(1)确定k与b的值,并指出x的取值范围.
(2)为使每月获利1920元,问:商品应定为每件多少元?
(3)为使每月获得最大利润,问:商品应定为每件多少元?
课堂作业:
P.42 练习 2 P.43 习题22.3 5
课外作业
实践与探索
某商场购进一批单价为16元的日用品,销售一段时间
后,为获得更多利润,商店决定提高销售价格.经试验
发现,若按每件20元的价格销售时,每月能卖360件;
若按每件25元的价格销售时,每月能卖210件.每月销
售件数y(件)与价格x(元/件)满足关系式y=kx+b.
实践与探索
§22.3实践与探索
---------利润问题
知识回顾
1.一件衣服进价为m元,售价为n元,这件衣服的 利润是( n-m )元。
利润=售价-进价
2.某玩具售出一件获利30元,现在降价3元销售,售 出10件可获利( 270 )元.
(30-3)×10=270 单件利润×销售总量=总利润
探究
某商场销售一批名牌衬衫,现在平均每天能售出20件,
实践与探索
小结
1.通过本节课的学习,你有什么收获? 2.在解题过程中需要注意什么?
列方程解应用题的一般步骤是:
1.审:审清题意:已知什么,求什么?题中包含哪些等量 关系?
2.设:设未知数,语句要完整,有单位(同一)的要注明单 位;
3.列:列代数式,列方程; 4.解:解所列的方程; 5.验:是否是所列方程的根;是否符合题意; 6.答:”答”也必需是完整的语句,注明单位. 列方程解应用题的关键是: 找出等量关系.
总利润 40×20
( 40-1)(20+2) ( 40-2)(20+4) … (40-x)(20+2x)