重庆市普通高中2014年12月学生学业水平考试数学试卷
- 格式:doc
- 大小:783.00 KB
- 文档页数:2
1 / 10绝密★启用前2014年普通高等学校招生全国统一考试(重庆卷)文科数学本试卷共21题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.(5分)(2014•重庆)实部为﹣2,虚部为1的复数所对应的点位于复平面内的( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 2.(5分)(2014•重庆)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A . 5 B . 8 C . 10 D . 14 3.(5分)(2014•重庆)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A . 100 B . 150 C . 200 D . 250 4.(5分)(2014•重庆)下列函数为偶函数的是( )A . f (x )=x ﹣1B . f (x )=x 2+xC . f (x )=2x ﹣2﹣xD . f (x )=2x +2﹣x 5.(5分)(2014•重庆)执行如图所示的程序框图,则输出s 的值为( )A . 10B . 17C . 19D . 366.(5分)(2014•重庆)已知命题:p :对任意x ∈R ,总有|x|≥0,q :x=1是方程x+2=0的根;则下列命题为真命题的是( ) A . p ∧¬q B . ¬p ∧q C . ¬p ∧¬q D . p ∧q 7.(5分)(2014•重庆)某几何体的三视图如图所示,则该几何体的体积为( )A .12 B .18 C .24 D .30 8.(5分)(2014•重庆)设F 1,F 2分别为双曲线﹣=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|﹣|PF 2|)2=b 2﹣3ab ,则该双曲线的离心率为( ) A . B . C . 4 D .9.(5分)(2014•重庆)若log 4(3a+4b )=log 2,则a+b 的最小值是( ) A . 6+2 B . 7+2 C . 6+4 D . 7+4 10.(5分)(2014•重庆)已知函数f (x )=,且g (x )=f (x )﹣mx ﹣m 在(﹣1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( ) A . (﹣,﹣2]∪(0,]B . (﹣,﹣2]∪(0,]C . (﹣,﹣2]∪(0,]D.(﹣,﹣2]∪(0,]二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上. 11.(5分)(2014•重庆)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A ∩B= _________ . 12.(5分)(2014•重庆)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•=_________ .13.(5分)(2014•重庆)将函数f (x )=sin (ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx 的图象,则f ()= _________ . 14.(5分)(2014•重庆)已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y ﹣4=0相交于A 、B 两点,且AC ⊥BC ,则实数a 的值为 _________ . 15.(5分)(2014•重庆)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为 _________ (用数字作答).三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(13分)(2014•重庆)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (Ⅰ)求a n 及S n ;(Ⅱ)设{b n }是首项为2的等比数列,公比为q 满足q 2﹣(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n . 17.(13分)(2014•重庆)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图: (Ⅰ)求频率分布直方图中a 的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.18.(13分)(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.19.(12分)(2014•重庆)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.20.(12分)(2014•重庆)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.21.(12分)(2014•重庆)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.2014年普通高等学校招生全国统一考试(重庆卷)文科数学(参考答案)1.解答:解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.2.解答:解:∵等差数列{a n}中,a1=2,a3+a5=10∴2+2d+2+4d=10,解得d=1,∴a7=2+6×1=8.故选:B.3.解答:解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.4.解答:解:根据题意,依次分析选项:A、f(x)=x﹣1,其定义域为R,f(﹣x)=﹣x﹣1,f(﹣x)≠f(x),不是偶函数,不符合题意;B、f(x)=x2+x,其定义域为R,f(﹣x)=x2﹣x,f(﹣x)≠f(x),不是偶函数,不符合题意;C、f(x)=2x﹣2﹣x,其定义域为R,f(﹣x)=2﹣x﹣2x,f(﹣x)=﹣f(x),是奇函数不是偶函数,不符合题意;D、f(x)=2x+2﹣x,其定义域为R,f(﹣x)=2﹣x+2x,f(﹣x)=f(x),是偶函数,符合题意;故选:D.5.解答:解:由程序框图知:第一次循环S=2,k=2×2﹣1=3;第二次循环S=2+3=5,k=2×3﹣1=5;第三次循环S=5+5=10,k=2×5﹣1=9;第四次循环S=10+9=19,k=2×9﹣1=17,不满足条件k<10,跳出循环体,输出S=19.故选:C.6.解答:解:根据绝对值的性质可知,对任意x∈R,总有|x|≥0成立,即p为真命题,当x=1时,x+2=3≠0,即x=1不是方程x+2=0的根,即q为假命题,则p∧¬q,为真命题,故选:A.7.解答:解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的等腰直角三角形,∴几何体的体积V=×3×4×5﹣××3×4×3=30﹣6=24.故选:C.8.解答:解:∵(|PF1|﹣|PF2|)2=b2﹣3ab,∴由双曲线的定义可得(2a)2=b2﹣3ab,∴4a2+3ab﹣b2=0,∴a=,∴c==b,∴e==.故选:D.9.解答:解:∵3a+4b>0,ab>0,∴a>0.b>0∵log4(3a+4b)=log2,∴log4(3a+4b)=log4(ab)∴3a+4b=ab,a≠4,a>0.b>0∴>0,∴a>4,则a+b=a+=a+=(a﹣4)++7+7=4+7,当且仅当a=4+2取等号.故选:D.10.解答:解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=g(x)=m(x+1)的图象如图:由图象可知f(1)=1,g(x)表示过定点A(﹣1,0)的直线,当g(x)过(1,1)时,m═此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当g(x)过(0,﹣2)时,g(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当g(x)与f(x)相切时,两个函数只有一个交点,此时,即m(x+1)2+3(x+1)﹣1=0,当m=0时,x=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A11.解答:解:根据题意,集合A={3,4,5,12,13},B={2,3,5,8,13},A、B公共元素为3、5、11,则A∩B={3,5,13},故答案为:{3,5,13}.12.解答:解:∵=(﹣2,﹣6),∴∴=2=10.故答案为:10.13.解答:解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈z,∴ω=,φ=,∴f(x)=sin(x+),∴f()=sin(+)=sin=.故答案为:.14.解答:解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6,故答案为:0或6.15.解答:解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|7≤x≤7,7≤y≤7}是一个矩形区域,对应的面积S=,则小张比小王至少早5分钟到校事件A={x|y﹣x≥}作出符合题意的图象,A(7,7),当x=7时,y=7+=7,则AB=7﹣7=,则三角形ABC的面积S=,由几何概率模型可知小张比小王至少早5分钟到校的概率为=,故答案为:.16.解答:解:(Ⅰ)∵{a n}是首项为1,公差为2的等差数列,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.;(Ⅱ)由(Ⅰ)得,a4=7,S4=16.∵q2﹣(a4+1)q+S4=0,即q2﹣8q+16=0,2又∵{b n}是首项为2的等比数列,∴..17.解答:解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,10个,故所求概率为P=.18.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.19.解答:解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=,(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.20.解答:证明:(Ⅰ)∵底面是以O为中心的菱形,PO⊥底面ABCD,故O为底面ABCD的中心,连接OB,则AO⊥OB,∵AB=2,∠BAD=,∴OB=AB•sin∠BAO=2sin()=1,又∵BM=,∠OBM=,∴在△OBM中,OM2=OB2+BM2﹣2OB•BM•cos∠OBM=,即OB2=OM2+BM2,即OM⊥BM,∴OM⊥BC,又∵PO⊥底面ABCD,BC⊂底面ABCD,∴PO⊥BC,又∵OM∩PO=O,OM,PO⊂平面POM,∴BC⊥平面POM;(Ⅱ)由(Ⅰ)可得:OA=AB•cos∠BAO=2cos()=,设PO=a,由PO⊥底面ABCD可得:△POA为直角三角形,故PA2=PO2+OA2=a2+3,由△POM也为直角三角形得:PM2=PO2+OM2=a2+,连接AM,在△ABM中,AM2=AB2+BM2﹣2AB•BM•cos∠ABM==,由MP⊥AP可知:△APM为直角三角形,则AM2=PA2+PM2,即a2+3+a2+=,解得a=,即PO=,此时四棱锥P﹣ABMO的底面积S=S△AOB+S△BOM=•AO•OB+•BM•OM=,∴四棱锥P﹣ABMO的体积V=S•PO=21.解答:解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C,设C(0,y0)由F1P1,F2P2是圆C的切线,知CP1⊥F1P1,得•=﹣1,而|y1|=|x1+1|=,故y0=,故圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.。
重庆市2014年初中毕业暨高中招生考试·数学(A卷) 本卷难度:适中难度系数:0.60易错题:7、24、25较难题:22、23(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a,4ac-b24a),对称轴为x=-b2a.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在对应的括号内.1. 实数-17的相反数是()A. 17B. 117 C. -17 D. -1172. 计算2x6÷x4的结果是()A. x2B. 2x2C. 2x4D. 2x103. 在a中,a的取值范围是()A. a≥0B. a≤0C. a>0D. a<04. 五边形的内角和是()A. 180°B. 360°C. 540°D. 600°5. 2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4 ℃、5 ℃、6 ℃、-8 ℃,当时这四个城市中,气温最低的是( )A. 北京B. 上海C. 重庆D. 宁夏6. 关于x的方程2x-1=1的解是()A. x=4B. x=3C. x=2D. x=17. 2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁8. 如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G.若∠1=42°,则∠2的大小是()A. 56°B. 48°C. 46°D. 40°第8题图第9题图9. 如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°10. 2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()11. 如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,….按此规律,则第(6)个图形中面积为1的正方形的个数为()第11题图A. 20B. 27C. 35D. 4012. 如图,反比例函数y=-6x在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为(C)第12题图A. 8B. 10C. 12D. 24二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在对应的横线上.13. 方程组⎩⎪⎨⎪⎧x =3x +y =5的解是 .14. 据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563000辆,将563000这个数用科学记数法表示为 .15. 如图,菱形ABCD 中,∠A =60°,BD =7,则菱形ABCD 的周长为 .第15题图 第16题图 第18题图16. 如图,△OAB 中,OA =OB =4,∠A =30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)17. 从-1,1,2这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组⎩⎪⎨⎪⎧x +2≤a 1-x ≤2a有解..的概率为 . 18. 如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE =2CE ,连接BE .过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为 .三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须写出必要的演算过程或推理步骤.19. 计算:4+(-3)2-20140×|-4|+(16)-1.20. 如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.第20题图四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理步骤.21. 先化简,再求值:1x ÷(x 2+1x 2-x -2x -1)+1x +1,其中x 的值为方程2x =5x -1的解.第22题图22. 为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1~5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1~5月新注册小型企业一共有家,请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23. 为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍.这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中a >0),则每户平均集资的资金在150元的基础上减少了109a %,求a 的值.24. 如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,第24题图使F A ⊥AE ,FC ⊥BC . (1)求证:BE =CF ;(2)在AB 上取一点M ,使BM =2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME ⊥BC ;②DE =DN .五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题必须写出必要的演算过程或推理步骤.25. 如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段..AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=22DQ,求点F的坐标.第25题图26. 已知:如图①,在矩形ABCD中,AB=5,AD=203,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度),当点F分别平移到线段AB、AD上时,直接写出相应的m的值;(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ 为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.第26题图重庆市2014年初中毕业暨高中招生考试(A卷)1. A【解析】只有符号不同的两个数互为相反数,17与-17符号不同,故-17的相反数为17.2. B【解析】同底数幂相除,底数不变,指数相减.由此可得,2x6÷x4=2x6-4=2x2.3. A【解析】本题考查二次根式有意义的条件.在二次根式中,被开方数必须是非负数,即要大于等于0,故a的取值范围为a≥0.易错警示:在二次根式中,要注意被开方数可以等于0,不要丢解.4. C【解析】本题考查多边形的内角和计算.n边形的内角和公式为:(n-2)×180°,由此可得五边形的内角和为:(5-2)×180°=3×180°=540°.备考指导:多边形的有关性质:(1)n边形的内角和为:(n-2)·180°;(2)任意多边形的外角和为:360°;(3)正n边形的每个内角为:(n-2)·180°n,每个外角为:360°n.5. D【解析】本题考查实数的大小比较.-4、5、6、-8这四个数中,按大小顺序排列为:6>5>-4>-8,因此最小的数是-8,它对应的城市为宁夏,所以宁夏的气温最低.方法归纳:实数的大小比较中,正数都大于0,0大于一切负数.两个负数比较大小,绝对值大的反而小;在比较实数的大小时,也可利用数轴法,先把这些数在数轴上表示,然后利用数轴上右边的数总比左边的数大即可.试题点评:以各地气温为背景,考查实数比较大小,这种命题方式新颖,不仅考查了数学知识,更体现出数学在实际生活中的应用价值.6. B【解析】本题考查分式方程的解法.分式方程两边同时乘以最简公分母(x-1),得:x-1=2,移项,合并同类项,得:x=3.检验:把x=3代入x-1中,值不等于零,所以x=3是原分式方程的解.方法指导:①把分式方程“转化”为整式方程的条件是去掉分式方程中的分母.如何去掉分母是解分式方程的关键步骤;②用最简公分母乘以分式方程中的每一项,从而约去分母.但要注意去分母时,注意切勿漏乘常数项;③解分式方程可能产生“增根”的情况,则验根是解分式方程的必要步骤.一题多解:本题也可以通过利用选项代入方程验证求出方程的解.7. D【解析】本题考查方差的意义.由于这四位运动员的平均成绩相同,且四位运动员成绩的方差大小为:s2甲=0.11>s2丙=0.05>s2乙=0.03>s2丁=0.02,因此可知丁的方差最小,根据方差越小,成绩越稳定,故丁的成绩最稳定.方法指导:方差反映一组数据在其平均数左右波动的大小,方差越大,数据波动就越大,越不稳定;方差越小,数据波动就越小,越稳定.第8题解图8. B【解析】本题考查了平行线性质及垂线性质的运用.∵AB∥CD,∴∠1=∠EFD=42°,又∵FG⊥FE,∴∠EFG=90°,又∠CFD=180°,∴∠2=180°-∠EFG-∠EFD=180°-90°-42°=48°.思维方式:利用平行线性质求角度:先观察要求角与已知角的位置关系,再选择合理的角度进行等量代换,因此需要熟练掌握平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.另外在解题中要注意平角、直角及三角形内角和、三角形内外角关系等知识的运用.第9题解图9. C【解析】本题考查了圆周角的定理.在同圆或等圆中,根据同弧所对的圆周角等于圆心角的一半,可得:∠AOC=2∠ABC,∴∠ABC+∠AOC=3∠ABC =90°,解得∠ABC=30°,∴∠AOC=60°.方法指导:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于所对圆心角的一半.在具体解答问题时,找准同弧所对的圆周角及圆心角,然后利用此定理解题即可.10. C【解析】根据本题题意,应分为三段函数来呈现:①小华在电脑上打字录入文稿一段时间,此时录入字数随着时间的增加而增加,应为过原点的一条呈上升趋势的直线;②因事暂停,录入的字数不增加,但时间依旧增加,应为平行于x轴的一条直线;③小华继续录入并加快了录入速度,随着时间的增大,字数增加地更剧烈,为一条上升趋势更明显的直线,因此C选项正确.一题多解:排除法:根据题意可知,小华同学录入作文,共分三个阶段,分别是开始、暂停、加快录入速度,所以可排除选项B;因为y轴表示的是录入字数,所以第一、三段图象应该是一直向上的线段,排除选项A;中间休息时,字数不变,所以第二段应该是平行于x轴的一条线段,故选择C.方法归纳:判断实际问题函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找相对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性;④看是否与坐标轴相交,即此时有一个变量为0.11. B【解析】观察图形可看出,第n个图形有n行,且上一行总比下一行的个数多1,将每一行个数相加即可求解.第(1)个图形中正方形的个数为:2;第(2)个图形中正方形的个数为:2+3=5;第(3)个图形中正方形的个数为:2+3+4=9;第(4)个图形中正方形的个数为:2+3+4+5=14;第(5)个图形中正方形的个数为:2+3+4+5+6=20; 由此可得,第(6)个图形中正方形的个数为:2+3+4+5+6+7=27.方法指导:解图形规律探索题的方法:第一步:写序号:记每组图形的序数为“1,2,3,…,n”;第二步:数图形个数:在图形数量变化时,要记出每组图形的表示个数;第三步:寻找图形数量与序数n的关系:图示法:针对寻找第n个图形表示的数量时,先将后一个图形的表示个数与前一个图形的个数进行比对,通常作差(商)来观察是否有恒定量的变化,然后按照定量变化推导出具体某个图形的个数;若当图形变化规律不明显时,如本题第1个数字为2,第2个数字为5,第3个数字为9,第4个数字为14时,可进行图示法:可以看出每组数字之间的差值依次为从3开始的连续整数;然后再根据其每组数字本身特征逆推其规律,从而寻找出第n 个图形的表示个数.第12题解图12. 【教你审题】本题要求△AOC 的面积,只要知道点A 与点C 的坐标即可,而点C 在直线AB 上,故要求点C 坐标需求直线AB 的解析式,因此结合反比例函数解析式及A 、B 点坐标可将问题解决.C 【解析】本题考查反比例函数性质、待定系数法求直线解析式及三角形面积的计算.∵点A 、B 都在反比例函数y =-6x 图象上,且点A 、B 的横坐标分别是-1、-3,代入到函数解析式中,可得A 、B 两点的纵坐标为6、2,∴A(-1,6),B(-3,2),设直线AB 的解析式为:y =kx +b ,代入A 、B 两点,得:⎩⎪⎨⎪⎧2=-3k +b 6=-k +b ,解得:⎩⎪⎨⎪⎧k =2b =8,则直线AB 的解析式为:y =2x +8,令y =0,解得:x =-4,则点C 的坐标为(-4,0),∴OC =4,S △AOC =12OC·|y A |=12×4×6=12.解题突破:解决此题的关键是求出点C 的坐标,又因为点C 在直线AB 上,因此只需求出直线AB 的解析式,即可求出C 点的坐标.思维方式:就本题而言,点A 、B 在反比例函数y =-6x 上,即A 、B 点坐标分别可由反比例函数解析式求得.其次利用待定系数法求出其解析式.然后令直线AB 的解析式y 值为0,即可求得C 点坐标.13. ⎩⎪⎨⎪⎧x =3y =2 【解析】把x =3代入x +y =5中,即3+y =5,解得:y =2,因此方程组的解为:⎩⎪⎨⎪⎧x =3y =2. 方法归纳:解二元一次方程组的方法主要有两种:①代入消元法,代入消元法的步骤中起到消元目的的是“代入”,要把方程组中较简单的一个方程变形,把其中一个未知数用另外一个未知数来表示,代入另外一个方程,就可达到消元的目的;②加减消元法,在加减消元法中起到消元目的的是“加减”,要先把两个方程中的某个未知数的系数化为相同或互为相反的数,再实施加减,最后实现消元.14. 5.63×105 【解析】本题考查大数的科学记数法.将一个较大数表示成a×10n 的形式,其中1≤a <10,本题中a =5.63,n 的值等于原数的整数位数减去1,本题中n =6-1=5,因此563000=5.63×105.15. 28 【解析】本题考查菱形性质的计算.∵菱形的四条边都相等,∴AB =AD ,又∵∠A =60°,则△ABD 是等边三角形,∴AB =BD =7,则菱形ABCD 的周长为4×7=28.思维方式:在菱形中若存在一个顶角为60°,则连接另外两点的对角线所分割的两个三角形为等边三角形,故在计算时,可借助等边三角形的性质进行求解.第15题解图16. 43-4π3【解析】本题考查阴影部分面积的计算,涉及扇形及三角形面积的计算.通过图形可知,S 阴影=S △AOB -S 扇形;∵AB 与⊙O 相切,切点为点C ,根据切线的性质可知,OC ⊥AB ,又∵OA =OB =4,∠A =30°,∴OC =2,利用勾股定理,可得:AC =23,BC =AC =23,则AB =43,∴S △AOB =12×43×2=43,∵在Rt △AOC 中,∠A =30°,∴∠AOC =60°,则∠AOB =120°,则S 扇形=n πr 2360=120π×4360=4π3.则S阴影=43-4π3.第16题解图一题多解:由题可知△AOB 关于OC 对称,∴可先计算△AOC 的相关量,再乘以2即可. 方法指导:阴影部分面积的求法:①公式法:针对规则的扇形,可直接利用公式S =n πr 2360=12rl 进行计算;②割补法:针对不规则的图形,可将不规则图形经过平移或分割转化为几个规则图形,进行面积的和或差计算;③等积变换法:针对不规则的图形,将不规则的图形拼凑成等积的规则图形求解.17. 13 【解析】本题考查一次函数、不等式组及概率相关计算的综合运用.对于函数y =2x +a ,令y=0,解得x =-a 2,令x =0,则y =a ,又∵此直线与x 轴、y 轴围成的三角形的面积为14,则有|-a 2|·|a|·12=14,即a 24=14,解得:a =±1;又∵不等式组中x +2≤a 得,x≤a -2,解1-x≤2a ,得x≥1-2a ,则此不等式组的解集为:1-2a≤x≤a -2,当a =1时,-1≤x≤-1,此时不等式组的解为x =-1;当a =-1时,3≤x≤-3,此时不等式组无解;综上所述不等式组有解时,需a =1,则从-1、1、2这三个数中,随机抽取一个数是1的概率为13,即满足要求的概率为13.难点突破:解答本题的关键是确定a 的值,首先通过一次函数与x 轴、y 轴围成的三角形的面积求出a 的值,再解出不等式组,并代入两值,看哪个值能保证此不等式组有解,即可确定a 的值.18. 【思路点拨】过点O 作OG ⊥OF ,交BF 于点G ,这样构造出两个全等三角形△OBG 、△OCF ,得出BG =FC ,再利用勾股定理与相似三角形的性质求出线段EF 、BG 、CF 的长度,最后根据勾股定理求出OF 的长.655【解析】过点O 作OG ⊥OF ,交BF 于点G ,∵AC 与BD 是正方形ABCD 的对角线,∴∠BOC=90°,则∠BOG =∠FOC ,又∵OB =OC ,∠BGO =90°+∠OFG ,∠OFC =90°+∠OFG ,∴∠BGO =∠OFC ,则△OBG ≌△OCF ,∴OG =OF ,BG =CF ,∵CD =6,DE =2CE ,解得CE =2,在Rt △BEC 中,由勾股定理得,BE =210,∵∠ECB =∠CFE =90°,∠OBG =∠FCO ,∠OBC =∠DCO =45°,∴∠EBC =∠FCE ,∴△CEF ∽△BEC ,则CE 2=EF·BE ,则EF =105,∴BF =9105,在Rt △FEC 中,利用勾股定理可得,CF =CE 2-EF 2=22-(105)2=3105,故GF =BF -BG =9105-3105=6105,在等腰Rt △OGF 中,OF =GF·sin 45°=6105×22=655.第18题解图速解技巧:本题可利用射影定理,求出EF 、CF 达到快速解题.难点突破:本题的难点在于①合理添加辅助线作OG ⊥OF ,使△OBG 与△OFC 全等;②在Rt △BEC 中和Rt △FEC 中,利用相似性及勾股定理分别求出线段BE 、CF 、EF 的长度,进而求出BF =BE -EF ,GF =BF -BG ,最后利用三角函数的定义求出OF 的长度.19.解:原式=2+9-1×4+6(5分) =13.(7分)20.解:∵AD ⊥BC ,∴tan ∠BAD =BDAD ,(1分)∵tan ∠BAD =34,AD =12,∴34=BD12,(2分)∴BD =9.(3分)∴CD =BC -BD =14-9=5.(4分)∴在Rt △ADC 中,AC =AD 2+CD 2=122+52=13,(6分) ∴sin C =AD AC =1213.(7分)21.解:原式=1x ÷[x 2+1x (x -1)-2x -1]+1x +1(1分)=1x ÷x 2+1-2x x (x -1)+1x +1(2分) =1x ·x (x -1)(x -1)2+1x +1(4分) =1x -1+1x +1(6分) =x +1(x +1)(x -1)+x -1(x +1)(x -1)=2xx 2-1.(7分) 解方程2x =5x -1,得:x =13.(9分)当x =13时,原式=2×13(13)2-1=-34.(10分)22.(1)解:16;(2分) 补图如下:第22题解图①(5分)(2)解:用A 1,A 2表示餐饮企业,B 1,B 2表示非餐饮企业,画树状图如下:第22题解图②(8分) 或列表(8分)由树状图或列表可知,共有12种等可能情况,其中所抽取的企业恰好都是餐饮企业的有2种. ∴所抽取的企业恰好都是餐饮企业的概率为P =212=16.(10分)23.(1)解:设用于购买书桌、书架等设施的资金为x 元,由题意得: 30000-x ≥3x ,(3分) 解得x ≤7500.(5分)答:最多花7500元购买书桌、书架等设施.(2)解:由题意,得:200(1+a %)·150(1-109a %)=20000,(8分)设x =a %,则3(1+x )(1-109x )=2,整理得,10x 2+x -3=0,解得x1=-0.6(舍),x2=0.5,(9分)∴a%=0.5,∴a=50.(10分)24.(1)证明:如解图,∵∠BAC=90°,AF⊥AE,∴∠1+∠EAC=90°,∠2+∠EAC=90°,∴∠1=∠2,(1分)又∵AB=AC,∴∠B=∠ACB=45°.∵FC⊥BC,∴∠FCA=90°-∠ACB=90°-45°=45°,∴∠B=∠FCA,(2分)∴△ABE≌△ACF(ASA),(3分)∴BE=CF.(4分)(2)证明:①过E作EG⊥AB于点G.∵∠B=45°,∴△GBE是等腰直角三角形,∴BG=EG,∠3=45°,(5分) ∵AD⊥BC,AE平分∠BAD,∴EG=ED,∴BG=ED,∵BM=2ED,∴BM=2BG,即G是BM的中点,(6分)∴EG是BM的垂直平分线,∴EB=EM,∴∠4=∠3=45°,∴∠MEB=∠4+∠3=45°+45°=90°,即ME⊥BC.(7分)②∵AD⊥BC,∴ME∥AD,∴∠5=∠6,∵∠1=∠5,∴∠1=∠6,∴AM=EM,∵MC=MC,∴Rt△AMC≌Rt△EMC(HL),(8分)∴∠7=∠8,∵∠BAC=90°,AB=AC,∴∠ACB=45°,∠BAD=∠CAD=45°,∴∠5=∠7=22.5°,AD=CD,∵∠ADE=∠CDN=90°,∴△ADE≌△CDN(ASA),(9分)∴DE=DN.(10分)25.(1)解:y=-x2-2x+3,令x=0,得y=3,则C(0,3),(1分)令y=0,得-x2-2x+3=0,解得x1=-3,x2=1,∴A(-3,0),B(1,0).(3分)(2)解:由x=--22×(-1)=-1得抛物线的对称轴为直线x=-1.(4分) 设点M(x,0),P(x,-x2-2x+3),其中-3<x<-1.∵P 、Q 关于直线x =-1对称,设Q 的横坐标为a ,则a -(-1)=-1-x ,∴a =-2-x ,∴Q (-2-x ,-x 2-2x +3)(5分)∴MP =-x 2-2x +3,PQ =-2-x -x =-2-2x ,∴周长d =2(-2-2x -x 2-2x +3)=-2x 2-8x +2=-2(x +2)2+10,∴当x =-2时,d 取最大值.(6分)此时,M (-2,0),∴AM =-2-(-3)=1,设直线AC 的解析式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧3=b 0=-3k +b ,解得⎩⎪⎨⎪⎧b =3k =1. ∴直线AC 的解析式为y =x +3.将x =-2代入y =x +3得y =1,∴E (-2,1),∴EM =1,(7分)∴S △AEM =12AM ·ME =12×1×1=12.(8分)第25题解图(3)解:由(2)知,当矩形PMNQ 的周长最大时,x =-2,此时点Q (0,3),与点C 重合,∴OQ =3. 将x =-1代入y =-x 2-2x +3,得y =4,∴D (-1,4).如解图,过D 作DK ⊥y 轴于K ,则DK =1,OK =4,∴QK =OK -OQ =4-3=1,∴△DKQ 是等腰直角三角形,DQ = 2.(9分)∴FG =22DQ =22×2=4,(10分)设F (m ,-m 2-2m +3),G (m ,m +3),则FG =(m +3)-(-m 2-2m +3)=m 2+3m ,∵FG =4,∴m 2+3m =4,解得m 1=-4,m 2=1,当m =-4时,-m 2-2m +3=-(-4)2-2×(-4)+3=-5, 当m =1时,-m 2-2m +3=-12-2×1+3=0,∴F (-4,-5)或(1,0).(12分)26.(1)解:∵AB =5,AD =203, ∴由勾股定理得BD =AB 2+AD 2=52+(203)2=253,(1分) ∵12AB ·AD =S △ABD =12BD ·AE , ∴12×5×203=12×253AE , 解得AE =4,(3分)∴BE =AB 2-AE 2=52-42=3.(4分)(2)解:m =3;(6分)m =163.(8分)第26题解图①【解题提示】当F 在AB 上时,BB 0=m ,∵△BGB 0∽△BAD ,如解图①,∴B 0G AD =BB 0BD , ∴B 0G 203=m 253, ∴B 0G =45m ,∵点E 、F 关于AB 对称,∴AF =AE =4,BF =BE =3.∴A 0F =AF =4,B 0F =BF =3,第26题解图②∵S △A 0FB 0=12A 0B 0·FH =12A 0F ·FB 0 ∴12×5·FH =12×3×4, 解得FH =125, ∴45m =125, 即m =3.当F 在AD 上时,如解图②,BB 0=m ,则DB 0=253-m ,∵∠DB 0K =∠FB 0K ,又∵B 0K ⊥DF ,B 0K =B 0K ,∴△DB 0K ≌△FB 0K ,∴DB 0=FB 0=3,即253-m =3,∴m =163. (3)解:存在.理由如下:①当DP =DQ 时,若点Q 在线段BD 的延长线上时,如解图③,有∠Q =∠1, 则∠2=∠1+∠Q =2∠Q ,第26题解图③∵∠3=∠4+∠Q ,∠3=∠2,∴∠4+∠Q =2∠Q ,∴∠4=∠Q ,∴A ′Q =A ′B =5,∴F ′Q =4+5=9,在Rt △BF ′Q 中,92+32=(253+DQ )2, ∴253+DQ =±310, ∴DQ =310-253或DQ =-310-253(舍);(9分)第26题解图④若点Q 在线段BD 上时,如解图④,有∠1=∠2=∠4,∵∠1=∠3,∴∠3=∠4,∵∠3=∠5+∠A ′,∠A ′=∠CBD ,∴∠3=∠5+∠CBD =∠A ′BQ ,∴∠4=∠A ′BQ ,∴A ′Q =A ′B =5,∴F ′Q =5-4=1,∴BQ =32+12=10,∴DQ =BD -BQ =253-10.(10分) ②当PD =PQ 时,如解图⑤,∠PDQ =∠PQD ,第26题解图⑤∵∠BQA ′=∠PQD ,∠F ′A ′B =∠ADB ,∴△A ′BQ 为等腰三角形,∴A ′B =BQ ,∴DQ =BD -BQ =253-5=103.(11分)第26题解图⑥③当QP =QD 时,如解图⑥,∠P =∠PDB =∠BA ′F ′, 则DP ∥BA ′,A ′在BC 上,∴BQ =52×54=258, ∴DQ =BD -BQ =253-258=12524.(12分)。
2014年重庆市荣昌县初2014级水平测试题数 学 试 卷(本卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分) 1、在0,2,1,3--这四个数中,最小的数是( ) A 、1B 、2-C 、3-D 、02、计算32(3)a -的结果正确的是( ) A 、56a - B 、69a - C 、59a D 、69a 3、下列交通图形中不是轴对称图形的是( )4、如图,已知A B ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠1=500, 则∠2的度数是( )A 、700B 、650C 、600D 、500 5.已知35x y =⎧⎨=-⎩是方程22mx y +=-的一个解,那么m 为( )(A )83 (B )83- (C )4- (D )856、如图,BD O 为的直径,点A 、C 均在O 上,60CBD ∠=,则A ∠的度数为( )A 、60B 、45C 、30D 、207、下列调查,适合普查的调查方式的是( )A 、对甲型H7N9的禽流感患者同一车厢的乘客进行医学检查B 、了解全国手机用户对废手机的处理情况C 、了解全球人类男女比例情况D 、了解重庆市中小学生压岁钱的使用情况8.如果分式2133x x -+的值为0,则x 的值是( )A .1B .0C .﹣1D .±19、已知CD 是Rt △ABC 斜边AB 边上的高,AB=10㎝,BC=8㎝,则sin ACD ∠=( ) A 、34 B 、35 C 、45 D 、4310.某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路原速返回了b 千米),再掉头沿原方向以比原速大的速度行驶,则此人离起点的距离与时间关系的大致图象是( ).11..下列各图形都是由同样大小的圆和正三角形按一定的规律组成.其中,第①个图形由8个圆和1个正三角形组成,第②个图形由16个圆和4个正三角形组成,第③个图形由24个圆和9个正三角形组成,……则第几个图形中圆和正三角形的个数相等.( ) .A . 7B .8C . 9D . 1012.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,对称轴是直线13x =-,有下列结论:①0ab >;②0a b c ++<;③20b c +<;④240a b c -+>.其中正确结论的个数是( ).A .1B .2C .3D .4 二、填空题:(本题共6小题,每小题4分,共24分,)13、据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元.那么7840000万元用科学记数法表示为 元. 14、 △ADE ∽△ABC , 面积比为4:9,则相似比为 .15、为了参加市中学生篮球运动会,一支篮球队准备购买10双运动鞋,各种尺码统计如下12题图 1O -xy 13x =-tots ots ots oA s表:则这10双运动鞋尺码的中位数为___________.16.如图,矩形ABCD 中,AB=1,AD=3,以BC 的中点E 为圆心的弧MPN 与AD 相切,则图中阴影部分的面积为17.将长度为12厘米的线段截成两条线段a 、b (a 、b 长度均为整数).如果截成的a 、b 长度分别相同算作同一种截法(如:a=9,b=1和a=1,b=9为同一种截法),那么以截成的a 、b 为对角线,以另一条c=4厘米长的线段为一边,能构成平行四边形的概率是__________.18如图,平面直角坐标系中,D 为y 轴正半轴上一点,A 为第一象限内一点,21tan =∠AOD ,反比例函数xky =第一象限的一支经过点A 。
2014年普通高等学校招生考试(重庆卷)数学文科试题答案及解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.实部为-2,虚部为1的复数所对应的点位于复平面的()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】实部为横坐标,虚部为纵坐标。
2.在等差数列{}n a 中,1352,10a a a =+=,则7______a =A.5 B.8 C.10 D.14【答案】B 【解析】将条件全部化成1a d 和:112410a d a d +++=,解得1d =,于是7168a a d =+=.3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本。
已知从高中生中抽取70人,则n 为()A.100B.150C.200D.250【答案】A 【解析】高中生在总体中所占的比例,与样本中所占的比例相等,也就是有:3500701005000n n=⇒=。
考察分层抽样的简单计算.4.下列函数为偶函数的是()A.()1f x x =-B.()2f x x x =+C.()22x x f x -=-D.()22x xf x -=+【答案】D 【解析】利用奇偶性的判断法则:()()()()()()f x f x f x f x f x f x -=-⇒-=⇒为奇函数为偶函数。
即可得到答案为D 。
考察最简单的奇偶性判断.5.执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是(A)12s >(B)35s >(C)710s >(D)45s >【答案】:C【解析】:按照循环步骤:9871,9,8,7,6101010s k s k s k s k ==⇒==⇒==⇒==,此时需要不满足条件输出,则输出条件应为710s >。
6.已知命题p :对任意x R ∈,总有20x >;q :“1x >”是“2x >”的充分不必要条件,则下列倒是为真命题的是(A)p q ∧(B)p q ⌝∧⌝(C)p q ⌝∧(D)p q∧⌝【答案】:D【解析】:根据复合命题的判断关系可知,命题p 为真,命题q 为假,所以只有p q ∧⌝为真。
2014年普通高等学校招生全国统一考试(重庆卷)理科数学1.复平面内表示复数i(1-2i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9,成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A .y =0.4x +2.3B .y =2x -2.4C .y =-2x +9.5D .y =-0.3x +4.44.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.1525.执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( ) A .s >12 B .s >35 C .s >710 D .s >45题图 题图 6.已知命题p :对任意x ∈R ,总有2>0,q :“x >1”是“x >2”( )A .p ∧qB .⌝p ∧⌝qC .⌝p ∧qD .p ∧⌝q7.某几何体的三视图如图所示,则该几何体的表面积为( ) A .54 B .60 C .66 D .728.设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( ) A.43 B.53 C.94D .3 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .16810.已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( ) A .bc (b +c )>8 B .ab (a +b )>16 2 C .6≤abc ≤12 D .12≤abc ≤2411.设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =__ .12.函数()()2log 2f x x =的最小值为_ _.13.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.14.过圆外一点P 作圆的切线P A (A 为切点),再作割线PBC 依次交圆于B ,C .若P A =6,AC =8,BC =9,则AB =________.15.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.16.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________. 17.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值.18.一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望.(注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)19.如图所示,四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长;(2)求二面角A -PM -C 的正弦值.20.已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性;(3)若f (x )有极值,求c 的取值范围.21.如图所示,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *).(1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论.。
2014年重庆高考数学试题〔理〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.1.在复平面内表示复数(12)i i -的点位于〔〕.A 第一象限.B 第二象限 .C 第三象限.D 第四象限【答案】A 【解析】..∴2)2-1(A i i i 选对应第一象限+=2.对任意等比数列{}n a ,如下说法一定正确的答案是〔〕139.,,A a a a 成等比数列236.,,B a a a 成等比数列 248.,,C a a a 成等比数列239.,,D a a a 成等比数列【答案】D 【解析】.∴D 选要求角码成等差3.变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,如此由观测的数据得线性回归方程可能为〔〕.0.4 2.3A y x =+.2 2.4B y x =-.29.5C y x =-+.0.3 4.4C y x =-+【答案】A 【解析】.∴)5.33(),(.,,0,A y x D C b a bx y 选,过中心点排除正相关则=∴>+=4.向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,如此实数k=9.2A -.0B C.3 D.152【答案】C 【解析】.∴3),42(3)32(2,32,0)3-2(∴⊥)3-2(C k k bc ac c b a c b a 选解得即即=+=+==5.执行如题〔5〕图所示的程序框图,假设输出k 的值为6,如此判断框内可填入的条件是。
A .12s >B.1224abc ≤≤35s >C.710s >D.45s >【答案】C 【解析】.∴10787981091C S 选=•••=6.命题:p 对任意x R ∈,总有20x >; :"1"q x >是"2"x >的充分不必要条件如此如下命题为真命题的是〔〕.A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝【答案】D 【解析】.∴,,D q p 选复合命题为真为假为真7.某几何体的三视图如下列图,如此该几何体的外表积为〔〕A.54B.60C.66D.72【答案】B 【解析】BS S S S S S 选,,,何体表的面积的上部棱锥后余下的几;截掉高为,高原三棱柱:底面三角形侧上下侧上下∴60s 2273392318152156344*3=++=+=•++===8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+如此该双曲线的离心率为〔〕A.34B.35C.49D.3【答案】B 【解析】.,35,5,4,3,34∴,2-,49,3,,,22221B a c c b a b a b a c a n m ab mn b n m n m PF n PF m 选令解得则且设====∴=+====+>==9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,如此类节目不相邻的排法种数是〔〕A.72B.120C.144D.3 【答案】B【解析】解析完成时间2014-6-12 373780592..120)A A A A A (A ∴A A A 2(2).A A (1),A 222212122333222212122333B 选共有个:歌舞中间有法:歌舞中间有一个,插空再排其它:先排歌舞有=+10.ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,如此如下不等式成立的是〔〕A.8)(>+c b bcB.)(c a ac +C.126≤≤abcD. 1224abc ≤≤【答案】A【解析】2014-6-12 373780592...8)(,82nC sinAsinBsi 8)(,]8,4[∈∴]2,1[∈4nC sinAsinBsi 2sin 21.1inC 8sinAsinBs ∴21inC 4sinAsinBs nA)sinBcosBsi cosAsinB 4sinAsinB(A in 4sinBcosBs B in 4sinAcosAs cos2A)-sin2B(1cos2B)-in2A(1cos2Asin2B -sin2Acos2B -sin2B in2A 2B)sin(2A -sin2B in2A sin2C sin2B in2A ∴21-sin2C 21B)-A -sin(C sin2B sin2A C)B -sin(A sin2A 333222Δ22A c b bc R R bca c b bc A R R R C ab S s s s s ABC 所以,选别的选项可以不考虑成立对>+∴=≥==>+======+=+=+=+=++=+++=+=+=++二、填空题 本大题共6小题,考生作答5小题,每一小题5分,共25分,把答案填在答题卡相应位置上。
2014年重庆市普通高等学校招生对口高职类统一考试数学 试题(满分200分,考试时间120分钟)一、选择题(共12小题,每小题7分,共84分)1、已知集合}3,2,1{=A ,}5,3,1{=B ,则=B AA .}1{B .}3,1{C .}5,2{D .}5,3,2,1{2、设函数1)(2+=x x f ,则=-)1(fA .1-B .0C .1D .23、3cos 6sin ππ+的值是A .21B .23 C .1 D .3 4、过点)1,0(且与直线012=-+y x 垂直的直线方程是A .022=+-y xB .012=+-y xC .022=+-y xD .012=+-y x5、函数241)(x x f -=的定义域为A .),2()2,(+∞--∞B .)2,2(-C .]2,2[-D .),2[]2,(+∞--∞6、若53sin =α,则=+)2cos(απ A .54- B .53- C .53 D .54 7、命题“1=x ”是命题“022=-+x x ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8、点)1,1(到直线0134=++y x 的距离为A .85B .58 C .5 D .8 9、设函数)(x f 是),(+∞-∞上的偶函数,且)2()1()3(-<-<-f f f ,则下列不等式成立的是A .)3()2()1(f f f <<B .)2()1()3(f f f >>C .)3()2()1(f f f <<D .)2()1()3(f f f <<10、从数字0,1,2,3中任取3个排成没有重复数字的三位数,则排成三位数的个数为A .18个B .24个C .27个D .64个11、已知抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则=p A .2 B .22 C .4 D .2412、将函数)42c o s ()42s i n (ππ+-+=x x y 的图像向左平移)0(πϕϕ<<个单位后得到)62sin(2π-=x y 的图像,则=ϕ A .12π B .6π C .65π D .1211π 二、填空题(共6小题,每小题7分,共42分)13.在等差数列}{n a 中,651=+a a ,则=3a .14. =+25lg 4lg .15.已知角α终边上一点)1,2(-p ,则=αcos .16. 直线012=++y x 与直线0132=++y x 的交点坐标是 .17. 在ABC ∆中,若1=BC , 30=C ,31cosA =,则=AB . 18. 已知点)3,2(M 是椭圆1162522=+y x 内一定点,F 为椭圆的左焦点,P 为椭圆上的动点,则||||PF PM +的最小值为 。
4题图FEDCBA3题图FECBA重庆市2014年初中毕业暨高中招生考试数学试题(B 卷)(满分:150分 时间:120分钟)参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标为)44,2(2ab ac a b --,对称轴公式为abx 2-=. 一、选择题:(本大题共12个小题,每小题4分,共48分) 1、某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是( )A 、-1℃B 、0℃C 、1℃D 、2℃ 2、计算2252x x -的结果是( ) A 、3 B 、3x C 、23x D 、43x3、如图,△ABC ∽△DEF ,相似比为1:2,若BC =1,则EF 的长是( ) A 、1 B 、2 C 、3 D 、 44、如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,若∠AEF =50°,则∠EFC 的大小是( )A 、40°B 、50°C 、120°D 、130°5、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参8题图ODCBA加比赛。
为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( )A 、甲的成绩比乙的成绩稳定B 、乙的成绩比甲的成绩稳定C 、甲、乙两人的成绩一样稳定D 、无法确定甲、乙的成绩谁更稳定6、若点(3,1)在一次函数2(0)y kx k =-≠的图象上,则k 的值是( ) A 、5 B 、4 C 、3 D 、17、分式方程431x x=+的解是( )A 、1x =B 、1x =-C 、3x =D 、3x =-8、如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为( )A 、30°B 、60°C 、90°D 、120°9、夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗。
4题图FEDC BA3题图FECBA8题图ODCBA重庆市2014年初中毕业暨高中招生考试数学试题(B 卷)(满分:150分 时间:120分钟)参考公式:抛物线y =ax2+bx +c(a≠0)的顶点坐标为)44,2(2a b ac a b --,对称轴公式为a b x 2-=. 一、选择题:(本大题共12个小题,每小题4分,共48分)1、某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是( ) A 、-1℃ B 、0℃ C 、1℃ D 、2℃2、计算2252x x -的结果是( ) A 、3 B 、3x C 、23x D 、43x3、如图,△ABC ∽△DEF ,相似比为1:2,若BC =1,则EF 的长是( ) A 、1 B 、2 C 、3 D 、44、如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,若∠AEF =50°,则∠EFC 的大小是( ) A 、40° B 、50° C 、120° D 、130°5、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。
为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( ) A 、甲的成绩比乙的成绩稳定 B 、乙的成绩比甲的成绩稳定 C 、甲、乙两人的成绩一样稳定 D 、无法确定甲、乙的成绩谁更稳定6、若点(3,1)在一次函数2(0)y kx k =-≠的图象上,则k 的值是( ) A 、5 B 、4 C 、3 D 、17、分式方程431x x=+的解是( ) A 、1x = B 、1x =- C 、3x = D 、3x =-8、如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为( ) A 、30° B 、60° C 、90° D 、120°yy y y xxxxDCBA第三个图形第二个图形第一个图形11题图ODCBAOGF EDCBA9、夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗。
重庆市2014年初中毕业暨高中招生考试数学试题(A 卷)(本卷共四个大题 满分150分 考试时间120分钟)注意事项:1、所有答案全部答在答题卷上,不得在试卷上直接作答;2、作答前认真阅读答题卡上的注意事项;3、作图(包括作辅助线),请一律用黑色签字笔完成;4、考试结束,由监考人员将试题和答题卡一并收回。
参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --,对称轴公式为a b x 2-= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应得方框涂黑。
1.实数-17的相反数是( ) A. 17 B.171 C. -17 D. 171- 2.计算462x x ÷的结果是( )A. 2xB. 22xC. 42xD. 102x3.在a 中,a 的取值范围是( )A. 0≥aB. 0≤aC. 0>aD. 0<a4.五边形的内角和是( )A. 180°B. 360°C. 540°D. 600°5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4℃、5℃、6℃、-8℃,当时这四个城市中,气温最低的是( )A. 北京B. 上海C. 重庆D. 宁夏6.关于x 的方程112=-x 的解是( ) A. 4=x B. 3=x C. 2=x D. 1=x7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备,在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”训练成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁8.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G.若∠1=42°,则∠2的大小是()A. 56°B. 48°C. 46°D. 40°8题图9题图9.如图,△ABC的顶点A、B、C、均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°10.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为()(1) (2) (3) (4)A. 20B. 27C. 35D.4012.如图,反比例函数xy 6-=在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1,-3.直线AB 与x 轴交于点C ,则AOC 的面积为( )A. 8B. 10C. 12D.24二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.方程组⎩⎨⎧=+=53y x x 的解是 . 14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563 000辆,将563 000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为.15题图 16题图 16.如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)17.从-1,1,2这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数a x y +=2的图象与x 轴、y 轴围成的三角形面积为41,且使关于x 的不等式组⎩⎨⎧≤-≤+a x a x 212有解的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点.点E 在CD 上,且DE=2CE ,连接BE.过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.计算:()102614201434-⎪⎭⎫ ⎝⎛+-⨯--+20.如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12.tan ∠BAD=43,求sinC 的值.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.先化简,再求值:11121122++⎪⎪⎭⎫ ⎝⎛---+÷x x x x x x ,其中x 的值为方程152-=x x 的解.22.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有 家.请将折线统计图补充完整.(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中0 a ).则每户平均集资的资金在150元的基础上减少了a 910%,求a 的值.24.如图,△ABC 中,∠BAC=90°,AB=AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E.在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC.(1)求证:BE=CF ;(2)在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME.求证:①ME ⊥BC ;②DE=DN.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.25.如图,抛物线322+--=x x y 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N.若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=22DQ ,求点F 的坐标.26.已知:如图①,在矩形ABCD 中,AB=5,AD=320,AE ⊥BD ,垂足是E.点F 是点E 关于AB 的对称点,连接AF 、BF.(1)求AE 和BE 的长; (2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.。
2014年普通高等学校招生全国统一考试(重庆卷)理科数学试题答案与解析1. 解析 ()2i 12i i 2i 2i -=-=+,对应复平面上的点为()2,1,在第一象限.选A.2. 解析 不妨设公比为q ,则22431a a q =,28191a a a q ⋅=,26261a a a q ⋅=⋅,当1q ≠±时,知A ,B 均不正确;又22641a a q =,28281a a a q ⋅=,同理,C 不正确;由221061a a q =,210391a a a q ⋅=⋅,知D 正确.3. 解析 由变量x 与y 正相关知C ,D 均错,又回归直线经过样本中心()3,3.5,代入验证得A 正确,B 错误.故选A.4. 解析 ()2323,6k -=--a b ,由()23-⊥a b c ,得4660k --=,解得3k =.选C.5. 解析 程序框图的执行过程如下:1s =,9k =;910s =,8k =;98810910s =⨯=,7k =;87710810s =⨯=,6k =,循环结束.故可填入的条件为710s >.故选C.6. 解析 p 为真命题,q 为假命题,故p ⌝为假命题,q ⌝为真命题.从而p q ∧为假,p q ⌝∧⌝为假,p q ⌝∧为假,p q ∧⌝为真.故选D.7. 解析 该几何体的直观图如图所示,易知该几何体的表面是由两个直角三角形,两个直角梯形和一个矩形组成的,则其表面积11252534355435602222S ++=⨯⨯+⨯⨯+⨯+⨯+⨯=.选B.8. 解析 设1PF m =,2PF n =,依题意不妨设0m n >>,于是329.4m n b m n a m n ab ⎧⎪+=⎪-=⎨⎪⎪⋅=⎩所以93432m n m n m n m n +-⋅=⋅⋅⇒=(13m n =-舍去). 4325所以a n =,4533b n c n =⇒=,所以53e =,选B. 评注 本题考查双曲线的定义及性质,依据条件列出关系式后,若直线求ca,则运算量很大,改为利用1PF 与2PF 的关系求解,巧妙转化,降低运算难度.9. 解析 先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有3334A A 144⋅=种,再剔除小品内节目的相邻的情况,共有322322A A A 24⋅⋅=种,于是符合题意得排法共有14424120-=种.10. 解析 设ABC △的外接圆半径为R ,由三角形内角和定理知πA C B +=-,πA B C +=-,于是()()1sin 2sin sin 2A ABC C A B +-+=--+⇒11sin 2sin 2sin 2sin 2sin 2sin 222A B C A B+C =+=-+⇒+⇒()()()()112sin cos 2sin cos 2sin cos cos 22A B A B C C C A B A B +-+=⇒--+=⇒⎡⎤⎣⎦ 114sin sin sin sin sin sin 28A B C A B C =⇒=.则[]2211sin 2sin sin sin 1,224S ab C R A B C R ==⋅=∈,所以R ⎡∈⎣,所以338sin sin sin abc R A B C R ⎡=⋅=∈⎣,知C ,D 均不正确,()38bc b c bc a R +>⋅=…,所以A 正确.事实上,注意到a ,b ,c 的无序性,并且8>,若B 成立,A 必然成立,排除B.故选A. 11. 解析 因为{}110U n n=∈N 剟,{}1,2,3,5,8A =,所以{}4,6,7,9,10U A =ð, 又因为{}1,3,5,7,9B =,所以(){}7,9U AB =ð.12. 解析 显然0x >,所以()()()22221log 2log log 42f x x x x ==⋅= ()()222222221111log log 42log log log log 2244x x x x x ⎛⎫⋅+=+=+-- ⎪⎝⎭….当且仅当2x =时,有()min 14f x =-.13. 解析 易知ABC △是边长为2的等边三角形,故圆心()1,C a 到直线AB=,解得4a =经检验均符合题意,则4a =评注 本题考查过定点的直线与圆相交的弦长问题,以及数形结合的思想方法,对综合能力要求较高.14. 解析 设PB x =,由切割线定理得()296x x +=,解得3x =或12x =-(舍去).又易知PBC PCA △∽△,于是31462AB PB AB AC PA ===⇒=. 15. 解析 直线l 的普通方程为1y x =+.曲线C 的直角坐标方程为24y x =,故直线l 与曲线C 的交点坐标为()1,2.故改点的极径ρ==16. 解析 令()212f x x x =-++,易求得()min 52f x =, 依题意得215121222a a a ++⇔-剟. 17. 解析 (I )因为()f x 的图像上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,从而2π2T ω==.又因为()f x 的图像关于直线π3x =对称, 所以ππ2π32k ϕ⋅+=+,0,1,2,k =±±.由ππ22ϕ-<…得0k =,所以π2ππ236ϕ=-=-. (II )由(I )得πn 2226f αα⎛⎫⎛⎫=⋅-=⎪ ⎪⎝⎭⎝⎭,所以π1sin 64α⎛⎫-= ⎪⎝⎭.由π2π63α<<得ππ062α<-<,所以πcos 6α⎛⎫-=== ⎪⎝⎭.因此3πππππππcos sin sin sin cos cos sin 2666666ααααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+==-+=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1142=18. 解析 (I )由古典概型中的概率计算公式知所求概率为334339C C 5C 84P +==. (II )X 的所有可能值为1,2,3,且()21345439C C C 171C 42P X +===,()11121334236339C C C C C C 432C 84P X ++===,()212739C C 13C 12P X ===,故X 的分布列为从而()12342841228E X =⨯+⨯+⨯=. 评注 本题考查概率的计算,随机变量的分布列及数学期望,其中概率的计算要求较高,不过整体难度不大,属中等偏易题.19. 解析(I )如图,连接AC ,BD ,因为ABCD 为菱形,则ACBD O =,且AC BD ⊥,以O 为坐标原点,OA ,OB ,OP 的方向分别为x轴,y 轴,z 轴的正方形,建立空间直角坐标系O xyz -.因为π3BAD ∠=,故πcos 6OA AB =⋅=πsin 16OB AB =⋅=, 所以()0,0,0O,)A,()0,1,0B ,()C ,()0,1,0OB =,()1,0BC =-.由12BM =,2BC =知,11,044BM BC ⎛⎫==- ⎪ ⎪⎝⎭,从而3,04OM OB BM ⎛⎫=+= ⎪ ⎪⎝⎭,即3,04M ⎛⎫⎪ ⎪⎝⎭.设()0,0,P a ,0a >,则()AP a =,33,4MP a ⎛⎫=-⎪⎪⎝⎭, 因为MP AP ⊥,故0MP AP ⋅=,即234a -+=,所以2a =或2a =-(舍去),即PO =.(II )由(I)知,AP ⎛= ⎝⎭,334MP ⎛=-⎝⎭,3,0,CP ⎛= ⎭. 设平面APM 的法向量为()1111,,x y z =n ,平面PMC 的法向量为()2222,,x y z =n ,由10AP ⋅=n,10MP ⋅=n,得111110304z x yz ⎧=⎪⎪-+=.故可取11,23⎛⎫= ⎪ ⎪⎝⎭n ,由20MP ⋅=n ,20CP ⋅=n,得222223040x y zz -+=⎨=.故可取()21,2=-n ,从而法向量1n ,2n 的夹角的余弦值为121212cos ,⋅==⋅nn n n n n 故所求二面角A PM C --20. 解析 (I )对()f x 求导得()222e 2e x x f x a b c -'=+-,由()f x '为偶函数,知()()f x f x ''-=,即()()222e e0x xa b --+=,因为22e e 0x x -+>,所以a b =. 又()0224f a b c c '=+-=-,故1a =,1b =. (II )当3c =时,()22ee 3x xf x x -=--,那么()222e 2e 3310x x f x -'=+-=>…,故()f x 在R 上为增函数.(III )由(I )知()222e 2e x x f x c -'=+-,而222e 2e4xx-+=…,当0x =时等号成立.下面分三种情况进行讨论.当4c <时,对任意x ∈R ,()222e 2e 0x x f x c -'=+->,此时()f x 无极值; 当4c =时,对任意0x ≠,()222e 2e 40x x f x -'=+->,此时()f x 无极值;当4c >时,令2e xt =,注意到方程220t c t +-=有两根1,20t =>, 即()0f x '=有两个根111ln 2x t =,221ln 2x t =.当12x x x <<时,()0f x '<;又当2x x >时,()0f x '>,从而()f x 在2x x =处取得极小值.综上,若()f x 有极值,则c 的取值范围为()4,+∞.评注 本题考查函数导数的求法,利用导数处理单调性、极值等常规问题,以及基本不等式等.对运算能力要求较高,此外对分类讨论思想也有一定的要求. 21. 解析 (I )设()1,0F c -,()2,0F c ,其中222c a b =-.由121F F DF =1DF ==.从而12211212DF F S DF F F ===△,故1c =.从而1DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此22DF =.所以122a DF DF =+=,故a =2221b a c =-=.因此,所求椭圆的标准方程为2212x y +=. (II )如图,设圆心在y 轴上的圆C 与椭圆2212x y +=相交,()111,,P x y =,()222,,P x y =是两个交点,10y >,20y >,11F P ,22F P 是圆C 的切线,且1122F P F P ⊥. 由圆和椭圆的对称性,易知21x x =-,12y y =,1212PP x =. 由(I )知()11,0F -,()21,0F ,所以()11111,F P x y =+,()22111,F P x y =--. 再由1122F P F P ⊥得()221110x y -++=. 由椭圆方程得()2211112x x -=+,即211340x x +=,解得143x =-或10x =. 当10x =时,1P ,2P 重合,此时题设要求的圆不存在. 当143x =-时,过1P ,2P 分别与11F P ,22F P 垂直的直线的交点即为圆心C .由11F P ,22F P 是圆C 的切线,且1122F P F P ⊥,知12CP CP ⊥. 又12CP CP =,故圆C的半径11213CP ===.22. 解析 (I )解法一:22a =,31a .再由题设条件知()()221111n n a a +-=-+. 从而(){}21n a -是首项为0,公差为1的等差数列,故()211n a n -=-,即()*1n a n =∈N .解法二:22a =,31a =,可写为11a,21a,31a .因此猜想1n a =.下用数学归纳法证明上式:当1n =时结论显然成立. 假设n k =时结论成立,即1k a =, 则1111k a +===.这就是说,当1n k =+时结论成立.所以()*1n a n =∈N .(II )解法一:设()1f x =,则()1n n a f a +=.令()c f c =,即1c =,解得14c =. 下用数学归纳法证明加强命题2211n n a c a +<<<.当1n =时,()210a f ==,()301a f ==,所以23114a a <<<,结论成立. 假设n k =时结论成立,即2211k k a c a +<<<.易知()f x 在(],1-∞上为减函数,从而()()()2121k c f c f a f a +=>>=,即2221k c a a +>>>.再由()f x 在(],1-∞上为减函数得()()()22231k c f c f a f a a +=<<=<. 故231k c a +<<,因此()()212111k k a c a +++<<<. 这就是说,当1n k =+时结论成立. 综上,符合条件的c 存在,其中一个值为14c =.解法二:设()1f x =,则()1n n a f a +=.先证:()*01na n ∈N 剟.①当1n =时,结论明显成立. 假设n k =时结论成立,即01ka 剟.易知()f x 在(],1-∞上为减函数,从而()()()01011k f f a f ==<剟.即101k a +剟.这就是说,当1n k =+时结论成立.故①成立. 再证:()*21n n a a n +<∈N .②当1n =时,()210a f ==,()()3201a f a f ===,有23a a <,即1n =时②成立. 假设n k =时,结论成立,即221k k a a +<.由①及()f x 在(],1-∞上为减函数, 得,()()2122122k k k k a f a f a a +++=>=,()()()()212221211k k k k a f a f a a +++++=<=. 这就是说,当1n k =+时②成立.所以②对一切*n ∈N 成立.由②得21n a <,即()22222122nn n a a a +<-+,因此214n a <.③ 又由①、②及()f x 在(],1-∞上为减函数得()()221n n f a f a +>,即2122n n a a ++>,所以21n a >,解得2114n a +>.④ 综上,由②、③、④知存在14c =使221n n a c a +<<对一切*n ∈N 成立. 评注 本题考查由递推公式求解数列通项公式,数学归纳法,等差数列等内容.用函数的观点解决数列问题是处理本题的关键.。
2014年普通高等学校招生全国统一考试(重庆卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(2014重庆,文1)实部为-2,虚部为1的复数所对应的点位于复平面的().A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:由题意知,该复数在复平面内对应的点为(-2,1),所以该点位于复平面的第二象限.故选B.2.(2014重庆,文2)在等差数列{a n}中,a1=2,a3+a5=10,则a7=().A.5B.8C.10D.14答案:B解析:由等差数列的性质,可知a1+a7=a3+a5.因为a1=2,a3+a5=10,所以a7=8.故选B.3.(2014重庆,文3)某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为().A.100B.150C.200D.250答案:A解析:由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.4.(2014重庆,文4)下列函数为偶函数的是().A.f(x)=x-1B.f(x)=x2+xC.f(x)=2x-2-xD.f(x)=2x+2-x答案:D解析:由题意知,所给四个函数其定义域均为R,关于原点对称.由偶函数的定义知,选项A,B,C中函数均不满足f(-x)=f(x).而D选项中,f(-x)=2-x+2x=f(x),显然为偶函数,故选D.5.(2014重庆,文5)执行如图所示的程序框图,则输出s的值为().A.10B.17C.19D.36答案:C解析:执行过程如下:k=2,s=0;经判断执行“是”,此时s=0+2=2,k=3;经判断执行“是”,此时s=2+3=5,k=5;经判断执行“是”,此时s=5+5=10,k=9;经判断执行“是”,此时s=10+9=19,k=17;经判断执行“否”,此时输出s=19.故选C.6.(2014重庆,文6)已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是().A.p∧ qB. p∧qC. p∧ qD.p∧q答案:A解析:由题意知,命题p为真命题,命题q为假命题,所以 p为假, q为真.所以p∧ q为真, p∧q为假, p∧ q为假,p∧q为假.故选A.7.(2014重庆,文7)某几何体的三视图如图所示,则该几何体的体积为().A.12B.18C.24D.30答案:C解析:由三视图可知,该几何体的直观图如图所示,为直三棱柱ABC-A1B1C1截掉了三棱锥D-A1B1C1,所以其体积V=V ABC-A1B1C1−V D-A1B1C1=12×3×4×5-13×12×3×4×3=24.8.(2014重庆,文8)设F1,F2分别为双曲线x 2a2−y2b2=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为().A.√2B.√15C.4D.√17答案:D解析:由双曲线的定义知,(|PF1|-|PF2|)2=4a2,所以4a2=b2-3ab,即b 2a2-3·ba=4,解得ba=4(-1舍去).因为双曲线的离心率e=ca =√1+b2a2,所以e=√17.故选D.9.(2014重庆,文9)若log4(3a+4b)=log2√ab,则a+b的最小值是().A.6+2√3B.7+2√3C.6+4√3D.7+4√3答案:D解析:由log4(3a+4b)=log2√ab,得12log2(3a+4b)=12log2(ab),所以3a+4b=ab,即3b+4a=1.所以a+b=(a+b)(3b +4a)=3ab+4ba+7≥4√3+7,当且仅当3ab=4ba,即a=2√3+4,b=3+2√3时取等号.故选D.10.(2014重庆,文10)已知函数f(x)={1x+1-3,x∈(-1,0],x,x∈(0,1],且g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围是().A.(-94,-2]∪(0,12]B.(-114,-2]∪(0,12]C.(-94,-2]∪(0,23]D.(-114,-2]∪(0,23]答案:A解析:由题意画出f(x)的图象,如图所示.令g(x)=f(x)-mx-m=0,得f(x)=m(x+1),所以g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,可转化为y=f(x)与y=m(x+1)的图象在(-1,1]上有且仅有两个不同的交点.y=m(x+1)是过定点(-1,0)的一条直线,m是其斜率.由数形结合知,符合题意的直线位于l1(x轴)与l2之间和l3与l4(切线)之间.因为l4与y=f(x)相切,所以1x+1-3=m(x+1)有两个相等的实根,即m(x+1)2+3(x+1)-1=0有两个相等的实根,即Δ=9+4m=0,解得m=-94.设直线l1,l2,l3的斜率分别为k1,k2,k3,易求k1=0,k2=12,k3=-2,所以m∈(-94,-2]∪(0,12].二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(2014重庆,文11)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=.答案:{3,5,13}解析:由已知条件,结合交集运算,可得A∩B={3,5,13}.12.(2014重庆,文12)已知向量a与b的夹角为60°,且a=(-2,-6),|b|=√10,则a·b=. 答案:10解析:由题意得|a|=2√10,所以ab=|a||b|cos<a,b>=2√10×√10×12=10.13.(2014重庆,文13)将函数f(x)=sin(ωx+φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y=sin x的图象,则f(π6)=.答案:√22解析:本题可逆推,由y=sin x的图象推f(x)=sin(ωx+φ)的图象.将y=sin x的图象向左平移π6个单位长度得到y=sin(x+π6)的图象,再保持纵坐标不变,横坐标伸长为原来的两倍,得到f(x)=sin(12x+π6)的图象.所以f(π6)=sin(π12+π6)=sinπ4=√22.14.(2014重庆,文14)已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a 的值为.答案:0或6解析:由题意,得圆心C 的坐标为(-1,2),半径r=3.因为AC ⊥BC ,所以圆心C 到直线x-y+a=0的距离d=√2=√22r=3√22,即|-3+a|=3,所以a=0或a=6.15.(2014重庆,文15)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为 .(用数字作答) 答案:932解析:用x 轴表示小张到校时刻,用y 轴表示小王到校时刻,建立如图直角坐标系.设小张到校的时刻为x ,小王到校的时刻为y ,则x-y ≥5.由题意,知0≤x ≤20,0≤y ≤20,可得可行域如图所示,其中,阴影部分表示小张比小王至少早5分钟到校.由{x -y =5,x =20得A (20,15).易知B (20,20),C (5,0),D (20,0). 由几何概型概率公式,得所求概率P=S △ACDS 正方形ODBE=12×15×1520×20=932. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分,(1)小问6分,(2)小问7分)(2014重庆,文16)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n .分析:通过已知条件,借助等差数列的通项公式以及前n 项和公式,即可求出a n 和S n ;在第(2)问充分利用第(1)问的结论,求出a 4,S 4并代入方程,求出q ,然后利用等比数列通项公式及前n 项和公式可求出结果. 解:(1)因为{a n }是首项a 1=1,公差d=2的等差数列,所以a n =a 1+(n-1)d=2n-1. 故S n =1+3+…+(2n-1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16. 因为q 2-(a 4+1)q+S 4=0, 即q 2-8q+16=0, 所以(q-4)2=0,从而q=4.又因b 1=2,{b n }是公比q=4的等比数列, 所以b n =b 1q n-1=2·4n-1=22n-1. 从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).17.(本小题满分13分,(1)小问4分,(2)小问4分,(3)小问5分)(2014重庆,文17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.分析:由频率分布直方图各小矩形面积和为1,可列出关于a 的方程,然后解方程求出a 的值;在第(2)问中,利用第(1)问的结果,分别计算得出[50,60)与[60,70)的频率,然后根据频率公式求出频数;在第(3)问中,利用第(2)问的结果得出成绩在[50,70)的人数,然后分别用字母来表示来自[50,60),[60,70)的人,并列出所有基本事件,再利用古典概型的概率公式求出概率.解:(1)据直方图知组距=10,由(2a+3a+6a+7a+2a )×10=1,解得a=1200=0.005. (2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2. 成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A 1,A 2,成绩落在[60,70)中的3人为B 1,B 2,B 3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3).其中2人的成绩都在[60,70)中的基本事件有3个:(B 1,B 2),(B 1,B 3),(B 2,B 3),故所求概率为p=310.18.(本小题满分13分,(1)小问5分,(2)小问8分)(2014重庆,文18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a+b+c=8,(1)若a=2,b=52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A 2=2sin C ,且△ABC 的面积S=92sin C ,求a 和b 的值.分析:先通过已知条件,求出c ,然后借助余弦定理求出cos C 的值;在第(2)问中,利用已知条件中的关系式,根据二倍角公式,得到sin A ,sin B ,sin C 之间的关系,然后借助正弦定理转化为边的关系,再结合已知条件列出关于a ,b 的方程组,求出a ,b 的值. 解:(1)由题意可知:c=8-(a+b )=72.由余弦定理得,cos C=a 2+b 2-c 22ab=22+(52)2-(72)22×2×52=-15.(2)由sin A cos 2B2+sin B cos 2A 2=2sin C 可得: sin A ·1+cosB 2+sin B ·1+cosA2=2sin C , 化简得sin A+sin A cos B+sin B+sin B cos A=4sin C. 因为sin A cos B+cos A sin B=sin(A+B )=sin C , 所以sin A+sin B=3sin C. 由正弦定理可知:a+b=3c. 又因a+b+c=8,故a+b=6.由于S=12ab sin C=92sin C ,所以ab=9, 从而a 2-6a+9=0,解得a=3,b=3.19.(本小题满分12分,(1)小问5分,(2)小问7分)(2014重庆,文19)已知函数f (x )=x 4+a x-ln x-32,其中a ∈R ,且曲线y=f (x )在点(1,f (1))处的切线垂直于直线y=12x. (1)求a 的值;(2)求函数f (x )的单调区间与极值.分析:利用已知条件得切线的斜率为-2,然后求出f (x )在x=1处的导数,列出关于a 的方程,求出a 的值;在第(2)问中,充分利用导数判断函数单调性与极值的方法,求导后转化为求方程f'(x )=0,然后判断f'(x )在每个区间的符号,在求解过程中要注意函数的定义域. 解:(1)对f (x )求导得f'(x )=14−a x 2−1x ,由f (x )在点(1,f (1))处的切线垂直于直线y=12x ,知f'(1)=-34-a=-2,解得a=54.(2)由(1)知f (x )=x 4+54x -ln x-32, 则f'(x )=x 2-4x -54x 2, 令f'(x )=0,解得x=-1或x=5.因x=-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f'(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f'(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x=5时取得极小值f (5)=-ln 5.20.(本小题满分12分,(1)小问4分,(2)小问8分)(2014重庆,文20)如图,四棱锥P-ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD=π3,M 为BC 上一点,且BM=12.(1)证明:BC⊥平面POM;(2)若MP⊥AP,求四棱锥P-ABMO的体积.分析:先利用平面几何的方法,求出OB,然后在△OBM中,借助余弦定理求出OM的值,运用勾股定理的逆定理,得出线线垂直,再结合已知条件,利用线面垂直的判定定理,得出BC⊥平面POM;在第(2)问中,充分利用第(1)问的结论,得到OA的长度,然后分别在△POM,△ABM,△POA中借助余弦定理得到关于PO的方程,求出PO的长度,再分别计算△AOB与△OMB的面积得出四边形ABMO的面积,最后根据棱锥的体积公式求出四棱锥P-ABMO 的体积.(1)证明:如图,因ABCD为菱形,O为菱形中心,连结OB,则AO⊥OB.因∠BAD=π3,故OB=AB·sin∠OAB=2sinπ6=1,又因BM=12,且∠OBM=π3,在△OBM中,OM2=OB2+BM2-2OB·BM·cos∠OBM=12+(12)2-2·1·12·cosπ3=34.所以OB2=OM2+BM2,故OM⊥BM.又PO⊥底面ABCD,所以PO⊥BC.从而BC与平面POM内两条相交直线OM,PO都垂直,所以BC⊥平面POM.(2)解:由(1)可得,OA=AB·cos∠OAB=2·cosπ6=√3.设PO=a,由PO⊥底面ABCD知,△POA为直角三角形,故PA2=PO2+OA2=a2+3.由△POM也是直角三角形,故PM2=PO2+OM2= a2+34.连结AM,在△ABM中,AM2=AB2+BM2-2AB·BM·cos∠ABM=22+(12)2-2·2·12·cos2π3=214.由已知MP⊥AP,故△APM为直角三角形, 则PA2+PM2=AM2,即a2+3+a2+34=214,得a=√32,a=-√32(舍去),即PO=√32.此时S ABMO=S△AOB+S△OMB=12·AO ·OB+12·BM ·OM =12×√3×1+12×12×√32=5√38. 所以四棱锥P-ABMO 的体积V P-ABMO =13·S ABMO ·PO=13×5√38×√32=516. 21.(本小题满分12分,(1)小问5分,(2)小问7分)(2014重庆,文21)如图,设椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=2√2,△DF 1F 2的面积为√22.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.分析:先通过已知条件,借助a ,b ,c 之间的关系,转化为关于a ,b ,c 的方程,然后利用a ,b ,c 的几何意义,求出a ,b ,c 的值,从而得到椭圆的标准方程;在第(2)问中,充分利用数形结合的思想方法,首先设出交点P 1,P 2的坐标,然后写出向量F 1P 1⃗⃗⃗⃗⃗⃗⃗⃗ ,F 2P 2⃗⃗⃗⃗⃗⃗⃗⃗ ,再由F 1P 1⊥F 2P 2列出关于x 1的方程求出x 1,得到圆心坐标,最后利用两点间的距离公式求出半径得到圆的方程.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.由|F 1F 2||DF 1|=2√2得|DF 1|=122√2=√22c.从而S △DF 1F 2=12|DF 1||F 1F 2|=√22c 2=√22,故c=1.从而|DF 1|=√22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3√22. 所以2a=|DF 1|+|DF 2|=2√2,故a=√2,b 2=a 2-c 2=1. 因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x 1+1,y 1),F 2P 2⃗⃗⃗⃗⃗⃗⃗⃗ =(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 12=0.由椭圆方程得1-x 122=(x 1+1)2,即3x 12+4x 1=0.解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C. 设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y1x 1+1=-1. 而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=√(-43)2+(13-53)2=4√23. 综上,存在满足题设条件的圆,其方程为x 2+(y -53)2=329.。
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回. 特别提醒:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.复平面内表示复数i(12i)-的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对任意等比数列{}n a ,下列说法一定正确的是( )A .1a ,3a ,9a 成等比数列B .2a ,3a ,6a 成等比数列C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数 据算得的线性回归方程可能是( )A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+4.已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( )A .92-B .0C .3D .1525.执行如图所示的程序框图,若输出k 的值为6,则判断框 内可填入的条件是( )A .12s >B .35s >C .710s >D .45s >6.已知命题p :对任意x ∈R ,总有20x >;q :“1x >”是“x >2”的充分不必要条件,则下列命题 为真命题的是( ) A .p q ∧ B .p q ⌝∧⌝ C .p q ⌝∧D .p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .728.设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得12||+||3PF PF b =,129||||4PF PF ab =,则该双曲线的离心率为 ( )A .43B .53C .94D .3 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A .72B .120C .144D .16810.已知ABC △的内角A ,B ,C 满足1sin2sin()sin()2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是 ( )A .()8bcb c +>B.()ab a b +>姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)C .612abc ≤≤D .1224abc ≤≤二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.设全集={|110}U n n ∈N ≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则)U A B =(ð.12.函数22()log log (2)f x x x =的最小值为 .13.已知直线20ax y +-=与圆心为C 的圆22(1)()4x y a -+-=相交于A ,B 两点,且ABC △为等边三角形,则实数a = .考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14.过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 依次交圆于B ,C .若6PA =,8AC =,9BC =,则AB = .15.已知直线l 的参数方程为2,()3,x t t y t =+⎧⎨=+⎩为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0(0,02π)ρθθρθ-=≥≤≤,则直线l 与曲线C 的公共点的极径ρ= .16.若不等式21|21||2|22x x a a -++++≥对任意实数x 恒成立,则实数a 的取值范围是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)已知函数ππ())(0,)22f x x ωϕωϕ+>-≤<的图象关于直线π3x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和ϕ的值;(Ⅱ)若π2π()()263a f α<<,求3πcos(+)2α的值.18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a b c ≤≤,则称b 为这三个数的中位数)19.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2AB =,π3BAD ∠=,M 为BC 上一点,且12BM =,MP AP ⊥. (Ⅰ)求PO 的长;(Ⅱ)求二面角A PM C --的正弦值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问3分,(Ⅲ)小问5分)已知函数22()e e (,,)x xf x a b cx a b c -=--∈R 的导函数()f x '为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(Ⅰ)确定a ,b 的值;(Ⅱ)若3c =,判断()f x 的单调性; (Ⅲ)若()f x 有极值,求c 的取值范围.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,设椭圆22221(0)x ya b a b+=>>的左、右焦点分别为1F ,2F,点D 在椭圆上,112DF F F ⊥,121||||F F DF =,12DF F △. (Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)设11a =,*1()n a b n ++∈N .(Ⅰ)若1b =,求2a ,3a 及数列{}n a 的通项公式;数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(Ⅱ)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n ∈N 成立?证明你的结论.数学试卷 第7页(共18页) 数学试卷 第8页(共18页)2014年普通高校招生全国统一考试(重庆卷)数学试题卷(理工农医类)答案解析一、选择题 1.【答案】A【解析】i(12i)2i -=+,其在复平面内对应的点为(2,1),位于第一象限,故选:A. 【提示】根据复数乘法的运算法则,我们可以将复数z 化为i()a b a b =∈R ,的形式,分析实部和虚部的符号,即可得到答案. 【考点】复数的基本运算,复数在复平面中的表示 2.【答案】D【解析】因为在等比数列中23n n n a a a ,,,也成等比数列,所以369a a a ,,成等比数列,故选:D.【提示】运用等比数列的等比中项性质即可达到答案. 【考点】等比数列的性质 3.【答案】A【解析】因为变量x 与y 正相关,则在线性回归方程中,x 的系数应大于零,排除B ,D ;将3x =, 3.5y =分别代入A ,B 中的方程只有A 满足,故选:A. 【提示】通过x 与y 的关系先排除B 、D ,然后采用代入法得到答案. 【考点】线性回归方程的概念 4.【答案】C 【解析】232(,3)3(1a b k k -=-=--(,,又(23)a b c-⊥,(23)2(6)0k ∴-⨯+-=,解得3k =.故选:C.【提示】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k 的方程,解方程即可. 【考点】向量的运算及关系 5.【答案】C【解析】由程序框图知:程序运行的981091kSk =⨯⨯⨯-,输出的6k =,9877109810S ∴=⨯⨯=, ∴判断框的条件是710S >,故选:C.【提示】程序运行的981091kS k =⨯⨯⨯-,根据输出k 的值,确定S 的值,从而可得判断框的条件.【考点】程序框图,判断语句,循环语句 6.【答案】D【解析】根据指数函数的图像可知p 为真命题.由于“1x >”是“2x >”的必要不充分条件,所以q 为假命题,所以q ⌝为真命题,所以p q ∧⌝为真命题.故选:D. 【提示】判定命题p ,q 的真假,利用复合命题的真假关系即可得到结论. 【考点】命题的真假判断,命题连接词 7.【答案】B【解析】由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为1352525S 344535602222⨯++=⨯⨯++⨯+⨯+⨯=.故选:B.【提示】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算. 【考点】三视图,几何体的面积计算8.【答案】B【解析】不妨设P 为双曲线右支上一点,根据双曲线的定义有122PF PF a -=,联立123PF PF b +=,平方相减得221294b a PF PF -=,则由题设条件,得2294944b a ab -=,整理得43b a =,所以53c e a ==.故选:B.【提示】可设P 为双曲线右支上一点,根据双曲线的定义有122PF PF a -=,联立123PF PF b +=,运算后得到ba,即可得到答案.【考点】双曲线的简单性质数学试卷 第9页(共18页) 数学试卷 第10页(共18页)9.【答案】B【解析】分两步进行:(1)先将3个歌舞进行全排,其排法有33A 种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有332A 种.若两歌舞之间有两个其他节目时插法有122222C A A 种.所以由计数原理可得节目的排法共有33122332222120()A A C A A +=(种).故选:B.【提示】根据题意,分两步进行分析:(1)先将三个歌舞类节目全排列,(2)因为三个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案. 【考点】排列组合问题 10.【答案】A【解析】因为πA B C ++=,所以πA C B +=-,π()C A B =-+, 所以由已知等式可得1sin 2sin(π2)sin[π2()]2A B A B +-=-++,即1s i n 2s i n 2s i n 2()2A B A B +=++, 所以1sin[()()]sin[()()]sin 2()2A B A B A B A B A B +-++--=+++,所以12 sin()cos()2sin()cos()2A B A B A B A B +-=+++,所以12sin()[cos()cos()]2A B A B A B +--+=,所以1sin sin sin 8A B C =.由12S ≤≤,2sin 2sin 2sin a R Ab R Bc R C ===,,,得11sin 22bc A ≤≤. 由正弦定理得2sin 2sin 2sin a R Ab R Bc R C ===,,,所以21sin sin sin 2R A B C ≤≤, 所以2124R ≤≤,即22R ≤≤所以33()8sin sin sin 8bc b c abc R A B C R +>==≥.故选:A.【提示】运用三角形内角三角函数的变换与和差化积公式求得sin sin sin A B C ,再根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【考点】三角函数,三角函数和差化积公式,正弦定理 二、填空题 11.【答案】{7,9}【解析】由题知{4,6,7,9,10}U A =ð,(){7,9}U A B ∴=ð.故答案为:{7,9}.【提示】由条件利用补集的定义求得U A ð,再根据两个集合的交集的定义求得()U A B ð.【考点】集合的基本运算 12.【答案】14- 【解析】22221()log log (2)log 2log (2)2f x x x x ==222211log (1log )log24x x x ⎛⎫=+=+- ⎪⎝⎭,所以当x 时,函数()f x 取得最小值14-.故答案为:14-.【提示】利用对数的运算性质可得2211()log 24f xx ⎛⎫=+- ⎪⎝⎭,即可求得()f x 最小值.【考点】对数函数,二次函数的性质13.【答案】4【解析】由题意可知圆的圆心为(1,)C a,半径2r =,则圆心C 到直线20ax y +-=的距离d==ABC △为等边三角形,2AB r ∴==.又||AB =,2∴,即2810a a -+=,解得=4a ±.故答案为:4±. 【提示】根据圆的标准方程,求出圆心和半径,再根据点到直线的距离公式即可得到答案.【考点】圆的方程,点到直线距离 14.【答案】4【解析】根据题意,作出图形如图所示,由切割线定理,得2()PA PB PC PB PB BC ==+,即36(9)PB PB =+3PB ∴=,12PC ∴=.由弦切角定理知P A B P C A ∠=∠,又A P B C P A ∠=∠, PAB PCA ∴△∽△,AB PB CA PA ∴=,即3846PB CA AB PA ⨯===.故答案为:4.数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【提示】通过弦切角定理知PAB PCA ∠=∠,又AP B C P A ∠=∠,得到PAB PCA △∽△,AB PBCA PA=,由此求得AB. 【考点】切割线定理,弦切角定理,相似三角形 15.【解析】由题意得直线l 的普通方程为10x y -+=,曲线C 的平面直角坐标方程为24y x =,联立直线l 与曲线C 的方程,解得12x y =⎧⎨=⎩,所以直线l 与曲线C 的公共点的极径ρ=【提示】把直线l 的参数方程化为普通方程10x y -+=,曲线C 的极坐标方程化为直角坐标方程24y x =,联立求出公共点的坐标,即可求出极径.【考点】直线的参数方程 16.【答案】112a ≤≤- 【解析】令()|21||2|f x x x =-++,则①当2x <-时,()=212315f x x x x -+--=-->;②当122x ≤≤-时,()2123f x x x x =-+++=-+,故5()52f x ≤≤;③当12x >时,5()21231>2f x x x x =-++=+.综合①②③可知5()2f x ≥,要使不等式恒成立,则需215222a a ++≤,解得112a -≤≤.故答案为:112a -≤≤.【提示】利用绝对值的几何意义,确定|21||2|x x -++的最小值,然后让2122a a ++小于等于它的最小值即可求得答案. 【考点】绝对值不等式的解法 三、解答题17.【答案】(Ⅰ)2ω=π6ϕ=-(Ⅱ)3πcos 2α⎛⎫+= ⎪⎝⎭ 【解析】(Ⅰ)因()f x 的图像上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,从而2π2Tω==. 又因()f x 的图像关于直线π3x =对称,所以ππ22π32k ϕ+=+,0,1,2,k =±±.因ππ22ϕ-≤<得0k =,所以π2ππ23ϕ=-=-. (Ⅱ)由(Ⅰ)得π2226f αα⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以由π2π63α<<得ππ062α<-<,所以πcos 6α⎛⎫-= ⎪⎝⎭. 因此3πππcos sin sin 266ααα⎡⎤⎛⎫⎛⎫+==-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 6666αα⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭ 1142=+=. 【提示】(Ⅰ)由题意可得函数()f x 的最小正周期为π.求得2ω=.再根据图像关于直线π3x =对称,结合ππ22ϕ-≤<可得ϕ的值.(Ⅱ)根据π6α-的范围求得πc o s 6α⎛⎫- ⎪⎝⎭的值,再根据3πππc o s s i n s i n 266ααα⎡⎤⎛⎫⎛⎫+==-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用两角和的正弦公式计算求得结果. 【考点】三角函数的性质,三角恒等变换18.【答案】(Ⅰ)由古典概型中的概率计算公式知所求概率为334339584C C P C +==. (Ⅱ)X 的所有可能值为1,2,3,且2134543917(1),42C C C P X C +===1112133423633943(2)84C C C C C C P X C++===, 2127391(3)12C C P X C ===.数学试卷 第13页(共18页) 数学试卷 第14页(共18页)从而47()12342841228E X =⨯+⨯+⨯=. 【提示】(Ⅰ)先算出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可.(Ⅱ)先根据题意求出随机变量X 的所有可能取值,按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现. 【考点】古典概型,排列组合和分布列 19.【答案】(Ⅰ)PO =【解析】(Ⅰ)如图,连结AC BD ,,因ABCD 为菱形,则ACBD O =,且AC BD ⊥,以O 为坐标原点,,,OA OB OP 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz -,因π3BAD ∠=,故πcos36OA AB ==πsin 16OB AB ==,所以()0,0,0O ,A ,(0,1,0)B ,(C ,(0,1,0)OB =,(1,0)BC =-.由122BM BC ==,知,11,044BM BC ⎛⎫==-- ⎪ ⎪⎝⎭, 从而3,044OM OB BM ⎛⎫=+= ⎪ ⎪⎝⎭,即3,0.44M ⎛⎫- ⎪ ⎪⎝⎭设(0,0,)P a ,0a >,则(,0,)A Pa =,33,4MP a ⎛⎫=-⎪⎪⎝⎭.因为MP AP ⊥,故0M P A P =即2304a -+=,所以a ,a =,即PO =. (Ⅱ)由(Ⅰ)知,33333,0,,,,,3,0,4AP MP CP ⎛⎫⎛⎫⎛=-=-=⎪ ⎪⎝⎭⎝⎭⎭, 设平面APM 的法向量为()1111,,n x y z =,平面PMC 的法向量为()2222,,n x y z =由0n AP =,0n MP =得1111102304z x y ⎧+=⎪⎪-=故可取1,n ⎛⎫= ⎪ ⎪⎝⎭由20n MP =,20n CP =得222223040y-=⎨=,故可取2(1,2)n =-,从而法向量12,n n 的夹角的余弦值为12121215cos ,||||n n n n n n <>==-故所求二面角A PM C --的正弦值为5.【提示】(Ⅰ)连接AC ,BD ,以O 为坐标原点,OA ,OB ,OP 方向为x ,y ,z 轴正方向建立空间坐标系O xyz -,分别求出向量AP ,MP 的坐标,进而根据MP AP ⊥,得到0MP AP =,进而求出PO 的长.(Ⅱ)求出平面APM 和平面PMC 的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得二面角A PM C --的正弦值. 【考点】空间直角坐标系,二面角 20.【答案】(Ⅰ)1a =1b =(Ⅱ)()f x 在R 上为增函数 (Ⅲ)(4,)+∞【解析】(Ⅰ)对()f x 求导得22()22x xf x ae be c-'=+-,由()f x '为偶函数,知()()f x f x ''-=,即222()()0x xa b e e --+=.因220x x e e -+>,所以a b =,又(0)224f a b c c '=+-=-,故11a b ==,.数学试卷 第15页(共18页) 数学试卷 第16页(共18页)(Ⅱ)当3c =时,22()3x x f x e e x-=--,那么22()223310x x f x e e -'=+-≥=>,故()f x 在R 上为增函数.(Ⅲ)由(Ⅰ)知22()22x x f x e e c -'=+-,而22224x x e e -+≥,当0x =时等号成立.下面分三种情况进行讨论.当4c <时,对任意22()220x xx f x e e c -'∈=+->R ,,此时()f x 无极值; 当4c =时,对任意0x ≠,22()2240x xf x e e -'=+->,此时()f x 无极值;当4c >时,令2xe t =,注意到方程220t c t +-=有两根,1,20t =>,即()0f x '=有两个根111ln 2x t =或221ln 2x t =.当12x x x <<时,()0f x '<;又当2x x >时,()0f x '>,从而()f x 在2x x =处取得极小值.综上,若()f x 有极值,则c 的取值范围为(4,)+∞. 【提示】(Ⅰ)根据函数22()(,,)xxf x ae becx a b c -=--∈R 的导函数()f x '为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -,构造关于a ,b 的方程,可得a ,b 的值.(Ⅱ)将3c =代入,利用基本不等式可得()0f x '>恒成立,进而可得()f x 在定义域R 为均增函数.(Ⅲ)结合基本不等式,分4c <时、4c =、4c >时三种情况讨论()f x 极值的存在性,最后综合讨论结果,可得答案. 【考点】导函数,函数单调性,函数的极值21.【答案】(Ⅰ)设1(,0)F c -,2(,0)F c ,其中222c a b =-,由121F F DF =得12DF ==,从而12211212222DF F S DF F F ∆===1c =.从而12DF =由112DF F F ⊥得222211292DF DF F F =+=,因此22DF =.所以122a DF DF =+=,故2221a b a c =-=.因此,所求椭圆的标准方程为:2212x y +=. (Ⅱ)如图,设圆心在y 轴上的圆C 与椭圆2212xy +=相交,111(,)P x y ,222(,)P x y 是两个交点,120,0y y >>,11F P ,22F P 是圆C 的切线,且1122F P F P ⊥.由圆和椭圆的对称性,易知21x x =-,12y y =,1212||PP x =,由(Ⅰ)知1(1,0)F -,2(1,0)F ,所以1111(1,)F P x y =+,2211(1,)F P x y =--,再由1122F P F P ⊥得2211(1)0x y -++=,由椭圆方程得22111(1)2x x -=+,即211340x x +=,解得143x =-或10x =.当10x =时,12,P P 重合,此时题设要求的圆不存在. 当143x =-时,过12,P P 分别与11F P ,22F P 垂直的直线的交点即为圆心C . 由11F P ,22F P 是圆C 的切线,且1122F P F P ⊥,知21CP CP ⊥, 又12||||CP CP=,故圆C的半径1121CP ===.【提示】(Ⅰ)设1(,0)F c -,2(,0)F c,依题意可求得1c =,易求得12DF ==,2DF =2a =,于是可求得椭圆的标准方程. (Ⅱ)设圆心在y 轴上的圆C 与椭圆2212x y +=相交,111(,)P x y ,222(,)P x y 是两个交点,依题意,利用圆和椭圆的对称性,易知21x x =-,12y y =,1212||PP x =,由1122FP FP ⊥,得143x =-或10x =,分类讨论即可求得圆的半径. 22.【答案】(Ⅰ)解法一:因为11a =,1na b +,1b =,所以22a =,数学试卷 第17页(共18页) 数学试卷 第18页(共18页)31a =,再由题设条件知221(1)(1)1n n a a +-=-+,从而2{(1)}n a -是首项为0公差为1的等差数列,故2(1)1n a n -=-,即1n a ,*()n ∈N .解法二:因为11a =,1n a b +,1b =,所以22a =,31a =+,可写为11a =,21a =,31a =.因此猜想1n a =.数学归纳法证明:1n a =. 当1n =时结论显然成立. 假设n k=时结论成立,即1k a =.则1111k a +,这就是说,当1n k =+时结论成立.所以1n a =,*()n ∈N .(Ⅱ)解法一:设()1f x ,则1()n n a f a +=.令()c f c =,即11c ,解得14c =. 数学归纳法证明:2211n n a c a +<<<.当1n =时,2(1)0a f ==,3(0)1a f =所以23114a a <<<,结论成立.假设n k =时结论成立,即2211k k a c a +<<<,易知()f x 在(,1]-∞上为减函数,从而212()(a )(1)k c f c f f a +=>>=,即2221k ca a +>>>,再由()f x 在(,1]-∞上为减函数得2223()()()1k c f c f a f a a +=<<=<.故231k c a +<<, 因此2(1)2(1)11k k a c a +++<<<,这就是说,当1n k =+时结论成立.综上,符合条件的c 存在,其中一个值为14c =.解法二:设()1f x ,则1()n n a f a +=,先证:01n a ≤≤(*n ∈N ①,当1n =时,结论明显成立.假设n k =时结论成立,即01k a ≤≤,易知()f x 在(,1]-∞上为减函数,从而0(1)()(0)11k f f a f =≤≤<,即101k a +≤≤ 这就是说,当1n k =+时结论成立,故①成立.再证:221n n a a +<()*n ∈N ②,当1n =时,2(1)0a f ==,3(0)1a f =,有23a a <,即当1n =时结论②成立.假设n k =时,结论成立,即221k k a a +<,由①及()f x 在(,1]-∞上为减函数,得21221()()k k k ka f a f a a +++=>=,()21222(1)121()()k k k k a f a f a a +++++=<=,这就是说,当1n k =+时②成立,所以②对一切*n ∈N 成立.由②得21k a <,即22222(1)22k k k a a a +<-+,因此214k a <③, 又由①、②及()f x 在(,1]-∞上为减函数得221()()n n f a f a +>,即2122n n a a ++>,所以211,n a +解得2114n a +>④. 综上,由②③④知存在14c =使2211n n a c a +<<<对一切*n ∈N 成立. 【提示】(Ⅰ)解法一:若1b =,利用1n a b +=,可求2a ,3a ;证明2{(1)}n a -是首项为0,公差为1的等差数列,即可求数列{}n a 的通项公式;解法二:若1b =,利用1n a b +,可求2a ,3a ;通过观察2a ,3a ,猜想1n a =通过数学归纳法证明.(Ⅱ)解法一:设()1f x ,则1()n n a f a +=,令()c f c =,即11c ,解得14c =.用数学归纳法证明2211n n a c a +<<<即可.解法二:设()1f x -,则1()n n a f a +=,用数学归纳法先证:01n a ≤≤()*n ∈N ①,再证:221nn aa +<()*n ∈N ②,依题意可解得214k a <③2114n a +>④,由②③④知存在14c =使2211n n a c a +<<<对一切*n ∈N 成立. 【考点】等差数列,数学归纳法,函数的性质。
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回. 特别提醒:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.复平面内表示复数i(12i)-的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对任意等比数列{}n a ,下列说法一定正确的是( )A .1a ,3a ,9a 成等比数列B .2a ,3a ,6a 成等比数列C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数 据算得的线性回归方程可能是( )A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+4.已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( )A .92-B .0C .3D .1525.执行如图所示的程序框图,若输出k 的值为6,则判断框 内可填入的条件是( )A .12s >B .35s >C .710s >D .45s >6.已知命题p :对任意x ∈R ,总有20x>;q :“1x >”是“x >2”的充分不必要条件,则下列命题 为真命题的是( ) A .p q ∧ B .p q ⌝∧⌝ C .p q ⌝∧D .p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .728.设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得12||+||3PF PF b =,129||||4PF PF ab =,则该双曲线的离心率为 ( )A .43B .53C .94D .3 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A .72B .120C .144D .16810.已知ABC △的内角A ,B ,C 满足1sin2sin()sin()2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是 ( )A .()8bcb c +>B.()ab a b +>姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)C .612abc ≤≤D .1224abc ≤≤二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.设全集={|110}U n n ∈N ≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则)U A B =(ð.12.函数22()log log (2)f x x x =的最小值为 .13.已知直线20ax y +-=与圆心为C 的圆22(1)()4x y a -+-=相交于A ,B 两点,且ABC △为等边三角形,则实数a = .考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14.过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 依次交圆于B ,C .若6PA =,8AC =,9BC =,则AB = .15.已知直线l 的参数方程为2,()3,x t t y t =+⎧⎨=+⎩为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0(0,02π)ρθθρθ-=≥≤≤,则直线l 与曲线C 的公共点的极径ρ= .16.若不等式21|21||2|22x x a a -++++≥对任意实数x 恒成立,则实数a 的取值范围是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)已知函数ππ())(0,)22f x x ωϕωϕ+>-≤<的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和ϕ的值;(Ⅱ)若π2π()()263a f α=<<,求3πcos(+)2α的值.18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a b c ≤≤,则称b 为这三个数的中位数)19.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2AB =,π3BAD ∠=,M 为BC 上一点,且12BM =,MP AP ⊥.(Ⅰ)求PO 的长;(Ⅱ)求二面角A PM C --的正弦值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问3分,(Ⅲ)小问5分)已知函数22()e e (,,)x x f x a b cx a b c -=--∈R 的导函数()f x '为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(Ⅰ)确定a ,b 的值;(Ⅱ)若3c =,判断()f x 的单调性; (Ⅲ)若()f x 有极值,求c 的取值范围.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,设椭圆22221(0)x ya b a b+=>>的左、右焦点分别为1F ,2F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =,12DF F △ (Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)设11a =,*1)n a +N .(Ⅰ)若1b =,(Ⅱ)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n ∈N 成立?证明你的结论.3 / 13,也成等比数列,所以【提示】运用等比数列的等比中项性质即可达到答案C 【解析】232(,3)a b k -=-(23)a b c -⊥,(2k ∴-故选:C.1kk ⨯⨯-,输出的1kk ⨯⨯-,根据输出【考点】程序框图,判断语句,循环语句数学试卷 第7页(共26页)数学试卷 第8页(共26页)2129b PF =21⎫⎛=+⎪5 / 13){7,9}B =,再根据两个集合的交集的定义求得)B .2221log (2)log 2log (2)2x x x x =22log (1log )x x =+()f x 取得最小值14-.故答案为:14-.数学试卷 第11页(共26页)数学试卷 第12页(共26页).ABC △为等边三角形,,即28a -()PB PC PB PB BC =+,(9)PB PB +∴PCA ,又APB CPA ∠=∠PCA ∽△,CA PA 386PB CA PA ⨯=AB PB7 / 13π223k ϕ+=2,.因π2-≤π226α⎫-=⎪⎭11⎛⎫=-数学试卷 第15页(共26页)数学试卷 第16页(共26页)ACBD O =,,,OA OB OP 的方向分别为轴的正方向,建立空间直角坐标系故πcos 36OA AB ==πsin 16AB =,所以)0,0,0,(A (0,1,0)OB =,(3,BC =-由12BM =,知,1BM BC ⎛==- 而3OM OB BM ⎛=+=- (A P =-33MP ⎛⎫= ,故0MP AP =即39 / 13(Ⅱ)由(Ⅰ)知,33333,0,,,,,3,0,AP MP CP ⎛⎫⎛⎫⎛=-=-= ⎪ ⎪ 的法向量为(),,n x y z =,平面PMC 的法向量为(,n x =由0n AP =,0n MP =得3⎧⎪⎪-故可取531,n ⎛= 由20n MP =,20n CP =得,故可取(1,n =-从而法向量,n n 的夹角的余弦值为12215,5||||n n n n n n <>==-故所求二面角A PM -105.方向为,,轴正方向建立空间坐标系分别求出向量AP ,MP 的坐标,进而根据,得到0MP AP =,进而求出的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得二面角A PM C --数学试卷 第19页(共26页)数学试卷 第20页(共26页)231x x e --=24x x e -=,当0x =时等号成立无极值; 11222F F =22DF DF =所以(F P x=+,(F P x=-,即134x x+,解得1x=-2311 / 13数学试卷第23页(共26页)数学试卷第24页(共26页)13 / 13。
秘密★启用前2013年重庆一中高2014级高三上期第四次月考 数 学 试 题 卷(理科) 2013.12数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题.(每小题5分,共50分)1、i 是虚数单位,复数3443iz i +=-+的虚部是 ( )A. iB.1C. 1-D. i -2、已知条件,条件q :直线y=kx+2与圆x2+y2=1相切,则p 是q 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3、(原创)抛物线24x y =在点(2,1)处的切线的纵截距为 ( )A. B. 1 C.D.4、已知,若21(21)tx dx t +=⎰,则 ( )A .B .2C .4D .35、(原创)椭圆 22219x y m +=,(03)m <<的左右焦点分别为12F F 、 ,过2F 的直线与椭圆交于A 、B 两点,点B 关于y 轴的对称点为点C ,则四边形12AFCF 的周长为( )A. 2mB. 4mC. D. 12 6、若,A B 是锐角三角形的两内角,则tan tan A B 与1的大小关系是( ) A .大于 B .等于 C .小于 或等于 D .不确定7、 双曲线2221(0)x y a a -=>的一个焦点为(2,0),则其渐近线方程为 ( )A. y =B.y x= C. 2y x =±D.12y x =±8、已知抛物线22(0)y px p =>焦点F 恰好是椭圆 22221x y a b +=的右焦点,且两条曲线交点的连线过点F ,则该椭圆的离心率为 ( )A .1B1- C1-D9、(原创)由代数式化简知识可得:1122()()()n n n n n n a b a b ab a b a b ++++++-+=+。
2014年普通高等学校招生全国统一考试(重庆卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年重庆,理1,5分】在复平面内表示复数i(12i)-的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】2i(12i)2i i 2i -=-+=+,对应点的坐标为(2,1),在第一象限,故选A . 【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数z 化为i a b +(),a b R ∈的形式,是解答本题的关键. (2)【2014年重庆,理2,5分】对任意等比数列{}n a ,下列说法一定正确的是( )(A )139,,a a a 成等比数列 (B )236,,a a a 成等比数列 (C )248,,a a a 成等比数列 (D )369,,a a a 成等比数列 【答案】D【解析】设{}n a 公比为q ,因为336936,a aq q a a ==,所以369,,a a a 成等比数列,故选D .【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.(3)【2014年重庆,理3,5分】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ) (A )0.4 2.3y x =+ (B )2 2.4y x =- (C )29.5y x =-+ (D )0.3 4.4y x =-+【答案】A【解析】根据正相关知回归直线的斜率为正,排除,C D ,回归直线经过点(),x y ,故选A . 【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.(4)【2014年重庆,理4,5分】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数0k =( )(A )92- (B )0 (C )3 (D )152【答案】C【解析】由已知(23)0230a b c a c b c -⋅=⇒⋅-⋅=,即2(23)3(2141)03k k +-⨯+⨯=⇒=,故选C .【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.(5)【2014年重庆,理5,5分】执行如题图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )(A )12s > (B )35s > (C )710s > (D )45s >【答案】C【解析】由程序框图知:程序运行的981091k S k =⨯⨯⨯+,∵输出的6k =,∴9877109810S =⨯⨯=,∴判断框的条件是710S >,故选C .【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S 值是解题的关键. (6)【2014年重庆,理6,5分】已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( )(A )p q ∧ (B )p q ⌝∧⌝ (C )p q ⌝∧ (D )p q ∧⌝ 【答案】D【解析】根据指数函数的性质可知,对任意x ∈R ,总有20x >成立,即p 为真命题,“1x >”是“2x >”的必要不充分条件,即q 为假命题,则p q ∧⌝,为真命题,故选D .【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础.(7)【2014年重庆,理7,5分】某几何体的三视图如下图所示,则该几何体的表面积为( )(A )54 (B )60 (C )66 (D )72 【答案】B【解析】在长方体中构造几何体'''ABC A B C -,如右图所示,4,'5,'2AB A A B B ===, 3AC =,经检验该几何体的三视图满足题设条件.其表面积'''''''''ABC ACC A ABB A BCC B A B C S S S S S S ∆∆=++++3515615146022=++++=,故选B .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(8)【2014年重庆,理8,5分】设12F F ,分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得12129||||3,||||4PF PF b PF PF ab +=⋅=,则该双曲线的离心率为( )(A )43 (B )53(C )94 (D )3【答案】B【解析】由于22121212(||||)(||||)4||||PF PF PF PF PF PF +--=⋅,所以22949b a ab -=,分解因式得(34)(3)0433,4,5b a b a a b a b c λλλ-+=⇒=⇒===,所以离心率53c e a ==,故选B .【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题. (9)【2014年重庆,理9,5分】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )(A )72 (B )120 (C )144 (D )3 【答案】B【解析】用,,a b c 表示歌舞类节目,小品类节目,相声类节目,则可以枚举出下列10种排法:每一种排法中的三个a ,两个b 可以交换位置,故总的排法为323210120A A =种,故选B . 【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.(10)【2014年重庆,理10,5分】已知ABC ∆的内角1,sin 2sin()sin()2A B C A A B C C A B +-+=--+,满足,面积S 满足12,,,,S a b c A B C ≤≤,记分别为所对的边,则下列不等式成立的是( ) (A )()8bc b c +> (B)()ac a b +> (C )612abc ≤≤ (D )1224abc ≤≤ 【答案】A【解析】已知变形为1sin 2sin[()]sin[()]2A CB AC B A +-+=--+,展开整理得11sin 22cos()sin 2sin [cos cos()]22A C B A A A C B +-=⇒+-=,即112sin [cos()cos()]sin sin sin 28A CBC B A B C -++-=⇒=,而22111sin 2sin 2sin sin 2sin sin sin 224S ab C R A R B C R A B C R ==⋅⋅⋅=⋅⋅=,故21224R R ≤≤⇒≤≤338sin sin sin abc R A B C R =⋅=∈,排除,C D ,因为b c a +>,所以()8bc b c abc +>≥,故选A .【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)【2014年重庆,理11,5分】设全集{|110},{1,2,3,5,8},{1,3,5,7,9}U n N n A B =∈≤≤==,则()U C A B = . 【答案】{}7,9C'B'A'CA【解析】∵全集{}110U n N n =∈≤≤,{}1,2,3,5,8A =,{}1,3,5,7,9B =,∴{}4,6,7,9U C A =,∴{}()7,9U C A B =.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.(12)【2014年重庆,理12,5分】函数2()log )f x x =的最小值为 .【答案】14-【解析】因为222221log log )log 422log 2x x x x ===+,设2log t x =,则:原式221111(22)()2244t t t t t =+=+=+-≥-,故最小值为14-.【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题. (13)【2014年重庆,理13,5分】已知直线02=-+y ax 与圆心为C 的圆()()2214x y a -+-=相交于A B ,两点,且ABC ∆为等边三角形,则实数a = .【答案】4【解析】易知ABC ∆的边长为2,圆心到直线的距离为等边三角形的高h 4a = 【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键. 考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. (14)【2014年重庆,理14,5分】过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C ,若6PA =,8AC =,9BC =,则AB = . 【答案】4【解析】设,AB x PB y ==,由PAB PCA ∆∆知:64,3986PA AB PB x yx y PC AC PA y ==⇒==⇒==+,所以4AB =.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.(15)【2014年重庆,理15,5分】已知直线l 的参数方程为23x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=(0,02)ρθπ≥≤<则直线l 与曲线C 的公共点的极径ρ= .【解析】直线的极坐标方程为sin cos 1ρθρθ=+与2sin 4cos 0ρθθ-=联立得:24cos tan 2,5cos sin θθρθθ==== 【点评】本题考查直线l 的参数方程、曲线C 的极坐标方程,考查学生的计算能力,属于中档题.(16)【2014年重庆,理16,5分】若不等式2121222x x a a -++≥++对任意实数x 恒成立,则实数a 的取值范围是 __.【答案】112a -≤≤【解析】转化为左边的最小值2122a a ≥++,左边1111155(2)22222222x x x x x x x =-+-++≥-+---=-+≥,当12x =时取等号,故251121222a a a ≥++⇒-≤≤.【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题. 三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2014年重庆,理17,13分】已知函数()()022f x x ππωφωφ⎛⎫+>-≤< ⎪⎝⎭,的图像关于直线3x π=对称,且图像上相邻两个最高点的距离为π. (1)求ω和ϕ的值;(2)若2263f αππα⎛⎫⎫=<< ⎪⎪⎝⎭⎝⎭,求3cos 2πα⎛⎫+⎪⎝⎭的值.解:(1)由已知()3f π=2ππω=,解出2,,6k k Z πωϕπ==-∈,因为[,)2ππϕ∈-,故只有πϕ=-.(2)1)sin()2664f αππαα⎛⎫=-=-= ⎪⎝⎭,由062ππα<-<,故cos()6πα-=, 3cos sin sin[()]sin()cos cos()sin 2666666πππππππααααα⎛⎫+==-+=-+- ⎪⎝⎭1142== 【点评】本题主要考查由函数()sin y A x ωϕ=+的部分图象求函数的解析式,两角和差的三角公式的应用,属于中档题.(18)【2014年重庆,理18,13分】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望(注:若三个数,,a b c 满足 a b c ≤≤,则称b 为这三个数的中位数).解:(1)由古典概型的概率计算公式得所求概率为:334339584C C p C +==. (2)3214453417(1)848242C C C p x +====;111212134323234343(2)C C C C C C C C p x +++===;1771(3)848412C p x ====.所以X 的分布列为: 所以173124284E =⨯⨯+. 【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. (19)【2014年重庆,理19,13分】如下图,四棱锥P ABCD -,底 面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且1,2BM MP AP =⊥.(1)求PO 的长;(2)求二面角A PM C --的正弦值. 解:解法一:(1)设PO x =,则PA =PM == 在ABM ∆中由余弦定理21AM ==MP AP ⊥,所以APM ∆为 直角三角形,由勾股定理:2222PA PM AM +=⇒=,解出x ,PO ∴. (2)设点A 到平面PMC 的距离为d ,由体积法知:A PBC P ABC V V --=,即11113333PBC ABC S d S PO d d ∆∆⋅⋅=⋅⋅⇒==, 点A 到棱PM 的距离为h PA ==,设所求二面角为θ,则sin d h θ===解法二:(1)连接AC ,BD ,∵底面是以O 为中心的菱形,PO ⊥底面ABCD ,故AC BD O =,且AC BD ⊥,以O 为坐标原点,OA ,OB ,OP 方向为x ,y ,z 轴正方向建立空间坐标系O xyz -,∵2AB =,3BAD π∠=,∴1cos 2OA AB BAD ⎛⎫=⋅∠ ⎪⎝⎭,1sin 12OB AB BAD ⎛⎫=⋅∠= ⎪⎝⎭, ∴()0,0,0O ,)A,()0,1,0B ,()C ,()0,1,0OB =,()1,0BC =-, OMD CBAP又∵12BM =,∴11,044BM BC ⎛⎫==-- ⎪ ⎪⎝⎭,则3,04OM OB BM ⎛⎫=+= ⎪⎪⎝⎭, 设()0,0,P a,则()AP a =,33,4MP a ⎛⎫=- ⎪⎪⎝⎭,∵MP AP ⊥,∴2304APMP a ⋅=-=, 解得a =,即PO.(2)由(1)知AP ⎛= ⎝⎭,34MP =-⎝⎭,3,0,CP ⎛=⎭,设平面APM 的法向量(),,n x y z =, 平面PMC 的法向量为(),,n a b c =,由00m A P m M P ⎧⋅=⎪⎨⋅=⎪⎩,得0304z x y⎧=⎪⎪-=,令1x =,则51,m ⎛⎫= ⎪ ⎪⎝⎭,由00n CP n MP ⎧⋅=⎪⎨⋅=⎪⎩,得0304b +=-+=,令1a =,则()1,3,2n=--,∵平面APM 的法向量m 和平 面PMC 的法向量n 夹角θ满足:cos 40m nm n⋅===⋅,故sin θ=. 【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(20)【2014年重庆,理20,12分】已知函数22()(,,)x x f x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -. (1)确定,a b 的值;(2)若3c =,判断()f x 的单调性; (3)若()f x 有极值,求c 的取值范围.解:(1)22'()22x x f x ae be c -=+-,由'()'()f x f x -=恒成立知:222242222(22)(22)0x x x x x ae be c ae be c a b e b a --+-=+-⇒-+-≡,故a b =另外'(0)2242f a b c c a b =+-=-⇒+=,联立解出1a b==.(2)当3c =时,222'()2232()10x x x x f x e e e e --=+-=-+>,故()f x 在定义域R 上为单调递增. (3)由(1)得()2222x x f x e e c -'=+-,而22224x x e e -+≥=,当且仅当0x =时取等号,当4c ≤时,()0f x '≥恒成立,故()f x 无极值;当4c >时,令2x t e =,方程220t c t+-=的两根均为 正,即()0f x '=有两个根1x ,2x ,当()12,x x x ∈时,()0f x '<,当()()12,,x x x ∈-∞+∞时,()0f x '>,故当1x x =,或2x x =时,()f x 有极值,综上,若()f x 有极值,c 的取值范围为()4,+∞.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.(21)【2014年重庆,理21,12分】如下图,设椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.解:(1)设(,)D c y -,代入椭圆方程中求出2b y a =-,故21b DF a=,而122F F c =,由已知:1211211,2F F F F DF=⋅=,联立解出1212,F F DF==即222222,bc a b ca===+,联立解出1a b c===,所以椭圆的标准方程为2212xy+=.(2)由于所求圆的圆心C在y轴上,故圆和椭圆的两个交点,A B关于y轴对称,从而经过点,A B所作的切线也关于y轴对称,如下图所示.当切线互相垂直时,设两条切线交于点P,则CAPB恰好形成一个边长为r正方形.其中r表示圆的半径,由几何关系22BF BP PF r=-=,1BF=,122BF BF a+==,所以r r==.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.(22)【2014年重庆,理22,12分】设111,(*)na ab n N+=∈.(1)若1b=,求23,a a及数列{}na的通项公式;(2)若1b=-,问:是否存在实数c使得221n na c a+<<对所有*n N∈成立?证明你的结论.解:(1)∵11a=,1na b+,1b=,22a∴=,31a=;又()()221111n na a+-=-+,∴(){}21n a-是首项为0,公差为1的等差数列;∴()211na n-=-,∴1na=(*n N∈).(2)设()1f x=,则()1n na f a+=,令()c f c=,即1c=,解得14c=.下面用数学归纳法证明加强命题2211n na c a+<<<.1n=时,()210a f==,()301a f==,∴231a c a<<<,成立;设n k=时结论成立,即2211k ka c a+<<<,∵()f x在(],1-∞上为减函数,∴()()()2121kc f c f a f a+=>>=,∴2221kc a a+>>>,∴()()()22231kc f c f a f a a+=<<=<,∴231kc a+<<,∴()()212111k ka c a+++<<<,即1n k=+时结论成立,综上,14c=使得221n na c a+<<对所有的*n N∈成立..【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.。
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限2. 对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列3. 已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( )$.0.4 2.3A y x =+ $.2 2.4B y x =- $.29.5C y x =-+ $.0.3 4.4C y x =-+4. 已知向量(,3),(1,4),(2,1)a k b c ===r r r,且(23)a b c -⊥r r r ,则实数k =( )9.2A - .0B .C 3 D.1525.执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A.12s >B.35s >C.710s >D.45s >6. 已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D 【解析】试题分析:由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题; 所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D. 考点:1、指数函数的性质;2、充要条件;3、判断复合命题的真假.学科7.某几何体的三视图如图所示,则该几何体的表面积为()A.54B.60C.66D.72 【答案】B【解析】试题分析:8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.39.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16810.已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足 C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式一定成立的是( ) A.8)(>+c b bc B.()162ac a b +> C.126≤≤abc D.1224abc ≤≤【答案】A二、填空题.11. 设全集{|110},{1,2,3,5,8},{1,3,5,7,9},()U U n N n A B A B =∈≤≤===I 则ð______.所以答案应填:14-. 考点:1、对数的运算;2、二次函数的最值.13. 已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC ∆为等边三角形,则实数=a _________.考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14. 过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 分别交圆于B 、C , 若6=PA , AC =8,BC =9,则AB =________. 【答案】4 【解析】 试题分析:由切割线定理得:2PA PB PC =⋅,设PB x =,则||9PC x =+所以,()369,x x =+即29360x x +-=,解得:12x =-(舍去),或3x =又由是圆的切线,所以ACP BAP ∠=∠,所以ACP BAP ∆∆:、||||||PA AB AC PC ∴=,所以86412AB ⨯==所以答案应填:4.考点:1、切割线定理;2、三角形相似.15. 已知直线l 的参数方程为⎩⎨⎧+=+=ty tx 32(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()2sin4cos 00,02ρθθρθπ-=≥≤<,则直线l 与曲线C 的公共点的极径=ρ________.16.若不等式2212122++≥++-a a x x 对任意实数x 恒成立,则实数a 的取值范围是____________.由图可知:()min 1522f x f ⎛⎫==⎪⎝⎭,由题意得:215222a a ++≤,解这得:11,2a -≤≤所以答案应填:11,2⎡⎤-⎢⎥⎣⎦.考点:1、分段函数;2、等价转换的思想;3、数形结合的思想.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题13分,(I )小问5分,(II )小问8分)已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π. (I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫⎝⎛+23cos πα的值. 【答案】(I )2,6πωϕ==-;(II 315+ 【解析】试题分析:(I )由函数图像上相邻两个最高点的距离为π求出周期,再利用公式2T πω=求出ω的值;考点:1、诱导公式;2、同角三角函数的基本关系;3、两角和与差的三角函数公式;4、三角函数的图象和性质.18. (本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望.(注:若三个数c b a ,,满足 c b a ≤≤,则称b 为这三个数的中位数).故X 的分布列为 X1 2 3 P 1742 4384 112从而()174314712342841228E X =⨯+⨯+⨯= 考点:1、组合;2、古典概型;3、离散型随机变量的分布列与数学期望.19. (本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如题(19)图,四棱锥ABCD P -中,底面是以O 为中心的菱形,⊥PO 底面ABCD ,3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. (Ⅰ)求PO 的长;(Ⅱ)求二面角C PM A --的正弦值.由0,0,n AP n MP ⋅=⋅=r u u u r r u u u r 得111113-3023330442x z x y z ⎧+=⎪⎪-+=⎩故可取131,2,3n ⎛⎫= ⎪ ⎪⎝⎭u r20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问3分,(Ⅲ)小问5分)已知函数22()(,,)x x f x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(Ⅰ)确定,a b 的值;(Ⅱ)若3c =,判断()f x 的单调性; (Ⅲ)若()f x 有极值,求c 的取值范围.21. (本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(21)图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =12DF F ∆的面积为22. (Ⅰ)求该椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..从而122DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此2322DF =.所以12222a DF DF =+=,故2222,1a b a c ==-=因此,所求椭圆的标准方程为:2212x y +=1121242223CP PP x === 考点:1、圆的标准方程;2、椭圆的标准方程;3、直线与圆的位置关系;4、平面向量的数量积的应用.22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)设2111,22(*)n n n a a a a b n N +==-++∈(Ⅰ)若1b =,求23,a a 及数列{}n a 的通项公式;(Ⅱ)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n N ∈成立?证明你的结论.当1n =时结论显然成立.即101k a +≤≤这就是说,当1n k =+时结论成立,故①成立.中小学教育() 教案学案课件试题全册打包。
2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一.选择题(本大题共10小题,每小题5分,共50分。
在每小题给也的四个选项中,只有一项是符合题目要求的)(1)在复平面内表示复数的点位于( )()12i i - (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(2)对任意等比数列,下列说法一定正确的是( ){}n a (A )成等比数列 (B )成等比数列 139,,a a a 236,,a a a (C )成等比数列 (D )成等比数列248,,a a a 239,,a a a (3)已知变量与正相关,且由观测数据算得样本的平均数,,则x y 2.5x = 3.5y =由观测的数据得线性回归方程可能为( )(A ) (B ) (C ) (D ) 0.4 2.3y x =+ 2 2.4y x =- 29.5y x =-+ 0.3 4.4y x =-+ (4)已知向量,,,且,则实数( (),3a k = ()1,4b = ()2,1c = ()23a b c -⊥ k =)(A ) (B )0 (C )3 (D )92-152(5)执行如题(5)图所示的程序框图,若输出的值为k 6,则判断框内可填入的条件是( )(A ) (B ) 12s >35s >(C ) (D )710s >45s >(6)已知命题:对任意,总有;:“p x R ∈20x >q ”是“”的充分不必要条件。
则下列命题为真命题的1x >2x >是( ) (A ) (B )p q ∧p q ⌝∧⌝(C ) (D )p q ⌝∧p q ∧⌝(7)某几何体的三视图如右图所示,则该几何体的表面积为( ) (A )54 (B )60 (C )66 (D )72(8)设分别为双曲线的左、右焦点,双曲线上存在一12,F F ()222210,0x y a b a b-=>>点P 使得,。
重庆市普通高中2014年12月学生学业水平考试
数学试卷
(考试时间120分钟,满分100分) 本试卷分第I 卷和第II 卷两部分
第I 卷(选择题 共45分)
注意事项:第I 卷选择题每小题选出答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,则用橡皮擦擦干净后,再选涂其它答案,不能答在试卷和答题带上.
第I 卷(选择题 共50分)
一、选择题(本大题15小题,每小题3分,共45分)
以下每小题都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的 1.已知集合{}{}4,2,4,2,1==T S ,则=T S ( ) A .{}2 B .{}4 C .{}4,2 D .{}4,2,1 2.直线1-=x y 的倾斜角为( )
A .
6π B .4π C .3π D .2
π
3.已知函数)0(1
)(>+=x x
x x f ,则函数)(x f 的最小值是( )
A .1
B .2
C .3
D .4
4.如图所示的正方体1111D C B A ABCD -中,直线与的位置关系是( ) A .相交 B .平行 C .垂直 D .共面
5.下列函数中,在区间()+∞,0上为增函数的是( )
A .x y =
B .2
)1(-=x y C .x
y ⎪⎭⎫ ⎝⎛=21 D .x y 2
1log =
6.过点)2,1(且与直线012=+-y x 垂直的直线方程为( )
A .032=+-y x
B .042=-+y x
C .02=-y x
D .052=-+y x 7.若圆的方程为04422=-++y x y x ,则下列结论正确的是( )
A .圆半径是22
B .圆半径是2
C .圆心为)2,2(
D .圆心为)2,2(-- 8.在三角形ABC 中,若23,45,3000==∠=∠BC B A ,则=AC ( )
A .
2
2
B .23
C .24
D .6 9.函数)2,2(,52)(2-∈++=x x x x f 的值域为( ) A .[]13,4 B .[)13,4 C .[]13,5 D .[)13,5
10.如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为2的半圆,俯视图是半径为2的圆,则该几何体的体积等于( ) A .
34π B .38π C .316π D .3
32π
11.已知等比数列{}n a 中,已知2,8
1
51==a a ,则=3a ( )
A .21
B .2
1± C .41
D . 2
12.已知函数)(x f 是R 上的奇函数,且当0>x 时,1)(2
+=x x f ,
则=-)1(f ( )
A .2
B .1
C .0
D .2- 13.执行右面的程序框图,若输入x 的值为1,则输出的n 的值为( ) A .2 B .3 C .4 D .5
14.如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m 、n ,则图形Ω面积的估计值为( )
A .n ma
B .m na
C .n m a 2
D .m
na 2
15.已知函数⎪⎩
⎪
⎨⎧-=a
x x f 22
)( 22=≠x x ,若函数2)(-=x f y 有3个零点,则实数a 的值为( )
A .4-
B .2-
C .0
D .2
第II 卷(非选择题 共55分)
注意事项:1.填空题的答案必须写在答题卷上,只填结果,不要过程.
2.解答题的解答必须写在答题卷上,并写出必要的文字说明、演算步骤或推理过程. 3.用钢笔或圆珠笔直接写在答题卷上.
二、填空题(本大题5个小题,每小题3分,共15分) 16.函数)1(log )(2-=x x f 的定义域为 17.若21cos -
=α,且⎪⎭
⎫
⎝⎛∈ππα,2,则=αsin 18.若不等式0232
>+-x ax 的解集为{}
b x x x ><或1,则=+b a
19.以点)0,0(为圆心,且与直线02=+-y x 相切的圆的方程为
20.若函数)1(log )(2+=ax x f 在[]2,1-∈x 上单调递增,则实数a 的取值范围是
三、解答题:(本大题5个小题,共40分) 21.(10分)已知函数)sin()2
sin()(x x x f -++=ππ
(1)求函数)(x f 的最小正周期 (2)求函数)(x f 的单调递增区间
22.(8分)在等差数列{}n a 中,已知公差4=d ,且521,,a a a 成等比数列 (1)求数列{}n a 的通项公式
(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得80060+>n S n . 若存在,求n 的最小值;若不存在,请说明理由.
(1)根据频数分布表计算鸡蛋重量在[)55,50中的频率
(2)用分层抽样的方法从鸡蛋重量在[)45,40和[)60,55中抽取4
个鸡蛋,其中重量在[)45,40中的有几个鸡蛋?
(3)在(2)中抽出的4个鸡蛋中,任取2个,求重量在[)45,40和[)60,55各有一个鸡蛋的概率.
24.(8分)如图,在三棱锥ABC P -中,F E D 、、分别为棱AB AC PC 、、的中点. 已知AC PA ⊥于点
A ,且5,8,6===DF BC PA .
(1)求证:直线⊥PA 平面DEF (2)平面⊥PAC 平面ABC
25.(6分)已在平面直角坐标系xOy 中,点),(y x P 是四边形OABC (含边界)内的任意一点,其中
)0,3(),2,1(),1,0(),0,0(C B A O . 设向量)1,2(),1,1(==,若μλμλ,(+=为实数).
(1)当2
1
=
=μλ; (2)求μλ-的取值范围。