七年级数学下册8.1幂的运算《同底数幂的乘法》习题1
- 格式:pdf
- 大小:19.59 KB
- 文档页数:3
8.1同底数幂的乘法一、选择题(本大题共8小题,共24.0分)1.下列运算正确的是( )A. B.C. D.2.下列运算正确的是( )A. B.C. D.3.若,,则等于( )A. 6B. 7C. 8D. 184.如果,,那么的值为( )A. abB.C.D.5.若,则等于( )A. 1B. 4C. 8D.6.若x,y为正整数,且,则x,y的值有( )A. 4对B. 3对C. 2对D. 1对7.已知,n的值是( )A. B. 2 C. D.8.当m为偶数时,与的关系是( )A. 相等B. 互为相反数C. 不相等D. 以上说法都不对二、填空题(本大题共8小题,共24.0分)9.若,,则______ .10.已知,,则的结果为______ .11.已知,,则______.12.计算:13.若,则______ .14.已知,则的值为______.15.若,,则______.16.计算:______.三、解答题(本大题共6小题,共52.0分)17.已知,,求:的值;的值.18.(1)计算:.(2)已知,求的值.19.已知,求的值。
20.已知,求的值。
21.已知,,、b都是正整数,用含m、n或p的式子表示下列各式:;.22.(1)计算:;(2)已知n是正整数,且,求的值.答案和解析1.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选C.2.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:不是同类项,不能合并,故选项错误;B.正确;C.,故选项错误;D.,故选项错误.故选B.3.【答案】D【解析】【分析】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【解答】故选D.4.【答案】D【解析】解:原式.故选:D.利用幂的乘方和积的乘方公式把所求的式子化成的形式,即可代入计算.本题考查了幂的乘方以及同底数的幂的乘法法则,正确对所求的式子进行变形是关键.5.【答案】B【解析】解:原式,,,.故选B.先把原式化为的形式,再根据同底数幂的乘法及除法法则进行计算即可.本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为的形式是解答此题的关键.6.【答案】A【解析】解:,,,y为正整数,,y的值有,;,;,;,.共4对.故选:A.根据同底数幂相乘,底数不变,指数相加,再根据指数相等即可求解.灵活运用同底数幂的乘法法则是解决本题的关键.7.【答案】B【解析】【分析】本题考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键.先把化为底数为9的幂,再根据同底数幂的除法运算法则计算,最后比较指数的值即可.【解答】解:,.故选B.8.【答案】D【解析】【分析】本题主要考查同底数幂的乘法,熟练掌握互为相反数的两数的偶数次方相等是解本题的关键根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,求解即可.【解答】解:当n为偶数时,,所以当n为奇数时,,所以故选D.9.【答案】【解析】【分析】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.根据幂的乘方,可得同底数幂的乘除法,根据同底数幂的乘除法,可得答案.【解答】解:,.故答案为.10.【答案】144【解析】解:,,.故答案为:144.先将变形为,然后结合同底数幂的乘法的概念和运算法则将,代入求解即可.本题考查了同底数幂的乘法,解答本题的关键在于先将变形为,然11.【答案】10【解析】解:,,,故答案为:10.先根据同底数幂的乘法法则变形,再代入求出即可.本题考查了同底数幂的乘法法则的应用,能熟记同底数幂的乘法法则是解此题的关键,注意:,用了整体代入思想.12.【答案】2【解析】【分析】本题主要考查的是同底数幂的乘法和正整数指数幂的有关知识,由题意先将进行变形,然后再利用同底数幂的乘法法则进行求解即可.【解答】解.故答案为2.13.【答案】9【解析】【分析】本题考查了幂的乘方及同底数幂的乘法运算,属于基础题,关键是掌握幂的运算法则.【解答】解:原式,原式,故答案为9.14.【答案】8【解析】解:,故答案为:8.由,可求得,又由,即可求得答案.此题考查了幂的乘方与同底数幂的乘法.注意掌握指数的变化是解此题的关键.15.【答案】12【解析】解:,,.故答案为:12.直接利用同底数幂的乘法运算法则和幂的乘方运算法则,将原式变形进而求出答案.此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.16.【答案】【解析】解:原式.首先根据同底数幂的乘法可得,再利用是正整数进行计算即可.此题主要考查了积的乘方和同底数幂的乘法,关键是掌握是正整数,并能进行逆运用.17.【答案】解:;,,,.【解析】本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟记各性质并灵活运用是解题的关键.逆运用同底数幂相乘,底数不变指数相加解答;逆运用积的乘方的性质和同底数幂相除,底数不变指数相减的性质解答.18.【答案】解:.;,..【解析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案;19.【答案】解:由题意,得,所以所以,所以原式.【解析】本题考查同底数幂的乘法,同底数幂的除法和幂的乘方法则,能利用相关法则进行计算分析题意,先根据同底数幂的乘法法则和幂的乘方法则把变形为,就可得出m的值,再把代数式根据相关法则计算,就可得出答案.20.【答案】解:,,则,,原式.【解析】本题考查了幂的乘方与积的乘方和同底数幂乘法,解答本题的关键是掌握幂的乘方和积的乘方以及同底数幂的乘法法则.根据,可得,然后将化为,最后根据同底数幂的乘法法则求解.21.【答案】解:..【解析】本题考查的是同底数幂的乘法与幂的乘方有关知识,与分别逆运用同底数幂的乘法,幂的乘方的运算法则计算即可.22.【答案】解:原式.,原式.【解析】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,解题的关键是:熟根据幂的乘方与积的乘法将原式化简,再代入即可得出结论.。
一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
❖ 知识点一:同底数幂的乘法大山坪一长方形草坪的长比宽多2米,如果草坪的长和宽都增加3米,则这个长方形草坪的面积将增加75平方米,这块草坪原来的长和宽各是多少米? 解:设这个长方形草坪的宽是x 米,则长为(x+2)米。
x ( x+2)+75=(x+3)(x+5)解这个方程需要用到整式的乘法。
思考: a n 表示的意义是什么?其中a 、n 、a n分 别叫做什么?概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.问题:25表示什么?10×10×10×10×10 可以写成什么形式?25= . 10×10×10×10×10 = .思考: 式子103×102的意义是什么?幂的运算知识讲解这个式子中的两个因数有何特点?先根据自己的理解,解答下列各题。
103×102 =23×22 =a3×a2 =思考:观察下面各题左右两边,底数、指数有什么关系?103×102 = 10() = 10();23×22 = 2() = 2();a3× a2 = a()= a()。
猜想: a m · a n=? (当m、n都是正整数)分组讨论,并尝试证明你的猜想是否正确。
a m·a n=(aa…a)(aa…a)=aa…a=a m+nm个a n个a (m+n)个a即:a m·a n =a m+n (当m、n都是正整数)猜想是正确的!同底数幂的乘法:a m·a n =a m+n (当m、n都是正整数)同底数幂相乘,底数______,指数________。
运算形式(同底、乘法)运算方法(底不变、指数相加)如 43×45=43+5=48想一想:a m·a n·a p= (m、n、p都是正整数)问题:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
8.1同底数幂的乘法课时提优一.选择题1.计算a•a2的结果是()A.a3B.a2C.3a D.2a2 2.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.3.计算下列代数式,结果为x5的是()A.x2+x3B.x•x5C.x6﹣x D.2x5﹣x5 4.代数式3x2可以表示为()A.x2+x2+x2B.x2•x2•x2C.x+x+x D.x•x•x 5.下列计算正确的是()A.a3•a2=a6B.b4+b4=b8C.23=6D.27÷2=26 6.若整数n满足2n•2n•2n=8,则n的值为()A.1B.2C.3D.67.已知x+y﹣3=0,则2x•2y的值是()A.6B.﹣6C.D.88.计算(﹣a)3•a3的正确结果是()A.a5B.a6C.﹣a5D.﹣a6二.填空题9.计算:a2•a3=.10.若2x=3,2y=5,则2x+y=.11.计算:(﹣m)3•m4=.12.计算x•x3+x4的结果等于.13.若a3•a m=a9,则m=.14.(﹣p)2•(﹣p)3=.15.已知,15a=25和15b=9,a=﹣b﹣c,则15c=.16.计算:105×(﹣10)4×106=.三.解答题17.已知x a+b=6,x b=3,求x a的值.18.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为(即)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题(Ⅰ)计算以下各对数的值:=;=;=.(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=(a>0,且a≠1,M>0,N>0)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.19.阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.解:令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),(2)﹣(1)得:4S=5101﹣5,∴问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.20.我们规定:a⊗b=10a×10b,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值.(2)想一想(a+b)⊗c与a⊗(b+c)相等吗?请明理由.答案与解析一.选择题1.计算a•a2的结果是()A.a3B.a2C.3a D.2a2【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:原式=a1+2=a3.故选:A.【点评】本题考查了同底数幂的乘法,注意底数不变指数相加.2.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.【点评】本题考查了同底数幂的乘法:同底数幂相乘,底数不变,指数相加,即a m•a n =a m+n(m,n是正整数).3.计算下列代数式,结果为x5的是()A.x2+x3B.x•x5C.x6﹣x D.2x5﹣x5【分析】根据合并同类项的法则以及同底数幂的乘法法则解答即可.【解答】解:A、x2与x3不是同类项,故不能合并同类项,故选项A不合题意;B、x•x5=x6,故选项B不合题意;C、x6与x不是同类项,故不能合并同类项,故选项C不合题意;D、2x5﹣x5=x5,故选项D符合题意.故选:D.【点评】本题主要考查了合并同类项的法则:系数下降减,字母以及其指数不变.4.代数式3x2可以表示为()A.x2+x2+x2B.x2•x2•x2C.x+x+x D.x•x•x【分析】根据幂的意义解答即可.【解答】解:3x2可以表示为x2+x2+x2,故选项A符合题意;x2•x2•x2=x6,故选项B不合题意;x+x+x=3x,故选项C不合题意;x•x•x=x3,故选项D不合题意.故选:A.【点评】本题主要考查了幂的乘方的意义,熟练掌握幂的运算法则是解答本题的关键.5.下列计算正确的是()A.a3•a2=a6B.b4+b4=b8C.23=6D.27÷2=26【分析】分别根据同底数幂的乘法法则,合并同类项的法则,幂的乘方的定义以及同底数幂的除法法则逐一判断即可.【解答】解:a3•a2=a5,故选项A不合题意;b4+b4=2b4,故选项B不合题意;23=8,故选项C不合题意;27÷2=26,正确,故选项D符合题意.故选:D.【点评】本题主要考查了幂的运算、有理数的乘方以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若整数n满足2n•2n•2n=8,则n的值为()A.1B.2C.3D.6【分析】根据同底数幂的法则有:2n•2n•2n=2n+n+n=23n=8,即可求解;【解答】解:2n•2n•2n=2n+n+n=23n=8,∴3n=3,∴n=1;故选:A.【点评】本题考查同底数幂的乘法;熟练掌握同底数幂的乘法法则是解题的关键.7.已知x+y﹣3=0,则2x•2y的值是()A.6B.﹣6C.D.8【分析】根据x+y﹣3=0,可得:x+y=3,据此求出2x•2y的值是多少即可.【解答】解:∵x+y﹣3=0,∴x+y=3,∴2x•2y=2x+y=23=8.故选:D.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.8.计算(﹣a)3•a3的正确结果是()A.a5B.a6C.﹣a5D.﹣a6【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣a)3•a3=﹣a6.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.二.填空题9.计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.10.若2x=3,2y=5,则2x+y=15.【分析】由2x=3,2y=5,根据同底数幂的乘法可得2x+y=2x•2y,继而可求得答案.【解答】解:∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.【点评】此题考查了同底数幂的乘法.此题比较简单,注意掌握公式的逆运算.11.计算:(﹣m)3•m4=﹣m7.【分析】根据同底数幂的乘法解答即可.【解答】解:(﹣m)3•m4=﹣m7,故答案为:﹣m7【点评】此题考查同底数幂的乘法,关键是根据同底数幂的乘法的法则解答.12.计算x•x3+x4的结果等于2x4.【分析】根据同底数幂的乘法,即可解答.【解答】解:x•x3+x4=2x4,故答案为:2x4【点评】此题考查同底数幂的乘法,关键是根据法则计算.13.若a3•a m=a9,则m=6.【分析】根据同底数幂的运算即可求出答案.【解答】解:由题意可知:3+m=9,∴m=6,故答案为:6【点评】本题考查同底数幂的乘除法,解题的关键是正确理解同底数幂的乘法运算,本题属于基础题型.14.(﹣p)2•(﹣p)3=﹣p5.【分析】同底数幂的乘法:底数不变,指数相加.【解答】解:(﹣p)2•(﹣p)3=(﹣p)2+3=(﹣p)5=﹣p5;故答案是:﹣p5.【点评】本题考查了同底数幂的乘法.同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.15.已知,15a=25和15b=9,a=﹣b﹣c,则15c=.【分析】利用幂的乘方公式和同底数幂公式计算即可【解答】解:∵a=﹣b﹣c,∴c=﹣a﹣b15c=15﹣a﹣b=15﹣a•15﹣b=(15a)﹣1•(15b)﹣1=25﹣1•9﹣1==【点评】本题考查了幂的运算,熟练运用幂的乘方公式和同底数幂公式计算是解题的关键.16.计算:105×(﹣10)4×106=1015.【分析】直接利用同底数幂的乘法运算法则化简得出答案.【解答】解:原式=105×104×106=1015.故答案为:1015.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.三.解答题17.已知x a+b=6,x b=3,求x a的值.【分析】根据同底数幂的乘法法则求解.【解答】解:x a=x a+b÷x b=6÷3=2.【点评】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.18.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为(即)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题(Ⅰ)计算以下各对数的值:=2;=4;=6.(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=log a MN(a>0,且a≠1,M>0,N>0)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.【分析】(1)根据对数的定义,把求对数的数写成底数数的幂即可求解;(2)根据(1)的计算结果即可写出结论;(3)利用对数的定义以及幂的运算法则a m•a n=a m+n即可证明.【解答】解:(1)∵4=22,16=24,64=26,∴=2;=4;=6.(2)4×16=64,+=;(3)log a N+log a M=log a MN.证明:log a M=m,log a N=n,则M=a m,N=a n,∴MN=a m•a n=a m+n,∴log a MN=log a a m+n=m+n,故log a N+log a M=log a MN.故答案是:2,4,6.【点评】本题考查了同底数的幂的乘法,正确理解题意,理解对数的定义是关键.19.阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.解:令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),(2)﹣(1)得:4S=5101﹣5,∴问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.【分析】(1)由题意可S=2+22+23+…+2100①,将等式两边同时乘以2得到:2S=22+23+…+2101②,由②﹣①即可求得答案;(2)由4+12+36+…+4×340=4×(1+3+32+33+…+340),然后令S=4×(1+3+32+33+…+340)①,将等式两边同时乘以3得到:3S=4×(3+32+33+…+341)②,由②﹣①即可求得答案.【解答】解:(1)令S=2+22+23+…+2100①,将等式两边同时乘以2得到:2S=22+23+…+2101②,②﹣①得:S=2101﹣2;(2)∵4+12+36+…+4×340=4×(1+3+32+33+…+340),令S=4×(1+3+32+33+…+340)①,∴将等式两边同时乘以3得到:3S=4×(3+32+33+…+341)②,②﹣①得:2S=4×(341﹣1),∴S=2×(341﹣1).【点评】此题考查了同底数幂的乘法的应用.此题难度适中,注意理解题意,掌握解题方法.20.我们规定:a⊗b=10a×10b,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值.(2)想一想(a+b)⊗c与a⊗(b+c)相等吗?请明理由.【分析】(1)根据a⊗b=10a×10b代入数据即可;(2)根据所给例子对应代入即可得到答案.【解答】解:(1)7⊗8=107×108=1015;(2)(a+b)⊗c=10a+b×10c=10a+b+c,a⊗(b+c)=10a×10b+c=10a+b+c,∴(a+b)⊗c与a⊗(b+c)相等.【点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂相乘,底数不变,指数相加.。
1.下列计算正确的是()A .a 3·a 3=a 9B .a ·a 2=a 3C .a 3+a 2=2a 3D .m+m 2=m 32.化简(-x)3·(-x)2的正确结果是().A .-x 6B .x 6C .x 5D .-x 53.填空:(1)()10___5x x x x =∙∙(2)()1____++=∙∙n m m a a a a (m 、n 是正整数)(3)()1____2+=∙n x x x (n 是大于1的整数)(4)()n n a a a a 2_____=∙∙(n 是大于1的整数)4.一个长方体的长、宽、高分别是a 、a 2、a 3,那么这个长方体的体积是____________.5.若a 2n -1·a 2n+1=a 20,则n=____________.6.(1)已知a m =2,a n =3,则a m+n =_________;(2)已知3x+1=81,则x=_____.7.计算:(1)a a ⋅12(2)52-b b ∙(3)33364⨯⨯(4)25)()(p q q p -∙-(5)()s t t s t s n m m -∙-∙-+)()((m 、n 是正整数)(6)x x x x n n n ∙+∙+21(n 是正整数)8.健康成年人的心脏每分钟流过的血液约mL 3109.4⨯,如果一年按min 102.55⨯计算,那么健康成年人的心脏全年流过的血液总量是多少?二.能力提升.规定:b a b a 22∙=*.(1)求32*;(2)若()1612=+*x ,求x 的值.1.下列计算正确的是(B )A .a 3·a 3=a 9B .a ·a 2=a 3C .a 3+a 2=2a 3D .m+m 2=m 32.化简(-x)3·(-x)2的正确结果是(D ).A .-x 6B .x 6C .x 5D .-x 53.填空:(1)()1045x x x x =∙∙(2)()1++=∙∙n m m n a a a a (m 、n 是正整数)(3)()112+-=∙n n x x x (n 是大于1的整数)(4)()n n n a a a a 21=∙∙-(n 是大于1的整数)4.一个长方体的长、宽、高分别是a 、a 2、a 3,那么这个长方体的体积是____6a ____.5.若a 2n -1·a 2n+1=a 20,则n=____5________.6.(1)已知a m =2,a n =3,则a m+n =__6_______;(2)已知3x+1=81,则x=_3____.7.计算:(1)13a (2)7-b (3)113(4)77)(-)(p q q p --或(5)12)(-++-n m t s (6)122+n x 8.健康成年人的心脏每分钟流过的血液约mL 3109.4⨯,如果一年按min 102.55⨯计算,那么健康成年人的心脏全年流过的血液总量是多少?mL910548.2⨯三.能力提升.规定:b a b a 22∙=*.(1)求32*;(2)若()1612=+*x ,求x 的值.解:(1)32(2)x=1。
❖ 知识点一:同底数幂的乘法大山坪一长方形草坪的长比宽多2米,如果草坪的长和宽都增加3米,则这个长方形草坪的面积将增加75平方米,这块草坪原来的长和宽各是多少米? 解:设这个长方形草坪的宽是x 米,则长为(x+2)米。
x ( x+2)+75=(x+3)(x+5)解这个方程需要用到整式的乘法。
思考: a n 表示的意义是什么?其中a 、n 、a n分 别叫做什么?概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.问题:25表示什么?10×10×10×10×10 可以写成什么形式?25= . 10×10×10×10×10 = .思考: 式子103×102的意义是什么?幂的运算知识讲解这个式子中的两个因数有何特点?先根据自己的理解,解答下列各题。
103×102 =23×22 =a3×a2 =思考:观察下面各题左右两边,底数、指数有什么关系?103×102 = 10() = 10();23×22 = 2() = 2();a3× a2 = a()= a()。
猜想: a m · a n=? (当m、n都是正整数)分组讨论,并尝试证明你的猜想是否正确。
a m·a n=(aa…a)(aa…a)=aa…a=a m+nm个a n个a (m+n)个a即:a m·a n =a m+n (当m、n都是正整数)猜想是正确的!同底数幂的乘法:a m·a n =a m+n (当m、n都是正整数)同底数幂相乘,底数______,指数________。
运算形式(同底、乘法)运算方法(底不变、指数相加)如 43×45=43+5=48想一想:a m·a n·a p= (m、n、p都是正整数)问题:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
8.1 同底数幂的乘法知识点 同底数幂的乘法1.a m ·a n =()a ·a ·a ·…·a 个a ·()a ·a ·a ·…·a 个a =a ·a ·a ·…·a ____个a =a (____)(m ,n是正整数).2.2018·温州计算a 6·a 2的结果是( )A .a 3B .a 4C .a 8D .a 123.2018·兴化市期中化简-b ·b 3·b 4的正确结果是( )A .-b 7B .b 7C .-b 8D .b 84.2018·虎丘区期中下列各式计算结果不为a 14的是( )A .a 5·a 9B .a 2·a 3·a 4·a 5C .(-a )2·(-a )3·(-a )4·(-a )5D .a 7+a 75.计算(-3)2n +1+3·(-3)2n 的结果是( )A .32n +1B .-32n +1C .0D .16.计算:(-b )4·(-b )3·(-b )5=________.7.计算:10m +1×10n -1=______,-64×(-6)5=______.8.一个长方形的长为104 mm ,宽为103 mm ,则它的面积为________mm 2.(结果用科学记数法表示)9.计算:(1)b ·(-b )2+(-b )·(-b )2;(2)(x -y )2·(y -x )·(x -y )3·(y -x )2.【能力提升】10.下列各式中(n 为正整数),正确的有( )①a n +a n =2a 2n ;②a n ·a n =2a 2n ;③a n +a n =a 2n ;④a n ·a n =a 2n .A .4个B .3个C .2个D .1个11.2018·靖江期末若10a ·102=102018,则a =________.12.已知10a =3,10b =5,试把15写成底数是10的幂的形式.13.太阳系的形状像一个以太阳为中心的大圆盘,光通过这个圆盘半径的时间约为2×104秒,光的速度约是3×105千米/秒.求太阳系的直径.14.我们规定:a△b=10a×10b.例如:3△4=103×104=107.(1)试求12△3和2△5的值.(2)想一想(a△b)△c与a△(b△c)(a,b,c互不相等)相等吗?如果相等,请验证你的结论;如果不相等,请说明理由.答案解析1.m n(m+n)m+n2.C[解析] 原式=a6+2=a8.3.C 4.D5.C[解析] (-3)2n+1+3·(-3)2n=-32n+1+32n+1=0.6. b12[解析] (-b)4·(-b)3·(-b)5=(-b)4+3+5=(-b)12=b12.7.10m+n69[解析] 10m+1×10n-1=10m+1+n-1=10m+n,-64×(-6)5=64×65=69.8.1079.解:(1)b·(-b)2+(-b)·(-b)2=b·b2+(-b)·b2=b3+(-b3)=0.(2)(x-y)2·(y-x)·(x-y)3·(y-x)2=(x-y)2·[-(x-y)]·(x-y)3·(x-y)2=-(x-y)2+1+3+2=-(x-y)8.10.D[解析] a n+a n=2a n,故①③错误.a n·a n=a2n,故②错误,④正确.故选D.11.201612.解:因为15=3×5,所以15=10a×10b=10a+b.13.[解析] 要求太阳系的直径,因为光通过太阳系的半径的时间和光的速度已知,所以可以求出太阳系的半径,再乘2即可.解:3×105×2×104×2=(3×2×2)×(105×104)=12×109=1.2×1010(千米).[点评] 本题是一道运用同底数幂的乘法运算的实际问题,正确解题的关键是掌握同底数幂的乘法的运算性质:同底数幂相乘,底数不变,指数相加.14.解:(1)12△3=1012×103=1015,2△5=102×105=107.(2)不相等.理由如下:(a△b)△c=(10a×10b)△c=10a+b△c=1010a+b×10c=1010a+b+c,a△(b△c)=a△(10b×10c)=a△10b+c=10a×1010b+c=10a+10b+c.因为a,b,c互不相等,所以指数10a+b+c与指数a+10b+c不相等,所以(a△b)△c与a△(b△c)不相等.。
8.1 幂的运算1.了解幂的运算性质,会利用幂的运算性质进行计算.2.通过幂的运算性质的形成和应用,养成观察、归纳、猜想、论证的能力,提高计算和口算的能力.3.了解和体会“特殊—一般—特殊”的认知规律,体验和学习研究问题的方法,培养思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯.1.同底数幂的乘法(1)同底数幂的意义“同底数幂”顾名思义,是指底数相同的幂.如32与35,(-5)2与(-5)6,(a+b)4与(a+b)3等表示的都是同底数的幂.(2)幂的运算性质1同底数幂相乘,底数不变,指数相加.用字母可以表示为:a m·a n=a m+n(m,n都是正整数).(3)性质的推广运用当三个或三个以上的同底数幂相乘时,也具有这一性质,如:a m·a n·a p=a m+n+p(m,n,p是正整数).(4)在应用同底数幂的乘法的运算性质时,应注意以下几点:①幂的底数a可以是任意的有理数,也可以是单项式或多项式;底数是和、差或其他形式的幂相乘,应把这些和或差看作一个“整体”.②底数必须相同才能使用同底数幂的乘法公式,若底数不同,则不能使用;注意:-a n 与(-a)n不是同底数的幂,不能直接用性质.③不要忽视指数是1的因数或因式.【例1-1】(1)计算x3·x2的结果是______;(2)a4·(-a3)·(-a)3=__________.解析:(1)题中的底数都是x,是两个同底数幂相乘的运算式子,只需运用同底数幂相乘的性质进行运算,即x3·x2=x3+2=x5;(2)应先把底数分别是a,-a的幂化成同底数的幂,才能应用同底数幂的乘法性质,原式=a4·(-a3)·(-a3)=a4·a3·a3=a4+3+3=a10.答案:(1)x5(2)a10正确运用幂的运算性质解题的前提是明确性质的条件和结论.例如同底数幂的乘法,条件是底数相同,且运算是乘法运算,结论是底数不变,指数相加.【例1-2】计算:(1)(x+y)2·(x+y)3;(2)(a-2b)2·(2b-a)3.分析:(1)把(x+y)看作底数,可根据同底数幂的乘法性质来解;(2)题中(a-2b)2可转化为(2b-a)2,或者把(2b-a)3转化为-(a-2b)3,就是两个同底数的幂相乘了.解:(1)原式=(x+y)2+3=(x+y)5;(2)方法一:原式=(2b -a )2·(2b -a )3=(2b -a )5;方法二:原式=(a -2b )2·[-(a -2b )3]=-(a -2b )5.本题应用了整体的数学思想,把(x +y )和(a -2b )看作一个整体,(2)题中的两种解法所得的结果实质是相等的,因为互为相反数的奇次幂仍是互为相反数. 2.幂的乘方(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘.如(a 5)3是指三个a 5相乘,读作“a 的五次幂的三次方”,即有(a 5)3=a 5·a 5·a 5=a 5+5+5=a 5×3;(a m )n 表示n 个a m 相乘,读作“a 的m 次幂的n 次方”,即有(a m )n =m m m n a a a ⋅⋅⋅L 1442443个=m m m n a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅L L L L 142431424314243144444424444443个个个个=a mn(m ,n 都是正整数) (2)幂的运算性质2幂的乘方,底数不变,指数相乘.用字母可以表示为:(a m )n =a mn(m ,n 都是正整数).这个性质的最大特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘. (3)性质的推广运用幂的乘方性质可推广为: [(a m )n ]p =a mnp(m ,n ,p 均为正整数).(4)注意(a m )n 与am n的区别 (a m )n 表示n 个a m 相乘,而am n 表示m n 个a 相乘,例如:(52)3=52×3=56,523=58.因此,(a m )n ≠am n .【例2】(1)计算(x 3)2的结果是( ).A .x 5B .x 6C .x 8D .x 9(2)计算3(a 3)3+2(a 4)2·a =__________.解析:(1)根据性质,底数不变,指数相乘,结果应选B ;(2)先根据幂的乘方、同底数幂相乘进行计算,再合并同类项得到结果.3(a 3)3+2(a 4)2·a =3a 3×3+2a 4×2·a =3a 9+2a 8·a =3a 9+2a 9=5a 9.答案:(1)B (2)5a 9防止“指数相乘”变为“指数相加”,同时防止“指数相乘”变为“指数乘方”.如(a 4)2=a 4+2=a 6与(a 2)3=a 23=a 8都是错误的.3.积的乘方(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(2ab )3,(ab )n等.(2ab )3=(2ab )·(2ab )·(2ab )(乘方意义)=(2×2×2)(a ·a ·a )(b ·b ·b )(乘法交换律、结合律) =23a 3b 3.(ab )n =n ab ab ab ()()()L 1442443个=n a a a (⋅⋅⋅)L 14243个n b b b (⋅⋅⋅⋅)L 14243个=a n b n(n 为正整数).(2)幂的运算性质3积的乘方等于各因式乘方的积.也就是说,先把积中的每一个因式分别乘方,再把所得的结果相乘.用字母可以表示为:(ab )n =a n b n(n 是正整数). (3)性质的推广运用三个或三个以上的乘方也具有这一性质,如(abc )n =a n b n c n(n 是正整数).【例3】计算:(1)(-2x )3;(2)(-xy )2;(3)(xy 2)3·(-x 2y )2;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34.分析:(1)要注意-2x 含有-2,x 两个因数;(2)-xy 含有三个因数:-1,x ,y ;(3)把xy 2看作x 与y 2的积,把-x 2y 看作-1,x 2,y 的积;(4)-12ab 2c 3含有四个因数-12,a ,b 2,c 3,先运用积的乘方性质计算,再运用幂的乘方性质计算.解:(1)(-2x )3=(-2)3·x 3=-8x 3;(2)(-xy )2=(-1)2·x 2·y 2=x 2y 2;(3)(xy 2)3·(-x 2y )2=x 3(y 2)3·(-1)2·(x 2)2y 2=x 3y 6·x 4y 2=x 7y 8;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34=⎝ ⎛⎭⎪⎫-124a 4(b 2)4(c 3)4=116a 4b 8c 12.(1)在计算时,把x 2与y 2分别看成一个数,便于运用积的乘方的运算性质进行计算,这种把某个式子看成一个数或字母的方法的实质是换元法,它可以把复杂问题简单化,它是数学的常用方法.(2)此类题考查积的乘方运算,计算时应特别注意底数含有的因式,每个因式都分别乘方,不要漏掉,尤其要注意系数及系数的符号,对系数是-1的不可忽略.负数的奇次方是一个负数,负数的偶次方是一个正数.4.同底数幂的除法 (1)幂的运算性质4同底数幂相除,底数不变,指数相减.用字母可以表示为:a m ÷a n =a m -n(a ≠0,m ,n 都是正整数,且m >n ).这个性质成立的条件是:同底数幂相除,结论是:底数不变,指数相减.和同底数幂的乘法类似,被除式和除式都是幂的形式且底数一定要相同,商也是一个幂,其底数与被除式和除式的底数相同,商中幂的指数是被除式的指数与除式的指数之差.因为零不能作除数,所以底数a ≠0.(2)性质的推广运用三个或三个以上的同底数幂连续相除时,该性质仍然成立,例如a m ÷a n ÷a p =a m -n -p(a ≠0,m ,n ,p 为正整数,m >n +p ).【例4】计算:(1)(-a )6÷(-a )3;(2)(a +1)4÷(a +1)2;(3)(-x )7÷(-x 3)÷(-x )2. 分析:利用同底数幂的除法性质进行运算时关键要找准底数和指数.(1)中的底数是-a ,(2)中的底数是(a +1),(3)中的底数可以是-x ,也可以是x .解:(1)(-a )6÷(-a )3=(-a )6-3=(-a )3=-a 3;(2)(a +1)4÷(a +1)2=(a +1)4-2=(a +1)2; (3)方法1:(-x )7÷(-x 3)÷(-x )2=(-x )7÷(-x )3÷(-x )2=(-x )7-3-2=(-x )2=x 2. 方法2:(-x )7÷(-x 3)÷(-x )2=(-x 7)÷(-x 3)÷x 2=x 7-3-2=x 2.运用同底数幂除法性质的关键是看底数是否相同,若不相同则不能运用该性质,指数相减是指被除式的指数减去除式的指数;幂的前三个运算性质中字母a ,b 可以表示任何实数,也可以表示单项式和多项式;第四个性质即同底数幂的除法性质中,字母a 只表示不为零的实数,或表示其值不为零的单项式和多项式.注意指数是“1”的情况,如a 5÷a =a 5-1,而不是a 5-0.5.零指数幂与负整数指数幂(1)零指数幂:任何一个不等于零的数的零次幂都等于1.用字母可以表示为:a 0=1(a ≠0).a 0=1的前提是a ≠0,如(x -2)0=1成立的条件是x ≠2.(2)负整数指数幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.用字母可以表示为:a -p=1ap (a ≠0,p 是正整数).a -p =1ap 的条件是a ≠0,p 为正整数,而0-2等是无意义的.当a >0时,a p 的值一定为正;当a <0时,a -p 的值视p 的奇偶性而定,如(-2)-3=-18,(-3)-2=19.规定了零指数幂和负整数指数幂的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂了,于是同底数幂除法的性质推广到整数指数幂,即a m ÷a n =a m -n(a ≠0,m ,n 都是整数).如a ÷a 2=a 1-2=a -1=1a;正整数指数幂的某些运算,在负整数指数幂中也能适用.如a -2·a -3=a-2-3=a -5等.【例5】计算:(1)1.6×10-4;(2)(-3)-3;(3)⎝ ⎛⎭⎪⎫-53-2;(4)(π-3.14)0;(5)⎝ ⎛⎭⎪⎫130+⎝ ⎛⎭⎪⎫-13-2+⎝ ⎛⎭⎪⎫-23-1.分析:此题是负整数指数幂和零指数幂的计算,可根据a -p=1ap (p 是正整数,a ≠0)和a 0=1(a ≠0)计算.其中(1)题应先求出10-4的值,再运用乘法性质求出结果.解:(1)1.6×10-4=1.6×1104=1.6×0.000 1=0.000 16.(2)(-3)-3=1-33=-127. (3)⎝ ⎛⎭⎪⎫-53-2=⎝ ⎛⎭⎪⎫-352=925. (4)因为π=3.141 592 6…, 所以π-3.14≠0.故(π-3.14)0=1.(5)原式=1+1⎝ ⎛⎭⎪⎫-132+1⎝ ⎛⎭⎪⎫-231=1+9-32=812.只要底数不为零,而指数是零,不管底数多么复杂,其结果都是1.当一个负整数指数幂的底数是分数时,它等于底数倒数的正整数次幂,即⎝ ⎛⎭⎪⎫a b -p =⎝ ⎛⎭⎪⎫b a p .6.用科学记数法表示绝对值较小的数(1)绝对值小于1的数可记成±a ×10-n的形式,其中1≤a <10,n 是正整数,n 等于原数中第一个不等于零的数字前面的零的个数(包括小数点前面的一个零),这种记数方法也是科学记数法.(2)把一个绝对值小于1的数用科学记数法表示分两步:①确定a,1≤a <10,它是将原数小数点向右移动后的结果;②确定n ,n 是正整数,它等于原数化为a 后小数点移动的位数.(3)利用科学记数法表示数,不仅简便,而且更便于比较数的大小,如:2.57×10-5显然大于2.57×10-8,前者是后者的103倍.【例6-1】2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.000 001 56 m ,用科学记数法表示这个数是( ).A .0.156×10-5B .0.156×105C.1.56×10-6 D.1.56×106解析:本题考查科学记数法,将一个数用科学记数法表示为±a×10-n(1≤a<10)的形式,其中a是正整数数位只有一位的数,所以A、B不正确,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零),所以n=6,即0.000 001 56=1.56×10-6.故选C.答案:Cn的值也等于将原数写成科学记数法±a×10-n时,小数点移动的位数.如本题中将0.000 001 56写成科学记数法表示时,a为1.56,即将原数的小数点向右移动了6位,所以n的值是6.【例6-2】已知空气的单位体积质量为 1.24×10-3 g/cm3,1.24×10-3用小数表示为( ).A.0.000 124 B.0.012 4C.-0.001 24 D.0.001 24解析:因为a=1.24,n=3,因此原数是1前面有3个零(包括小数点前面的一个零),即1.24×10-3=0.001 24.答案:D本题可把1.24的小数点向左移动3位得到原数,也可利用负整数指数幂算出10-3的值,再与1.24相乘得到原数.7.幂的混合运算幂的四个运算性质是整式乘(除)法的基础,也是整式乘(除)法的主要依据.进行幂的运算,关键是熟练掌握幂的四个运算性质,深刻理解每个性质的意义,避免互相混淆.幂的混合运算顺序是先乘方,再乘除,最后再加减,有括号的先算括号里面的.因此,运算时,应先细心观察,合理制定运算顺序,先算什么,后算什么,做到心中有数.(1)同底数幂相乘与幂的乘方运算性质混淆,从而导致错误.如:①a3·a2=a6;②(a3)2=a5.解题时应首先分清是哪种运算:若是同底数幂相乘,应将指数相加;若是幂的乘方,应将指数相乘.正解:①a3·a2=a5;②(a3)2=a6.(2)同底数幂相乘与合并同类项混淆,从而导致错误.如:①a3·a3=2a3;②a3+a3=a6.①是同底数幂相乘,应底数不变,指数相加;②是合并同类项,应系数相加作系数,字母和字母的指数不变.正解:①a3·a3=a6;②a3+a3=2a3.【例7-1】下列运算正确的是( ).A.a4+a5=a9B.a3·a3·a3=3a3C.2a4·3a5=6a9D.(-a3)4=a7解析:对于A,两者不是同类项,不能合并;对于B,结果应为a9;对于C,结果是正确的;对于D,(-a3)4=a3×4=a12.故选C.答案:C【例7-2】计算:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3.分析:按照运算顺序,先利用积的乘方化简,即(-2x2y)3=-8(x2)3·y3,8(x2)2·(-x)2·(-y)6=8x4·x2·y6,再利用幂的乘方及同底数幂的乘法化简乘方后的结果,最后合并同类项.解:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3=-8(x2)3·y3+8x4·x2·y6÷y3=-8x6y3+8x6y3=0.8.幂的运算性质的逆用对于幂的运算性质的正向运用大家一般比较熟练,但有时有些问题需要逆用幂的运算性质,可以使问题化难为易、求解更加简单.(1)逆用同底数幂的乘法性质:a m +n =a m ·a n (m ,n 为正整数).如25=23×22=2×24.当遇到幂的指数是和的形式时,为了计算的需要,往往逆用同底数幂的乘法性质,将幂转化成几个同底数幂的乘法.但是一定要注意,转化后指数的和应等于原指数.(2)逆用幂的乘方性质:a mn =(a m )n =(a n )m (m ,n 均为正整数).逆用幂的乘方性质的方法是:幂的底数不变,将幂的指数分解成两个因数的乘积,再转化成幂的乘方的形式.如x 6=(x 2)3=(x 3)2,至于选择哪一个变形结果,要具体问题具体分析.(3)逆用积的乘方性质: a n b n =(ab )n (n 为正整数).当遇到指数相差不大,且指数比较大时,可以考虑逆用积的乘方性质解题.注意,必须是同指数的幂才能逆用性质,逆用时一定要注意:底数相乘,指数不变.(4)逆用同底数幂的除法性质: a m -n =a m ÷a n (a ≠0,m ,n 为整数).当遇到幂的指数是差的形式时,为了计算的需要,往往逆用同底数幂的除法性质,将幂转化成几个同底数幂的除法.但是一定要注意,转化后指数的差应等于原指数.【例8-1】(1)已知3a =2,3b =6,则33a -2b的值为__________;(2)若m p =15,m 2q =7,m r =-75,则m 3p +4q -2r的值为__________.解析:(1)因为3a =2,3b=6,所以33a -2b =33a ÷32b =(3a )3÷(3b )2=23÷62=29.(2)m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.答案:(1)29 (2)15【例8-2】(1)计算:⎝ ⎛⎭⎪⎫18 2 011×22 012×24 024;(2)已知10x =2,10y =3,求103x +2y的值.分析:(1)本题的指数较大,按常规方法计算很难,观察式子特点发现:4 024是2 012的两倍,可逆用幂的乘方性质,把24 024化为(22)2 012,这样再与22 012逆用积的乘方性质,此时发现与⎝ ⎛⎭⎪⎫18 2 011底数互为倒数,但指数不相同,因此逆用同底数幂的乘法及逆用积的乘方性质,简化计算;(2)可逆用幂的乘方,把103x +2y化为条件中的形式.解:(1)原式=⎝ ⎛⎭⎪⎫18 2 011×22 012×(22)2 012(逆用幂的乘方)=⎝ ⎛⎭⎪⎫18 2 011×(2×22)2 012(逆用积的乘方) =⎝ ⎛⎭⎪⎫18 2 011×82 012 =⎝ ⎛⎭⎪⎫18 2 011×82 011×8(逆用同底数幂的乘法) =⎝ ⎛⎭⎪⎫18×8 2 011×8(逆用积的乘方) =8.(2)因为103x =(10x )3=23=8,102y =(10y )2=32=9,所以103x +2y =103x ·102y=8×9=72. 9.利用幂的运算性质比较大小 在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能.这时可利用幂的运算性质比较幂的大小.比较幂的大小,一般有以下几种方法:(1)指数比较法:利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.(2)底数比较法:利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.(3)作商比较法:当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b ”比较.有关幂的大小比较的技巧和方法除灵活运用幂的有关性质外,还应注意策略,如利用特殊值法、放缩法等.【例9】(1)已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .a <b <c D .b >c >a(2)350,440,530的大小关系是( ).A .350<440<530B .530<350<440C .530<440<350D .440<530<350(3)已知P =999999,Q =119990,那么P ,Q 的大小关系是( ).A .P >QB .P =QC .P <QD .无法比较解析:(1)因为a =8131=(34)31=3124,b =2741=(33)41=3123,c =961=(32)61=3122,又124>123>122,所以3124>3123>3122,即a >b >c .故选A .(2)因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440.故选B .(3)因为P Q =999999×990119=9×119999×990119=99×119999×990119=1,所以P =Q .故选B . 答案:(1)A (2)B (3)B10.幂的运算性质的实际应用利用幂的运算可以解决一些实际问题,所以要熟练掌握好幂的运算性质,能在实际问题中灵活地运用幂的运算性质求解问题.解决此类问题时,必须认真审题,根据题意列出相关的算式,进而利用幂的运算性质进行运算或化简,特别地,当计算的结果是比较大的数时,一般要写成科学记数法的形式.【例10】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103m/s ,则卫星运行3×102s 所走的路程约是多少?分析:要计算卫星运行3×102s 所走的路程,根据路程等于时间乘以速度可解决问题.本题实际是一道同底数幂的乘法运算问题.解:因为7.9×103×3×102=(7.9×3)×(103×102)=23.7×105=2.37×106,所以卫星运行3×102 s 所走的路程约为2.37×106m . 11.幂的运算中的规律探究题探究发现型题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以总结.它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或去探索存在的各种可能性以及发现所形成的客观规律.规律探索题是指在一定条件下,需要探索发现有关数学对象所具有的规律性或不变性的题目,要解答此类问题,首先要仔细阅读,弄清题意,并从阅读过程中找出其规律,然后进一步利用规律进行计算.【例11】(1)观察下列各式:由22×52=4×25=100,(2×5)2=102=100,可得22×52=(2×5)2;由23×53=8×125=1 000,(2×5)3=103=1 000,可得23×53=(2×5)3;….请你再写出两个类似的式子,你从中发现了什么规律?(2)x2表示两个x相乘,(x2)3表示3个__________相乘,因此(x2)3=__________,由此类推得(x m)n=__________.利用你发现的规律计算:①(x3)15;②(x3)6;③[(2a-b)3]8.解:(1)如:34×54=(3×5)4,45×55=(4×5)5,等等.规律:a n·b n=(ab)n,即两数n次幂的积等于这两个数的积的n次幂.(2)x2x2×3=x6x mn①(x3)15=x45;②(x3)6=x18;③[(2a-b)3]8=(2a-b)24.。
典范例题例1盘算题:(1)(2);(3).剖析:由同底数幂相乘的轨则知,能应用它的前题必须是“同底”,留意最后成果中的底数不克不及带负号,如不是最后成果,应写成才是最后成果.解:(1)(2)(3)例 2 盘算:(1) a6·a6(2) a6+a6剖析:对于(1),可应用“同底数幂的乘法公式”盘算,而第(2)题,是两个幂相加,需进行归并同类项,留意两者的差别.解:(1) a6·a6=a6+6=a12(2) a6+a6=2a6解释:留意区分:同底数幂的乘法是乘法运算,且底数不变,指数相加.而归并同类项是加(减)法,且系数相加,字母与字母的指数不变.例3盘算:(1);(2);(3);(4)剖析:在幂的运算轨则中的底数,可所以数字.字母,也可所以单项式或多项式.例如(1)中的,(3)中的,(2)中的,(4)中的.指数可所以天然数,也可所以代表天然数的字母.解:(1)(2)(3)(4)解释:(1)中的指数是1,不是0;(2)要留意差别与的不合,,而;(4)指数中含有天然数和字母,相加时要归并同类项化简.例4盘算题:(1); (2);(3).剖析:应用同底数幂相乘的轨则请求必须“同底”,留意与的不合,它们的底不合,必须变成雷同的底数之后再运算.解:(1)原式;(2)原式;(3)原式.解释:分离把,看作一修整一,第一个是三个同底数幂相乘,但必须把转化为,或者把转化为,其本质是雷同的,因为互为相反数的奇次幂仍是互为相反数.例5盘算:(1);(2);(3).剖析:此题为混杂运算,应先依据同底数幂的运算性质进行乘法运算,再进行加减运算.解:(1)原式(2)原式(3)原式解释:(2)顶用到,是逆向应用运算公式.。
第八章幂的运算8.1 同底数幂的乘法【知识平台】同底数幂的乘法法则语言叙述:同底数幂相乘,底数不变,指数相加.公式表示:a m·a n=a m+n(m、n都是正整数).【思维点击】运用同底数幂的乘法法则计算时的注意事项1.是否符合法则的条件:①乘法运算;②底数相同.2.看清底数和指数:①如(-2)4与-24底数分别为-2与2;②如m的指数是1.3.正确运算法则计算:①底数不变;②指数相加.【考点浏览】例1 计算:(1)a2·a3;(2)y3·y8·y2;(3)x2·x4+2x3·x3+x5·x;(4)100×103×1 000;(5)(a+b)4·(a+b)5.【解析】(1)a2·a3=a2+3=a5;(2)y3·y8·y2=y=y;(3)x2·x4+2x3·x3+x5·x =x2+4+2x3+3+x5+1=x6+2x6+x6=4x6;(4)100×103×1 000=102×103×103=102+3+3=108;(5)(a+b)4·(a+b)5=(a+b)9.说明当三个或三个以上的同底数幂相乘时,同样可用法则进行;幂的底数既可以是单项式,也可以是多项式.例2计算:(1)x5·(-x)3·(-x)4;(2)-a3·(-a)4·(-a)5;(3)(x-y)3·(y-x)3·(y-x)4;(4)x k+1·x2k-1·x k·x;(5)(-3)100+(-3)99.【解析】(1)x5·(-x)3·(-x)4=-x5·x3·x4=-x12;(2)-a3·(-a)4·(-a)5=a3·a4·a5=a12;(3)(x-y)3·(y-x)3·(y-x)4=-(x-y)3·(x-y)3·(x-y)4=-(x-y)10;(4)x k+1·x2k-1·x k·x =x k+1+2k-1+k+1=x4k+1;(5)(-3)100+(-3)99=3100-399=3×399-399=2×399.说明(1)在幂的乘法中,当底数不同时,要先将它们化成同底数幂再计算;(2)•若指数含有字母,同样可用同底数幂乘法法则;(3)注意与整式的加减法运算的区别,如(5)中,3100-399≠3.【在线检测一】判断下列1~8题各式是否正确,若不正确,请加以改正.1.x2·x2=2x2._________________;2.x2+x3=x5._________________;3.a5+a6=a11.__________________;4.a5·a6=a11.________________;5.a5·b6=(ab)11._______________;6.x·x2·x3=x5.________________;7.2x3+34=5x7.____________;8.x4·x4·x4=3x4.______________;9.计算:a·a2=___________________;10.计算:a·a2·a4=________________;11.计算:m3·m4=________________;12.计算:m3·m4·m5=________________;13.计算:x3·x3=____________;14.计算:2×4×16×32=___________(用底数为2的幂的形式表示);15.计算:(x+y)2·(x+y)3=_____________.16.计算:(a-b)·(a-b)6=_____________.17.计算:x·x5+x2·x4=_____________.18.计算:y4·y2·y+2y·y3·y3=____________.19.若x7·x k=x11,则k=__________.20.若y k·y2k=y6,则k=_________.21.a4·_________=a7.22.b·________=b7.23.x2a·x3=x a·x5,则a=____________.24.若x m=2,x3=5,则x m+3=_________.25.计算:x3·x4·x6=__________; 26.计算a·a5·a7=____________;27.计算:y7·y2+2y·y8-y3·y5+y·y2·y5.28.计算:3×9×27×81(结果用幂的形式表示).29.计算:5×25×125×625(结果用幂的形式表示).30.计算:103×100×10+2×10×10(结果用幂的形式表示).31.计算:(a+b)3·(a+b)4.32.(a-b)·(a-b)3·(a-b)6.33.计算:(m+n)·(m+n)2·(m+n)3·(m+n)4.【在线检测二】1.下列计算正确的是()A.(-a)·(-a)2·(-a)3=-a5B.(-a)·(-a)3·(-a)4=-a8C.(-a)·(-a)2·(-a)4=-a7D.(-a)·(-a)4·a=-a6 2.(-x)2·(-x)3·(-x3)·(-x)2=()A.-x36B.x36C.-x10D.x103.计算:(-a)·(-a)2=_________.4.计算:(-a)2·a3=________.5.计算:(-a)3·(-a4)=________.6.计算:(-x)·(-x)3·(-x)5=_________.7.计算:(x-y)2·(y-x)=________.8.计算:(-2)100+(-2)99=________.计算:9.x2·(-x)6.10.(-x3)+(-x4).11.(-a3)·a3·(-a)4.12.(-k)3·(-k2)·(-k)4·(-k5).13.(x-y)·(y-x)3·(x-y)2.14.(a-b)2·(a-b)3·(b-a)2·(b-a)3.15.(a+b-c)2·(c-a-b)3.16.(x-y-z)·(y-x+z)3·(z-x+y)2.17.-a4·(-a)3+(-a)2·(-a5).18.(-x)4·(-x3)·(-x)+2(-x)2·(-x)5-(-x)·(-x6).19.x m·x m-1.20.y2m+1·y1+m·y3-2m.21.9m-2·(-9)2·9n.22.10m·10n·102.23.x n-1·x2n+1·x 24.x·x m-1+x2·x m-2-3·x3·x m-3.答案:在线检测一1~8.略9.a310.a711.m712.m1213.x614.21215.(x+y)5 16.(a-b)7•17.2x618.3y719.4 20.2 21.a322.b623.224.10 25.x1326.a1327.3y9•28.31029.51030.3×10631.(a+b)732.(a-b)10 33.(m+n)10在线检测二1.C 2.D 3.-a34.a55.a76.-x97.-(x-y)38.2999.x8 10.x711.-a1012.-k1413.-(x-y)614.-(a-b)1015.-(a+b-c)516.-(x-y-z)617.0 18.x8-3x7•19.x2m-120.y m+521.9m+n22.10m+n+223.x3n+124.-x m。
同底数幂的乘法练习题1.计算:=-⋅23b b =-⋅3)(a a =--⋅32)()(y y =--⋅43)()(a a =--⋅32)()(q q n =--⋅54)2()2( =--⋅69)(b b =--⋅)()(33a a ()()()53222---= 231010100⨯⨯ = ()()()352a a a -⋅-⋅--= ()()m m 2224⨯⨯=2 = 11X411= -81994X 1995= 20019911323235.0⎪⎭⎫ ⎝⎛⨯-⋅⎪⎭⎫ ⎝⎛⨯= 3X29=(-a 3b 6)2-(-a 2b 4)3 = -(-x m y)3·(xy n+1)2 = (-1)1994=2、下列各式中计算正确的是( )A .(x 4)3=x 7 B.[(-a )2]5=-a 10 C.(a m )2=(a2)m =a m 2 D.(-a 2)3=(-a 3)2=-a 6 3、计算(-a2)3·(-a 3)2的结果是( ) A .a 12 12 10 364、下列计算正确的有几个( ).443)3(=- 4433=- 4442a a a =+ 1644a a a =⋅ x 3·(x 5)2=x 13 (-x)6÷(-x)3=x 3A 、1个B 、 2个C 、3个D 、4个5.下列各式正确的是( )A .3a 2·5a 3=15a 6 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 86、设a m =8,a n =16,则a n m +=( )A .247、若a m =2,a n =3,则a m+n=( ).8、下列计算题正确的是( )·a 2=a 2m ·x 2·x=x 5 ·x 4=2x 4 +1·y a-1=y 2a9、在等式a 3·a 2( )=a 11中,括号里面的代数式应当是( ).10、x 3m+3可写成( ).+1 +x 3 ·x m+1 ·x 311、已知算式:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正确的算式是( )A.①和②B.②和③C.①和④D.③和④12.计算a -2·a 4的结果是( )A .a -2B .a 2C .a -8D .a 813、下列计算中正确的是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 714、计算2009200822-等于( ) A 、20082 B 、 2 C 、1 D 、20092- 15、如果(9n )2=38,则n 的值是( )D.无法确定16、已知P=(-ab 3)2,那么-P 2的正确结果是( )412 2648 a 4 b 12 17、计算(-4×103)2×(-2×103)3的正确结果是( )A .×1017 17 16 16、下列各式错误的是( )A .[(a+b )2]3=(a+b )6 B.[(x+y )n 2]5=(x+y )52+n C. [(x+y )m ]n =(x+y )mn D. [(x+y )1+m ]n =[(x+y )n ]1+m 20、计算:2 (-2a2b )3+8(a 2)2·(-a )2·(-b )3; (-3a 2)3·a 3+(-4a )2·a 7-(5a 3)3.[(-32)8×(23)8] ; 81999·()2000; (3a 2)3+(a 2)2·a 221、若(91 m )2=316,求正整数m 的值.22、22、若 2·8n ·16n =222,求正整数m 的值.23、化简求值:(-3a2b )3-8(a 2)2·(-b )2·(-a 2b ),其中a=1,b=-1.24.若(2y-10)0无意义,且2x+y=5,求x 、y 的值.25.若8127931122=÷⋅++a a ,求a 的值.26.已知235,310m n ==,求(1)9m n -;(2)29m n -.27.已知3,2==n m a a (m 、n 是正整数).求n m a 23+ 的值.28.已知2530x y +-=,求432x y ⋅的值。
(word完整版)北师大版七年级下册数学同底数幂的乘法练习(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)北师大版七年级下册数学同底数幂的乘法练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)北师大版七年级下册数学同底数幂的乘法练习(word版可编辑修改)的全部内容。
同底数幂的乘法1、计算63m m ⋅的结果是( )A 。
18m B.9m C 。
3m D.2m2、(2016福建福州中考)下列算式中,结果等于6a 的是( )A 42a a +B 222a a a ++C 22a a ⋅D 222a a a ⋅⋅3、下列各式中,计算过程正确的是( )A 633333x x x x x ==+++B 3332x x x =⋅C 853053x x x x x ==⋅⋅++D 53232)(x x x x -=-=-⋅+4、如果等式63x x x m =⋅成立,那么m=( )A 。
2 B. 3 C. 4 D 。
55、若5,2==n m a a ,则n m a +的结果是( )A 。
—10 B.10 C.7 D 。
-76、若()1642x x x =⋅⋅,则括号内应填的代数式是( )A.10xB.8x C 。
4x D. 2x7、计算:23)2()2(-⨯-=8、计算:=-⋅⋅-62)()(a a a9、计算:=--⋅+32)()(y x y x10、计算:=⨯⨯⨯)104(1034811、计算:(1)=-⋅-⋅325)()(a a a(2)=⨯-⨯101000010102312已知123)()())((y x y x y x y x m -=---,求)52(2)124(22---++m m m m 的值13、太阳系的形状像一个以太阳为中心的大圆盘,光沿直径通过这个圆盘的时间约为s 4104⨯,光的速度约是s km 5103⨯,求太阳系的直径。
同底数幂的运算练习题在数学中,我们经常会遇到同底数的幂的运算。
熟练掌握这些运算对于解决数学问题和应用数学在实际生活中非常重要。
本文将提供一些同底数幂的运算练习题,帮助你巩固和提高自己的运算能力。
1. 基本运算1.1. 乘法规则计算下列同底数幂的乘法:1.$2^3 \\times 2^4$2.$5^2 \\times 5^3$3.$10^4 \\times 10^6$1.2. 除法规则计算下列同底数幂的除法:1.$\\dfrac{7^5}{7^2}$2.$\\dfrac{3^4}{3^2}$3.$\\dfrac{8^6}{8^3}$1.3. 幂的乘方计算下列同底数幂的乘方:1.(23)42.(42)33.(105)22. 混合运算计算下列混合运算:1.$2^5 \\times 2^3 + 2^4 \\div 2^2$2.$3^4 - 3^2 \\times 3^2 + 3^3$3.$5^3 \\div (5^2 + 5) \\times 5^4$3. 幂运算的性质3.1. 幂的乘法性质根据幂的乘法性质计算下列等式右边的值:1.$2^3 \\times 2^4 = 2^{(\\_\\_\\_\\_\\_)}$2.$3^2 \\times 3^5 = 3^{(\\_\\_\\_\\_\\_)}$3.$5^4 \\times 5^7 = 5^{(\\_\\_\\_\\_\\_)}$3.2. 幂的除法性质根据幂的除法性质计算下列等式右边的值:1.$\\dfrac{6^5}{6^3} = 6^{(\\_\\_\\_\\_\\_)}$2.$\\dfrac{4^2}{4^5} = 4^{(\\_\\_\\_\\_\\_)}$3.$\\dfrac{9^7}{9^2} = 9^{(\\_\\_\\_\\_\\_)}$3.3. 幂的幂性质根据幂的幂性质计算下列等式右边的值:1.$(2^3)^4 = 2^{(\\_\\_\\_\\_\\_)}$2.$(3^2)^5 = 3^{(\\_\\_\\_\\_\\_)}$3.$(5^4)^7 = 5^{(\\_\\_\\_\\_\\_)}$4. 应用题解决下列问题:1.一个正方体的边长是10 cm,计算它的体积。
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
《同底数幂的乘法》典型例题例1 计算:(1)32a a a ⋅⋅;(2)32)()(y x y x +⋅+;(3))()(232x x x -⋅⋅-;(4)212)2()2()2(+--⋅-⋅-m m y x y x y x例2 计算题:(1));21()21()21(65-⋅-⋅- (2)101010103158⨯⨯⨯; (3)865)()()(x x x -⋅-⋅--。
例3 计算:(1)333343)()(x x x x x x x x ⋅-⋅-+⋅⋅+⋅;(2)76254)3(33333-⋅+⋅-⋅;(3)423211)()(--+--⋅-+⋅+⋅n n n n n x x x x x x 。
例4 计算题:(1))()()(43x y y x y x ---; (2)323)()(a a a ---;(3)32)2()2(x y y x -⋅-。
例5 化简:2212122)()()()(-+---⋅-++--⋅-+n n n n b a c c b a b a c c b a例6 (1)已知m x =+22,用含m 的代数式表示x 2;(2)已知32=a ,62=b ,122=c ,求a 、b 、c 之间的关系。
参考答案例1 分析: 在幂的运算法则中的底数,可以是数字、字母,也可以是单项式或多项式。
例如(1)中的a ,(3)中的x ,(2)中的)(y x +,(4)中的)2(y x -。
指数可以是自然数,也可以是代表自然数的字母。
解:(1)632132a a a a a ==⋅⋅++(2)53232)()()()(y x y x y x y x +=+=+⋅++(3)7232232232)()()(x x x x x x x x -=-=-⋅⋅=-⋅⋅-++(4)212)29)2()2(+--⋅-⋅-m m y x y x y x32)2()1(2)2()2(+++-+-=-=m m m y x y x说明:(1)中a 的指数是1,不是0;(2)要注意区别2)(x -与)(2x -的不同,222)(x x x =⋅-,而221x x ⋅-=-;(4)指数中含有自然数和字母,相加时要合并同类项化简。
1 《同底数幂的乘法》
一、填空题
1. 1110
10m n =________,456(6)=______. 2. 234x x xx =________,25
()()x y x y =_________________. 3. 31010010
100100100100001010=___________. 4. 若34m
a a a ,则m =________,若416a x x x ,则a =__________; 5. 若2,5m n a a ,则m n a =________.
二、选择题
1. 下面计算正确的是(
). A .326b b b ; B .336x x x ; C .426a a a ; D .56
mm m 2. 81×27可记为(
). A.39 B.
73 C.63 D.1233. 若
x y ,则下面多项式不成立的是(). A.22()()y
x x y B.33()x x C.22()y y D.2
22()x y x y 4.下列各式正确的是().
A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12
D.(-b )3·(-b )5=b 8
5.设a m =8,a n =16,则a n m =().
A .24 B.32 C.64 D.128
6.若x 2·x 4·(
)=x 16,则括号内应填x 的代数式为()A .x 10 B. x 8 C.
x 4 D. x 27.若a m =2,a n =3,则a n m
=(). A.5 B.6 C.8 D.9
8.下列计算题正确的是(
). A. a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y
a +1·y a-1=y 2a
2 9.在等式a 3·a 2()=a 11中,括号里面的代数式应当是().
A.a 7
B.a 8
C.a 6
D.a 5
三.判断下面的计算是否正确(正确打“√”,错误打“×”)
1.(3x +2y )3·(3x +2y )2=(3x +2y )5()
2.-p 2·(-p )4·(-p )2=(-p )9()
3.p 4·p 4=p 16() 4.m 3·m 3=2m 3()
5.m 2+m 2=m 4() 6.a 2·a 3=a 4()
7.x ·x 3=x 5()
8.(-m )4·m 3=-m 7()
四、解答题
1.计算
(1)(-2)3·23·(-2)(2)81×3n
(3)4×2n +2-2×2n +1
2、计算题
(1)23x x x (2)23
()()()a b a b a b (3)23324()2()x x x x x x (4)122333m m m x x x x x x .
(5)(101)4·(101
)3;(6)(2x -y )3·(2x -y )·(2x -y )4;
3.计算并把结果写成一个底数幂的形式:
(1)43981=
(2)66251255=
4.已知321(0,1)x x a a a a ,求x
5.62(0,1)x x p p p p p ,求x
6.若10,8a b x x ,求a b
x 7.一台电子计算机每秒可运行4×109次运算,它工作5×102秒可作多少次运算?
8.水星和太阳的平均距离约为 5.79×107km ,冥王星和太阳的平均距离约是水星和太阳的平均距离的
102
倍,那么冥王星和太阳的平均距离约为多少km?
3。