数列的概念与通项公式
- 格式:ppt
- 大小:1.43 MB
- 文档页数:44
数列的通项公式与部分和公式数列的通项公式是指能够表示数列中第n个数与n的关系的公式,而部分和公式则是指数列的前n项和能够表示成与n的关系的公式。
本文将分别介绍数列的通项公式和部分和公式,以及应用举例。
一、数列的通项公式数列是指按照一定规律排列的一组数,通项公式是能够表示数列中第n个数与n的关系的公式。
1. 等差数列的通项公式等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a₁,公差为d,则该等差数列的通项公式为:an = a₁ + (n-1)d其中,an表示数列的第n个数。
例如,对于等差数列1,4,7,10,13,……,其首项a₁为1,公差d为3,根据通项公式可得:an = 1 + (n-1)3 = 3n - 2因此,该等差数列的通项公式为3n - 2。
2. 等比数列的通项公式等比数列是指数列中相邻两项之比都相等的数列。
设等比数列的首项为a₁,公比为q,则该等比数列的通项公式为:an = a₁ * q^(n-1)其中,an表示数列的第n个数。
例如,对于等比数列2,6,18,54,……,其首项a₁为2,公比q 为3,根据通项公式可得:an = 2 * 3^(n-1)因此,该等比数列的通项公式为2 * 3^(n-1)。
二、数列的部分和公式数列的部分和是指数列前n个数的和,部分和公式是能够表示数列前n项和与n的关系的公式。
1. 等差数列的部分和公式对于等差数列,前n项和(部分和)Sn可以表示为:Sn = (a₁ + an) * n / 2其中,a₁表示数列的首项,an表示数列的第n个数。
以等差数列1,4,7,10,13,……为例,根据通项公式3n - 2,部分和公式可表示为:Sn = (1 + (3n - 2)) * n / 2 = (3n + 1) * n / 22. 等比数列的部分和公式对于等比数列,前n项和(部分和)Sn可以表示为:Sn = a₁ * (1 - q^n) / (1 - q)其中,a₁表示数列的首项,q表示数列的公比。
数列知识点归纳总结一、基本概念1. 数列的定义数列是按照一定的顺序排列的一组数,通常用a1, a2, a3, …,an来表示,其中ai表示数列中的第i个数。
数列中的数称为项,n称为项数。
2. 数列的类型数列可以根据项的规律和性质进行分类,主要包括等差数列、等比数列、递推数列等。
3. 数列的通项公式数列的通项公式是描述数列中任意一项与其序号之间的关系的公式,通常用an或者Un 表示第n个项,用n表示项数。
数列的通项公式可以根据数列的类型和性质进行求解。
二、等差数列1. 定义如果一个数列满足任意相邻两项之差都相等的条件,那么这个数列就是等差数列,差值为d。
2. 性质(1)通项公式:对于等差数列an,其通项公式为an=a1+(n-1)d。
(2)前n项和:等差数列的前n项和Sn= (a1+an) * n /2。
(3)求和公式推导:对于等差数列Sn= (a1+an) * n /2,可用数学归纳法进行证明。
3. 等差数列的应用等差数列在数学和现实生活中有着重要的应用,如计算机算法中的序列求和、物理学中等速直线运动、金融学中的等额本息贷款等。
三、等比数列1. 定义等比数列是指数列中的任意相邻两项的比值都相等的数列,比值为q。
2. 性质(1)通项公式:对于等比数列an,其通项公式为an=a1*q^(n-1)。
(2)前n项和:等比数列的前n项和Sn= (a1*(q^n - 1)) / (q-1)。
3. 等比数列的应用等比数列在数学和现实生活中也有着重要的应用,如复利计算、生物学中种群增长问题、物理学中的指数衰减等。
四、递推数列1. 定义递推数列是指数列中的每一项都可以由前面的一项或几项通过某种规律得到的数列。
2. 性质递推数列的通常是通过递推关系式进行求解,递推数列的解可以是显式公式和递推公式。
3. 递推数列的应用递推数列是数学中的重要概念,它在代数、离散数学、概率论等领域都有着广泛的应用。
五、常见数列形式1. 斐波那契数列斐波那契数列是指数列中第n项等于其前两项之和的数列,通常用F(n)表示,前几项为0, 1, 1, 2, 3, 5, 8, 13, …2. 调和数列调和数列是指数列中的每一项是调和级数的一部分的数列,通常用H(n)表示,前几项为1, 1/2, 1/3, 1/4, 1/5, …2. 等差-等比混合数列等差-等比混合数列是指数列中的相邻两项之间既满足等差数列的条件,又满足等比数列的条件的数列。
数列的概念和计算数列是数学中常见的概念,它由一系列有序的数字组成。
数列的概念与计算对于数学的学习和应用都具有重要的意义。
本文将介绍数列的定义、常见类型和计算方法。
一、数列的概念数列是由一系列按照一定规律排列的数字组成的序列。
数列中的每个数字称为这个数列的项,用a₁,a₂,a₃,……表示。
数列中的每个项之间有着特定的关系,这种关系可以用公式、递推公式、递归式等形式来表示。
二、常见类型的数列1. 等差数列等差数列是指数列中的每一项与前一项之间的差等于同一个常数的数列。
设数列为{a₁,a₂,a₃,……},公差为d,那么有 a₂ - a₁ =a₃ - a₂ = d。
等差数列的通项公式为 an = a₁ + (n-1)d,其中n表示项数。
2. 等比数列等比数列是指数列中的每一项与前一项的比等于同一个常数的数列。
设数列为{a₁,a₂,a₃,……},公比为r,那么有 a₂/a₁ = a₃/a₂ = r。
等比数列的通项公式为 an = a₁ * r^(n-1),其中n表示项数。
3. 斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和的数列。
斐波那契数列的前两项通常为1,1或0,1,根据定义可以得到后续项。
斐波那契数列的递推公式为 an = a(n-1) + a(n-2),其中n表示项数。
三、数列的计算1. 求和求和是数列计算中经常遇到的问题之一。
在数列求和时,常用的方法有以下几种:- 等差数列求和公式:Sn = n/2 * (a₁ + an),其中Sn表示前n个项的和。
- 等比数列求和公式:Sn = a₁ * (1 - r^n) / (1 - r),其中Sn表示前n 个项的和。
- 斐波那契数列求和:Sn = a(n+2) - 1,其中Sn表示前n个项的和。
2. 项数计算在一些问题中,我们需要求解数列的项数。
常用的计算方法如下:- 等差数列的项数:n = (an - a₁) / d + 1,其中n表示项数。
数列的概念知识点总结一、数列的基本概念数列是由一组按照一定规律排列的数字组成的序列。
数列中的每个数字称为数列的项。
数列中的数字可以是正整数、负整数、小数、分数等。
数列通常用{an}或an表示,其中n表示数列的位置。
例如{1, 2, 3, 4, 5, ...}就是一个简单的数列,其中每一项的值依次递增1。
在数列中,通常会出现一些特殊的数列,如等差数列、等比数列等。
等差数列是指数列中任意两个相邻项之间的差等于一个常数d,如{1, 3, 5, 7, 9, ...}就是一个等差数列,其中公差d=2。
等比数列是指数列中任意两个相邻项之间的比等于一个常数r,如{1, 2, 4, 8, 16, ...}就是一个等比数列,其中公比r=2。
二、数列的通项公式数列的通项公式是指数列中每一项与项号之间的关系式。
通过通项公式可以方便地求出数列中任意一项的值,以及根据数列的规律预测未知的项。
对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1*r^(n-1),其中an表示数列的第n项,a1表示数列的首项,d表示等差数列的公差,r表示等比数列的公比。
除了等差数列和等比数列外,还存在其他形式的数列,如递推数列、周期数列、递减数列等。
这些数列的特点和规律各不相同,其通项公式也具有不同的形式。
三、数列的性质数列具有丰富的性质,通过研究数列的性质可以深入理解数列的规律和特点。
1. 数列的有界性数列可能是有界的,也可能是无界的。
如果数列中的项都不超过某一有限的数M,则称该数列是有上界的,M称为数列的上界。
类似地,如果数列中的项都不小于某一有限的数m,则称该数列是有下界的,m称为数列的下界。
如果数列同时有上界和下界,则称该数列是有界的。
2. 数列的单调性数列可能是单调递增的,也可能是单调递减的,还可能是交替单调的。
对于单调递增的数列来说,一般其通项公式中的a(n+1)>an。
类似地,对于单调递减的数列来说,其通项公式中的a(n+1)<an。
数列的通项公式及其应用数列是数学中常见的概念,它由一系列有规律的数字组成。
数列可以在各种数学问题中起到重要的作用,而数列的通项公式是描述数列中每一项与项数之间的关系的公式。
在本文中,我将介绍数列的通项公式的概念和应用,并通过实例来帮助读者更好地理解。
一、数列的基本概念数列是由一系列数字按照一定的顺序排列而成。
我们可以将数列记作{a₁, a₂, a₃, ...},其中a₁,a₂,a₃等表示数列中的每一项。
数列的项数可以通过小写字母n表示,即数列中的第n项记作aₙ。
数列的前n项和可以用Sn表示,即Sₙ = a₁ + a₂ + a₃ + ... + aₙ。
数列的通项公式是用来表示数列中每一项与项数之间关系的公式。
通项公式的形式因数列的类型而各异,接下来我将详细介绍一些常见的数列及其通项公式。
二、等差数列的通项公式及应用等差数列是指数列中每一项与前一项之差都相等的数列。
等差数列的通项公式为an=a₁+(n-1)d,其中a₁为首项,d为公差。
应用举例:假设一个等差数列的首项为2,公差为3,求该数列的第10项。
按照通项公式an=a₁+(n-1)d,代入a₁=2,d=3,n=10,可得:a₁₀ = 2 + (10-1) * 3= 2 + 9 * 3= 2 + 27= 29因此,该等差数列的第10项为29。
三、等比数列的通项公式及应用等比数列是指数列中每一项与前一项之比都相等的数列。
等比数列的通项公式为an=a₁*r^(n-1),其中a₁为首项,r为公比。
应用举例:假设一个等比数列的首项为3,公比为2,求该数列的第8项。
按照通项公式an=a₁*r^(n-1),代入a₁=3,r=2,n=8,可得:a₈ = 3 * 2^(8-1)= 3 * 2^7= 3 * 128= 384因此,该等比数列的第8项为384。
四、斐波那契数列的通项公式及应用斐波那契数列是一种特殊的数列,它的每一项都等于前两项的和。
斐波那契数列的通项公式为an=an-1+an-2,其中a₁=1,a₂=1。
数列的知识点数列是数学中一个重要的概念,是一系列按一定规律排列的数字集合。
数列在数学和其他学科领域中都有较为广泛的应用,因此对数列的理解和掌握是学习和研究的基础。
一、数列的概念。
数列是按照一定的顺序排列的一组数的集合。
数列中的每个数称为数列的项,用an表示。
数列中的第一项用a1表示,第二项用a2表示,依次类推。
二、数列的分类。
1.等差数列。
等差数列是指数列中,从第二项开始,每一项与它的前一项的差都相等。
差称为公差,用d表示。
等差数列的通项公式为an=a1+(n-1)d。
2.等比数列。
等比数列是指数列中,从第二项开始,每一项与它的前一项的比值都相等。
比值称为公比,用q表示。
等比数列的通项公式为an=a1q^(n-1)。
3.等差数列与等比数列之外的数列。
除了等差数列和等比数列,还存在着其他形式的数列,如斐波那契数列、阶乘数列等。
这些数列的通项公式可能没有明确的表达式,但仍然可以通过递推或递归的方式来定义。
三、数列的性质。
1.有界性。
数列可以是有上界或下界的,也可以同时有上界和下界。
有界数列是指存在一个上界和下界,使得数列中的每一项都不超过这个上界和下界。
2.单调性。
数列可以是递增的,也可以是递减的。
递增数列是指数列中的项按照从小到大的顺序排列;递减数列是指数列中的项按照从大到小的顺序排列。
3.极限性。
数列中的每一项都可以有一个极限,即随着项数的增加,数列的值趋于某个数值。
这个极限可以是有限的,也可以是无限的。
数列的极限可以用极限符号来表示,如lim(a_n)=L。
四、数列的应用。
1.数列在数学分析和微积分中有广泛的应用,如泰勒级数、幂级数等都可以表示为数列的和式。
2.数列在函数的连续性和导数的定义中也有应用。
通过研究数列的收敛性质,可以给出函数的连续性和导数的定义,从而对函数进行更深入的研究。
3.数列在统计学中也有应用,如样本的有序排列、时间序列分析等都需要对数列进行处理和分析。
总之,数列是数学中一个重要的概念,它不仅在数学分析和微积分中有广泛的应用,也在其他学科中有着重要的地位。
数列的极限与通项公式数列是数学中的一个重要概念,经常在各个领域中被使用。
数列的极限与通项公式是数列研究中的关键内容,本文将介绍数列的基本概念,探讨数列极限及其性质,最后讲解数列的通项公式及应用。
一、数列的基本概念数列是由一系列按照特定规律排列的数字组成的序列。
一般用字母表示数列的一般项,常用形式为{a_n}或(a_1, a_2, a_3, ...)。
其中,a_n表示数列的第n项,n表示项的顺序。
二、数列的极限数列的极限是指当数列中的项数趋于无穷大时,数列中的项的极限值。
记作lim(a_n)或a_n→∞。
1. 数列的极限存在若存在一个实数L,使得对于任意给定的正数ε,都存在正整数N,当n>N时,有|a_n - L| < ε,则称L为数列{a_n}的极限,并记作lim(a_n) = L。
2. 数列的极限性质(1)极限的唯一性:如果数列{a_n}有极限,则极限是唯一的。
(2)夹逼准则:若数列{a_n},{b_n},{c_n}满足a_n ≤ b_n ≤ c_n,并且lim(a_n) = lim(c_n) = L,则lim(b_n) = L。
(3)有界性:若数列{a_n}有极限,则数列是有界的。
(4)收敛数列与发散数列:若数列{a_n}有极限,则称之为收敛数列;反之,称为发散数列。
三、数列的通项公式数列的通项公式是表示数列第n项的一般形式。
通过通项公式,我们可以根据项的顺序n计算数列中的特定项的值。
1. 等差数列的通项公式等差数列是指数列中任意两个相邻项之差都相等的数列。
若等差数列的首项为a_1,公差为d,则它的通项公式为a_n = a_1 + (n-1)d。
2. 等比数列的通项公式等比数列是指数列中任意两个相邻项之比都相等的数列。
若等比数列的首项为a_1,公比为q,则它的通项公式为a_n = a_1 * q^(n-1)。
3. 斐波那契数列的通项公式斐波那契数列是指首项和第二项都为1,从第三项开始,每一项都是前两项之和的数列。
数列的通项公式和应用数列是数学中常见的概念,它由一系列按照一定规律排列的数字组成。
在数列中,每个数字被称为数列的项,而数列中的规律可以通过通项公式来表示和描述。
本文将介绍数列的通项公式及其应用,并探讨其中的数学理论和实际应用。
一、数列的定义和基本概念数列是一组按照特定规律排列的数,通常以 a₁, a₂, a₃,..., aₙ 的形式表示。
其中 a₁, a₂, a₃,..., aₙ 分别表示数列的第一项、第二项、第三项、...、第 n 项。
数列中的规律可以通过第 n 项与前面项之间的关系来确定。
二、等差数列的通项公式及应用等差数列是指数列中连续两个项之间都有相同的差值。
设等差数列的第一项为 a₁,公差为 d,则它的通项公式可以表示为 an = a₁ + (n-1)d,其中 an 表示数列的第 n 项。
等差数列的通项公式在实际中有广泛的应用。
例如,在财务分析中,等差数列可以用来计算投资的回报率。
此外,在物理学和工程学中,等差数列可以用来描述速度、加速度等连续变化的量。
三、等比数列的通项公式及应用等比数列是指数列中连续两个项之间的比值都相同的数列。
设等比数列的第一项为 a₁,公比为 q,则它的通项公式可以表示为 an = a₁ *q^(n-1),其中 an 表示数列的第 n 项。
等比数列的通项公式在实际中也有广泛的应用。
例如,在复利计算中,等比数列可以用来计算贷款或投资的本息总额。
此外,在生物学和经济学中,等比数列可以用来描述生长速度、复利增长等连续变化的现象。
四、斐波那契数列及其应用斐波那契数列是一种特殊的数列,它的前两项都为 1,而后面的每一项都是其前两项的和。
斐波那契数列的通项公式可以表示为 an = an-1 + an-2,其中 a₁ = 1,a₂ = 1。
斐波那契数列在实际中有广泛的应用。
例如,在自然界中,许多植物的生长规律和动物的繁殖规律都可以用斐波那契数列来描述。
此外,在计算机科学和金融学中,斐波那契数列也被广泛应用于算法设计和金融模型的建立。
第一节数列的概念与简单表示法[知识能否忆起]1.数列的定义、分类与通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类:(3)数列的通项公式:如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n}的首项(或前几项),且任一项a n与它的前一项a n-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.[小题能否全取]1.(教材习题改编)数列1,23,35,47,59…的一个通项公式是()A.a n=n2n+1B.a n=n2n-1C.a n=n2n-3D.a n=n2n+3答案:B2.设数列{a n}的前n项和S n=n2,则a8的值为() A.15 B.16C.49 D.64解析:选A a 8=S 8-S 7=64-49=15.3.已知数列{a n }的通项公式为a n =nn +1,则这个数列是( )A .递增数列B .递减数列C .常数列D .摆动数列解析:选A a n +1-a n =n +1n +2-n n +1=(n +1)2-n (n +2)(n +1)(n +2)=1(n +1)(n +2)>0.4.(教材习题改编)已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 4·a 3=________.解析:a 4·a 3=2×33·(2×3-5)=54. 答案:545.已知数列{a n }的通项公式为a n =pn +q n ,且a 2=32,a 4=32,则a 8=________.解析:由已知得⎩⎨⎧2p +q 2=32,4p +q 4=32,解得⎩⎪⎨⎪⎧p =14,q =2.则a n =14n +2n ,故a 8=94.答案:941.对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别. 2.数列的函数特征数列是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应的函数解析式,即f (n )=a n (n ∈N *).典题导入[例1] (2012·天津南开中学月考)下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( )A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+32[自主解答] 由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2, a 3=1,a 4=2,…. [答案] C若本例中数列变为:0,1,0,1,…,则{a n }的一个通项公式为________. 答案:a n =⎩⎪⎨⎪⎧0(n 为奇数),1(n 为偶数).⎝⎛⎭⎫或a n =1+(-1)n2或a n=1+cos n π2由题悟法1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n+1来调整.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.以题试法1.写出下面数列的一个通项公式. (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)3,33,333,3 333,…;(4)-1,32,-13,34,-15,36,….解:(1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,….所以a n =13(10n -1).(4)奇数项为负,偶数项为正,故通项公式的符号为(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+(-1)nn,也可写为a n=⎩⎨⎧-1n,n 为正奇数,3n ,n 为正偶数.典题导入[例2] 已知数列{a n }的前n 项和S n ,根据下列条件分别求它们的通项a n . (1)S n =2n 2+3n ;(2)S n =3n +1.[自主解答] (1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5, 当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1. 当n =1时,4×1+1=5=a 1,故a n =4n +1. (2)当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,故a n =⎩⎪⎨⎪⎧4, n =1,2×3n -1, n ≥2.由题悟法已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式; (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.以题试法2.(2012·聊城模拟)已知数列{a n }的前n 项和为S n ,且S n =n n +1,则1a 5=( )A.56 B.65 C.130D .30解析:选D 当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),则a 5=15×6=130.典题导入[例3] 已知数列{a n }的通项公式为a n =n 2-21n +20.(1)n 为何值时,a n 有最小值?并求出最小值; (2)n 为何值时,该数列的前n 项和最小?[自主解答] (1)因为a n =n 2-21n +20=⎝⎛⎭⎫n -2122-3614,可知对称轴方程为n =212=10.5.又因n ∈N *,故n =10或n =11时,a n 有最小值,其最小值为112-21×11+20=-90.(2)设数列的前n 项和最小,则有a n ≤0,由n 2-21n +20≤0,解得1≤n ≤20,故数列{a n }从第21项开始为正数,所以该数列的前19或20项和最小.在本例条件下,设b n =a nn,则n 为何值时,b n 取得最小值?并求出最小值.解:b n =a n n =n 2-21n +20n =n +20n-21,令f (x )=x +20x -21(x >0),则f ′(x )=1-20x 2,由f ′(x )=0解得x =25或x =-25(舍).而4<25<5,故当n ≤4时,数列{b n }单调递减;当n ≥5时,数列{b n }单调递增.而b 4=4+204-21=-12,b 5=5+205-21=-12,所以当n =4或n =5时,b n 取得最小值,最小值为-12.由题悟法1.数列中项的最值的求法根据数列与函数之间的对应关系,构造相应的函数a n =f (n ),利用求解函数最值的方法求解,但要注意自变量的取值.2.前n 项和最值的求法(1)先求出数列的前n 项和S n ,根据S n 的表达式求解最值;(2)根据数列的通项公式,若a m ≥0,且a m +1<0,则S m 最大;若a m ≤0,且a m +1>0,则S m 最小,这样便可直接利用各项的符号确定最值.以题试法3.(2012·江西七校联考)数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大值是( )A .310B .19 C.119D.1060解析:选C a n =1n +90n ,由基本不等式得,1n +90n ≤1290,由于n ∈N *,易知当n =9或10时,a n =119最大.递推公式和通项公式是数列的两种表示方法, 它们都可以确定数列中的任意一项,只是由递推 公式确定数列中的项时,不如通项公式直接,下 面介绍由递推公式求通项公式的几种方法.1.累加法[典例1] (2011·四川高考)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11[解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3.[答案] B[题后悟道] 对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式.2.累乘法[典例2] (2012·大纲全国卷)已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1, 整理得a n =n +1n -1a n -1.于是a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1.将以上n -1个等式中等号两端分别相乘,整理得a n =n (n +1)2. 综上可知,{a n }的通项公式a n =n (n +1)2.[题后悟道] 对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a na 1与n 的关系式. 3.构造新数列[典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________. [解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.[答案] 2×3n -1-1[题后悟道] 对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法.上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.1.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于( ) A .4 B .2 C .1D .-2解析:选A 由题可知S n =2(a n -1), 所以S 1=a 1=2(a 1-1),解得a 1=2.又S 2=a 1+a 2=2(a 2-1),解得a 2=a 1+2=4.2.按数列的排列规律猜想数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223解析:选C 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式,a n =(-1)n+12n 2n +1,故a 10=-2021.3.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =( ) A .2n -1 B .n 2 C.(n +1)2n 2D.n 2(n -1)2解析:选D 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.4.已知数列{a n }满足a 1>0,a n +1a n =12,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列D .不确定解析:选B ∵a n +1a n =12<1.又a 1>0,则a n >0,∴a n +1<a n .∴{a n }是递减数列.5.(2012·北京高考)某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 的值为( )A .5B .7C .9D .11解析:选C 依题意S n n 表示图象上的点(n ,S n )与原点连线的斜率,由图象可知,当n =9时,S nn 最大,故m =9.6.(2013·江西八校联考)将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 012项与5的差,即a 2 012-5=( )A .2 018×2 012B .2 018×2 011C .1 009×2 012D .1 009×2 011解析:选D 因为a n -a n -1=n +2(n ≥2),所以a n =5+(n +6)(n -1)2,所以a 2 012-5=1 009×2 011. 7.已知数列{a n }满足a st =a s a t (s ,t ∈N *),且a 2=2,则a 8=________. 解析:令s =t =2,则a 4=a 2×a 2=4,令s =2,t =4,则a 8=a 2×a 4=8. 答案:88.已知数列{a n }满足a 1=1,a 2=2,且a n =a n -1a n -2(n ≥3),则a 2 012=________.解析:将a 1=1,a 2=2代入a n =a n -1a n -2得a 3=a 2a 1=2,同理可得a 4=1,a 5=12,a 6=12,a 7=1,a 8=2,故数列{a n }是周期数列,周期为6,故a 2 012=a 335×6+2=a 2=2.答案:29.已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n =________. 解析:由已知条件可得S n +1=2n +1.则S n =2n +1-1,当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=2n +1-1-2n+1=2n,n =1时不适合a n ,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.答案:⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.10.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解:(1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). 故从第7项起各项都是正数.11.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.解:∵当n ≥2时,a n =S n -S n -1=(2n 2+2n )-[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4也适合, ∴{a n }的通项公式是a n =4n (n ∈N *). ∵T n =2-b n ,∴当n =1时,b 1=2-b 1,b 1=1.当n ≥2时,b n =T n -T n -1=(2-b n )-(2-b n -1), ∴2b n =b n -1.∴数列{b n }是公比为12,首项为1的等比数列.∴b n =⎝⎛⎭⎫12n -1.12.(2012·福州质检)数列{a n }中,已知a 1=2,a n +1=a n +cn (n ∈N *,常数c ≠0),且a 1,a 2,a 3成等比数列.(1)求c 的值;(2)求数列{a n }的通项公式.解:(1)由题知,a 1=2,a 2=2+c ,a 3=2+3c , 因为a 1,a 2,a 3成等比数列,所以(2+c )2=2(2+3c ), 解得c =0或c =2,又c ≠0,故c =2. (2)当n ≥2时,由a n +1=a n +cn 得 a 2-a 1=c , a 3-a 2=2c , …a n -a n -1=(n -1)c ,以上各式相加,得a n -a 1=[1+2+…+(n -1)]c =n (n -1)2c ,又a 1=2,c =2,故a n =n 2-n +2(n ≥2), 当n =1时,上式也成立,所以数列{a n }的通项公式为a n =n 2-n +2(n ∈N *).1.(2013·嘉兴质检)已知数列{a n }满足a 1=1,a n +1a n =2n (n ∈N *),则a 10=( ) A .64 B .32 C .16D .8解析:选B 因为a n +1a n =2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,所以a 2=2,则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25. 2.数列{a n }中,S n 为{a n }的前n 项和,n (a n +1-a n )=a n (n ∈N *),且a 3=π,则tan S 4等于( ) A .-33B. 3 C .- 3D.33解析:选B 法一:由n (a n +1-a n )=a n 得 na n +1=(n +1)a n ,可得3a 4=4a 3,已知a 3=π,则a 4=43π.又由2a 3=3a 2,得a 2=23π, 由a 2=2a 1,得a 1=π3,故S 4=a 1+a 2+a 3+a 4=103π, tan S 4=tan 103π= 3. 法二:∵由n (a n +1-a n )=a n ,得na n +1=(n +1)a n 即a n +1n +1=a n n, ∴a n n =a n -1n -1=a n -2n -2=…=a 33=π3. ∴a n =π3n , ∴S 4=a 1+a 2+a 3+a 4=π3(1+2+3+4)=103π,tan S 4=tan 103π= 3. 3.(2012·甘肃模拟)已知数列{a n }中,a 1=1,且满足递推关系a n +1=2a 2n +3a n +m a n +1(n ∈N *). (1)当m =1时,求数列{a n }的通项公式a n ;(2)当n ∈N *时,数列{a n }满足不等式a n +1≥a n 恒成立,求m 的取值范围.解:(1)∵m =1,由a n +1=2a 2n +3a n +1a n +1(n ∈N *),得 a n +1=(2a n +1)(a n +1)a n +1=2a n +1, ∴a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,公比也是2的等比数列.于是a n +1=2·2n -1,∴a n =2n -1. (2)∵a n +1≥a n ,而a 1=1,知a n ≥1,∴2a 2n +3a n +m a n +1≥a n ,即m ≥-a 2n -2a n , 依题意,有m ≥-(a n +1)2+1恒成立.∵a n ≥1,∴m ≥-22+1=-3,即满足题意的m 的取值范围是[-3,+∞).1.下列说法中,正确的是( )A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D .数列0,2,4,6,8,…可记为{2n }解析:选C ∵数列⎩⎨⎧⎭⎬⎫n +1n 的通项公式为a n =n +1n =1+1n ,∴a k =1+1k .故C 正确;由数列的定义可知A 、B 均错;D 应记作{2(n -1)}.2.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A .5B.72C.92D.132解析:选B a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,知a 2n =2,a 2n -1=12-2,故S 21=10×12+a 1=5+12-2=72. 3.如图关于星星的图案中,第n 个图案中星星的个数为a n ,则数列{a n }的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2解析:选C 从图中可观察星星的构成规律,n =1时,有1个;n =2时,有3个;n =3时,有6个;n =4时,有10个,…故a n =1+2+3+4+…+n =n (n +1)2. 4.已知数列{a n }中,a 1=3,a n +1=a n 2a n +1,则其通项公式为________. 解析:两边取倒数,得1a n +1=2a n +1a n =2+1a n ,故有1a n +1-1a n=2.故数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=13,公差为2的等差数列,所以1a n =13+2(n -1)=6n -53,故a n =36n -5. 答案:36n -55.已知数列{a n }满足:a 1=1,(n -1)a n =n ×2n a n -1(n ∈N ,n ≥2),则数列{a n }的通项公式为________.解析:当n ≥2,有(n -1)a n =n ×2n a n -1,故a n a n -1=n n -1×2n ,则有a n -1a n -2=n -1n -2×2n -1,a n -2a n -3=n -2n -3×2n -2,…,a 2a 1=21×22.上述n -1个式子累乘,得a n a 1=⎝⎛⎭⎫n n -1×2n ×⎝ ⎛⎭⎪⎫n -1n -2×2n -1×⎝ ⎛⎭⎪⎫n -2n -3×2n -2×…×⎝⎛⎭⎫21×22=n ×2n +(n -1)+(n -2)+…+2=n ×2(n -1)(n +2)2.又因为a 1=1,所以a n =n ×2(n -1)(n +2)2,而当n =1时,a 1=1×20=1,也满足上式,故数列{a n }的通项公式为a n =n ×2(n -1)(n +2)2. 答案:a n =n ×2(n -1)(n +2)2。
1数列概念是什么通项公式是怎样的数列的通项公式数列的通项公式:Sn=A1+A2+a3+……+An,按肯定次序排列的一列数称为数列,而将数列{an}的第n项用一个详细式子(含有参数n)表示出来,(an=f(n))称作该数列的通项公式。
正如函数的解析式一样,通过代入详细的n值便可求知相应an项的值。
而数列通项公式的求法,通常是由其递推公式经过若干变换得到。
对于一个数列{an},假如任意相邻两项之差为一个常数,那么该数列为等差数列,且称这肯定值差为公差,记为d;从第一项a1到第n 项an的总和,记为Sn。
数列的相关学问内容1、数列极限的求法:利用定积分求极限,利用幂级数求极限;利用简洁的初等函数,常能求得一些特别形式的数列极限,利用级数收敛性判定极限,存在由于级数与数列在形式上可以相互转化等。
2、数列求和的方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差X等比)、公式法、迭加法。
以及分组求和法个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
3、通项公式和递推公式的区分:通项公式是把项数直接代入可以1求得项值的公式。
递推公式指第n项,与数列的前n项和存在肯定的关系,把n代入后,并不能直接求和an的值的一种公式。
数列和函数的关系1.联系:他们的变量都满意函数定义,都是函数。
可以有an=f(n).函数和数列的问题可以相互转化。
函数问题转化成数列问题来解决,就是数列法。
如,先熟悉数列极限,再熟悉函数极限。
数列的问题转化成函数问题来解决,就是函数法。
如,用求函数最值的方法来求数列的最值。
又如,an=n^2的图象是分布在抛物线y=x^2右支上的点。
2.区分:数列是离散型函数,自变量是正整数。
定义域是正整数集及其子集。
图象是孤立的点。
函数是连续型函数居多,尤其是初等函数。
自变量是实数。
定义域是实数及其子集。
图象是不间断的曲线(有间断点的除外)。
数列的通项公式数列是数学中一种非常基础的概念,它给我们提供了一种非常简单而有效的描述一系列数字规律的方法。
在数列中,我们可以通过数列中前若干个数字的值来预测后面的数字,从而得到数列的通项公式。
本文将详细介绍什么是数列通项公式,以及如何通过数列中的规律来求解通项公式。
一、什么是数列在数学中,数列是指一系列按照一定规律排列的数字。
比如,1,2,3,4,5就是一个从1开始,每次加1的等差数列,而1,1,2,3,5,8,13...就是一个按照斐波那契数列规律排列的数列。
数列是一种非常基础的数学概念,它们在各个数学领域中都有广泛的应用,比如在微积分和代数中都会用到数列。
数列中的元素可以是自然数、整数、有理数以及实数等各种类型的数字。
而数列中的规律可以是简单的加减乘除等基本运算,也可以是具有复杂逻辑的函数关系。
在本文中,我们重点介绍数列中的等差数列和等比数列这两类数列。
二、等差数列等差数列是指一个数列中每个元素之间相差相同的一种数列。
比如,1,3,5,7,9,11就是一个公差为2的等差数列,其中的等差就是每个元素之间的差值。
在这个例子中,每个元素之间的差值都是2。
如果我们知道一个等差数列的前n项和公差,那么我们就可以通过公式来求出数列中任意一项的值,这个公式就是等差数列通项公式。
等差数列通项公式的一般形式如下:an = a1 + (n-1)d其中,an表示数列中的第n项,a1表示数列中的第一项,d表示数列中相邻两项的差值。
通过这个公式,我们就可以求出等差数列中任意一项的值。
例如,对于一个公差为3,前5项和为45的等差数列,我们可以通过等差数列通项公式来求出数列中任意一项的值。
首先,我们需要先求出数列中的第一项a1。
由于前5项和为45,我们可以得到以下方程:a1 + (a1 + 3) + (a1 + 6) + (a1 + 9) + (a1 + 12) = 45将方程化简后,可以得到a1=3。
接下来,我们就可以通过等差数列通项公式来求出数列中任意一项的值。
数列和数列的通项公式数列是指按照一定规律排列的一系列数字或者数值。
在数学中,数列是研究数学问题的重要工具之一。
数列不仅在数学中有广泛的应用,也在其他领域中起到重要的作用,比如物理学、计算机科学等。
数列可以分为等差数列和等比数列两种。
等差数列是指数列中每个相邻的数之间差值相等,而等比数列是指数列中每个相邻的数之间的比值相等。
数列的通项公式是指可以利用该公式来计算数列中任意一项的数值,常表示为an。
一、等差数列等差数列的通项公式为:an = a1 + (n-1)d其中,an表示数列中第n项的值,a1表示数列的首项,d表示数列的公差,n表示项数。
例:求以下数列的通项公式和前n项和。
1, 4, 7, 10, 13, ...首先,观察数列的公差为3,且首项为1。
根据等差数列通项公式可得:an = 1 + (n-1)3进一步化简得:an = 3n - 2接下来,计算前n项的和。
可以利用等差数列前n项和的公式:Sn = n/2 * (a1 + an)。
带入已知值计算得:Sn = n/2 * (1 + 3n - 2) = n/2 * (3n - 1)二、等比数列等比数列的通项公式为:an = a1 * r^(n-1)其中,an表示数列中第n项的值,a1表示数列的首项,r表示数列的公比,n表示项数。
例:求以下数列的通项公式和前n项和。
2, 4, 8, 16, 32, ...首先,观察数列的公比为2,且首项为2。
根据等比数列通项公式可得:an = 2 * 2^(n-1)进一步化简得:an = 2^n接下来,计算前n项的和。
可以利用等比数列前n项和的公式:Sn = (a1 * (r^n - 1))/(r - 1)。
带入已知值计算得:Sn = (2 * (2^n - 1))/(2 - 1) = 2^n - 1总结:数列是一系列按照规律排列的数字或者数值。
等差数列和等比数列是常见的数列类型。
通项公式是计算数列中某一项数值的公式,可以根据数列的规律进行推导。
数列的概念与通项公式数列是数学中常见的概念,它由一系列按照一定规律排列的数所构成。
数列可以有无限项,也可以有有限项。
在数列中,每一项都有一个对应的位置,称为项号。
数列中的每一项按照次序排列,通常用字母表示。
数列的一般形式是:a1, a2, a3, ..., an,其中a1表示第一项,an表示第n项。
为了便于描述数列的规律,我们引入了通项公式的概念。
通项公式是指描述数列中第n项与项号n之间的关系式。
它可以帮助我们轻松地计算数列中的各项数值。
根据数列的规律和特点,可以找出适合该数列的通项公式。
一、等差数列的概念与通项公式等差数列是指数列中任意两项之间的差值都相等的数列。
差值通常被称为公差,用字母d表示。
等差数列的通项公式可以表示为:an = a1 + (n-1)d其中,an表示等差数列中的第n项,a1表示第一项,d表示公差。
例如,考虑等差数列1, 4, 7, 10, 13...,首项a1为1,公差d为3。
根据通项公式,可以得到第n项的值:an = 1 + (n-1)3通过计算,可以得到等差数列的通项公式为:an = 3n - 2二、等比数列的概念与通项公式等比数列是指数列中任意两项之间的比值都相等的数列。
比值通常被称为公比,用字母q表示。
等比数列的通项公式可以表示为:an = a1 * q^(n-1)其中,an表示等差数列中的第n项,a1表示第一项,q表示公比。
例如,考虑等比数列1, 2, 4, 8, 16...,首项a1为1,公比q为2。
根据通项公式,可以得到第n项的值:an = 1 * 2^(n-1)通过计算,可以得到等比数列的通项公式为:an = 2^(n-1)三、斐波那契数列的概念与通项公式斐波那契数列是指数列中的每一项都等于前两项之和的数列。
斐波那契数列的通项公式可以表示为:an = a(n-1) + a(n-2)其中,an表示斐波那契数列中的第n项。
例如,考虑斐波那契数列1, 1, 2, 3, 5...,可以根据通项公式计算出后续项的值。
数列的概念与通项公式数列的概念与通项公式【基本概念】1.数列、数列的项按照一定顺序排列着的一列数叫做数列,数列中的每个数叫做这个数列的项.2.数列的通项公式数列{a n}的第n项与序号n之间的关系可以用一个公式表示,这个公式叫做这个数列的通项公式.3.数列与函数的关系数列可以看作是一个定义域为正整数集N*或它的有限子集{1,2,3,…,n}的函数,当自变量从小到大依次取值时对应的一列函数值.4.数列可用图象来表示在直角坐标系中,以序号为横坐标来表示一个数列.图象是一些相应的项为纵坐标来描点画图孤立的点,它们位于第一象限、第四象限或x轴的正半轴.5.数列的递推公式如果已知数列{a n}的第1项(或前几项),且(4)1,-23,35,…,-1n -1·n 2n -1,…; (5)1,0,-1,…,sin nπ2,…. 其中,有穷数列是________,无穷数列是______,递增数列是_______,递减数列是________,摆动数列是_______,周期数列是________.(将合理的序号填在横线上)2.观察法求数列的通项公式例2 写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)11×2,-12×3,13×4,-14×5; (2) 22-12,32-13,42-14,52-15; (3)112,223,334,445; (4)9,99,999,9999.3.数列通项公式的应用例3 (1)已知数列{a n }的通项公式为a n =n 2n 2+1,试判断0.7是不是数列{a n }中的一项?若是,是第几项?(2)已知数列{a n }的通项公式为a n =3-2cos nπ2.求证:a m +4=a m . 4.根据数列的递推公式写出数列的前几项,并归纳通项公式例4 根据下列条件,写出数列的前四项,并归纳猜想它的通项公式.(1)a 1=0,a n +1=a n +2n -1 (n ∈N *)(2)a 1=1,a n +1=a n +a n n +1. (3)a 1=2,a 2=3,a n +2=3a n +1-2a n (n ∈N *)【总结提升】1.数列的通项公式如果数列的第n 项a n 与n 之间的关系可以用一个函数式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.注意:数列的通项与通项公式是有区别的,前者是函数值,后者是一个函数的解析式.2.数列与函数的关系对任一数列{a n},每一项的序号n与这一项a n的对应关系,可以看成序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以(或它的有限子看成是一个定义域为正整数集N+集{1,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的函数值(右图),而数列的通项公式也就是相应函数的解析式.反过来,对于函数y=f(x),如果f(i)(i =1,2,3,…,n,…)有意义,那么可以得到一个数列f(1),f(2),f(3),…,f(n),….3.数列的表示法从函数观点看,数列除了可以用通项公式表示外,还有如下表示方法:(1)列表法(又称列举法),即通过列举数列的前n项来表示数列的方法.(2)图象法,由于数列是定义在正整数集N+(或它的有限子集{1,2,3,…,n})上的函数,因此,数列的图象是相应的曲线(或直线)上横坐标为正整数的一些孤立的点.4.通项公式和递推公式的区别通项公式直接反映a n和n之间的关系,即a n是n的函数,知道任意一个具体的n值,通过通项公式就可以求出该项的值a n;而递推公式则是间接反映数列的式子,它是数列任意两个(或多个)相邻项之间的推导关系,不能由n直接得出a n.5.如何用递推公式给出一个数列用递推公式给出一个数列,必须给出①“基础”——数列{a n}的第1项或前几项;②递推关系——数列{a n}的任一项a n与它的前一项a n(或前几项)之间的关系,并且这个-1关系可以用一个公式来表示.。
数列的通项公式求法数列是数学中常见的概念,指由一系列按照特定规律排列的数字组成的序列。
数列的研究在数学学科中有着广泛的应用,而研究数列的通项公式求法也是数学学习的基础之一。
本文将介绍数列的通项公式的定义以及求解方法。
一、数列的通项公式定义数列是由若干个元素按一定顺序组成的序列。
具体来说,数列可以表示为:$a_1,a_2,a_3,\cdots,a_n,\cdots$其中,$a_n$ 表示数列的第 $n$ 项,$n$ 表示项数。
如果数列的每一项都可以用一个公式表示出来,那么这个公式称为数列的通项公式。
二、数列的通项公式求解方法对于一个数列,要确定它的通项公式,一般需要进行以下三步:1. 推导出数列的首项和公差在数列中,如果每一项与前一项之间的差为一个固定的数,称为数列的公差。
那么可以通过求出数列前两项之间的差,来计算出数列的公差。
假设数列的第一项为 $a_1$,公差为 $d$,那么数列的第 $n$ 项可以表示为:$a_n=a_{n-1}+d$而数列的首项 $a_1$ 可以直接由数列的题目给出或者通过求出数列前几项之间的关系得到。
2. 列出数列的通项公式在知道了数列的首项和公差之后,可以尝试列出数列的通项公式。
大多数数列的通项公式可以表示为:$a_n=a_1+(n-1)d$其中,$a_n$ 表示数列的第 $n$ 项,$a_1$ 表示数列的首项,$d$ 表示数列的公差。
这个公式通常也被称为等差数列的通项公式。
需要注意的是,对于有些数列,它们的通项公式并不是等差数列的通项公式,这时需要根据数列的特点选择适当的公式来求解。
3. 验证数列的通项公式是否正确在求解出数列的通项公式之后,需要进行验证,确保这个公式可以正确地表示出数列的每一项。
验证方法一般是通过随机选取数列中的某几项,将它们代入通项公式进行计算,得到的结果是否与实际数列中对应的项相符。
三、数列的通项公式求解实例下面通过一个实例来演示如何求解数列的通项公式。
数列的概念与基本性质数列是数学中的重要概念,它在不同领域中都有广泛的应用。
本文将介绍数列的概念与基本性质,帮助读者对数列有更深入的了解。
一、数列的概念数列是由一组有序的数按照一定规律排列而成的序列。
数列可以用符号表示为{an},其中n表示项的位置,an表示该位置上的数。
常见的数列包括等差数列和等比数列。
等差数列中,相邻项之间的差是常数d,通项公式可以表示为an = a1 + (n-1)d,其中a1为首项。
而等比数列中,相邻项之间的比是常数q,通项公式可以表示为an =a1 * q^(n-1),其中a1为首项。
二、数列的基本性质1. 通项公式:数列的通项公式是用来计算数列中任意一项的公式。
通过观察数列中的规律,可以得到通项公式。
对于等差数列和等比数列,上述已经介绍了其通项公式。
2. 首项和末项:数列中的第一项称为首项,而最后一项称为末项。
在等差数列中,末项可以通过首项和公差计算得到,即an = a1 + (n-1)d。
而在等比数列中,末项可以通过首项和公比计算得到,即an = a1 *q^(n-1)。
3. 公差和公比:在等差数列中,相邻项之间的差是常数,称为公差。
而在等比数列中,相邻项之间的比是常数,称为公比。
公差和公比可以描述数列中的增长规律,对于数列的计算和研究非常重要。
4. 前n项和:数列的前n项和是指数列中前n项的和。
根据数列的增长规律和通项公式,可以通过求和公式计算前n项和。
对于等差数列,前n项和可以用求和公式Sn = n * (a1 + an) / 2计算;对于等比数列,前n项和可以用求和公式Sn = a1 * (1 - q^n) / (1 - q)计算。
5. 数列的性质:数列有许多重要的性质,例如有界性、单调性和有限性等。
有界性是指数列的数值都在一定范围内;单调性是指数列中的数值递增或递减;而有限性是指数列中的项数是有限的。
6. 递推关系:递推关系是指数列中的每一项可以通过前一项计算得到。
数列的概念及通项公式数列是指按照一定规律排列的一系列数的集合。
它是数学中重要的基础概念之一,被广泛应用于各个领域。
数列的通项公式是指能够确定数列中第n项的公式。
通常使用字母an表示数列的第n项,使用n表示项数。
数列可以分为等差数列和等比数列两种常见类型。
一、等差数列等差数列是指数列中任意两个相邻项之差都相等的数列。
这个固定的差值称为公差,通常用d表示。
例如,1,4,7,10,13就是一个等差数列,公差为3等差数列的通项公式可以表示为an = a1 + (n-1)d其中a1为数列的首项,d为公差。
通过这个公式,我们可以根据已知条件计算出数列的任意一项。
等差数列的一些基本性质包括:1. 任意项和:等差数列的前n项和Sn可以表示为Sn = (a1+an)/2 * n,其中a1为首项,an为第n项,n为项数。
2. 项与项之和:等差数列中的每一项与它的对称项之和等于首项与末项之和。
即an + an-1 = a1 + an。
3. 对称性:等差数列中,关于中间项(an/2)对称的项相等。
二、等比数列等比数列是指数列中任意两个相邻项之比都相等的数列。
这个固定的比值称为公比,通常用q表示。
例如,1,2,4,8,16就是一个等比数列,公比为2等比数列的通项公式可以表示为an = a1 * q^(n-1)其中a1为数列的首项,q为公比。
通过这个公式,我们可以根据已知条件计算出数列的任意一项。
等比数列的一些基本性质包括:1.任意项和:等比数列的前n项和Sn可以表示为Sn=(a1(1-q^n))/(1-q),其中a1为首项,q为公比,n为项数。
2. 项与项之比:等比数列中的两个相邻项之比等于公比。
即an /an-1 = q。
3. 对称性:等比数列中,关于中间项(an/2)对称的项相等。
三、其他类型的数列除了等差数列和等比数列之外,还存在其他类型的数列。
1.斐波那契数列:斐波那契数列是一种特殊的数列,它的前两项为1,从第三项开始,每一项都是前两项的和。