.0)200(56.053.0200xx170x(3)设峰时用电x度1410636.0)200(56.0xx x10024.(1)-4,6-6t(2)MN=5(3) P从A点出发到与R相遇所用时间:10(6-1)=2(s)此时点P与点Q相距(6-1)2=10从P、R相遇到P、Q相遇所用时间:10(6+1)=710点P从A点出发到停止行驶路程6(2+710)=7420。
七一华源中学2015~2016学年度九年级下学期数学周练(七)一、选择题(共10小题,每小题3分,共30分) 1.估计7的值在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间2.要使分式21x 有意义,则x 的取值范围应满足( ) A .x ≥2B .x <-2C .x ≠-2D .x ≠2 3.计算(3+x )(x -3)的结果为( ) A .3-x 2B .9+x 2C .x 2-9D .3+x 24.下列事件中,属于必然事件的是( ) A .抛一枚硬币,正面朝上B .两天内会下雨C .367人中至少有两人公历生日相同D .购买一张体育彩票中奖了 5.下列运算正确的是( ) A .x 3+2x =3x 4B .x 8+x 2=x 10C .(-x )4·x 2=x 6D .(-x 5)2=-x 10 6.如图,把线段AC 平移,使得点A 到达点B (0,2),点C 到达点D ,那么点D 的坐标是( )A .(3,1)B .(2,1)C .(4,1)D .(3,2)7.一个空心的圆柱如图,那么它的左视图是( )8.超速行驶是交通事故频发的主要原因之一,交警部门统计某日7:00~ 9:00经过高速公路某测速点的汽车的速度,得到如下频数分布折线图 ,若该路段汽车限速110 km /h ,则超速行驶的汽车有( ) A .20辆B .60辆C .70辆D .80辆9.用三个单位正方形,仅能拼出和两种不同图形(拼图时要求两个相接的单位正方形有一条边完全重合,并且各正方形不重叠).如果全等的图形算一种,那么用四个单位正方形能拼出的不同图形的种数是( ) A .4B .5C .6D .多于610.如图,△ABC 是⊙O 的一个内接三角形,AB +AC =6,E 是△ABC 的内心,AE 的延长线交O 于点D ,且OE ⊥AD .当△ABC 的形状变化时,边BC 的长( )A .有最大值4B .等于3C .有最小值3D .等于4二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:17-(-2)=__________12.根据最新年度报告,全球互联网用户达到3 200 000 000人,请将3 200 000 000用科学记数法表示__________13.一个不透明的盒子中装有5个红球、3个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是红球的概率为__________14.如图,直线a ∥b ,一块含45°角的直角三角板ABC 按如图所示放置.若∠1=66°,则∠2的度数为__________15.如图,△ABE 中,AB =AE =2,∠BAE =120°,点C 为直线AB 右侧的一动点,∠ACB =90°,线段CE 的最大值为__________16.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,点D 是平面内的一个动点,且AD =2,M 为BD 的中点.设线段CM 长度为a ,在D 点运动过中,a 的取值范围是__________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:831412xx --=-18.(本题8分)如图,点E 、F 在BC 上,BE =FC ,AB =DC ,∠B =∠C .求证:∠A =∠D19.(本题8分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表. 组别 身高(cm ) 组别 身高(cm ) A x <150 B 150≤x <155 C 155≤x <160 D 160≤x <165 E x >165根据图表中提供的信息,回答下列问题:(1) 在样本中,男生身高的中位数落在 组(填组别序号),女生身高在B 组的人数有 人(2) 在样本中,身高在150≤x <155之间的人数共有 人,身高人数最多的在 组(填组别序号)(3) 已知该校共有男生500人,女生480人,请估计身高155≤x <165之间的学生有多少人?20.(本题8分)如图,点A (1,6)和点M (m ,n )都在反比例函数y =xk (k >0)的图象上(1) 当m =3,求直线AM 的解析式(2) 当m >1时,过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,试判断直线BP 与直线AM 的位置关系,并说明理由21.(本题8分)如图,AC 为⊙O 的直径,AC =4,B 、D 分别在AC 两侧的圆上,∠BAD =60°,BD 与AC 的交点为E(1) 求∠BOD 的度数及点O 到BD 的距离 (2) 若DE =2BE ,求cos ∠OED 的值22.(本题10分)在一块□ABCD 的空地上,划一块□MNPQ 进行绿化,如图□MNPQ 的顶点在□ABCD 的边上.已知∠A =60°,∠AMN =90°,且AM =PC =x m .已知□ABCD 的边BC =20 m ,AB =a m ,a 为大于20 m 的常数,设四边形MNPQ 的面积为S m 2 (1) 求S 关于x 的函数关系式,并直接写出自变量x 的取值范围 (2) 若a =40 m ,求S 的最大值并求出此时x 的值 (3) 若a =200 m ,请直接写出S 的最大值23.(本题10分)我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1、图2、图3中,AF 、BE 是△ABC 的中线,AF ⊥BE ,垂足为P(1) 如图1,当∠ABE =45°,c =22时,a = ,b = 如图2,当∠ABE =30°,c =4时,a = ,b = (2) 请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来(3) 如图4,在ABCD 中,点E 、F 、G 分别是AD ,BC ,CD 的中点,BE ⊥EG ,AD =52,AB =3,求AF 的长24.(本题10分)如图,在平面直角坐标系xOy 中,一次函数m x y +=45(m 为常数)的图象与x 轴交于点A (-3,0),与y 轴交于点C ,以直线x =1为对称轴的抛物线y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)经过A 、C 两点,并与x 轴的正半轴交于点B (1) 求m 的值及抛物线的函数表达式(2) 是否存在抛物线上一动点Q ,使得△ACQ 是以AC 为直角边的直角三角形?若存在,求出点Q 的横坐标;若存在,请说明理由(3) 若P 是抛物线对称轴上一动点,且使△ACP 周长最小,过点P 任意作一条与y 轴不平行的直线交抛物线于M 1(x 1,y 1),M 2(x 2,y 2)两点,试问2121M M PM P M •是否为定值,如果是,请求出结果,如果不是请说明理由七一华源中学2015~2016学年度九年级下学期数学周练(七)参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCCCBCCDBB10.提示:得到基本结论:AB +AC =2BC二、填空题(共6小题,每小题3分,共18分) 11.19 12.3.2×109 13.9514.111°15.17+16.2723≤≤a 15.提示:点C 在以AB 为直径的圆上取AB 的中点O ,连接OE 、OC ∴CE ≤OC +OE16.提示:取AB 的中点O ,连接OM 、AD∴OM 为△BAD 的中位线 ∴OM =21AD =1 ∴M 在以O 为圆心,1为半径的圆上 连接OC∴OC -OM ≤a ≤OC +OM 三、解答题(共8题,共72分) 17.解:37=x 18.解:略19.解:(1) D 组,12人(2) 16人、C 组 (3) 541%)15%30(48014128421412500=+⨯++++++⨯(人)20.解:(1) y =-2x +8(2) ∵S △ABP =21×1×6=3,S △BMP =21×n ×m =21×6=3 ∴S △ABP =S △BMP∴BP ∥AM21.解:(1) ∠BOD =120°,O 到BD 的距离为1(2) 过点O 作OF ⊥BD 于F ∴OF =1,DF =BF ∵DE =2BE ∴33231==BD BE ,33=EF ,332=OE ∴cos ∠OED =OE EF=21 22.解:(1) )20(23)2(2123212310x x a x x a S -⨯-⨯⨯-⨯⨯⨯-=x a x )32023(322++-= (2) 当a =40时,3200)10(323403222+--=+-=x x x S 当x =10时,S 有最大值为3200(3) 当a =200时,31800)30(3231203222+--=+-=x x x S ∵0≤x ≤20∴当x =20时,S 有最大值为31600 23.解:(1) a =52,b =52(2) a =132,b =72前两问都需要用到AP =2PF ,BP =2PE(3) (2) 由(1)可知:设PE =x ,PB =2x ,PF =y ,P A =2y 在Rt △PEA 中,x 2+4y 2=41b 2 在Rt △PFB 中,4x 2+y 2=41a 2 在Rt △P AB 中,4x 2+4y 2=c 2 ∴a 2+b 2=5c 2(4) 取AB 的中点H ,连接FH 、EF 、AC ∴HF ∥AC ,EG ∥AC ∴EG ∥FH∴HF ⊥BE设AF 、BE 相交于点P ∵ABFE 为平行四边形 ∴P 为AF 的中点由(2)可知:AB 2+AF 2=5BF 2 ∴AF =4 24.解:(1) 415=m ,41521412++-=x x y(2) 存在 设Q (x ,41521412++-x x ) ① 当点C 为直角顶点时 ∵△ACO ∽△CQE ∴x =5.2当点A 为直角顶点时 ∵△ACO ∽△AQE ∴x =8.2综上所述:Q 点的横坐标为5.2或8.2 (3) 直线BC 的解析式为41543+-=x y ∴P (1,3)设过点P 的直线为:y =kx +3-k联立⎪⎩⎪⎨⎧++-=-+=415214132x x y kkx y ,整理得x 2+(4k -2)x -4k -3=0∴x 1+x 2=2-4k ,x 1x 2=-4k -3,y 1-y 2=k (x 1-x 2)∴)1(4)(1)()(2221222122121k x x k y y x x M M +=-+=-+-= 同理:2121)1(1-+=x k P M ,2222)1(1-+=x k P M ∴)1(4221k P M P M +=• ∴12121=•M M PM P M 为定值。
湖北省武汉市七一华源中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将一元二次方程2215x x -=化成一般式后,若二次项系数为2,则一次项系数、常数项分别为()A .1,5-B .5-,1-C .1-,5-D .5,1-2.下列数学经典图形中,是中心对称图形的是()A .B .C .D .3.己知二次函数2(2)3y x =---,下列说法正确的是()A .对称轴为直线2x =-B .顶点坐标为(2,3)C .函数的最大值是3-D .函数的最小值是3-4.解一元二次方程2240x x +-=,配方后正确的是()A .2(1)3x +=B .2(1)4x +=C .2(1)5x +=D .2(2)8x +=5.如图,将扇形PAA '围成一个圆锥,若扇形半径为18,100APA '∠=︒,则圆锥的底面半径为()A.4B.6.如图,把ABC以点AA.CAE BED∠=∠D.CE 7.如图,某小区规划在一个长使其中两条与AB平行,另一条与为112m2,设小路的宽为xmA.2x2-25x+16=0B.x 8.如图,在半径为2,圆心角为接CD,则阴影部分的面积是(A.112π-B.129.如图,点B 是圆内一个定点,且点B 到圆上最近一点的距离为2,到圆上最远一点距离为8,则经过点B 的弦MN 的长度取值范围是()A .48MN ≤≤B .610MN ≤≤C .46MN ≤≤D .810MN ≤≤10.若一个点的坐标满足(),2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,则s 的取值范围是()A .1s <-B .0s <C .01s <<D .10s -<<15.如图,抛物线2(0)y ax bx c a =++≠与x 列四个结论:①0abc <;②0a b c ++>;③230b a +<;④不等式02x <<.16.如图,Rt ABC △中,ACB ∠,,DCB E F △分别为边,AC AB 最小值为.三、解答题17.若关于x 的一元二次方程根.18.如图,ABC 中,ACB ∠=点B 的对应点B '落在边(1)判断BCB 'V 的形状,并证明;(2)A B ''交AC 于点D ,若2BC =,求19.已知抛物线:2(y ax bx c a =++≠x…1-0123(1)求证:CD 与O 相切;(2)若2,6BE AE ==,求21.请用无刻度的直尺完成以下作图,作图过程用虚线表示,作图结果用实线表示.(1)如图1,小正方形的边长为1,小正方形的顶点叫做格点,已知A ,B ,O 经过A ,B ,C 三点.①画出圆心O ;②在圆上作点D ,使得 CD AB =,请作出所有的D 点;(2)如图2,AB 是O 的直径,CD AB ∥,先作平行四边形CABF ,再在使得CH AC=22.测试某种型号的无人机着陆后的滑行情况,收集相关数据如下表:滑行时间()s t 0滑行速度()m/s v 60滑行距离(m)y 058.5(1)求抛物线解析式;(2)如图1,过A 点的直线33:44l y x =+交抛物线于另一点过点P 作直线PQ x ⊥轴交抛物线于点Q ,若APQ △点的坐标;(3)如图2,将AOC 绕平面内一点M 逆时针旋转90︒后得到,A O C A '''△与A '对应,C 与C '对应,若点A '和点C '均落在抛物线上,求点M 的坐标.。
2023-2024学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(12月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列事件是随机事件的是( )A. 在标准大气压下,水在100℃沸腾B. 买一张福利彩票,中奖C. 实数的绝对值是负数D. 度量一个三角形的三个内角,和为180°2.以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.解方程x2−2x−3=0,可用配方法将其变形为( )A. (x−1)2=4B. (x+1)2=4C. (x−1)2=2D. (x+1)2=24.已知一元二次方程x2+4x−1=0的两根分别为m,n,则mn−m−n的值是( )A. 5B. 3C. −3D. −55.某市“菜花节”观赏人数逐年增加,据有关部门统计,2016年约为20万人次,2018年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是( )A. 20(1+2x)=28.8B. 28.8(1+x)2=20C. 20(1+x)2=28.8D. 20+20(1+x)+20(1+x)2=28.86.已知⊙O的半径等于3,圆心O到直线l的距离为5,那么直线l与⊙O的位置关系是( )A. 相交B. 相切C. 相离D. 无法确定7.已知点A(−3,y1),B(−1,y2),C(2,y3)在函数y=−x2−2x+b的图象上,则y1、y2、y3的大小关系为( )A. y1<y3<y2B. y3<y1<y2C. y3<y2<y1D. y2<y1<y38.有A、B两个不透明的盒子,A中装有红球2个、黄球1个,B中装有红球、黄球各1个,这些球除颜色外都相同.现从A、B两个盒子中任意各摸出一个球,摸出的两个球都为红球的概率是( )A. 13B. 23C. 34D. 569.如图,AB是半圆⊙O的直径,点C在半圆上,I是△ABC的内心,连AI、BI、OI,OI⊥BI,下列结论:①∠AIO=45°;②BI=2OI;③AI=2BI;④AB+BC=2AC.其中正确的结论个数有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=ax2+bx(a≠0)经过点P(m,2).当y≤−1时,x的取值范围为n−1≤x≤−3−n,则下列四个值中有可能为m的是( )A. −2B. −3C. −4D. −5二、填空题:本题共6小题,每小题3分,共18分。
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( )A .B .C .D .3.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺。
如图所示,则可求得这根竹竿的长度为( )尺A .50B .45C .5D .4.54.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A .623+B .63C .103D .83+5.在半径为2cm 的圆中,挖出一个半径为x cm 的圆面,剩下的圆环的面积为2y cm ,则y 与x 的函数关系式为 ( )A .()22y x π=-B .24y x π=-C .24=-y x ππD .24=-+y x ππ6.如图所示,二次函数y =ax 2+bx +c 的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是( )A .abc >0B .2a ﹣b <0C .b 2﹣4ac <0D .a ﹣b +c >﹣17.若0ab <,则正比例函数y ax =与反比例函数b y x=在同一坐标系中的大致图象可能是( ) A . B . C . D .8.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是( )A .B .C .D .9.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为( )A .15B .25C .35D .4510.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=100二、填空题(每小题3分,共24分)1121x -x 的取值范围为_____.12.如果23x y =,那么4y x x y -=+_____. 13.如图,P 是∠α的边OA 上一点,且点P 的坐标为(3,4),则sin α=____________.14.某商场购进一批单价为16元的日用品,若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖210件,假定每月销售件数y(件)与每件的销售价格x(元/件)之间满足一次函数.在商品不积压且不考虑其他因素的条件下,销售价格定为______元时,才能使每月的毛利润w最大,每月的最大毛利润是为_______元.15.反比例函数kyx=(0k≠)的图象经过点A(1,2),B(1,y1),C(3,y1),则y1_______y1.(填“<,=,>”)16.已知:如图,在平行四边形ABCD中,对角线AC、BD相较于点O,在不添加任何辅助线的情况下,请你添加一个条件________________(只添加一个即可),使平行四边形ABCD成为矩形.17.请写出“两个根分别是2,-2”的一个一元二次方程:_______________18.已知一次函数y=ax+b与反比例函数y=kx的图象相交于A(4,2),B(-2,m)两点,则一次函数的表达式为____________.三、解答题(共66分)19.(10分)为了测量竖直旗杆AB的高度,某数学兴趣小组在地面上的D点处竖直放了一根标杆CD,并在地面上放置一块平面镜E,已知旗杆底端B点、E点、D点在同一条直线上.该兴趣小组在标杆顶端C点恰好通过平面镜E 观测到旗杆顶点A,在C点观测旗杆顶点A的仰角为30.观测点E的俯角为45︒,已知标杆CD的长度为1米,问旗杆AB的高度为多少米?(结果保留根号)20.(6分)如图,OA l⊥于点,A B是OA上一点,O是以O为圆心,OB为半径的圆.C是O上的点,连结CB并延长,交l 于点D ,且AC AD =.(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示); (2)若O 的半径为5,6BC =,求线段AC 的长.21.(6分)如图,△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,AC 、BD 交于M(1)如图1,当α=90°时,∠AMD 的度数为 °(2)如图2,当α=60°时,∠AMD 的度数为 °(3)如图3,当△OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD ,并图3进行证明;若不确定,说明理由.22.(8分)如图,在O 中,直径AB 垂直于弦CD ,垂足为E ,连结AC ,将ACE ∆沿AC 翻转得到ACF ∆,直线FC 与直线AB 相交于点G .(1)求证:FG 是O 的切线;(2)若B 为OG 的中点,3CE =O 的半径长; (3)①求证:CAG BCG ∠=∠;②若O 的面积为4π,23GC =GB 的长.23.(8分)为做好全国文明城市的创建工作,我市交警连续10天对某路口100个“50岁以下行人”和100个“50岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图.请根据所给信息,解答下列问题.(1)求这10天“50岁及以上行人”中每天违章人数的众数.(2)某天中午下班时段经过这一路口的“50岁以下行人”为300人,请估计大约有多少人会出现交通违章行为. (3)请根据以上交通违章行为的调查统计,就文明城市创建减少交通违章提出合理建议.24.(8分)关于x 的方程2222x m x x ++=--的解为正数,且关于y 的不等式组22(2)y m y m m -≥⎧⎨-≤+⎩有解,求符合题意的整数m.25.(10分)(1)计算:|33﹣(﹣13)﹣112+(π﹣3)0 (2)若13b a b =+,求222a b a b+-•(a ﹣b )的值. 26.(10分)用适当的方法解下列方程:()()787x x x -=-参考答案一、选择题(每小题3分,共30分)1、C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、B【解析】试题分析:根据中心对称图形的概念,A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.考点:中心对称图形3、B【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵太阳光为平行光,∴1.5 150.5x,解得x=45(尺)..故选:B.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.4、A【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE 和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【详解】解:延长PQ交直线AB于点E,设PE=x.在直角△APE中,∠PAE=45°,则AE=PE=x ;∵∠PBE=60°∴∠BPE=30°在直角△BPE 中,33BE PE x ==, ∵AB=AE-BE=6,则6x x =解得:9x =+∴3BE =在直角△BEQ 中,3)3QE BE ===+9(36PQ PE QE ∴=-=+=+故选:A【点睛】本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答. 5、D【分析】根据圆环的面积=大圆的面积-小圆的面积,即可得出结论.【详解】解:根据题意:y=22224x x ππππ-=-+故选D .【点睛】此题考查的是圆环的面积公式,掌握圆环的面积=大圆的面积-小圆的面积是解决此题的关键.6、B【分析】根据二次函数的图象及性质与各项系数的关系即可判断A ;根据抛物线的对称轴即可判断B ;根据抛物线与x 轴的交点个数即可判断C ;根据当x =﹣1时y <0,即可判断D.【详解】A 、如图所示,抛物线经过原点,则c =0,所以abc =0,故不符合题意;B 、如图所示,对称轴在直线x =﹣1的左边,则﹣2b a<﹣1,又a >0,所以2a ﹣b <0,故符合题意; C 、如图所示,图象与x 轴有2个交点,依据根的判别式可知b 2﹣4ac >0,故不符合题意;D 、如图所示,当x =﹣1时y <0,即a ﹣b +c <0,但无法判定a ﹣b +c 与﹣1的大小,故不符合题意.故选:B .【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.7、B【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:=的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选(1)当a>0,b<0时,正比例函数y ax项;=的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B (2)当a<0,b>0时,正比例函数y ax符合.故选:B.【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图重合.9、C【分析】直接利用概率公式求解即可求得答案.【详解】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,其中小于4的3个,∴从中随机摸出一个小球,其标号小于4的概率为:3 5故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10、A【解析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.二、填空题(每小题3分,共24分)11、12 x≥【分析】根据二次根式有意义的条件得出210x-≥即可求解.则210x-≥,解得:12x≥,即实数x的取值范围为12 x≥.故填:12 x≥【点睛】本题考查二次根式有意义的条件,熟练掌握二次根式有意义即根号内的式子要大于等于零是关键.12、2【解析】∵23x y =, ∴x=23y , ∴4y x x y -+=21043322533y y y y y y -==+ . 13、45 【解析】∵点P 的坐标为(3,4),∴5=, ∴4sin 5α. 故答案为:45. 14、24 1【分析】本题首先通过待定系数法求解y 与x 的关系式,继而根据利润公式求解二次函数表达式,最后根据二次函数性质求解本题.【详解】由题意假设y kx b =+,将(20,360),(25,210)代入一次函数可得:360=2021025k b k b+⎧⎨=+⎩, 求解上述方程组得:30960k b =-⎧⎨=⎩,则30960y x =-+, ∵0y ≥,∴309600x -+≥,∴32x ≤,又因为商品进价为16元,故1632x ≤≤.销售利润(16)(30960)(16)y x x x =•-=-+•-,整理上式可得:销售利润230(24)1920x =--+,由二次函数性质可得:当24x =时,取最大值为1.故当销售单价为24时,每月最大毛利润为1元.【点睛】本题考查二次函数的利润问题,解题关键在于理清题意,按照题目要求,求解二次函数表达式,最后根据二次函数性质求解此类型题目.15、>【分析】根据反比例函数的性质得出在每个象限内,y 随x 的增大而减小,图象在第一、三象限内,再比较即可.【详解】解:由图象经过点A (1,2),可知0k >,反比例函数图象在第一、三象限内,y 随x 的增大而减小,由此可知y 1>y 1.【点睛】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.16、AC BD =或(90ABC ∠=︒等,答案不唯一)【分析】矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件.【详解】解:若使▱ABCD 变为矩形,可添加的条件是:AC =BD ;(对角线相等的平行四边形是矩形)∠ABC =90°等.(有一个角是直角的平行四边形是矩形)故答案为:AC =BD 或(∠ABC =90°等)【点睛】此题主要考查的是矩形的判定方法,熟练掌握矩形和平行四边形的联系和区别是解答此题的关键.17、240x -=【分析】可先分别写出解为2,-2的一元一次方程(此一元一次方程的等式右边为0),然后逆运用因式分解法即可.【详解】解:因为x +2=0的解为x =-2,x -2=0的解为x =2,所以(2)(2)0x x +-=的两个根分别是2,-2,(2)(2)0x x +-=可化为240x -=.故答案为:240x -=.【点睛】本题考查一元二次方程的解,因式分解法解一元二次方程.因式分解法是令等式的一边为0,另一边分解为两个一次因式乘积的形式,这两个一次因式为0时的解为一元二次方程的两个解.而本题可先分别写出两个值为0时解为2和-2的一次因式,这两个一次因式的乘积即可作为一元二次方程等式的一边,等式的另外一边为0.18、y =x -1【详解】解:把(4,1)代入k y x =,得k =8, ∴反比例函数的表达式为8y x=, 把(-1,m )代入,得m =-4,∴B 点的坐标为(-1,-4),把(4,1),(-1,-4)分别代入y =ax +b ,得4224a b a b +=⎧⎨-+=-⎩解得=12a b ⎧⎨=-⎩, ∴直线的表达式为y =x -1.故答案为:y =x -1.三、解答题(共66分)19、23+ 【分析】作//CF BD 交AB 于点F ,则30ACF ∠=︒,45ECF CED ∠=∠=︒,易得1CD DE ==,根据光的反射规律易得45AEB CED ∠=∠=︒,可得△CDE 和三角形ABE 均为等腰直角三角形,设AB x =,则BE x =,1BD CF x ==+,1AF x =-,在Rt ∆ACF 中有tan AF ACF CF∠=,代入求解即可. 【详解】解:如图作//CF BD 交AB 于点F ,则30ACF ∠=︒,45ECF CED ∠=∠=︒在Rt ∆CDE 中,易求得1CD DE ==由光的反射规律易得45AEB CED ∠=∠=︒,在Rt ∆ABE 中,易求得AB BE =设AB x =,则BE x =,1BD CF x ==+,1AF x =-在Rt ∆ACF 中,tan AF ACF CF ∠=,即3131x x -=+, 解得:23x =+即旗杆AB 的高度为23+.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及光的反射规律,本题属于中等题型20、(1)见解析;(2)1207AC = 【分析】(1)如图连结OC ,先证得4390∠+∠=︒,即可得到OC AC ∴⊥,即可得到AC 是O 的切线; (2)由(1)知:过O 作OE BC ⊥于E ,先证明OBE DBA ∆∆∽得到34AB BE AD OE ==,设3,4AB x AD x AC ===,在Rt OAC ∆中,222OC AC OA +=,即:2225(4)(53)x x +=+解出方程即可求得答案.【详解】证明:(1)如图,连结OC ,则OB OC =,∴23∠∠=,∵12∠=∠,∴13∠=∠,∵AC AD =,∴4D ∠=∠,而OA l ⊥,∴190D ∠+∠=︒,即有4390∠+∠=︒,∴OC AC ⊥,故AC 是O 的切线;(2)由(1)知:过O 作OE BC ⊥于E ,∵OB OC =, ∴23∠∠=, 13,2BE BC ==而5OB =,由勾股定理,得:4OE =, 在OBE △和DBA 中,∵12∠=∠,90OEB DAB ∠=∠=︒,∴OBE DBA ∆∆∽,∴34AB BE AD OE ==, 设3,4AB x AD x AC ===,在Rt OAC ∆中,222OC AC OA +=,即:2225(4)(53)x x +=+ 解得:30,07x x ==(舍去), ∴1207AC =.【点睛】本题考查的是相似三角形的应用和切线的性质定理,勾股定理应用,是综合性题目.21、(1)1;(2)2;(3)∠AMD=180°﹣α,证明详见解析.【解析】(1)如图1中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,可得∠AMK=∠BOK=1°;(2)如图2中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=2°;(3)如图3中,设OA交BD于K.只要证明△BOD≌△AOC,可得∠OBD=∠OAC,由∠AKO=∠BKM,推出∠AOK=∠BMK=α.可得∠AMD=180°-α.【详解】(1)如图1中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=1°.故答案为1.(2)如图2中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=2°.故答案为2.(3)如图3中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKO=∠BKM,∴∠AOK=∠BMK=α.∴∠AMD=180°﹣α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.GB=.22、(1)见解析;(2)的半径为2;(3)①见解析;②2∠=∠,根据折叠的性质得∠1=∠3,∠F=∠AEC=90°,则∠2=∠3,于是可【分析】(1)连接OC,由OA=OC得12判断OC ∥AF ,根据平行线的性质得OC FC ⊥,然后根据切线的性质得直线FC 与⊙O 相切;(2)首先证明△OBC 是等边三角形,在Rt △OCE 中,根据OC 2=OE 2+CE 2,构建方程即可解决问题;(3)①根据等角的余角相等证明即可;②利用圆的面积公式求出OB ,由△GCB ∽△GAC ,可得AG CG CG GB=,由此构建方程即可解决问题; 【详解】解:(1)证明:连结OC ,则12∠=∠, 13∠=∠,23∴∠=∠,//OC AF ∴,又90AFC ∠=︒,OC FC ∴⊥即直线FG 垂直于半径OC ,且过OC 的外端点,FG ∴是O 的切线;(2)点B 是Rt OCG ∆斜边OG 的中点, 12CB OG OB OC ∴===, OCB ∴∆是等边三角形,且CE 是OB 的高,在Rt OCE ∆中,222OC OE CE =+,即222134OC OC =+ 解得2OC =,即的半径为2;(3)①∵OC=OB ,∴CBA BCO ∠=∠, 90CAG CBA ∠+∠=︒,90BCG BCO ∠+∠=︒,CAG BCG ∴∠=∠.②24OB ππ=⋅,2∴=OB ,由①知:AGC CGB ∆∆,AG GC CG GB∴=,即AB GB GC CG GB +=,GB =, 解得:2GB =.【点睛】本题属于圆综合题,考查了切线的判定,解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想思考问题,属于中考压轴题.23、(1)8;(2)15人;(3)应加大对老年人的交通安全教育(答案不唯一)【分析】(1)根据众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)根据折线图中的数据提出合理的建议均可,答案不唯一.【详解】(1)这10天“50岁及50岁以上行人”中每天违章人数有三天是8人,出现次数最多,∴这10天“50岁及50岁以上行人”中每天违章人数的众数为:8;(2 )估计出现交通违章行为的人数大约为:11300(44536271)1510100⨯⨯⨯⨯+⨯+⨯+⨯=; (3)由折线统计图知,“50岁及50岁以上行人”违章次数明显多于“50岁以下行人”,所以应加大对老年人的交通安全教育.(答案不唯一)【点睛】本题考查的是折线统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24、m 的值是-1或1或2或3或4或5【分析】根据题意先求出方程的解与不等式组的解集,再根据题目中的要求,求出相应的m 的值即可. 【详解】解:解分式方程得:63m x -=∵ x 为正数 603623m m -⎧>⎪⎪∴⎨-⎪≠⎪⎩ 解得60m m <≠且由不等式组有解得:342m m +≥+1m ∴≥-∴整数m 的值是-1或1或2或3或4或5.【点睛】本题考查分式方程的解、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.25、(1112;(2)43 【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)已知等式整理得到a =2b ,原式约分后代入计算即可求出值.【详解】解:(1)原式31+- 112=; (2)已知等式整理得:3b a b =+,即2a b =,代入, 则原式22224()()()33a b a b b b a b a b a b a b b +++=⋅-===+-+. 【点睛】此题考查了分式的化简求值以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.26、17x =,28x =﹣. 【分析】先移项,再利用因式分解法解方程即可.【详解】(7)8(7)x x x -=-移项,得(7)8(7)0x x x ---=,即(7)8(7)0x x x -+-=因式分解得(7)(8)0x x -+=于是得70x -=或80+=x解得127,8x x ==-故原方程的解为127,8x x ==-.【点睛】本题考查了利用因式分解法解一元二次方程,主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟记各解法是解题关键.。
湖北省武汉市七一华源中学九年级(上)开学数学试卷(解析版)一、选择题〔共10小题,每题3分,总分值30分〕1.一元二次方程2x2﹣3x﹣1=0的二次项系数是2.那么一次项系数是〔〕A.3B.1C.﹣3D.﹣12.用配方法解一元二次方程x2﹣4x﹣1=0,配方后失掉的方程是〔〕A.〔x﹣2〕2=1B.〔x﹣2〕2=4C.〔x﹣2〕2=3D.〔x﹣2〕2=53.一元二次方程x2+x﹣=0的根的状况是〔〕A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定4.方程x2﹣5x+2=0的两个解区分为x1、x2,那么x1+x2﹣x1•x2的值为〔〕A.﹣7B.﹣3C.7D.35.关于二次函数y=2〔x﹣2〕2+1,以下说法中正确的选项是〔〕A.图象的启齿向下B.函数的最大值为1C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小6.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是〔〕A.y=〔x﹣1〕2+2B.y=〔x+1〕2+2C.y=〔x﹣1〕2﹣2D.y=〔x+1〕2﹣27.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一团体传染的人数为〔〕A.8人B.9人C.10人D.11人8.假定a为方程x2+x﹣5=0的解,那么a2+a+1的值为〔〕A.12B.6C.9D.169.某同窗在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于大意,他算错了其中一个y值,那么这个错误的数值是〔〕A.﹣11B.﹣2C.1D.﹣510.如图,抛物线y=ax2+bx+c〔a≠0〕的对称轴为x=﹣1,与x轴的一个交点在〔﹣3,0〕和〔﹣2,0〕之间,其局部图象如下图,那么以下结论:〔1〕b2﹣4ac>0;〔2〕2a=b;〔3〕点〔﹣,y1〕、〔﹣,y2〕、〔,y3〕是该抛物线上的点,那么y1<y2<y3;〔4〕3b+2c<0;〔5〕t〔at+b〕≤a﹣b〔t为恣意实数〕.其中正确结论的个数是〔〕A.2B.3C.4D.5二、填空题:〔共6小题,每题3分,共18分〕11.一元二次方程x2=x的解为.12.要组织一次篮球联赛,赛制为单循环方式〔每两队之间都要赛一场〕,方案布置15场竞赛,应约请支球队参与竞赛.13.抛物线y=x2﹣8x+1的顶点坐标是.14.如图,Rt△ABC中,AB=6,BC=8.点P从点A动身,以1个单位/秒的速度向B移动,同时,点Q从点B动身,以2个单位/秒的速度向点C移动,运动秒后,△PBQ面积为5个平方单位.15.假定函数y=mx2+2x+1的图象与x轴只要一个公共点,那么常数m的值是.16.抛物线y=x2﹣2x﹣3与交y轴负半轴于C点,直线y=kx+2交抛物线于E、F两点〔E 点在F点左边〕.使△CEF被y轴分红的两局部面积差为5,那么k的值为.三、解答题:〔共8题.共72分〕17.〔8分〕解一元二次方程:〔1〕x2﹣2x﹣l=0〔2〕x〔2x﹣5〕=4x﹣1018.〔8分〕如图,二次函数y=ax2+2x+c图象经过点A 〔1,4〕和点C 〔0,3〕.〔1〕求该二次函数的解析式;〔2〕结合函数图象,直接回答以下效果:①当﹣1<x<2时,求函数y的取值范围:.②当y≥3时,求x的取值范围:.19.〔8分〕用一根20m长的绳子,怎样围成一个面积为24m2的矩形,经过方程计算说明围法.20.〔8分〕如图,修建一个圆形喷水池,在池中心竖直装置一根喷水管AB,在水管的顶端A安一个喷水头,使喷出的微物线形水柱在与池中心的水平距离为1m处到达最高点D,高度为3m,水柱落地处C离池中心B相距3m.〔1〕请以BC所在直线为x轴〔射线BC的方向为正方向〕,AB所在直线为y轴树立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;〔2〕直接写出AB的长为.21.〔8分〕关于x的方程x2﹣kx+k﹣1=0.〔1〕求证:不论k为何值,方程总有两个实数根.〔2〕假定等腰△ABC的一边长2,另两边为这个方程的两个根,求△ABC的周长.22.〔10分〕某水果商场经销一种高档水果,原价每千克50元.〔1〕延续两次降价后每千克32元,假定每次下降的百分率相反.求每次下降的百分率;〔2〕假定每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的状况下,商场决议采取适当的涨价措施,但商场规则每千克涨价不能超越8元,假定每千克涨价1元,日销售量将增加20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?23.〔10分〕矩形ABCD中AB=5,AD=3,将矩形ABCD绕点C顺时针旋转至矩形EFCG 〔其中A、B、D区分与E、F、G对应〕.〔1〕如图1,当点G落在AB边上时,直接写出AG的长为;〔2〕如图2.当点G落在线段AE上时,AB与CG交于点H,求BH;〔3〕如图3,记O为矩形ABCD的对角线交点,S为△OGE的面积,直接写出s的取值范围.24.〔12分〕如图,抛物线y=x2+2x﹣3的图象与x轴交于点A、B〔A在B左侧〕,与y 轴交于点C,点D为抛物线的顶点.〔1〕求△ABC的面积;〔2〕P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标;〔3〕假定抛物线上只要三个点到直线CD的距离为m,求m的值.2021-2021学年湖北省武汉市七一华源中学九年级〔上〕开学数学试卷参考答案与试题解析一、选择题〔共10小题,每题3分,总分值30分〕1.一元二次方程2x2﹣3x﹣1=0的二次项系数是2.那么一次项系数是〔〕A.3B.1C.﹣3D.﹣1【剖析】依据一元二次方程的普通方式解答.【解答】解:一元二次方程2x2﹣3x﹣1=0的二次项系数是2.那么一次项系数是﹣3,应选:C.【点评】此题考察的是一元二次方程的普通方式,普通地,任何一个关于x的一元二次方程经过整理,都能化成如下方式ax2+bx+c=0〔a≠0〕.这种方式叫一元二次方程的普通方式,a叫做二次项系数;b叫做一次项系数;c叫做常数项.2.用配方法解一元二次方程x2﹣4x﹣1=0,配方后失掉的方程是〔〕A.〔x﹣2〕2=1B.〔x﹣2〕2=4C.〔x﹣2〕2=3D.〔x﹣2〕2=5【剖析】移项后两边配上一次项系数一半的平方即可得.【解答】解:∵x2﹣4x=1,∴x2﹣4x+4=1+4,即〔x﹣2〕2=5,应选:D.【点评】此题主要考察配方法解一元二次方程,熟练掌握配方法解一元二次方程的基本步骤是解题的关键.3.一元二次方程x2+x﹣=0的根的状况是〔〕A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【剖析】依据方程的系数结合根的判别式,可得出△=2>0,进而可得出方程x2+x﹣=0有两个不相等的实数根,此题得解.【解答】解:∵△=12﹣4×1×〔﹣〕=2>0,∴方程x2+x﹣=0有两个不相等的实数根.应选:A.【点评】此题考察了根的判别式,牢记〝当△>0时,方程有两个不相等的实数根〞是解题的关键.4.方程x2﹣5x+2=0的两个解区分为x1、x2,那么x1+x2﹣x1•x2的值为〔〕A.﹣7B.﹣3C.7D.3【剖析】依据根与系数的关系,先求出x1+x2与x1x2的值,然后再把它们的值全体代入所求代数式求值即可.【解答】解:依据题意可得x1+x2=﹣=5,x1x2==2,∴x1+x2﹣x1•x2=5﹣2=3.应选:D.【点评】一元二次方程的两个根x1、x2具有这样的关系:x1+x2=﹣,x1•x2=.5.关于二次函数y=2〔x﹣2〕2+1,以下说法中正确的选项是〔〕A.图象的启齿向下B.函数的最大值为1C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小【剖析】依据标题中的函数解析式,可以判别各个选项中的说法能否正确.【解答】解:二次函数y=2〔x﹣2〕2+1,a=2>0,∴该函数的图象启齿向上,应选项A错误,函数的最小值是y=1,应选项B错误,图象的对称轴是直线x=2,应选项C错误,当x<2时y随x的增大而减小,应选项D正确,应选:D.【点评】此题考察二次函数的性质、二次函数的最值,解答此题的关键是明白题意,应用二次函数的性质解答.6.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是〔〕A.y=〔x﹣1〕2+2B.y=〔x+1〕2+2C.y=〔x﹣1〕2﹣2D.y=〔x+1〕2﹣2【剖析】依据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=〔x﹣1〕2+2,应选:A.【点评】此题考察了二次函数图象与几何变换,函数图象右移减、左移加,上移加、下移减是解题关键.7.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一团体传染的人数为〔〕A.8人B.9人C.10人D.11人【剖析】此题考察增长效果,应了解〝增长率〞的含义,假设设每轮传染中平均一团体传染的人数为x人,那么由题意可列出方程,解方程即可求解.【解答】解:设每轮传染中平均一团体传染的人数为x人,第一轮事先有〔1+x〕团体感染,第二轮事先有〔1+x〕+x〔1+x〕团体感染,那么由题意可知1+x+x〔1+x〕=100,整理得,x2+2x﹣99=0,解得x=9或﹣11,x=﹣11不契合题意,舍去.那么每轮传染中平均一团体传染的人数为9人.应选:B.【点评】主要考察增长率效果,可依据题意列出方程,判别所求的解能否契合题意,舍去不合题意的解.8.假定a为方程x2+x﹣5=0的解,那么a2+a+1的值为〔〕A.12B.6C.9D.16【剖析】依据一元二次方程的解的定义直接得出a2+a进而求出即可.【解答】解:∵a为方程x2+x﹣5=0的解,∴a2+a﹣5=0,∴a2+a=5那么a2+a+1=5+1=6.应选:B.【点评】此题主要考察了一元二次方程的解,依据定义将a2+a看作全体求出是解题关键.9.某同窗在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于大意,他算错了其中一个y值,那么这个错误的数值是〔〕A.﹣11B.﹣2C.1D.﹣5【剖析】依据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得〔﹣1,﹣2〕,〔0,1〕,〔1,﹣2〕在函数图象上,把〔﹣1,﹣2〕,〔0,1〕,〔1,﹣2〕代入函数解析式,得解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,应选:D.【点评】此题考察了二次函数图象,应用函数图象关于对称轴对称是解题关键.10.如图,抛物线y=ax2+bx+c〔a≠0〕的对称轴为x=﹣1,与x轴的一个交点在〔﹣3,0〕和〔﹣2,0〕之间,其局部图象如下图,那么以下结论:〔1〕b2﹣4ac>0;〔2〕2a=b;〔3〕点〔﹣,y1〕、〔﹣,y2〕、〔,y3〕是该抛物线上的点,那么y1<y2<y3;〔4〕3b+2c<0;〔5〕t〔at+b〕≤a﹣b〔t为恣意实数〕.其中正确结论的个数是〔〕A.2B.3C.4D.5【剖析】逐一剖析5条结论能否正确:〔1〕由抛物线与x轴有两个不相反的交点结合根的判别式即可得出该结论正确;〔2〕依据抛物线的对称轴为x=﹣1,即可得出b=2a,即〔2〕正确;〔3〕依据抛物线的对称性找出点〔﹣,y3〕在抛物线上,再结合抛物线对称轴左边的单调性即可得出〔3〕错误;〔4〕由x=﹣3时,y<0,即可得出3a+c <0,结合b=2a即可得出〔4〕正确;〔5〕由方程at2+bt+a=0中△=b2﹣4a•a=0结合a<0,即可得出抛物线y=at2+bt+a中y≤0,由此即可得出〔5〕正确.综上即可得出结论.【解答】解:〔1〕由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴〔1〕正确;〔2〕∵抛物线y=ax2+bx+c〔a≠0〕的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴〔2〕正确;〔3〕∵抛物线的对称轴为x=﹣1,点〔,y3〕在抛物线上,∴〔﹣,y3〕.∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴〔3〕错误;〔4〕∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴〔4〕正确;〔5〕∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与x轴只要一个交点,∵图中抛物线启齿向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴〔5〕正确.应选:C.【点评】此题考察了二次函数图象与系数的关系、二次函数与不等式以及抛物线与x轴的交点,解题的关键是逐一剖析5条结论能否正确.此题属于中档题,难度不大,处置该题型标题时,熟练掌握二次函数的图象是关键.二、填空题:〔共6小题,每题3分,共18分〕11.一元二次方程x2=x的解为x1=0,x2=1.【剖析】首先把x移项,再把方程的左面分解因式,即可失掉答案.【解答】解:x2=x,移项得:x2﹣x=0,∴x〔x﹣1〕=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题主要考察了因式分解法解一元二次方程,关键是把方程的左面变为0.12.要组织一次篮球联赛,赛制为单循环方式〔每两队之间都要赛一场〕,方案布置15场竞赛,应约请6支球队参与竞赛.【剖析】设约请x个球队参与竞赛,那么第一个球队和其他球队打〔x﹣1〕场球,第二个球队和其他球队打〔x﹣2〕场,以此类推可以知道共打〔1+2+3+…+x﹣1〕场球,然后依据方案布置15场竞赛即可列出方程求解.【解答】解:设约请x个球队参与竞赛,依题意得1+2+3+…+x﹣1=15,即=15,∴x2﹣x﹣30=0,∴x=6或x=﹣5〔不合题意,舍去〕.即应约请6个球队参与竞赛.故答案为:6.【点评】考察了一元二次方程的运用,此题和实践生活结合比拟严密,准确找到关键描画语,从而依据等量关系准确的列出方程是处置效果的关键.此题还要判别所求的解能否契合题意,舍去不合题意的解.13.抛物线y=x2﹣8x+1的顶点坐标是〔4,﹣15〕.【剖析】用配方法把抛物线的普通式转化为顶点式,可求顶点坐标.【解答】解:∵y=x2﹣8x+1=〔x﹣4〕2﹣15,∴抛物线顶点坐标为〔4,﹣15〕.故答案为〔4,﹣15〕.【点评】此题可以用配方法把抛物线的普通式转化为顶点式,也可以用顶点坐标公式求解.14.如图,Rt△ABC中,AB=6,BC=8.点P从点A动身,以1个单位/秒的速度向B移动,同时,点Q从点B动身,以2个单位/秒的速度向点C移动,运动1秒后,△PBQ面积为5个平方单位.【剖析】由题意:PA=t,BQ=2t,那么PB=6﹣t,应用三角形的面积公式构建方程即可处置效果;【解答】解:由题意:PA=t,BQ=2t,那么PB=6﹣t,∵×〔6﹣t〕×2t=5,解得t=1或5〔舍弃〕,故答案为1.【点评】此题考察一元二次方程的运用、三角形的面积等知识,解题的关键是了解题意,学会构建方程处置效果.15.假定函数y=mx2+2x+1的图象与x轴只要一个公共点,那么常数m的值是0或1.【剖析】需求分类讨论:①假定m=0,那么函数为一次函数;②假定m≠0,那么函数为二次函数.由抛物线与x轴只要一个交点,失掉根的判别式的值等于0,且m不为0,即可求出m的值.【解答】解:①假定m=0,那么函数y=2x+1,是一次函数,与x轴只要一个交点;②假定m≠0,那么函数y=mx2+2x+1,是二次函数.依据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.【点评】此题考察了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.此题中函数能够是二次函数,也能够是一次函数,需求分类讨论,这是此题的容易失分之处.16.抛物线y=x2﹣2x﹣3与交y轴负半轴于C点,直线y=kx+2交抛物线于E、F两点〔E 点在F点左边〕.使△CEF被y轴分红的两局部面积差为5,那么k的值为0或﹣4.【剖析】设直线y=kx+2交抛物线于E、F两点的横坐标区分为x1,x2,且〔x1<0,x2>0〕,依据题意得出x1+x2=2+k,然后依据△CEF被y轴分红的两局部面积差为5,列出关于k的方程,解方程即可.【解答】解:设直线y=kx+2交抛物线于E、F两点的横坐标区分为x1,x2,且〔x1<0,x2>0〕,由题意可知:x1,x2是方程x2﹣2x﹣3=kx+2的两个根,整理方程为:x2﹣〔2+k〕x﹣5=0,∴x1+x2=2+k,由抛物线y=x2﹣2x﹣3可知C〔0,﹣3〕,设直线y=kx+2交y轴于B,∴B〔0,2〕,∴BC=5,∵△CEF被y轴分红的两局部面积差为5,∴|S△BCE ﹣S△BCF|=5,当S△BCE ﹣S△BCF=5时,那么有×5•x2﹣×5•〔﹣x1〕=5,整理得:〔x1+x2〕=5,∴〔2+k〕=5,解得k=0,当S△BCE ﹣S△BCF=﹣5时,那么有×5•x2﹣×5•〔﹣x1〕=﹣5,整理得:〔x1+x2〕=﹣5,∴〔2+k〕=﹣5,解得k=﹣4,故答案为0或﹣4.【点评】此题考察了一次函数和二次函数图象上点的坐标特征,方程的根和函数交点的关系是解题的关键.三、解答题:〔共8题.共72分〕17.〔8分〕解一元二次方程:〔1〕x2﹣2x﹣l=0〔2〕x〔2x﹣5〕=4x﹣10【剖析】〔1〕公式法求解可得;〔2〕因式分解法求解可得.【解答】解:〔1〕x2﹣2x﹣l=0∵a=1、b=﹣2、c=﹣1,∴△=4﹣4×1×〔﹣1〕=8>0,那么x==1±,∴x1=1+,x2=1﹣;〔2〕x〔2x﹣5〕=4x﹣10〔2x﹣5〕〔x﹣2〕=0,∴2x﹣5=0或x﹣2=0,∴x1=,x2=2.【点评】此题主要考察解一元二次方程的才干,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择适宜、简便的方法是解题的关键.18.〔8分〕如图,二次函数y=ax2+2x+c图象经过点A 〔1,4〕和点C 〔0,3〕.〔1〕求该二次函数的解析式;〔2〕结合函数图象,直接回答以下效果:①当﹣1<x<2时,求函数y的取值范围:0<9≤4.②当y≥3时,求x的取值范围:0≤x≤2.【剖析】〔1〕依据待定系数法,可得函数解析式;〔2〕依据函数图象即可失掉结论.【解答】解:〔1〕将点A和点C的坐标代入函数解析式,得,解得,二次函数的解析式为y=﹣x2+2x+3;〔2〕由图象知,①当﹣1<x<2时,求函数y的取值范围:0<y≤4.②当y≥3时,求x的取值范围:0≤x≤2.故答案为:0<y≤4,0≤x≤2.【点评】此题考察了待定系数法求二次函数解析式的知识及二次函数的顶点坐标的知识,属于基础题,解答此题的关键是待定系数法的运用.19.〔8分〕用一根20m长的绳子,怎样围成一个面积为24m2的矩形,经过方程计算说明围法.【剖析】设矩形的长为xm,那么宽为〔10﹣x〕m,依据矩形的面积列出方程即可处置效果.【解答】解:设矩形长为xm,宽为〔10﹣x〕m依据题意可得:x〔10﹣x〕=24解得:x1=6,x2=4〔不合题意舍去〕答:围成一个长为6m,宽为4m的矩形.【点评】此题考察一元二次方程的运用,解题的关键是学会设未知数,寻觅等量关系.列出方程处置效果,属于中考常考题型.20.〔8分〕如图,修建一个圆形喷水池,在池中心竖直装置一根喷水管AB,在水管的顶端A安一个喷水头,使喷出的微物线形水柱在与池中心的水平距离为1m处到达最高点D,高度为3m,水柱落地处C离池中心B相距3m.〔1〕请以BC所在直线为x轴〔射线BC的方向为正方向〕,AB所在直线为y轴树立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;〔2〕直接写出AB的长为 2.25.【剖析】〔1〕以池中心为原点,竖直装置的水管为y轴,与水管垂直的为x轴树立直角坐标系,设抛物线的解析式为y=a〔x﹣1〕2+3,将〔3,0〕代入求得a值;〔2〕由题意可得,x=0时失掉的y值即为水管的长.【解答】解:〔1〕以池中心为原点,竖直装置的水管为y轴,与水管垂直的为x轴树立直角坐标系.由于在距池中心的水平距离为1m时到达最高,高度为3m,那么设抛物线的解析式为:y=a〔x﹣1〕2+3,代入〔3,0〕求得:a=﹣〔x﹣1〕2+3.将a值代入失掉抛物线的解析式为:y=﹣〔x﹣1〕2+3〔0≤x≤3〕;〔2〕令x=0,那么y==2.25.故水管AB的长为2.25m.故答案为:2.25m.【点评】此题考察了二次函数在实践生活中的运用,重点是二次函数解析式的求法,应用顶点式求出解析式是解题关键.21.〔8分〕关于x的方程x2﹣kx+k﹣1=0.〔1〕求证:不论k为何值,方程总有两个实数根.〔2〕假定等腰△ABC的一边长2,另两边为这个方程的两个根,求△ABC的周长.【剖析】〔1〕先计算△,化简失掉△=〔k﹣2〕2,易得△≥0,然后依据△的意义即可失掉结论;〔2〕应用求根公式计算出方程的两根x1=k﹣1,x2=1,那么可设b=k﹣1,c=2,然后讨论:当2为腰;当1为腰,区分求出边长,但要满足三角形三边的关系,最后计算周长.【解答】〔1〕证明:△=k2﹣4×1×〔k﹣1〕=k2﹣4k+4=〔k﹣2〕2,∵无论k取什么实数值,〔k﹣2〕2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;〔2〕解:∵x=,∴x1=k﹣1,x2=1,∵两边恰恰是这个方程的两个实数根,当2为腰,那么k﹣1=2,解得k=3,此时三角形的周长=2+2+1=5;当1为腰时,k﹣1=1,k=2,此时1+1=2,故此种状况不存在.综上所述,△ABC的周长为5.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考察了三角形三边的关系以及分类讨论思想的运用.22.〔10分〕某水果商场经销一种高档水果,原价每千克50元.〔1〕延续两次降价后每千克32元,假定每次下降的百分率相反.求每次下降的百分率;〔2〕假定每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的状况下,商场决议采取适当的涨价措施,但商场规则每千克涨价不能超越8元,假定每千克涨价1元,日销售量将增加20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【剖析】〔1〕设每次下降的百分率为x,依据相等关系列出方程,可求每次下降的百分率;〔2〕设涨价y元〔0<y≤8〕,依据总盈余=每千克盈余×数量,可列方程,可求解.【解答】解:〔1〕设每次下降的百分率为x依据题意得:50〔1﹣x〕2=32解得:x1=0.2,x2=1.8〔不合题意舍去〕答:每次下降20%〔2〕设涨价y元〔0<y≤8〕6000=〔10+y〕〔500﹣20y〕解得:y1=5,y2=10〔不合题意舍去〕答:每千克应涨价5元.【点评】此题考察了一元二次方程的运用,找到标题中的相等关系,列出方程是此题的关键.23.〔10分〕矩形ABCD中AB=5,AD=3,将矩形ABCD绕点C顺时针旋转至矩形EFCG 〔其中A、B、D区分与E、F、G对应〕.〔1〕如图1,当点G落在AB边上时,直接写出AG的长为1;〔2〕如图2.当点G落在线段AE上时,AB与CG交于点H,求BH;〔3〕如图3,记O为矩形ABCD的对角线交点,S为△OGE的面积,直接写出s的取值范围≤S≤.【剖析】〔1〕在Rt△BCG中,应用勾股定理求出BG即可处置效果;〔2〕首先证明AH=CH,设AH=CH=m,那么BH=AB﹣HH=5﹣m,在Rt△BHC中,依据CH2=BC2+BH2,构建方程求出m即可处置效果;〔3〕如图,当点G在对角线AC上时,△OGE的面积最小,当点G在AC的延伸线上时,△OE′G′的面积最大,区分求出面积的最小值,最大值即可处置效果;【解答】解:〔1〕如图1中,∵四边形ABCD是矩形,∴AB=CD=CG=5,∠B=90°,∵BC=AD=3,∴BG==4,∴AG=AB﹣BG=1,故答案为1.〔2〕如图2中,由四边形CGEF是矩形,失掉∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CD=CG,∴Rt△ACG≌Rt△ACD〔HL〕.∴∠ACD=∠ACG,∵AB∥CD∴∠ACG=∠BAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,那么BH=AB﹣HH=5﹣m,在Rt△BHC中,∵CH2=BC2+BH2,∴m2=32+〔5﹣m〕2,∴m=,∴BH=AB﹣AH=5﹣=.〔3〕如图,当点G在对角线AC上时,△OGE的面积最小,最小值=×OG×EG=×3×〔5﹣〕=.当点G在AC的延伸线上时,△OE′G′的面积最大.最大值=×E′G′×OG′=×3×〔5+〕=综上所述,≤S≤.故答案为≤S≤.【点评】此题考察四边形综合题、矩形的性质、全等三角形的判定和性质、旋转变换、勾股定理等知识,解题的关键是学会用分类讨论的思想处置效果,学会应用参数构建方程处置效果,属于中考压轴题.24.〔12分〕如图,抛物线y=x2+2x﹣3的图象与x轴交于点A、B〔A在B左侧〕,与y 轴交于点C,点D为抛物线的顶点.〔1〕求△ABC的面积;〔2〕P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标;〔3〕假定抛物线上只要三个点到直线CD的距离为m,求m的值.【剖析】〔1〕先求出点A,B,C坐标,最后用三角形的面积公式即可得出结论;〔2〕①当点P在第三象限时,先作出图形,再结构出全等三角形,设出点M的坐标,进而表示出点P坐标,即可得出结论,当点P在第二象限时,同①的方法即可得出结论;〔3〕先判别出直线CD下方的抛物线上只要一个点到直线CD的距离为m,再求出直线CD解析式,进而求出直线EG的解析式,最后判别出△CFE∽△COH,即可得出结论.【解答】解:〔1〕针关于抛物线y=x2+2x﹣3,令x=0,那么y=﹣3,∴C〔0,﹣3〕,令y=0,那么x2+2x﹣3=0,∴x=﹣3或x=1,∴A〔﹣3,0〕,B〔1,0〕,=AB×|y C|=6;∴S△ABC〔2〕如图,①点P在第三象限时,∵抛物线y=x2+2x﹣3的对称轴为直线x=﹣1,∴AQ=2过点P作PG⊥DM于G,∴∠PGM=∠MQA=90°,∴∠MPG+∠PMG=90°,∵∠AMP=90°,∴∠PMG+∠AMQ=90°,∴∠MPG=∠AMQ,在△PGM和△MQA中,,∴△PGM≌△MQA〔AAS〕,∴MG=AQ=2,PG=QM,设M〔﹣1,m〕〔m<0〕,∴QM=﹣m,∴PG=﹣m,QG=QM+MG=2﹣m,∴P〔m﹣1,m﹣2〕,∵点P在抛物线y=x2+2x﹣3上,∴〔m﹣1〕2+2〔m﹣1〕﹣3=m﹣2,∴m﹣1=﹣2或m﹣1=1〔舍〕,∴P〔﹣2,﹣3〕.②当点P在第二象限时,同①的方法得,P〔﹣4,5〕;〔3〕∵抛物线y=x2+2x﹣3=〔x+1〕2﹣4,∴D〔﹣1,4〕,∵C〔0,﹣3〕,∴直线CD的解析式为y=x﹣3,如图1,作直线EG∥CD交y轴于E,交x轴于G,设直线EG的解析式为y=x+b①,∵抛物线上只要三个点到直线CD的距离为m,∴在直线CD下方的抛物线上只要一个点到直线CD的距离为m,即直线EG与抛物线y=x2+2x﹣3②只要一个交点,联立①②得,x2+2x﹣3=x+b,∴x2+x﹣3﹣b=0,∴△=1+4〔b+3〕=0,∴b=﹣,∴直线EG的解析式为y=x﹣,∴E〔0,﹣〕,∴OE=,∵直线CD的解析式为y=x﹣3,∴H〔3,0〕,∴OH=3,OC=3,∴CH=3,CE=﹣3=,直线过点E作EF⊥CD于F,∴∠CFE=∠COH,∵∠ECF=∠HCO,∴△CFE∽△COH,∴EF=,即:m=.【点评】此题是二次函数综合题,主要考察了三角形的面积公式,全等三角形的判定和性质,相似三角形的判定和性质,应用方程的思想处置效果是解此题的关键.。
武汉二中广雅中学2015~2016学年度上学期九年级数学月考四 考试时间:2016年1月8日一、选择题(共10小题,每小题3分,共30分)1.在一元一次方程2x 2-5x -1=0中,二次项系数和常数项分别是( )A .2,5B .2,-5C .2,1D .2,-12.下列四个图形分别是四场国际数学家大会的会标,其中属于中心对称图形的有( )A .4个B .3个C .2个D .1个 3.半径为1 cm 的正三角形的边心距为( )cmA .23B .3C .21D .14.用频率估计概率,可以发现“抛掷一枚质地均匀的骰子”,“出现1点朝上”的概率为61,下列说法正确的是( )A .每抛6次骰子,至少有一次“出现1点朝上”B .每抛6次骰子,可能有一次“出现1点朝上”C .每抛12次骰子,不可能有三次“出现1点朝上”D .连续抛掷一枚质地均匀的骰子6a 次,“出现1点朝上”必有a 次5.抛物线y =2x 2的图象向右平移1个单位,所得图象的函数解析式为( )A .y =2(x +1)2B .y =2(x -1)2C .y =2x 2+1D .y =2x 2-16.如图,P A 是⊙O 的切线,切点为A ,PO 的延长线交⊙O于点B .若∠P =20°,则∠ABP 为( )A .20°B .25°C .30°D .35° 7.2015年前三季度武汉市实际利用外资55.11亿元,其中2015年第一季度实际利用外资17.74亿美元.若实际利用外资平均每季度增长率为x ,根据题意,所列方程为( )A .17.74(1+x )2=55.11B .17.74+17.74(1+x )+17.74(1+2x )=55.11C .17.74(1+2x )=55.11D .17.74+17.74(1+x )+17.74(1+x )2=55.118.如图的四个转盘中,C 、D 转盘分成8等分.若让转盘自由转动一次,停止后,指针落在空白部分的概率最大的转盘是( )9.下图是二次函数y =ax 2+bx +c 的图象,下列结论:① 顶点坐标为(-1,4);② 4a -2b +c <0;③ 一元二次方程ax 2+bx +c =1的两根之和为-1;④ 抛物线上有两点P (-2,y 1)和Q (q ,y 2),若y 1≥y 2,则q ≤-2或q ≥0,其中正确的有( )A .①②B .①③C .①④D .③④10.如图,半径为2的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于()A.4B.6C.2πD.π+4二、填空题(本大题共6个小题,每小题3分,共18分)11.点M(3,1)关于原点O对称的点N的坐标为_________12.用配方法解方程x2+6x-1=0,配方成(x+m)2=n的形式,则m=_________13.抛物线y=(x-3)2+1的顶点坐标为_________14.函数y=ax2+(a+2)x+2与x轴有且仅有一个交点,则a=_________15.一个圆锥的侧面积是底面积的4倍,则此圆锥侧面展开图的扇形的圆心角是_________ 16.已知a、b是方程x2-2x+m-1=0(m≠1)的两根,在直角坐标系下有A(a,0)、B(0,b),以AB为直径作⊙M,则⊙M的半径的最小值为_________三、解答题(共8题,共72分)17.(本题8分)解方程:x2-6x+5=018.(本题8分)如图是一块车轮碎片的示意图,点O是这块轮片的圆心,AB=24 cm,C是弧AB上一点,OC⊥AB,垂足为D,CD=4 cm,求原轮片的半径19.(本题8分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(1) 画出向上平移2个单位后的△A1B1C1(2) 画出绕点O顺时针旋转90°后的△A2B2C2,并求出点B旋转到B2所经过的路线长20.(本题8分)一个不透明的布袋装有1个白球,1个黑球和2个红球,它们除颜色外其余都相同(1) 先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是红球的概率(2) 若给布袋里再放入1个红球,则在不放回的前提下,前两次都摸到红球的可能性是否会增大?_________(填增大或减小或相等),前两次都摸到红球的概率为_________(请直接写出答案)21.(本题8分)如图,等边△ABC中,AB=4,点D、E、F分别为线段AC、AB、BC上的动点,且△DEF为等边三角形(动点D、E、F不会与点A、B、C重合)(1) 当D、E、F分别在三边上运动时,请直接写出图中始终全等的三角形__________________ ________________(不需要证明)(2) 设AD=x,△ADE的面积为S,求出S与x的函数关系式?(3) 求S的最大值22.(本题10分)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s 时,足球的飞行高度是2.44 m,足球从飞出到落地共用3s(1) 求y关于x的函数关系式(2) 足球的飞行高度能否达到4.88米?请说明理由(3) 如图2所示,假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44 m(足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12 m处的守门员至少要以多大的平均速度到球门的左边框?。
2022-2023学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(9月份)(含答案与详细解析)一、选择题(共10小题,每小题3分,共30分)1.(3分)方程5x2﹣4x﹣1=0的二次项系数、一次项系数、常数项分别为()A.5、﹣1、4B.5、﹣1、﹣4C.5、﹣4、﹣1D.5、4、﹣1 2.(3分)把方程x2﹣6x﹣1=0转化成(x+m)2=n的形式,则m、n的值是()A.3、8B.3、10C.﹣3、3D.﹣3、103.(3分)关于关于x的一元二次方程5x2﹣3x=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断4.(3分)菱形没有而正方形具有的性质是()A.对角线相等B.邻边相等C.对角线互相垂直D.对角线平分对角5.(3分)向阳村2010年的人均年收入为12000元,2012年的人均年收入为14520元.设人均年收入的平均增长率为x,则下列所列的方程中正确的是()A.14520(1﹣x2)=12000B.12000(1+x)2=14520C.14520(1+x)2=12000D.12000(1﹣x)2=145206.(3分)对于抛物线y=﹣(x+1)2﹣5,下列的说法错误的是()A.抛物线的开口向下B.抛物线的顶点坐标是(﹣1,﹣5)C.当x<1时,y随x的增大而增大D.当x>1时,y随x的增大而减小7.(3分)抛物线y=﹣5x2可由y=﹣5(x+2)2﹣6如何平移得到()A.先向右平移2个单位,再向下平移6个单位B.先向左平移2个单位,再向上平移6个单位C.先向左平移2个单位,再向下平移6个单位D.先向右平移2个单位,再向上平移6个单位8.(3分)在解一元二次方程x2+px+q=0时,童威看错了常数项,得到方程的两个根是﹣3、﹣1,胖何看错了一次项系数p,得到方程的两个根是5、﹣4,则原来的方程是()A.x2+4x﹣3=0B.x2+4x﹣20=0C.x2﹣4x﹣20=0D.x2﹣4x﹣3=0 9.(3分)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c =0(a≠0)的一个近似解x的范围是()x…﹣3﹣2﹣101…y…﹣11﹣5﹣111…A.﹣1<x<0B.1<x<2C.2<x<3D.3<x<410.(3分)已知抛物线y=ax2+bx+c(a、b、c为正数)经过A(1,4)、B(2,12)两点,则b2﹣4ac的值可能为()A.4B.0C.﹣15D.﹣二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)方程x2=x的根是.12.(3分)已知直线y=2x和抛物线y=ax2相交于点(2,b),则a+b=.13.(3分)如果关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个实数根,那么m的取值范围是.14.(3分)若抛物线y=x2﹣2x﹣3与直线y=2交于A、B两点,则AB=.15.(3分)二次函数的图象如图所示,给出四个结论:①abc>0;②4a﹣2b+c>0;③对于任意实数m,有am2+bm+c<a﹣b+c;④>﹣3,其中正确的有.16.(3分)如图,四边形ABCD中,∠ABC=90°,∠BCD=45°,∠CAD=2∠ACB.过点D作DE⊥AC于E,交BC于F.若AB=6,则FC=.三、解答题(共8题,共72分)17.(8分)解方程:3x2+6x﹣1=0.18.(8分)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.19.(8分)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?20.(8分)已知二次函数y=x2﹣2x﹣3.(1)在下方坐标系中画出函数的图象;(2)若﹣2≤x≤5时,则y的取值范围是;(3)若A(x1,y1)、B(x2,y2)在此抛物线上,且x1<1<x2,x1+x2﹣2<0,则y1y2.21.(8分)如图,A、B、C是三个格点,点M是线段AC上一格点.(1)在图1中,在线段BC上找一点N,使得MN∥AB;(2)在图2中,在线段BC上找一点D,使得∠CDM=45°;(3)在图3中,在AB上确定一点P,使∠APM=∠BPC.22.(10分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?23.(10分)如图,BD为矩形ABCD的对角线,将△BCD沿BD翻折得到△BGD,BG与边AD交于点E,点H为线段BE上一个动点,∠DHF=90°,FH=DH.若AB=a,BC =3b,AE=4,其中a、b是关于x的方程x2﹣6x+m=0的两个实数根.(1)证明:AE=GE;(2)若BH=4EH,求BF的长;(3)直接写出S△BFH的最大值.24.(12分)如图1,已知抛物线C1:y=x2+bx+c与直线y=﹣x+1交于M(m,4)、N(,n)两点(M在N的左侧).(1)求抛物线的解析式;(2)在直线MN的上方的抛物线上有一点C,若S△MNC=,求点C的坐标;(3)如图2,将抛物线C1平移后得到新的抛物线C2,C2的顶点为原点,P为抛物线C2第一象限内任意一点,直线y=﹣x+1与抛物线C2交于A、B两点,直线y=2与y轴交于点G,分别与直线P A、PB交于E、F两点.若EF=5GF,求点P的横坐标.2022-2023学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程5x2﹣4x﹣1=0的二次项系数、一次项系数、常数项分别为()A.5、﹣1、4B.5、﹣1、﹣4C.5、﹣4、﹣1D.5、4、﹣1【分析】一元二次方程的般形式为ax2+bx+c=0(a≠0),其中,二次项的系数为a,一次项的系数为b,常数项为c.【解答】解:方程5x2﹣4x﹣1=0的二次项系数、一次项系数、常数项分别为5、﹣4、﹣1.故选:C.【点评】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(a≠0).2.(3分)把方程x2﹣6x﹣1=0转化成(x+m)2=n的形式,则m、n的值是()A.3、8B.3、10C.﹣3、3D.﹣3、10【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,即可得出答案.【解答】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,则x2﹣6x+9=1+9,即(x﹣3)2=10,∴m=﹣3,n=10,故选:D.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.3.(3分)关于关于x的一元二次方程5x2﹣3x=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断【分析】先把方程化为一般式,再计算Δ=(﹣4)2﹣4×5×(﹣1)=36>0,然后根据判别式的意义判断方程根的情况.【解答】解:方程整理为5x2﹣4x﹣1=0,∵Δ=(﹣4)2﹣4×5×(﹣1)=36>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.4.(3分)菱形没有而正方形具有的性质是()A.对角线相等B.邻边相等C.对角线互相垂直D.对角线平分对角【分析】利用菱形的性质与正方形的性质解答即可得出结论.【解答】解:∵菱形的性质是:四条边相等,对边平行,对角线互相垂直平分且每条对角线平分一组对角,正方形的性质有:四条边相等,四个角都是直角,对边平行,对角线互相垂直平分相等且每条对角线平分一组对角,∴菱形没有而正方形具有的性质是:四个角为直角,对角线相等,故选:A.【点评】本题主要考查了菱形与正方形的性质,熟练掌握菱形与正方形的性质是解题的关键.5.(3分)向阳村2010年的人均年收入为12000元,2012年的人均年收入为14520元.设人均年收入的平均增长率为x,则下列所列的方程中正确的是()A.14520(1﹣x2)=12000B.12000(1+x)2=14520C.14520(1+x)2=12000D.12000(1﹣x)2=14520【分析】一般用增长后的量=增长前的量×(1+增长率),如果设人均年收入的平均增长率为x,根据题意即可列出方程.【解答】解:设人均年收入的平均增长率为x,根据题意可列出方程为:12000(1+x)2=14520.故选:B.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b(a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).6.(3分)对于抛物线y=﹣(x+1)2﹣5,下列的说法错误的是()A.抛物线的开口向下B.抛物线的顶点坐标是(﹣1,﹣5)C.当x<1时,y随x的增大而增大D.当x>1时,y随x的增大而减小【分析】根据二次函数的性质逐项判断即可.【解答】解:抛物线y=−(x+1)2−5的开口向下,故A正确,不符合题意;抛物线y=−(x+1)2−5的顶点坐标是(−1,−5),故B正确,不符合题意;当x<﹣1时,y随x的增大而增大,故C错误,符合题意;当x>1时,y的值随x的增大而减小,故D正确,不符合题意;故选:C.【点评】本题考查二次函数的性质,解题的关键是掌握二次函数的相关性质.7.(3分)抛物线y=﹣5x2可由y=﹣5(x+2)2﹣6如何平移得到()A.先向右平移2个单位,再向下平移6个单位B.先向左平移2个单位,再向上平移6个单位C.先向左平移2个单位,再向下平移6个单位D.先向右平移2个单位,再向上平移6个单位【分析】按照“左加右减,上加下减”的规律求则可.【解答】解:将抛物线y=﹣5(x+2)2﹣6先向右平移2个单位,再向上平移6个单位即可得到抛物线y=﹣5x2.故选:D.【点评】本题主要考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.8.(3分)在解一元二次方程x2+px+q=0时,童威看错了常数项,得到方程的两个根是﹣3、﹣1,胖何看错了一次项系数p,得到方程的两个根是5、﹣4,则原来的方程是()A.x2+4x﹣3=0B.x2+4x﹣20=0C.x2﹣4x﹣20=0D.x2﹣4x﹣3=0【分析】先设这个方程的两根是α、β,根据两个根是﹣3,1和两个根是5,﹣4,得出α+β=﹣p=﹣4,αβ=q=﹣20,从而得出符合题意的方程.【解答】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p=﹣4,αβ=q=﹣20,则以α、β为根的一元二次方程是x2+4x﹣20=0.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.9.(3分)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c =0(a≠0)的一个近似解x的范围是()x…﹣3﹣2﹣101…y…﹣11﹣5﹣111…A.﹣1<x<0B.1<x<2C.2<x<3D.3<x<4【分析】根据表格中的数据可得出“当x=﹣1时,y=﹣1;当x=0时,y=1”由此即可得出结论.【解答】解:当x=﹣1时,y=﹣1;当x=0时,y=1,∴方程的一个近似根x的范围是﹣1<x<0,故选:A.【点评】本题考查了图象法求一元二次方程的近似根,熟练掌握用图象法求一元二次方程的近似根的方法是解题的关键.10.(3分)已知抛物线y=ax2+bx+c(a、b、c为正数)经过A(1,4)、B(2,12)两点,则b2﹣4ac的值可能为()A.4B.0C.﹣15D.﹣【分析】先把A点和B点坐标代入y=ax2+bx+c得到关于a、b、c的方程组,再利用a 分别表示b、c得到b=8﹣3a>0,c=2a﹣4>0,则2<a<,接着利用a表示b2﹣4ac,并进行配方得到b2﹣4ac=(a﹣16)2﹣192,然后根据二次函数的性质由2<a<得到﹣48<b2﹣4ac<﹣,从而可对各选项进行判断.【解答】解:把A(1,4)、B(2,12)代入解析式得:,②﹣①得3a+b=8,∴b=8﹣3a,把b=8﹣3a代入①得a+8﹣3a+c=4,∴c=2a﹣4,∵a、b、c为正数∴2a﹣4>0且8﹣3a>0,解得2<a<,∵b2﹣4ac=(8﹣3a)2﹣4a(2a﹣4)=a2﹣32a+64=(a﹣16)2﹣192,∴当a=2时,b2﹣4ac=(2﹣16)2﹣192=﹣48,当a=时,b2﹣4ac=(﹣16)2﹣192=﹣,∵2<a<,∴﹣48<b2﹣4ac<﹣.故选:C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)方程x2=x的根是x1=0,x2=1.【分析】先把方程化为一般式,再把方程左边因式分解得x(x﹣1)=0,方程就可转化为两个一元一次方程x=0或x﹣1=0,然后解一元一次方程即可.【解答】解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.【点评】本题考查了利用因式分解法解一元二次方程ax2+bx+c=0的方法:先把方程化为一般式,再把方程左边因式分解,然后把方程转化为两个一元一次方程,最后解一元一次方程即可.12.(3分)已知直线y=2x和抛物线y=ax2相交于点(2,b),则a+b=5.【分析】根据抛物线与一次函数图象的交点满足两个函数解析式,可先把A(2,b)代入y=2x中计算出b的值,从而确定A点坐标,然后把A点坐标代入y=ax2可求出a的值.【解答】解:把A(2,b)代入y=2x得:b=2×2=4,∴点坐标为(2,4),把(2,4)代入y=ax2得:4a=4,解得a=1,∴a+b=1+4=5,故答案为:5.【点评】主要考查了二次函数的性质:二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大;当a<0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小.也考查了抛物线与直线的交点问题.13.(3分)如果关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个实数根,那么m的取值范围是m≥﹣2且m≠﹣1.【分析】根据一元二次方程的定义和判别式的意义得到m+1≠0且Δ=(﹣2)2﹣4(m+1)×(﹣1)≥0,然后求写出两不等式的公共部分即可.【解答】解:根据题意得m+1≠0且Δ=(﹣2)2﹣4(m+1)×(﹣1)≥0,解得m≥﹣2且m≠﹣1.故答案为m≥﹣2且m≠﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.14.(3分)若抛物线y=x2﹣2x﹣3与直线y=2交于A、B两点,则AB=2.【分析】抛物线y=x2﹣2x﹣3与直线y=2交于A、B两点横坐标为一元二次方程x2﹣2x ﹣3=2的两个解,解方程即可得出答案.【解答】解:∵抛物线y=x2﹣2x﹣3与直线y=2交于A、B两点横坐标为一元二次方程x2﹣2x﹣3=2的两个解,,,则AB=x1﹣x2=2,故答案为:2.【点评】本题考查了二次函数的性质,一元二次方程的解法是解决问题的关键.15.(3分)二次函数的图象如图所示,给出四个结论:①abc>0;②4a﹣2b+c>0;③对于任意实数m,有am2+bm+c<a﹣b+c;④>﹣3,其中正确的有①②.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①对称轴位于x轴的左侧,则a,b同号,即ab>0.抛物线与y轴交于正半轴,则c>0.∴abc>0.故①正确;②∵x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确;③当x=﹣1时,y最大=a﹣b+c,当x=m时,y=am2+bm+c,∴对于任意实数m,有am2+bm+c≤a﹣b+c,故③错误;④∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a.∵x=1时,y=0,∴a+b+c=0,∴3a+c=0,∴c=﹣3a,∴==﹣3,故④错误;综上所述,正确的结论有:①②,故答案为:①②.【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、与y 轴的交点有关.16.(3分)如图,四边形ABCD中,∠ABC=90°,∠BCD=45°,∠CAD=2∠ACB.过点D作DE⊥AC于E,交BC于F.若AB=6,则FC=12.【分析】延长CD、BA交于点G,则△GBC是等腰直角三角形,得GB=BC,作正方形CBGH,延长FD交GH于M,过点M作MN⊥BC于N,证△ACB≌△FMN(ASA),得AB=FN,再证△GAD≌△GMD(AAS),得AG=GM,然后证NC=AB,即可得出结论.【解答】解:延长CD、BA交于点G,如图所示:∵∠ABC=90°,∠BCD=45°,∴△GBC是等腰直角三角形,∴GB=BC,作正方形CBGH,延长FD交GH于M,过点M作MN⊥BC于N,则∠ABC=∠FNM=90°,∠AGD=∠MGD=45°,四边形BGMN和四边形CHMN都是矩形,∴MN=BG=BC=GH,MH=NC,∠GMN=90°,∵DE⊥AC,∴∠CEF=∠FNM=90°,∵∠CFE=∠MFN,∴∠ACB=∠FMN,在△ACB和△FMN中,,∴△ACB≌△FMN(ASA),∴AB=FN,∵∠GAD=180°﹣∠CAD﹣∠BAC=180°﹣2∠ACB﹣(90°﹣∠ACB)=90°﹣∠ACB,∠GMD=90°﹣∠FMN=90°﹣∠ACB,∴∠GAD=∠GMD,在△GAD和△GMD中,,∴△GAD≌△GMD(AAS),∴AG=GM,∴BG﹣AG=GH﹣GM,即AB=MH,∴NC=AB,∴FC=FN+NC=AB+AB=2AB=2×6=12,故答案为:12.【点评】本题考查了全等三角形的判定与性质、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.三、解答题(共8题,共72分)17.(8分)解方程:3x2+6x﹣1=0.【分析】首先找出公式中的,b,c的值,再代入求根公式x=求解即可.【解答】解:∵a=3,b=6,c=﹣1,Δ=b2﹣4ac=62﹣4×3×(﹣1)=48>0,∴x====,∴x1=,x2=.【点评】此题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式,确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解.18.(8分)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.【分析】(1)根据一元二次方程x2﹣2x+m﹣1=0有两个实数根,可得△≥0,据此求出m的取值范围;(2)根据根与系数的关系求出x1+x2,x1•x2的值,代入x12+x22=6x1x2求解即可.【解答】解:(1)∵原方程有两个实数根,∴Δ=(﹣2)2﹣4(m﹣1)≥0,整理得:4﹣4m+4≥0,解得:m≤2;(2)∵x1+x2=2,x1•x2=m﹣1,x12+x22=6x1x2,∴(x1+x2)2﹣2x1•x2=6x1•x2,即4=8(m﹣1),解得:m=.∵m=<2,∴符合条件的m的值为.【点评】本题考查了根与系数的关系以及根的判别式,解答本题的关键是掌握两根之和与两根之积的表达方式.19.(8分)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?【分析】等量关系为:主干1+支干数目+支干数目×支干数目=91,把相关数值代入计算即可.【解答】解:设每个支干长出x个小分支,则1+x+x2=91,解得:x1=9,x2=﹣10(舍去),答:每个支干长出9个小分支.【点评】考查一元二次方程的应用,得到总数91的等量关系是解决本题的关键.20.(8分)已知二次函数y=x2﹣2x﹣3.(1)在下方坐标系中画出函数的图象;(2)若﹣2≤x≤5时,则y的取值范围是﹣4≤y≤12;(3)若A(x1,y1)、B(x2,y2)在此抛物线上,且x1<1<x2,x1+x2﹣2<0,则y1>y2.【分析】(1)由二次函数解析式求解.(2)将二次函数解析式化为顶点式,根据抛物线开口方向及顶点坐标求解.(3)由x1<1<x2,x1+x2﹣2<0可得点A到对称轴的距离大于点B到对称轴的距离,进而求解.【解答】解:(1)如图,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,顶点坐标为(1,﹣4),将x=5代入y=x2﹣2x﹣3得y=25﹣10﹣3=12,∴﹣2≤x≤5时,﹣4≤y≤12.故答案为:﹣4≤y≤12.(3)∵x1+x2﹣2<0,∴x1+x2<2,∴<1,∵抛物线对称轴为直线x=1,抛物线开口向上,且x1<1<x2,∴点A到对称轴的距离大于点B到对称轴的距离,∴y1>y2.故答案为:>.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.21.(8分)如图,A、B、C是三个格点,点M是线段AC上一格点.(1)在图1中,在线段BC上找一点N,使得MN∥AB;(2)在图2中,在线段BC上找一点D,使得∠CDM=45°;(3)在图3中,在AB上确定一点P,使∠APM=∠BPC.【分析】(1)取格点T,连接MT交BC于点N,点N即为所求;(2)取格点R,连接MR交BC于点D,点D即为所求;(3)取格点J,连接MJ交AB于点P,连接CP,点P即为所求.【解答】解:(1)如图1中,点N即为所求;(2)如图2中,点D即为所求;(3)如图3中,点P即为所求.【点评】本题考查作图﹣复杂作图,平行线的性质,轴对称等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.(10分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?【分析】(1)根据题意列出函数解析式解答即可;(2)找出利润关于购进A种服装a之间的关系式,分a的情况讨论.【解答】解:(1)∵80x+60(100﹣x)≤7500,解得:x≤75,∴y=40x+30(100﹣x)=10x+3000(65≤x≤75);(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,y随x的增大而增大,所以当x=75时,y有最大值,则购进A种服装75件,B种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,y随x的增大而减小,所以当x=65时,y有最大值,则购进A种服装65件,B种服装35件.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据题意列出一次函数解析式;(2)找出利润关于购进A种服装x的关系式,由函数的性质分a的情况讨论.本题属于中档题,(1)难度不大,(2)需要分a的情况讨论.23.(10分)如图,BD为矩形ABCD的对角线,将△BCD沿BD翻折得到△BGD,BG与边AD交于点E,点H为线段BE上一个动点,∠DHF=90°,FH=DH.若AB=a,BC =3b,AE=4,其中a、b是关于x的方程x2﹣6x+m=0的两个实数根.(1)证明:AE=GE;(2)若BH=4EH,求BF的长;(3)直接写出S△BFH的最大值.【分析】(1)由“AAS”可证△ABE≌△GDE,可得AE=GE;(2)由勾股定理和一元二次方程可求a=b=3,可得BE=5,AB=DG=3,由“AAS”可证△FHN≌△HDG,可得FN=HG=5,GD=HN=3,由勾股定理可求解;(3)由三角形的面积公式可求S△BFH=﹣(x﹣)2+,由二次函数的性质可求解.【解答】(1)证明:∵将△BCD沿BD翻折得到△BGD,∴AB=DG=CD,∠G=∠C=90°=∠A,在△ABE和△GDE中,,∴△ABE≌△GDE(AAS),∴AE=GE;(2)解:∵AE=GE=4,∴BE=ED=AD﹣AE=3b﹣4,在Rt△EC'D中,EG2+GD2=ED2,∴42+a2=(3b﹣4)2①,又∵a,b是关于x的方程x2﹣6x+m=0的两个实数根,∴a+b=6②,由①②可得:或(舍去),∴BE=3b﹣4=3×3﹣4=5,AB=CD=DG=3,∵BH=4EH,∴BH=4,EH=1,∴GH=5,如图,过点F作FN⊥BG于点N,则∠FNH=90°,∵∠DHF=90°,∠FNH=∠G=90°,∴∠FHN+∠GHD=90°,∠GHD+∠GDH=90°,∴∠FHG=∠GDH,又∵FH=DH,∴△FHN≌△HDG(AAS),∴FN=HG=5,GD=HN=3,∴BN=7,∴BF===;(3)解:设EH=x,则FN=HG=HE+EN=4+x,BH=BE﹣EH=5﹣x,∴S△BFH=BH•FN=(5﹣x)(4+x)=﹣(x﹣)2+,∴S△BFH的最大值为.【点评】本题是四边形综合题,考查了矩形的性质、折叠的性质、勾股定理、一元二次方程根与系数的关系、全等三角形的判定与性质、二次函数的性质,解题的关键是利用勾股定理求出a与b的大小.24.(12分)如图1,已知抛物线C1:y=x2+bx+c与直线y=﹣x+1交于M(m,4)、N(,n)两点(M在N的左侧).(1)求抛物线的解析式;(2)在直线MN的上方的抛物线上有一点C,若S△MNC=,求点C的坐标;(3)如图2,将抛物线C1平移后得到新的抛物线C2,C2的顶点为原点,P为抛物线C2第一象限内任意一点,直线y=﹣x+1与抛物线C2交于A、B两点,直线y=2与y轴交于点G,分别与直线P A、PB交于E、F两点.若EF=5GF,求点P的横坐标.【分析】(1)用待定系数法求函数的解析式即可;(2)过点M作MG∥x轴交MN于点G,设C(t,t2﹣t﹣2),则G(t,﹣t+1),可得S△MNC=(t2+t﹣3)×(2+)=,求出C(﹣,)或(4,10);(3)先求平移后的函数解析式为y=x2,设P(t,t2)(t>0),联立方程组,分别求出A(﹣2,4),B(,),再由待定系数法分别求出直线P A的解析式、直线PB的解析式,可求E(,2),F(,2),从而建立方程=5×,求出t=3即可.【解答】解:(1)将M(m,4)代入y=﹣x+1,∴﹣m+1=4,解得m=﹣2,∴M(﹣2,4),将N(,n)代入y=﹣x+1,n=﹣×+1=﹣,∴N(,﹣),将M(﹣2,4),N(,﹣)代入y=x2+bx+c,∴,解得,∴y=x2﹣x﹣2;(2)过点M作MG∥x轴交MN于点G,设C(t,t2﹣t﹣2),则G(t,﹣t+1),∴CG=t2﹣t﹣2+t﹣1=t2+t﹣3,∴S△MNC=(t2+t﹣3)×(2+)=,解得t=4或t=﹣,∴C点在直线y=﹣x+1上方,∴t>或t<﹣2,∴C(﹣,)或(4,10);(3)∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的顶点为(,﹣),∵C2的顶点为原点,∴抛物线向左平移个单位,向上平移个单位,∴平移后的函数解析式为y=x2,设P(t,t2)(t>0),联立方程组,解得或,∴A(﹣2,4),B(,),∵直线y=2与y轴交于点G,∴G(0,2),设直线P A的解析式为y=kx+b,∴,解得,∴直线P A的解析式为y=(t﹣2)x+2t,同理可求直线PB的解析式为y=(t+)x﹣t,∴E(,2),F(,2),∴EF=﹣=,FG=,∵EF=5GF,∴=5×,解得t=3,∴P(3,9),∴P点横坐标为3.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,用待定系数法求函数的解析式,抛物线平移的性质是解题的关键.。
2015-2016学年湖北省武汉市江岸区七一华源中学九年级(上)周练数学试卷(1)一、选择题(每小题3分,共30分)1.(3分)下列方程中,一定是一元二次方程的是()A.B.C.D.ax2+bx+c=02.(3分)用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是()A.(x﹣1)2=4 B.(x+1)2=4 C.(x﹣1)2=16 D.(x+1)2=163.(3分)下列一元二次方程中有两个相等的实数根的是()A.x2+2x﹣4=0 B.x2﹣2x﹣6=0 C.x2﹣4x+4=0 D.x2+3x+5=04.(3分)若2x2+1与4x2﹣2x﹣5的值互为相反数,则x的值是()A.﹣1或B.1或﹣ C.1或﹣ D.1或5.(3分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于()A.1 B.2 C.1或2 D.06.(3分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1967.(3分)已知等腰三角形的腰长、底边长分别是一元二次方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.9或12 B.9 C.12 D.218.(3分)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4 C.﹣4 D.109.(3分)已知x=2是关于x的一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+ab的值是()A.16 B.﹣4 C.4 D.﹣210.(3分)已知关于x的一元二次方程ax2+bx+c=0(a≠0),有下列命题:①a+b+c=0,则b2﹣4ac≥0;②若一元二次方程ax2+bx+c=0的两根为﹣1和2,则2a+c=0;③若一元二次方程ax2+c=0有两个不相等的实数根,则一元二次方程ax2+bx+c=0必有两个不相等的实数根,其中真命题的个数是()A.0 B.1 C.2 D.3二、填空题(每小题3分,共18分)11.(3分)已知关于x的一元二次方程x2+2x+m=0有两个不相等的实数根,则m.12.(3分)一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=.13.(3分)现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.14.(3分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.15.(3分)已知m,n是方程x2﹣2x﹣1=0的两根,则7m2﹣13m+n的值等于.16.(3分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是.三、解答题(共72分)17.(12分)解方程:(1)2x2﹣4x﹣5=0(2)x2﹣17=8x(3)5x2﹣3x=x+1(4)5x(x﹣3)=6﹣2x.18.(8分)已知关于x的方程(m﹣3)x﹣x+3=0是一元二次方程,求m 的值.19.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0(1)若x=﹣1是这个方程的一个根,求m的值和方程的另一根;(2)对于任意的实数m,判断方程的根的情况,并说明理由.20.(10分)已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.21.(10分)如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条道的面积是梯形面积的八分之一时,求甬道的宽.22.(10分)已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.23.(14分)如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动.设移动时间为t(s),问(1)当t为何值时,P、Q两点间的距离是10cm?(2)当t为何值时,P、Q两点间距离最小?最小距离为多少?(3)P、Q两点间距离能否是18cm?若能,求出t的值;若不能,请说明理由.2015-2016学年湖北省武汉市江岸区七一华源中学九年级(上)周练数学试卷(1)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列方程中,一定是一元二次方程的是()A.B.C.D.ax2+bx+c=0【解答】解:x2=0是一元二次方程,故选A2.(3分)用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是()A.(x﹣1)2=4 B.(x+1)2=4 C.(x﹣1)2=16 D.(x+1)2=16【解答】解:把方程x2﹣2x﹣3=0的常数项移到等号的右边,得到x2﹣2x=3,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=3+1,配方得(x﹣1)2=4.故选A.3.(3分)下列一元二次方程中有两个相等的实数根的是()A.x2+2x﹣4=0 B.x2﹣2x﹣6=0 C.x2﹣4x+4=0 D.x2+3x+5=0【解答】解:因为方程x2﹣4x+4=0中,a=1,b=﹣4,c=4,所以△=b2﹣4ac=0,所以方程有两个相等的实数根,故选C.4.(3分)若2x2+1与4x2﹣2x﹣5的值互为相反数,则x的值是()A.﹣1或B.1或﹣ C.1或﹣ D.1或【解答】解:∵2x2+1与4x2﹣2x﹣5的值互为相反数,∴2x2+1+4x2﹣2x﹣5=0,则3x2﹣x﹣2=0,(x﹣1)(3x+2)=0,解得:x1=1,x2=﹣.故选:B.5.(3分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于()A.1 B.2 C.1或2 D.0【解答】解:∵关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,∴,解得:m=2.故选:B.6.(3分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.7.(3分)已知等腰三角形的腰长、底边长分别是一元二次方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.9或12 B.9 C.12 D.21【解答】解:(x﹣2)(x﹣5)=0∴x1=2,x2=5.∵三角形是等腰三角形,必须满足三角形三边的关系,∴腰长是5,底边是2,周长为:5+5+2=12.故选C.8.(3分)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4 C.﹣4 D.10【解答】解:根据题意得:m+n=3,mn=a,∵(m﹣1)(n﹣1)=mn﹣(m+n)+1=﹣6,∴a﹣3+1=﹣6,解得:a=﹣4.故选C9.(3分)已知x=2是关于x的一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+ab的值是()A.16 B.﹣4 C.4 D.﹣2【解答】解:∵x=2是关于x的一元二次方程x2+ax+b=0的一个根,∴4+2a+b=0,即2a+b=﹣4,∴a2+b2+ab=(4a2+4ab+b2)=×(2a+b)2=×(﹣4)2=4.故选C.10.(3分)已知关于x的一元二次方程ax2+bx+c=0(a≠0),有下列命题:①a+b+c=0,则b2﹣4ac≥0;②若一元二次方程ax2+bx+c=0的两根为﹣1和2,则2a+c=0;③若一元二次方程ax2+c=0有两个不相等的实数根,则一元二次方程ax2+bx+c=0必有两个不相等的实数根,其中真命题的个数是()A.0 B.1 C.2 D.3【解答】解:①若a+b+c=0,方程ax2+bx+c=0有一根为1,又a≠0,则b2﹣4ac ≥0,正确;②由两根关系可知,﹣1×2=,整理得:2a+c=0,正确;③若方程ax2+c=0有两个不相等的实根,则﹣4ac>0,可知b2﹣4ac>0,故方程ax2+bx+c=0必有两个不相等的实根,正确.正确命题有三个,故选D.二、填空题(每小题3分,共18分)11.(3分)已知关于x的一元二次方程x2+2x+m=0有两个不相等的实数根,则m<1.【解答】解:根据题意得△=22﹣4m>0,解得m<1.故答案为<1.12.(3分)一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=1.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.13.(3分)现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0.【解答】解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.14.(3分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4.【解答】解:根据题中的新定义将x★2=6变形得:x2﹣3x+2=6,即x2﹣3x﹣4=0,因式分解得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1,则实数x的值是﹣1或4.故答案为:﹣1或415.(3分)已知m,n是方程x2﹣2x﹣1=0的两根,则7m2﹣13m+n的值等于9.【解答】解:根据根与系数的关系得:m+n=2,mn=﹣1,把x=m代入方程得:m2﹣2m﹣1=0,即7m2﹣14m﹣7=0,∴7m2﹣14m+m+n﹣7=m+n=2,∴7m2﹣13m+n=7+7=9,故答案为:9.16.(3分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是5.【解答】解:∵a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,∴a2﹣5a+m=0①,a2﹣5a﹣m=0②,①+②,得2(a2﹣5a)=0,∵a>0,∴a=5.故答案为:5.三、解答题(共72分)17.(12分)解方程:(1)2x2﹣4x﹣5=0(2)x2﹣17=8x(3)5x2﹣3x=x+1(4)5x(x﹣3)=6﹣2x.【解答】解:(1)∵a=2,b=﹣4,c=﹣5,∴△=16﹣4×2×(﹣5)=56>0,则x==.(2)∵x2﹣8x﹣17=0,∴a=1,b=﹣8,c=﹣17,∴△=64﹣4×1×(﹣17)=132>0,则x==4;(3)整理,得:5x2﹣4x﹣1=0,∵(x﹣1)(5x+1)=0,∴x﹣1=0或5x+1=0,解得:x=1或x=﹣;(4)∵5x(x﹣3)+2(x﹣3)=0,∴(x﹣3)(5x+2)=0,则x﹣3=0或5x+2=0,解得:x=3或x=﹣.18.(8分)已知关于x的方程(m﹣3)x﹣x+3=0是一元二次方程,求m 的值.【解答】解:由题意,得m2﹣7=2且m﹣3≠0,解得m=﹣3.19.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0(1)若x=﹣1是这个方程的一个根,求m的值和方程的另一根;(2)对于任意的实数m,判断方程的根的情况,并说明理由.【解答】解:(1)将x=﹣1代入方程x2﹣mx﹣2=0,得1+m﹣2=0,解得m=1,解方程x2﹣x﹣2=0,解得x1=﹣1,x2=2;(2)∵△=m2+8>0,∴对于任意的实数m,方程有两个不相等的实数根.20.(10分)已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.【解答】解:(1)设方程的两根为x1,x2则△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵方程有两个实数根,∴△≥0,即2k﹣3≥0,∴k≥∴当k≥,方程有两个实数根.(2)由题意得:,又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,(k+1)2﹣2(k2+1)=5,整理得k2+4k﹣12=0,解得k=2或k=﹣6(舍去),∴k的值为2.21.(10分)如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条道的面积是梯形面积的八分之一时,求甬道的宽.【解答】解:(1)横向甬道的面积为:(120+180)÷2×x=150x(m2);(2)依题意:2×80×x+150x﹣2x2=×(120+180)÷2×80,整理得:x2﹣155x+750=0,x1=5,x2=150(不符合题意,舍去),答:甬道的宽为5米.22.(10分)已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.【解答】解:(1)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC2=25,∵AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,∴AB+AC=2k+3,AB•AC=k2+3k+2,∴AB2+AC2=(AB+AC)2﹣2AB•AC,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或﹣5(不合题意舍去);(2)∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6∴△ABC的周长为14或16.23.(14分)如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动.设移动时间为t(s),问(1)当t为何值时,P、Q两点间的距离是10cm?(2)当t为何值时,P、Q两点间距离最小?最小距离为多少?(3)P、Q两点间距离能否是18cm?若能,求出t的值;若不能,请说明理由.【解答】解:(1)设出发t秒后P、Q两点间的距离是10厘米.则AP=3t,CQ=2t,作QM⊥AB于M,则PM=|16﹣2t﹣3t|=|16﹣5t|,(16﹣5t)2+62=102,解得:t==1.6或t==4.8,答:P、Q出发1.6和4.8秒时,P,Q间的距离是10厘米;(2)∵PQ=,∴当16﹣5t=0时,即t=时,PQ最小,最小为6;(3)∵AC===<18,∴P、Q两点间距离不能是18cm.。
2024-2025学年湖北省武汉市江岸区七一华源中学数学九年级第一学期开学复习检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如果一个等腰三角形的两边长为4、9,则它的周长为()A .17B .22C .17或22D .无法计算2、(4分)在平行四边形ABCD 中,数据如图,则∠D 的度数为()A .20°B .80°C .100°D .120°3、(4分)如图,ABC ∆中,点D 在AB 边上,点E 在AC 边上,且123∠=∠=∠,则与ADE ∆相似的三角形的个数为()A .4个B .3个C .2个D .1个4、(4分)关于函数y=2x ,下列说法错误的是()A .它是正比例函数B .图象经过(1,2)C .图象经过一、三象限D .当x >0,y <05、(4分)已知一组数据3,a ,4,5的众数为4,则这组数据的平均数为()A .3B .4C .5D .66、(4分)方程x(x +1)=x+1的解是()A .x 1=0,x 2=-1B .x =1C .x 1=x 2=1D .x 1=1,x 2=-17、(4分)下列函数中,一次函数的是()A .y =1x -B .y =12C .y =x ﹣1D .y =2x 2+48、(4分)在Rt ABC ∆中,90C ∠=︒,6AB =,2cos 3B =,则BC 的长为()A .3B .2C .D .4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)化成最简二次根式得到的结果是______.10、(4分)若关于x 的分式方程121m x -=+的解为正数,则m 的取值范围是_____.11、(4分)在矩形ABCD 中,AB =2,AD =3,点P 是BC 上的一个动点,连接AP 、DP ,则AP+DP 的最小值为_____.12、(4分)若最简二次根式是同类二次根式,则x =_______.13、(4分)如图,矩形纸片ABCD 的边长AB=4,AD=2,将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),着色部分的面积为______________.三、解答题(本大题共5个小题,共48分)14、(12分)某产品生产车间有工人10名,已知每名工人每天可生产甲种产品10个或乙种产品12个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润150元.在这10名工人中,车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品.(1)求出此车间每天获取利润y (元)与x (人)之间的函数关系式;(2)若要使此车间每天获取利润为14800元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?15、(8分)甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如表,请根据表中数据解答下列问题进球数/个1098765甲111403乙012502(1)分别写出甲、乙两班选手进球数的平均数、中位数与众数;(2)如果要从这两个班中选出一个班级参加学校的投篮比赛,争取夺得总进球团体的第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?16、(8分)先化简再求值a b ab b a a b ⎛⎫-⋅ ⎪+⎝⎭,其中12a b ==,.17、(10分)已知:如图,在Rt △ABC 中,∠C=90°,AB=5cm ,AC=3cm ,动点P 从点B 出发沿射线BC 以1cm/s 的速度移动,设运动的时间为t 秒.(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值;(3)当△ABP 为等腰三角形时,求t 的值18、(10分)先化简:223626699a a a a a a +-⋅+++-,然后从33a -≤≤的范围内选取一个合适的整数作为a 的值代入求值.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正方形ABCD 中,点E 在DC 边上,2,1DE EC ==,把线段AE 绕点A 旋转,使点E 落在直线..BC 上的F 点,则F C 、两点间的距离为___________.20、(4分)已知a+b=5,ab=-6,则代数式ab 2+a 2b 的值是______.21、(4分)学校篮球队五名队员的年龄分别为1715171615,,,,,其方差为0.8,则三年后这五名队员年龄的方差为______.22、(4分)在矩形ABCD 中,AB=6cm,BC=8cm,则点A 到对角线BD 的距离为_____.23、(4分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.二、解答题(本大题共3个小题,共30分)24、(8分)已知a 满足以下三个条件:①a 是整数;②关于x 的一元二次方程ax 2+4x ﹣2=0有两个不相等的实数根;③反比例函数2a 1y x +=的图象在第二、四象限.(1)求a 的值.(2)求一元二次方程ax 2+4x ﹣2=0的根.25、(10分)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2﹣4x +1)(x 2﹣4x +7)+9进行因式分解的过程.解:设x 2﹣4x =y原式=(y +1)(y +7)+9(第一步)=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x 2+2x )(x 2+2x +2)+1进行因式分解.26、(12分)如图,在平面直角坐标系中,点A 的坐标为()0,6,点B 在x 轴的正半轴上.若点P ,Q 在线段AB 上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P 、Q 的“涵矩形”.下图为点P ,Q 的“涵矩形”的示意图.(1)点B 的坐标为()3,0.①若点P 的横坐标为32,点Q 与点B 重合,则点P 、Q 的“涵矩形”的周长为__________.②若点P ,Q 的“涵矩形”的周长为6,点P 的坐标为()1,4,则点()2,1E ,()1,2F ,()4,0G 中,能够成为点P 、Q 的“涵矩形”的顶点的是_________.(2)四边形PMQN 是点P 、Q 的“涵矩形”,点M 在AOB ∆的内部,且它是正方形.①当正方形PMQN 的周长为8,点P 的横坐标为3时,求点的坐标.②当正方形PMQN 的对角线长度为时,连结OM .直接写出线段OM 的取值范围.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=1.故选:B.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.2、B【解析】依据平行四边形的性质可得5x+4x=180°,解得x=20°,则∠D=∠B=80°.【详解】∵四边形ABCD是平行四边形,∴AD∥BC.∴5x+4x=180°,解得x=20°.∴∠D=∠B=4×20°=80°.故选B.本题主要考查了平行四边形的性质:邻角互补.同时考查了方程思想.3、C【解析】【详解】∵∠1=∠2,∴DE∥BC,∴∠EDC=∠DCB,△ADE∽△ABC,∵∠2=∠3,∠A=∠A,∴△ACD∽△ABC,∴△ADE∽△ABC∽△ACD,∴图中与△ADE相似三角形共有2对.故选C.此题考查了相似三角形的判定.此题难度不大,解题的关键是掌握有两组角对应相等的两个三角形相似定理的应用,注意数形结合思想的应用.4、D【解析】根据正比例函数的图象与系数的关系解答,对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.【详解】关于函数y=2x,A、它是正比例函数,说法正确,不合题意;B、当x=1时,y=2,图象经过(1,2),说法正确,不合题意;C、图象经过一、三象限,说法正确,不合题意;D、当x>0时,y>0,说法错误,符合题意;故选D.此题考查了正比例函数的性质和,熟练掌握正比例函数的定义与性质是解题关键.5、B【解析】试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.数据3,a,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.考点:1.算术平均数;2.众数.6、D【解析】【分析】移项后,利用因式分解法进行求解即可得.【详解】x(x+1)=x+1,x(x+1)-(x+1)=0,(x+1)(x-1)=0,x1=1,x2=-1,故选D.【点睛】本题考查了解一元二次方程,根据方程的特点熟练选取恰当的方法进行求解是关键.7、C【解析】根据一次函数的定义逐项判断即可.【详解】A、y=1x-是反比例函数,不是一次函数;B、y=12不是函数;C、y=x﹣1是一次函数;D、y=2x2+4是二次函数,不是一次函数;故选:C.本题考查了一次函数的定义,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数8、D【解析】根据2cos3B=,可得23CBAB=,再把AB的长代入可以计算出CB的长.【详解】解:∵cos B=BC AB,∴BC =AB •cos B =6×23=1.故选:D .此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】根据二次根式的性质进行化简即可.【详解】故答案为:本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.10、m>1【解析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求m 的取值范围.【详解】解:去分母得,m-1=2x+2,解得,x=32m -,∵方程的解是正数,∴m-1>2,解这个不等式得,m>1,∵32m -+1≠2,∴m≠1,则m 的取值范围是m>1.故答案为:m>1.本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.注意分式方程分母不等于2.11、1【解析】作点D 关于BC 的对称点D ',连接AD ',PD ',依据AP +DP =AP +PD '≥AD ',即可得到AP +DP 的最小值等于AD '的长,利用勾股定理求得AD '=1,即可得到AP +DP 的最小值为1.【详解】解:如图,作点D 关于BC 的对称点D ',连接AD ',PD ',则DD '=2DC =2AB =4,PD =PD ',∵AP +DP =AP +PD '≥AD ',∴AP +DP 的最小值等于AD '的长,∵Rt △ADD '中,AD 1,∴AP +DP 的最小值为1,故答案为:1.本题考查的是最短线路问题及矩形的性质,熟知两点之间线段最短的知识是解答此题的关键.12、4【解析】根据同类二次根式的定义,被开方数相等,由此可得出关于x 的方程,进而可求出x 的值.【详解】解:由题意可得:235x -=解:4x =当4x =故答案为:4.本题考查了同类二次根式与最简二次根式的定义,掌握定义是解题的关键.13、112【解析】设BE=x,则AE=EC=CF=4-x,在Rt△ECB 中,CE 2=BE 2+BC 2,∴(4-x)2=x 2+22,∴x=32,CF=52.S 着色部分=S 矩形ABCD -S △ECF =4×2-12×52×2=112三、解答题(本大题共5个小题,共48分)14、(1)y=-800x+18000;(2)安排4人生产甲产品;(3)至少要派7名工人生产乙产品.【解析】(1)根据利润计算方法分别表示出甲产品、乙产品的利润,最后求和即得y ,(2)把y=14800代入y 与x 的函数关系式,求出x 的值,(3)列不等式求出x 的取值范围,进而求出生产乙产品的人数的取值范围,确定至少安排乙产品的人数.【详解】解:(1)设每天安排x 名工人生产甲种产品,则有(10-x )人生产乙产品,y=10x ×100+12(10-x )×150=-800x+18000,答:每天获取利润y (元)与x (人)之间的函数关系式为y=-800x+18000;(2)当y=14800时,即:-800x+18000=14800,解得:x=4,答:安排4人生产甲产品;(3)由题意得:-800x+18000≥15600,解得:x ≤3,当x ≤3时,10-x ≥7,因此至少要派7名工人生产乙产品.本题考查一次函数的应用以及一元一次不等式的应用等知识,根据已知得出y 与x 之间的函数关系是解题关键.15、(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)要争取夺取总进球团体第一名,应选乙班;要进入学校个人前3名,应选甲班.【解析】(1)利用平均数、中位数和众数的定义直接求出;(2)根据方差和个人发挥的最好成绩进行选择.【详解】解:(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)甲班S 12=110[(10﹣7)2+(9﹣7)2+(8﹣7)2+1×(7﹣7)2+0×(6﹣7)2+3×(5﹣7)2]=2.6,乙班S 22=110[0×(10﹣7)2+(9﹣7)2+2×(8﹣7)2+5×(7﹣7)2+(6﹣7)2+2×(5﹣7)2]=1.1.∵甲方差>乙方差,∴要争取夺取总进球团体第一名,应选乙班.∵甲班有一位百发百中的出色选手,∴要进入学校个人前3名,应选甲班.本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.16、a-b,-1【解析】根据分式的运算法则先算括号里的减法,然后做乘法即可。
七一华源中学2015~2016学年度上学期九年级数学周练十一参考答案一、选择题(共10小题,每小题3分,共30分)9.提示:作如图的旋转 过点D 作DM ⊥PC ,DN ⊥CQ ∴DM =DN且S △PCQ =2123)1123(21-=⨯+-⨯h ,23123-=h而CD =2h10.提示:利用角度关系 ∠DCO =∠BCO =45° ∠FCO =∠ECO∴∠DCF =∠ECB =∠FCE =30°二、填空题(共6小题,每小题3分,共18分) 11.-1 12.3213.28 14.1或715.1016.323+16.提示:仍然是构造共顶点的等腰三角形的旋转三、解答题(共8题,共72分) 17.解:223±=x 18.证明:连接OD∵AB =AC ∴∠B =∠C ∵O 是BC 的中点 ∴OB =OC ∵AB 是⊙O 的切线 ∴OD ⊥AB过点O 作OE ⊥AC 于E ∴△OBD ≌△OCE (AAS ) ∴OD =OE ∴AC 是⊙O 的切线 19.解:略 20.解:(1)31;(2) 91 21.证明:(1) 连接AD ∵AD 是⊙O 的直径 ∴∠ADB =90°又∠BED =∠C =∠DAB∴∠C +∠ABD =∠DAB +∠ABD =90° ∴AB ⊥CF (2) ∵AB ⊥EF ∴HE =HF =21EF =12 ∵OE ∥BC ∴OE ⊥AD ∴AE =DE =15 在Rt △AEH 中,AH =9在Rt △OEH 中,OE =r ,HE =12,OH =r -9 ∴r 2=122+(r -9)2,r =12.5 22.解:(1) y =100+10x 由80-40-x ≥0,解得:x ≤40 ∴x 的取值范围是:0≤x ≤40(2) 令(40-x )(100+10x )=6000,解得:x 1=10,x 2=20 ∵为了薄利多销∴其中,x =10不符合题意,舍去∴当每件商品的售价为60元时,每个月的利润恰为6000元 (3) W =(40-x )(100+10x )=-10(x -15)2+6250 ∵a =-10<0∴当x =15时,y 有最大值6250综上所述,每件商品的售价定为65元时每个月可获得最大利润,最大的月利润是6250元 23.证明:(1) 过点E 作EF ⊥EA 交AC 的延长线于F ∵∠BEC =90° ∴∠BEA +∠AEC =90° 又∠FEC +∠AEC =90° ∴∠BEA =∠FEC在四边形ABEC 中,∠B +∠ECA =180° 且∠ECF +∠ECA =180° ∴∠B =∠ECF 在△EAB 和△EFC 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠CEF BEA ECEB ECF EBA ∴△EAB ≌△EFC (ASA ) ∴AE =EF∴△AEF 为等腰直角三角形 ∴∠BAE =∠F =∠EAF =45° ∴AE 平分∠BAC(2) 过点F 作FM ⊥AM 交AD 的延长线于M ,FN ⊥AE 于N ∵四边形ABCD 是菱形 ∴AF 平分∠MAN ∴FM =FN在Rt △FDM 和Rt △FEM 中 ⎩⎨⎧==FNFM FEFD ∴Rt △FDM ≌Rt △FEM (HL )∴∠E =∠MDF∵∠MDF +∠ADF =180° ∴∠E +∠ADF =180°在四边形ADFE 中,∠BAD +∠DFE =180° (3) 22≤BE <4 提示:当EC ⊥AF 时最短24.解:(1) 4212++-=x x y(2) 设点Q (a ,0)过点E 作EG ⊥x 轴于点G 由04212=++-x x ,解得x 1=-2,x 2=4 ∴点B 的坐标为(-2,0) ∴AB =6,BQ =a +2 ∵QE ∥AC∴△BQE ∽△BAC ∴BABQCO EG =(高的比等于边长的比) 即624+=a EG ,342+=a EG ∴S △CQE =S △CBQ -S △EBQ =383231)3424)(2(212++-=+-+a a a a 当S △CQE =3时,a =1 ∴Q (1,0)方法二:设Q (a ,0),然后利用QE ∥AC 表示出直线EQ 的解析式 然后联立BC 、EQ 的直线解析式解出E 点坐标,从而可以得到△BEQ 的高 (3) 当DO =DF 时,F (2,2) ∴P (51+,2)或(51-,2) 当FO =FD 时,F (1,3) ∴P (31+,3)或(31-,3) 当OD =OF 时∵OA =OC =4,且∠AOC =90° ∴24=AC∴点O 到AC 的距离为22 而OF =OD =2<22此时,不存在这样的直线l ,使得△ODF 是等腰三角形综上所述:P (51+,2)或(51-,2)或(31+,3)或(31-,3)。
七一华源中学2016~2017学年度上学期九年级数学周练一一、选择题(共10小题,每小题3分,共30分) 1.一元二次方程x 2=x 的根为( ) A .0B .1C .0或1D .0或-1 2.抛物线y =(x +2)2-3的顶点坐标是( ) A .(2,-3) B .(-2,-3) C .(-2,3) D .(2,3) 3.用配方法解一元二次方程x 2+2x -1=0,配方后得到的方程是( ) A .(x -1)2=2 B .(x -1)2=3 C .(x +1)2=2 D .(x +1)2=3 4.一次函数y =2x +3的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.顺次连结矩形四边中点所得的四边形一定是( ) A .正方形B .矩形C .菱形D .等腰梯形6.二次函数y =x 2+1的图象大致是( )7.若x 1、x 2是一元二次方程x 2-3x -4=0的两个根,则x 1+x 2等于( )A .-3B .3C .1D .48.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组互赠182件.如果全组有x 名同学,则根据题意列出的方程是( ) A .x (x +1)=182B .x (x -1)=182C .2x (x +1)=182D .x (x -1)=182×29.如图,四边形ABCD 的两条对角线互相垂直,AC 、BD 是方程x 2-16x +60=0的两个解,则四边形ABCD 的面积是( ) A .60 B .30 C .16D .3210.对于一元二次方程ax 2+bx +c =0,下列说法:① 若a +b +c =0,则方程ax 2+bx +c =0必有两不相等的实根;② 若a >0,则ax 2+bx +c =0必有两个不相等的实数根;③ 若b 2<3ac ,则方程没有实数根;④ 33ca b +=,则方程必有一根x =-3,其中正确的是( )A .1B .2C .3D .4二、填空题(本大题共6个小题,每小题3分,共18分)11.一次函数y =-4x +12与平面直角坐标系中两坐标轴围成的面积是___________12.如果二次函数y =(2k -1)x 2-3x +1的图象开口向上,那么常数k 的取值范围是___________ 13.方程x 2-9x +18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为________ 14.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出___________根小分支15.如图,线段AB 上的点C 满足关系式AC 2=BC ·AB ,则AC ∶AB 的值是___________16.如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=2,DF=2,则AB的长为___________三、解答题(共8题,共72分)17.(本题9分)解方程:(1) (x-2)2-27=0(2) x(x-3)+x-3=0(3) x2+x-1=018.(本题7分)已知3是一元二次方程x2-2x+a=0的一个根,求a的值和方程的另一根19.(本题8分)已知抛物线y=x2+bx+c经过点(1,0)、(-2,-3),求这个抛物线的解析式20.(本题8分)如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC,求证:FE=FD21.(本题8分)已知关于x 的方程x 2+(k +1)x +41k 2+1=0 (1) 当k 取何值方程有两个实数根(2) 是否存在k 值使方程的两根为一个矩形的两邻边长,且矩形的对角线长为522.(本题10分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米(1) 若平行于墙的一边长为y 米,直接写出y 与x 的函数关系式及其自变量x 的取值范围 (2) 垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值23.(本题10分)如图,△ABC 是边长为6 cm 的等边三角形,D 、E 分别为AB 、BC 上两点 (1) 若BD =CE ① 求∠AFC 的度数② 连BF ,若AF =5,CF =2,求BF 的长(2) 如图2,若BE =2,D 在线段AB 上移动,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,则M 点所经历的路径长为__________24.(本题12分)如图1,△ABC 、△AED 都是等腰直角三角形,∠ABC =∠E =90°,AE =a ,AB =b ,且a <b ,点D 在AC 上,连接BD ,BD =c (1) 如果a c 25= ① 求ba的值 ② 若a 、b 是关于x 的方程0585225122=+-+-m m mx x 的两根,求m (2) 如图2,将△ADE 绕点A 逆时针旋转.若S 四边形BCDE -S △ABE =50,求BE 的长七一华源中学2016~2017学年度上学期九年级数学周练一参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CBCDCBBBBB10.提示:∵b 2-3ac <0∴ac >0(不然不可能小于零)二、填空题(共6小题,每小题3分,共18分) 11.18 12.21>k 13.15 14.315.215-16.52三、解答题(共8题,共72分)17.解:(1) 332±=x ;(2) x 1=-1,x 2=3;(3) 251±-=x 18.解:x 2=-1,a =-3 19.解:y =x 2+2x -3 20.解:略21.解:(1) ∵方程有两个实数根∴△=(k +1)2-4(41k 2+1)≥0,解得k ≥23 (2) 设方程的两根为x 1、x 2 ∴x 12+x 22=5∵x 1+x 2=-(k +1),x 1x 2=41k 2+1 ∴(x 1+x 2)2-2x 1x 2=(k +1)2-2(41k 2+1)=5,解得k =-6或2 ∵k ≥23 ∴k =222.解:(1) y =30-2x (6≤x <15)(2) 设矩形苗圃园的面积为S则S =xy =x (30-2x )=-2x 2+30x =-2(x -7.5)2+112.5 ∵a =-2<0且6≤x <15∴当x =7.5时,S 有最大值为112.5 23.解:(1) ∵△ACE ≌△CBD (SAS )∴∠CAE =∠BCD∴∠AFD =∠F AC +∠FCA =∠BCD +∠FCA =∠ACB =60° ∴∠AFC =120°(2) 延长FD 至G ,且使FG =F A ,连接GA 、GB ∵∠AFD =60° ∴△AFG 为等边三角形根据共顶点等腰三角形的旋转,得△AFC ≌△AGB (SAS ) ∴GB =FC =2,∠AGB =∠AFC =120° ∵∠AGF =60° ∴∠BGF =60° 过点B 作BH ⊥CG 于H ∴GH =1,BH =3,CD =4在Rt △CBH 中,1922=+=CH BH BF (3) 过点M 作MG ∥AC 交BC 于G ∴∠MGE =∠EBD =60° ∵△DEM 为等边三角形 ∴DE =EM ∵∠DEM =60°∴∠BED +∠MEG =120° ∵∠MEG +∠EMG =120° ∴∠BED =EMG 在△DBE 和△EGM 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠EM DE EGM DBE GEM BDE ∴△DBE ≌△EGM (AAS )过点E 作EP ⊥BD 于P ,过点M 作MQ ⊥BC 于Q ∴MQ =EP =3∴点M 在平行于BC 且距BC 为3的直线上运动 通过两个极端位置的分析,可知M 的运动轨迹为M 1M 2 M 1M 2=BC =624.解:(1) 过点D 作DF ⊥AB 于F∴四边形AEDF 为矩形 ∴DF =AE =a ,BF =b -a在Rt △BDF 中,BD 2=BF 2+DF 2=(b -a )2+a 2=c 2=245a∴b -a =21a ,32=b a (2) ∵a 、b 是关于x 的方程0585225122=+-+-m m mx x 的两根 ∴a +b =m ,ab =58522512+-m m ∵32=b a ∴m b m a 5352==, ∴5852********+-=m m m ,解得m =-4或2 ∵a +b =m >0 ∴m =2(3) 将线段BE 绕点B 顺时针旋转90°至BF ,连接FC 、FD 根据共顶点等腰三角形的旋转,得△ABE ≌△BCF ∴CF =AE =DE 延长EA 交CF 于G ∵∠BEA =∠CFB∴∠EBF =∠EGF =90°(八字型EBFG 中) ∵∠DEA =90° ∴DE ∥CF∴四边形DECF 为平行四边形∴S 四边形BCDE =S △BCE +S △CDE =S △BCE +S △ECF =S 四边形BCFE ∵S 四边形BCDE -S △ABE =50∴S 四边形BCFE -S △ABE =S 四边形BCFE -S △BCF =S △BEF =50 ∵△BEF 为等腰直角三角形 ∴BE =10。
2014-2015学年湖北省武汉市七一中学九年级(上)月考数学试卷(9月份)一、选择题(共有10个小题,每小题3分)1.使下列二次根式有意义的取值范围为x≥3的是()A.B.C.D.2.下列计算正确的是()A.+=B.﹣=C.=D.3.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根4.如图,四边形纸片ABCD关于直线EF对称,∠BAD=50°,∠B=30°,那么∠BCD的度数是()A.70°B.80°C.110°D.130°5.设一元二次方程x2﹣2x﹣4=0的两个实数为x1和x2,则下列结论正确的是()A.x1+x2=2 B.x1+x2=﹣4 C.x1x2=﹣2 D.x1x2=46.点P(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)7.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠08.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是()A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB9.某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力:根据图中信息,下列判断:①该市08年共抽取了2000名九年级学生视力进行调查;②若该市08年共有8万九年级学生,估计该市九年级视力不良(4.9以下)的学生大约有3200人;③在被调查的学生中2007年视力在4.9以下的人数增长率低于2008年的人数增长率;④若按06年到08年该市九年级视力不良(4.9以下)的学生人数的平均增长率计算,则估计到09年该市视力不良(4.9以下)的学生将不低于有52000人;以上结论正确的是()A.②③④B.①③④C.①②④D.①④10.如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是()A.10﹣15 B.10﹣5C.5﹣5 D.20﹣10二、填空题(共6题,每小题3分,共18分)11.化简=.12.太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000km,用科学记数法表示这个距离为km.13.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离y(千米)与慢车行驶的时间x(小时)之间的函数关系如图所示,则快车的速度为.15.如图,已知直线y=x+2与坐标轴交于A、B两点,与双曲线y=交于点C,A、D关于y轴对称,若S四边形OBCD=6,则k=.16.如图,四边形ABCD,∠BAD=90°,AB=BC=10,AD=5,AC=12,则CD=.三、解答题17.解方程:x2﹣3x﹣2=0.18.已知x=﹣1,求x2﹣4x+6的值.19.如图,点B、F、C、E在同一直线上,AB=DE,AB∥ED.AC∥FD求证:AC=DF.20.已知一次函数y=ax+b的图象与反比例函数y=的图象交于A(2,2),B(﹣1,m);(1)求一次函数的解析式;(2)直接写出ax+b中x的取值范围.21.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1).(1)把△ABC向右平移3格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点B按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2的图形并写出点B2的坐标;(3)直接写出C到AB的距离.22.已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.23.我市宣化素有“葡萄之乡”著称,某葡萄园有100株葡萄秧,每株平均产量为40千克,现准备多种一些以提高产量,但是如果多种葡萄秧,那么每株之间的距离和每株葡萄秧接受的阳光就会减少,根据实践经验,增加的株数与每株葡萄秧的产量之间的关系如下表所示:增加的株数x(株)…10 15 20 22 …每株葡萄秧的产量y(千克)…37.5 36.25 35 34.5 …(1)请你用所学过的只是确定一个y与x之间的函数关系式;(2)在(1)的条件下,求葡萄园的总产量P与x的函数关系式.24.如图1,正方形ABCD中,对角线AC、BD交于O点,点F为边CD上一点,AE⊥AF交CB 延长线于E.(1)求证:AE=AF;(2)如图2,M、N分别为AE、BC的中点,连接MN、DE,交于点Q,试判断QN和QE数量关系,并证明你的结论;(3)如图3,连接EF交BD于H,连DE,若AB=8,BH=3,则DE=.25.如图,一次函数y=ax+b与反比例函数y=(x>0)的图象交于点A、B,与x、y轴交于C、D,且满足+(a+)2=0.(1)求反比例函数解析式;(2)当AB=BC时,求b的值;(3)如图2,当b=2时,连OA,将OA绕点O逆时针旋转60°,使点A与点P重合,以点P为顶点作∠MPN=60°,分别交直线AB和x轴于点M、N,求证:PM平分∠AMN.2014-2015学年湖北省武汉市七一中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(共有10个小题,每小题3分)1.使下列二次根式有意义的取值范围为x≥3的是()A.B.C.D.考点:二次根式有意义的条件.分析:根据二次根式和分式有意义的条件:被开方数大于等于0,分式的分母不能为0,针对四个选项进行分析即可.解答:解:A、x﹣3≥0,解得:x≥3,故此选项正确;B、x+3≥0,解得:x≥﹣3,故此选项错误;C、x+3>0,解得:x>﹣3,故此选项错误;D、x﹣3>0,解得:x>3,故此选项错误;故选:A.点评:此题主要考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.2.下列计算正确的是()A.+=B.﹣=C.=D.考点:二次根式的混合运算.专题:计算题.分析:A、利用同类二次根式的定义即可判定;B、利用同类二次根式的定义即可判定;C、利用二次根式的除法法则计算即可判定;D、利用二次根式的除法法则计算即可判定.解答:解:A、+=+2≠,故选项错误;B、﹣=﹣2,故选项错误;C、=,故选项正确;D、,故选项错误.故选C.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.3.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根考点:根的判别式.分析:要判断方程x2﹣4x+4=0的根的情况就要求出方程的根的判别式,然后根据判别式的正负情况即可作出判断.解答:解:∵a=1,b=﹣4,c=4,∴△=16﹣16=0,∴方程有两个相等的实数根.故选C.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.如图,四边形纸片ABCD关于直线EF对称,∠BAD=50°,∠B=30°,那么∠BCD的度数是()A.70°B.80°C.110°D.130°考点:轴对称的性质.分析:根据轴对称的性质可知.解答:解:依题意有∠BAC=∠DEC=0.5∠BAD=25°,∠B=30°,故∠BCF=55°,那么∠BCD的度数是∠BCF的2倍,故∠BCD=110°.故选C.点评:本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.5.设一元二次方程x2﹣2x﹣4=0的两个实数为x1和x2,则下列结论正确的是()A.x1+x2=2 B.x1+x2=﹣4 C.x1x2=﹣2 D.x1x2=4考点:根与系数的关系.分析:根据一元二次方程根与系数的关系求则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=,x1x2=.解答:解:这里a=1,b=﹣2,c=﹣4,根据根与系数的关系可知:x1+x2=﹣=2,x1•x2==﹣4,故选A点评:本题考查了一元二次方程根与系数的关系.6.点P(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)考点:关于原点对称的点的坐标.分析:本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.解答:解:根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(﹣2,﹣3).故选C.点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠0考点:根的判别式.分析:关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=0;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.解答:解:当k=0时,方程为3x﹣1=0,有实数根,当k≠0时,△=b2﹣4ac=32﹣4×k×(﹣1)=9+4k≥0,解得k≥﹣.综上可知,当k≥﹣时,方程有实数根;故选C.点评:本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.8.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是()A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB考点:梯形.专题:压轴题.分析:利用已知条件,对四个选逐个验证,即可得到答案.解答:解:A、根据已知条件AB=CD,则该梯形是等腰梯形,等腰梯形是轴对称图形,正确;B、过点D作DE∥AB交BC于点E,得到平行四边形ABED和等边三角形CDE.所以BC=2AD,正确;C、根据中心对称图形的概念,等腰梯形一定不是中心对称图形,错误;D、根据等边对等角和平行线的性质,可得AC平分∠BCD,正确.故选C.点评:要熟悉这个上底和腰相等且底角是60°的等腰梯形的性质;理解轴对称图形和中心对称图形的概念.9.某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力:根据图中信息,下列判断:①该市08年共抽取了2000名九年级学生视力进行调查;②若该市08年共有8万九年级学生,估计该市九年级视力不良(4.9以下)的学生大约有3200人;③在被调查的学生中2007年视力在4.9以下的人数增长率低于2008年的人数增长率;④若按06年到08年该市九年级视力不良(4.9以下)的学生人数的平均增长率计算,则估计到09年该市视力不良(4.9以下)的学生将不低于有52000人;以上结论正确的是()A.②③④B.①③④C.①②④D.①④考点:折线统计图;用样本估计总体;扇形统计图.分析:根据折线统计图合扇形统计图所提供的数据,分别计算出08年共抽取的学生数以及各年份的增长率,再与给出的数据进行比较,即可得出正确答案.解答:解:①该市08年共抽取的九年级学生视力调查的总人数是:800÷40%=2000(人),故本选项正确;②该市九年级视力不良(4.9以下)的学生大约总人数是:80000×40%=32000(人),故本选项错误;③2007年视力在4.9以下的人数增长率为:×100%=66.67%,2008年的人数增长率为×100%=60%,故本选项错误;④设06年到08年该市九年级视力不良(4.9以下)的学生人数的平均增长率为x,根据题意得;300×(1+x)2=800,解得;x1=﹣1,x2=﹣﹣1(舍去),则09年该市视力不良(4.9以下)的学生是:800×40%≈52267(人),将不低于有52000人,故本选项正确.故选D.点评:本题考查的是折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.10.如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是()A.10﹣15 B.10﹣5C.5﹣5 D.20﹣10考点:等边三角形的性质;勾股定理.专题:综合题;压轴题.分析:根据轴对称的性质可得AE=ED,在Rt△EDC中,利用60度角求得ED=EC,列出方程EC+ED=(1+)EC=5,解方程即可求解.解答:解:∵AE=ED在Rt△EDC中,∠C=60°,ED⊥BC∴ED=EC∴CE+ED=(1+)EC=5∴CE=20﹣10.故选D.点评:本题考查等边三角形的性质,其三边相等,三个内角相等,均为60度.二、填空题(共6题,每小题3分,共18分)11.化简=.考点:二次根式的性质与化简.专题:计算题.分析:根据二次根式的意义直接化简即可.解答:解:==3.故答案为:3.点评:本题考查二次根式的化简,需注意被开方数不含能开的尽方的因数.12.太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000km,用科学记数法表示这个距离为 1.22×1010km.考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:12 200 000 000=1.22×1010km.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.13.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.考点:一元二次方程的应用.专题:增长率问题.分析:设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.解答:解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.点评:本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离y(千米)与慢车行驶的时间x(小时)之间的函数关系如图所示,则快车的速度为150km/h.考点:一次函数的应用.分析:假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900,①和②可以求出,快车速度.解答:解:设快车的速度为a(km/h),慢车的速度为b(km/h),∴4(a+b)=900,∵慢车到达甲地的时间为12小时,∴12b=900,b=75,∴4(a+75)=900,解得:a=150;∴快车的速度为150km/h.故答案为:150km/h.点评:此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.15.如图,已知直线y=x+2与坐标轴交于A、B两点,与双曲线y=交于点C,A、D关于y轴对称,若S四边形OBCD=6,则k=.考点:反比例函数与一次函数的交点问题.分析:求出A、B的坐标,求出D的坐标,求出AD、OB的值,设C的坐标是(x,x+2),根据已知得出S△ACD﹣S△AOB=6,推出×(4+4)×(x+2)﹣×4×2=6,求出C的坐标即可.解答:解:∵y=x+2,∴当x=0时,y=2,当y=0时,0=x+2,x=﹣4,即A(﹣4,0),B(0,2),∵A、D关于y轴对称,∴D(4,0),∵C在y=x+2上,∴设C的坐标是(x,x+2),∵S四边形OBCD=6,∴S△ACD﹣S△AOB=6,∴×(4+4)×(x+2)﹣×4×2=6,x=1,x+2=,C(1,),代入y=得:k=.故答案为:.点评:本题考查了一次函数与反比例函数的交点问题,三角形的面积等知识点,主要考查学生的计算能力,题目具有一定的代表性,是一道比较好的题目.16.如图,四边形ABCD,∠BAD=90°,AB=BC=10,AD=5,AC=12,则CD=.考点:等腰三角形的性质;勾股定理.分析:作辅助线构建直角三角形,可得cos∠BAE=,再根据三角函数求出AF,DF的长,从而得到CF的长.根据勾股定理即可求出CD的长.解答:解:过B点作BE⊥AC于E,过D点作DF⊥AC于F,∵AB=BC=10,AC=12,∴cos∠BAE=,∵∠BAD=90°,∴sin∠DAE=,∵AD=5,∴DF=3,∴AF=4,∴CF=12﹣4=8.∴CD==.故答案为:.点评:本题考查了解直角三角形、三角函数、勾股定理等知识.难度较大,有利于培养同学们钻研和探索问题的精神.三、解答题17.解方程:x2﹣3x﹣2=0.考点:解一元二次方程-公式法.专题:计算题.分析:公式法的步骤:①化方程为一般形式;②找出a,b,c;③求b2﹣4ac;④代入公式x=.解答:解:∵a=1,b=﹣3,c=﹣2;∴b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==,∴x1=,x2=.点评:本题主要考查了解一元二次方程的解法.要会熟练运用公式法求得一元二次方程的解.此法适用于任何一元二次方程.18.已知x=﹣1,求x2﹣4x+6的值.考点:二次根式的化简求值.专题:计算题.分析:将x的值代入计算即可求出值.解答:解:原式=(x﹣2)2+2,当x=﹣1时,原式=(﹣1+2)2+2=5+2.点评:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,点B、F、C、E在同一直线上,AB=DE,AB∥ED.AC∥FD求证:AC=DF.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:由两直线平行可得,两组内错角相等,又AB=DE,则△ABC≌△DEF(AAS),则AC=DF.解答:证明:∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,又AB=DE,∴△ABC≌△DEF(AAS),∴AC=DF.点评:此题考查三角形全等的判定和性质,以及平行线的性质,难度不大.20.已知一次函数y=ax+b的图象与反比例函数y=的图象交于A(2,2),B(﹣1,m);(1)求一次函数的解析式;(2)直接写出ax+b中x的取值范围.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将B坐标代入反比例解析式求出m的值,确定出B坐标,将A与B坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;(2)由A与B的横坐标,以及0,将x轴分为四个范围,找出一次函数图象在反比例函数图象上方时x的范围即可.解答:解:(1)将B(﹣1,m)代入反比例解析式得:m=﹣4,即B(﹣1,﹣4),将A与B坐标代入y=ax+b中得:,解得:,则一次函数解析式为y=2x﹣2;(2)由题意得:2x﹣2>的x范围为﹣1<x<0或x>2.点评:此题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.21.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1).(1)把△ABC向右平移3格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点B按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2的图形并写出点B2的坐标;(3)直接写出C到AB的距离3.考点:作图-旋转变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点B1的坐标;(2)根据网格结构找出点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点B2的坐标;(3)根据网格结构作出C到AB的垂线,再根据勾股定理列式计算即可得解.解答:解:(1)△A1B1C1如图所示,B1(2,﹣1);(2)△A2B2C2如图所示,B2(﹣1,﹣1);(3)点C到AB的距离为=3.故答案为:3.点评:本题考查了利用旋转变换作图,利用平移变换作图,勾股定理的应用,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.考点:根与系数的关系;解一元二次方程-配方法;解一元二次方程-因式分解法;根的判别式.分析:(1)方程有两相等的实数根,利用△=0求出m的值.化简原方程求得方程的根.(2)利用根与系数的关系x1+x2=﹣=4m﹣8,x1x2==4m2,x12+x22=(x1+x2)2﹣2x1x2,代入即可得到关于m的方程,求出m的值,再根据△来判断所求的m的值是否满足原方程.解答:解:(1)∵a=,b=﹣(m﹣2),c=m2方程有两个相等的实数根,∴△=0,即△=b2﹣4ac=[﹣(m﹣2)]2﹣4××m2=﹣4m+4=0,∴m=1.原方程化为:x2+x+1=0 x2+4x+4=0,(x+2)2=0,∴x1=x2=﹣2.(2)不存在正数m使方程的两个实数根的平方和等于224.∵x1+x2=﹣=4m﹣8,x1x2==4m2x12+x22=(x1+x2)2﹣2x1x2=(4m﹣8)2﹣2×4m2=8m2﹣64m+64=224,即:8m2﹣64m﹣160=0,解得:m1=10,m2=﹣2(不合题意,舍去),又∵m1=10时,△=﹣4m+4=﹣36<0,此时方程无实数根,∴不存在正数m使方程的两个实数根的平方和等于224.点评:总结:(1)一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.(4)△≥0时,根与系数的关系为:.23.我市宣化素有“葡萄之乡”著称,某葡萄园有100株葡萄秧,每株平均产量为40千克,现准备多种一些以提高产量,但是如果多种葡萄秧,那么每株之间的距离和每株葡萄秧接受的阳光就会减少,根据实践经验,增加的株数与每株葡萄秧的产量之间的关系如下表所示:增加的株数x(株)…10 15 20 22 …每株葡萄秧的产量y(千克)…37.5 36.25 35 34.5 …(1)请你用所学过的只是确定一个y与x之间的函数关系式;(2)在(1)的条件下,求葡萄园的总产量P与x的函数关系式.考点:二次函数的应用.分析:(1)由表格可以看出y随着x的增大而减少,而且从前面可以看出递减的速度是均匀的,因此此函数关系式是一次函数,设出函数解析式,进一步求得结论进行验证即可;(2)利用葡萄园的总产量等于每一株的产量乘所种的株数列出函数解析式.解答:解:(1)由题意可设y=kx+b,把(0,40)(10,37.5)代入解析式得解得∴y=﹣x+40;把x=22代入得y=34.5,验证正确;(2)P=(100+x)(﹣x+40)=﹣x2+15x+4000.点评:此题考查利用表格中数据的变化规律确定函数,代入数值求的函数,利用基本数量关系是解决问题的关键.24.如图1,正方形ABCD中,对角线AC、BD交于O点,点F为边CD上一点,AE⊥AF交CB 延长线于E.(1)求证:AE=AF;(2)如图2,M、N分别为AE、BC的中点,连接MN、DE,交于点Q,试判断QN和QE数量关系,并证明你的结论;(3)如图3,连接EF交BD于H,连DE,若AB=8,BH=3,则DE=.考点:四边形综合题.分析:(1)由正方形的性质得出∠BAD=∠ABC=∠ABE=∠BCD=∠ADF=90°,AB=BC=AD=CD,再由已知条件证出∠BAE=∠DAF,由ASA证明△ABE≌△ADF,即可得出结论;(2)连接OM、BM,OM交DE于F,连接NF,先证明OM是△ACE的中位线,得出OM∥BC,再证明四边形BNFM是平行四边形,得出FN=MB,由SAS证明△MEN≌△FNE,得出对应角相等∠MNE=∠FEN,即可得出结论;(3)由正方形的性质求出BD,得出DH,,设BM=3x,则DF=13x,得出,作FG∥CE,交AB于G,则,得出方程,解方程求出x,得出BE,再由勾股定理求出DE即可.解答:(1)证明:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠ABE=∠BCD=∠ADF=90°,AB=BC=AD=CD,∵AE⊥AF,∴∠EAF=90°,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF;(2)解:QN=QE;理由如下:连接OM、BM,OM交DE于F,连接NF,如图1所示:∵四边形ABCD是正方形,∴OA=OC,AD∥BC,AD=BC,∵M是AE的中点,∴OM是△ACE的中位线,∴OM∥BC,∴OM∥AD,∴EF=DF,∴MF是△ADE的中位线,∴MF=AD,∴MF=BC,∵N是BC的中点,∴BN=BC,∴MF=BN,∴四边形BNFM是平行四边形,∴FN=MB,∵∠ABE=90°,∴MB=AE=ME,∴FN=ME,即四边形MENF是等腰梯形,∴∠MEN=∠FNE,在△MEN和△FNE中,,∴△MEN≌△FNE(SAS),∴∠MNE=∠FEN,∴QN=QE;(3)解:如图2所示:∵四边形ABCD是正方形,∴BD=AB=×8=16,AB∥CD,∴DH=BD﹣BH=13,,设BM=3x,则DF=13x,由(1)得:△ABE≌△ADF,BE=DF=13x,∴,作FG∥CE,交AB于G,则△GFM∽△BEM,∴,即,解得:x=,∴BE=5,∴CE=5+8,∴DE===.点评:本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、平行四边形的判定与性质、相似三角形的判定与性质、勾股定理等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形全等和三角形相似才能得出结论.25.如图,一次函数y=ax+b与反比例函数y=(x>0)的图象交于点A、B,与x、y轴交于C、D,且满足+(a+)2=0.(1)求反比例函数解析式;(2)当AB=BC时,求b的值;(3)如图2,当b=2时,连OA,将OA绕点O逆时针旋转60°,使点A与点P重合,以点P为顶点作∠MPN=60°,分别交直线AB和x轴于点M、N,求证:PM平分∠AMN.考点:反比例函数综合题;二次根式的性质与化简;反比例函数与一次函数的交点问题;全等三角形的判定与性质;等边三角形的判定与性质;相似三角形的判定与性质.专题:压轴题.分析:(1)由条件+(a+)2=0即可求出k和a,即可解决问题.(2)过点A作AE⊥OC,垂足为E,过点B作BF⊥OC,垂足为F,如图1,设点A(m,),通过三角形相似可以用m表示出点B的坐标,将点A、B的坐标代入直线AB的解析式,就可求出m和b的值.(3)易证△OAC和△OAP都是等边三角形,结合∠MPN=60°可以证到△PON≌△PAE以及△POD≌△PAM,从而得到PN=PE,PD=PM,进而证到△PED≌△PNM.由这几组全等三角形就可得到∠PMA=∠PDO=∠PMN,则有PM平分∠AMN.解答:(1)解:∵+(a+)2=0,∴k﹣=0,a+=0,解得:k=,a=﹣,∴反比例函数解析式为:y=.(2)解:过点A作AE⊥OC,垂足为E,过点B作BF⊥OC,垂足为F,如图1,设点A(m,),∵AE⊥OC,BF⊥OC,∴AE∥BF.∴△CFB∽△CEA.∴=.∵AB=BC,∴AC=2BC.∴AE=2BF.∴BF=.∴OF==2m.∴点B(2m,).∵一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A、B,∴.解得:.∴b的值为.(3)证明:延长AO与射线PN交于点D,连接AP,过点A作AH⊥OC,垂足为H,如图2,联立.解得:.∴点A的坐标为(1,),OH=1,AH=.∴OA=2,∠AOH=60°.由﹣x+2=0得x=2,则OC=2.∴OA=OC.∴△OAC是等边三角形.∴∠OAC=60°,OA=AC.∵OP=OA,∠AOP=60°,∴△AOP是等边三角形.∴OP=AP,∠PAO=∠OPA=60°.∵∠NPM=60°,∴∠NPM=∠OPA.∴∠NPO=∠EPA.∵∠PON=180°﹣∠AOP﹣∠AOC=60°,∴∠PON=∠PAE.在△PON和△PAE中,∴△PON≌△PAE(ASA).∴PN=PE.同理可得:△POD≌△PAM.∴PD=PM,∠PDO=∠PMA.在△PED和△PNM中,.∴△PED≌△PNM(SAS).∴∠PDE=∠PMN.∴∠PMA=∠PMN.∴PM平分∠AMN.点评:本题考查了一次函数与反比例函数的交点问题、相似三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、二次根式的性质等知识,综合性非常强,有一定的难度.而证出△POD≌△PAM和△PED≌△PNM是解决第三小题的关键.。