高强度灰铸铁生产技术新进展
- 格式:pdf
- 大小:654.33 KB
- 文档页数:5
高强度灰铸铁(HT300)研究作者:袁执一来源:《现代商贸工业》2010年第13期摘要:虽然人类掌握灰铸铁的熔炼技术已有好几千年的历史,但是在如何提高其强度和力学性能方面,我们仍然有很多工作要做。
在探寻企业在有效控制产品成本的前提下,稳定高效的生产高强度、高使用性能的灰铸铁的方法,提高产品的市场适应力,增强企业的市场竞争力。
关键词:高强度灰铸铁;铸造;熔炼工艺中图分类号:TB文献标识码:A文章编号:1672-3198(2010)13-0369-010 前言随着公司市场开发拓展,越来越多的高技术质量要求的铸造产品纳入公司的生产序列。
在有效控制生产成木的前提下,如何稳定高效的获得高强度灰铸铁,满足顾客的定货要求,是我们一个研究课题,本文叙述了在电炉熔炼的条件下,高强度(HT300)灰铸铁的生产技术。
1 目标在尽量保持原有的熔炼工艺基础上,通过综合运用现有的熔炼技术,达到细化灰铸铁中的石墨,适当增加灰铸铁中珠光体含量,形成碳化物以提高灰铸铁的机械性能,使其抗拉强度达到300N/mm2,并将三角试片白口宽度控制在4mm以下,防止“白口”现象的发生,以保证产品的质量。
2 面临的问题我们厂生产的灰铸铁件主要牌号足HT200和HT250,无法生产抗拉强度达300N/mm2到合格的HT300产品。
主要原因是铸件内部珠光体含量少,石墨多数成片状,从而分割基休,在石墨尖角处且易造成应力集中,形成了许多微小裂纹,使灰铸铁的抗拉强度、塑性和韧性远低于钢,因此降低了铸件的机械性能。
3 分析影响材料性能的因数有:3.1 碳当量对材料性能的影响决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。
当碳当量(CE=C+1/3Si)较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,形成大量片状石墨。
这样的石翠会大大降低灰铸铁的强度。
在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。
当随着C、Si的量提高,会使珠光体量减少,铁素体量增加。
生产高强度灰铸铁件的工艺措施1、强化孕育铸铁:炉料中加入较多的废钢,采用优质铸造焦,以得到出炉温度大于1500℃和高碳当量的铁水,用高效孕育剂强化孕育从而得到高强度灰铸铁。
过去生产孕育铸铁依靠加入较多废钢,降低碳量来提高强度,但这种方法工艺性能不好,白口倾向大,尤其是对薄壁铸件(最小壁厚3~10mm)o近代高强度孕育铸铁不用这种方法,靠高效孕育剂来强化孕育,提高性能。
一般的方法是:碳当量在3.9~4.1%左右,温度1480C左右,要求铁水氧化少,采用Si-Ca、Cr-Si-Ca、Re-Ca-Ba>Si-Ca>Si-Fe复合、稀土复合等高效孕育剂,进行孕处理。
例如某厂5吨冲天炉,利用铸造焦,炉料中加入40%以上废钢,总焦比为7时,铁水温1520°C~1540°C,炉渣中氧化铁含量低(1.8-3.0%)o经特种孕育剂孕育处理,当碳当量为4.28%时,试棒抗拉强度可达250MPa,相对强度RG=L28,HB229,珠光体含量大于98%。
又如某单位通过提高铁水过热温度,然后采用Re-Ca-Ba孕育剂对铁水进行孕育处理,烧注一批缸盖铸件,当碳当量为3.9~4.05%时,抗拉强度285~304MPa,相对强度RG=I.1~1.21,石墨形态好,加工后水压试验没发现缩松和漏水现象。
2、合成铸铁所谓合成铸铁工艺,就是用感应电炉熔炼,炉料中用50%以上的废钢,其余为回炉铁和铁屑,经增碳处理得到的铁液。
这种方法的优点是:(1)炉科采用大量废钢,不用生铁,降低了铸铁成本;(2)可获得含磷量低的铁水,减少磷量对缸体、缸盖等薄壁高强度灰铁缩松和渗漏缺陷的影响;(3)可避免生铁遗传性影响,铸铁石墨形态好,珠光体含量高,机械性能好,在同样当量时强度可比冲天炉铸铁提高1~2个牌号。
利用合成铸铁工艺熔炼高强度灰铸铁生产缸体,效果很好,生产结果表明:(1)采用合成铸铁熔炼工艺浇注的缸体机械性能高,当碳当量为4.0%时,抗拉强度大于250MPa,比冲天炉熔炼提高一个牌号;(2)铁水断面敏感性小,缸体不同厚度断面及阶梯试块断面硬度分布均匀;(3)铸铁含磷量低,含杂质少,克服铸件渗漏缺陷;(4)成本低;(5)熔炼工艺简单易行,容易撑握。
高碳当量高强度灰铸铁的研究第24卷增刊石油机械1996阜高碳当量高强度灰铸铁的研究多/一q-垄篮童潘保胜』'棚丽丽摘要提高灰铸铁碳当量和锰量,并分别加入与不加入台金,研究它们对灰铸铁组织和性能的影响.不加入台金时,在高碳当量(CF=3.9%一4.2%)高锰量(Mn=1.8%一2.4%)条件下,可使抗拉强度稳定达到250MPa.当加入0.2%一0.4%Cr和0.2%一O.8%Cu时,在高碳当量高锰量条件下,可使抗拉强度稳定达到300MPa.除作常规的机械性能检测外,还对其成熟度嬲,相对硬度R//,品质系数&,共晶度&和弹性模量E等进行了检测,表明高碳当量高强度灰铸铁是一种低收缩,低应力,品质优良的灰铸铁.工业发达国家十分重视对灰铸铁的研究,其着眼点是提高碳当量,在保证良好铸造性能的同时获得强度高,性能稳定,品质单一的铸铁件.目前对高强度灰铸铁除作常规机械性能检测外,还提出了成熟度RG(相对强度昭),硬化度ltG(相对硬度RIt),品质系数&,共晶度&,弹性模量五等柱强I指标.关于这些指标的意义及计算公式可参见文献[1].研究的理论出发点我们的研究着眼于两个方面:一是使其具有整体优良的铸造性能,即收缩量小,铁水流动性良好,铸造残余应力低,自口化倾向小;二是使其具有良好的金相组织和机械性能,即奥氏体枝晶多,石墨细小,珠光体量多,共晶团和枝晶内外显徽硬度相对均匀.平均度高,抗拉强度高,硬度值适宜于切削加工.根据金属学原理,铸铁碳当量越接近共晶点其铸造性能越好.即碳当量越接近4.28%铸造性能越好.因高强度铸铁均为亚共晶铸铁,故提高灰铸铁的铸造性能实质就是提高碳当量.提高碳当量的不利影响是使石墨化倾向增大,降低基体珠光体含量和分散度,从而降低灰铸铁的强度和硬度.-李健章.高级工程师,生于1963年.1984年毕业于天津大学铸造专业.现从事熔炼拄术管理.地址}(062552)河北省任丘市.电话:(∞圩)2726928.(收稿日期;1996-06-041修改稿收到日期:1906-10-09)石油机械1996点灰铸铁的金相组织由金属基体和片状石墨组成.基体的强度随珠光体含量和分散度的增加而提高.减少石墨数量,细化石墨片,使石墨片均匀弥散分布能显着减小对基体的割裂作用.在灰铸铁的基本成分中提高锰量能使珠光体含量和分散度显着增加;同时提高锰量能阻碍石墨的析出并使铁水激冷倾向增大而使石墨细化.这样,提高锰量能使灰铸铁强度显着提高.锰是弱的碳化物形成元素,在显着提高强度的同时,白口化倾向无显着增加,对铁水流动性,收缩性,残余铸造应力几乎无影响.碳当量和锰量同时提高的结果,使各自的不利影响相互抵消.而在铸造性能方面,碳当量的有利影响占优势;在强度性能方面,锰的有利影响占优势.这样,高碳当量高锰铁就可成为兼有优良铸造性能和高强度的铸铁材料.根据上述观点,我们查阅了大量的技术资料,参照国外的发展趋势和国内的前沿性研究结果,确定了灰铸铁的化学成分:C=3.9%一4.2%;C=3.2%一3.5%;Si=1.6%一2.1%;Mn:1_8%一2.4%;~hSi=1.12—1.23.试验研究结果及分析华北石油管理局第二机械厂生产的抽油机曲柄采用HT250灰铸铁.1992年以前,一直沿用传统的化学成分控制熔炼灰铸铁的成分.传统成分的灰铸铁牌号越高其碳当量就控制得越低.碳当量越低,铸造生产时收缩倾向和白口倾向就越大,铁水流动性就越差,铸造残余应力就越大.这样,由于收缩引起的表面大面积缩凹缺陷和由于铁水流动性差引起的齿部冷隔缺陷,就造成很多废品和次品;在成品中由于形成硬度高的表面及局部白口,使切削加工性能变差;由于收缩造成的残余铸造应力很大,必须经过很好的消除应力退火才能使用.在实际生产中,为获得较好的铸造性能,不得不将强度降低一些.这样,曲柄实际铸铁性能只能达到HT200号灰铸铁的指标,达不到设计要求的HT250号灰铸铁的性能.自1992年1月开始进行这项研究工作.在抽油机曲柄生产中进行了9炉生产性试验,生产曲柄18块,总重63t.熔炼设备为3t/h冲天炉.9炉的单铸试棒直径为30mm,单铸试棒化学成分,抗拉强度,金相组织和布氏硬度检测结果见表1.表1试验灰铸铁单铸试棒的化学成分%炉敬123456789平均C3.3O3.403.563.603643493.523.393.403.48化1.69I.凹178l_78l_921.761.792062.06184学Mn2.041.982.1l2.04I.932092192.402.372.13成分P0068O.06800880.084O.0820.O.0690.1∞O.I2O0085S0.∞30.014O.OO056O.054OO65O.∞9O.O"O.00o6l(MPa)掰2912.50弼336拍0258蜕27OHB邶194I8lI841781l84193192l88盘相基体组錾l%一99%殊光体.石墨呈A型均匀分布.从表1中可以看出.高碳当量高锰量灰铸铁抗拉强度在250MPa以上,是一种高强度灰第24卷增刊李健章等:高碳当量高强度灰毒寺轶的研究铸铁,其硬度适中,适合切削加工,生产的曲柄外观良好.根据单铸试棒的检测数据,利用文献[1]中公式计算了成熟度,相对硬度,品质系数, 弹性模量和共晶度,计算结果见表2.从表2中看出,高碳当量高强度灰铸铁的品质相当或接近国外水平.表2试验灰铸铁单铸试棒的性能试验结果炉欢123456789平均船0.991.0911O1.121.241豫1.I】1.031.04111J州0.900.850860.890.84O750.860.900.9l086&1.101281.281261.481.841291.141.141290.12O.120.120.11012O.130.120.120.120.12&0.88O.9】0.960970990.940.950930.940.94高碳当量高强度灰铸铁的试验成功,不但很好地解决了上述难题,也对随后的研究工作给予了强有力的支持.从试验成功时起,华北石油管理局第二机械厂生产的抽油机曲柄全部采用了高碳当量高强度灰铸铁.在随后的研究工作中,严格控镧灰铸铁的化学成分,从而保证了抗拉强度稳定在250MPa以上,平均值在270MPa.此外,我们还分析研究了高碳当量高强度灰铸铁的收缩性,铸造残余应力,白口倾向,断面敏感性,微量台金化等,研究结果如下.1.收缩性一般设备所用灰铸铁是亚共晶铸铁,即c目值为3.2%一4.3%的铸铁.从铁水浇注到完全凝固,体积变化可分为三个阶段,即熔液收缩,奥氏体枝晶初晶收缩,共晶凝固膨胀.根据文献[2]可得:熔液收缩量%式中:为浇注温度.奥氏体枝晶初晶收缩量','一,'A=3.5×—暑%P—式中:为共晶碳量;为奥氏体最大固溶碳量.共晶奥氏体收缩量=(1-Q/]oo)×等等曷s%共晶石墨膨胀量F=(1一Q/]OO)340%这些结果加在一起就得到了从浇注到凝固整个过程的体积变化.表3是浇注温度为1350~C时高碳当量高强度灰铸铁与传统HT250灰铸铁的计算结果.从计算结粜看,高碳当量高强度灰铸铁比传统瑚50的收缩小得多.在实际生产中,由于高碳当量高强度灰铸铁具有更高的流动性,浇注温度可降低,故其收缩还要小.2.断面敏感性我们浇注了壁厚相差7倍阶梯形试样,在每个阶梯的中部锯断,并在断面中心处测定其石油机械1996卑布氏硬度值.结果表明,断面硬度值差只有HB8.这说明高碳当量高强度灰铸铁对壁厚不敏感,断面敏感性小,薄壁处与厚壁处基本组织均匀.因此,此种灰铸铁能适应壁厚悬殊铸件,薄壁件,厚大件生产的需要.苎鐾苎苎经苎籼多炉次的炉前三角试片检验,自::::::::=:::::::::===::::.::口宽度均不超过l,说明其白璺!l兰墨璺苎堡垦l堕竺n倾向小.查阅传统HT250灰:l;..4848l-铸铁炉前记录,其白口宽度为3共晶磺量cl3.73l383~7irma.用高碳当量高强度灰铸奥氏体量太固涪碳量l-56l?66铁生产的曲柄切削加工性能良奥嚣il::l瑚,34好,束出现过从前用传统}玎f250共晶奥氏体收靖量l2.96l2.07灰铸铁生产时因齿部白口化而造共晶石墨膨胀量I6.48l53成的难加工和崩齿现象.塑翌型匕_二垒二二盟_L———旦兰———』—苎4.铸造残余应力采用应力框法测定了铸态和去应力退火后的铸造残余应力.应力框用同包铁水浇注.结果表明,铸态平均值为32~Pa,退火态平均值为31.5咖,退火后铸造残余应力没有显着下降,证明高碳当量高强度灰铸铁是一种低应力灰铸铁.5.微量合金化在高碳当量高强度灰铸铁的基本成分中,加入0.2%一O.4%铬和0.2%O.8%铜,测试其抗拉强度.结果表明抗拉强度可提高20~50MPa,在选择较高台金量时可使抗拉强度稳定达到3o0加以上.采用铬铜微量合金化,其铸造性能无显着变化.结论华北石油管理局第二机械厂自1992年开始用高碳当量高强度灰铸铁生产抽油机曲柄,共生产曲柄250块,总重875t.用高碳当量高强度灰铸铁生产抽油机曲柄的优越性有:1保证了曲柄的强度性能,稳定了生产.2,高碳当量高强度灰铸铁的铸态应力低,自1993年起取消了去应力退火,大大节约了能源,减少了生产工序.3,白口倾向小,硬度适宜,提高了切削加工效率,防止了因断齿而使曲柄报废的生产事故.4.铁水流动性好,避免了齿部冷隔缺陷,减少了大量焊补工作和节省了贵重铸铁焊条.5.收缩性小,从而减小或取消了冒口,控制浇注温度使工艺出品率从70%提高到90%.参考文献1杨国杰.灰铸铁的成熟度与相对强度,硬化度与相对硬度,品质系数或质量指数(2):382真毁统.灰铸铁的凝固与产生缩孔的条件.铸造,1988,(11):42—43铸造技术,1992,(奉文蝙辑蒋新源)。
合理地使用增碳剂半个世纪以来,铸铁件的生产技术有了长足的进步,如在球铁生产中,ADI技术的成熟和高硅固溶强化铁素体球铁的推广,,给球铁生产技术的发展注入了新的动力,而在灰铸铁的生产技术方面,我认为采用合成铸铁技术,应当是一个很大的技术进步,它与我们生产高强度高碳当量的铸铁件找到一条正确的途径,缩短了与国外先进国家的技术差距。
合成铸铁生产技术就是改变了过去长期以来一直用生铁作为主要炉料成分的配料方法,而是不用生铁,或只用少量的生铁,主要采用废钢做主要炉料,配以增碳剂增碳来达到指定的化学成分和新的配料方法。
新的配料方法与老方法相比,主要有一下三个方面优点:1、避免了新生铁遗传性2、增碳剂增加了外来的石墨核心3、是废钢中的氮及从增碳剂中带进来的更多氮促进了珠光体和改变了石墨形态,但众多的介绍合成铸铁经验文献中,基本上都推荐要采用低氮低硫的幼稚石墨型增碳剂,其原因就是石墨型增碳剂能直溶增碳达度块,回收率高,因而在采用增碳剂时,只注意了石墨形态,含碳量,灰分和粒度,而不去关注增碳剂含氮量高低,常常把其中的氮作为影响铸件的气孔缺陷的原因而拒绝利用氮能增加铸件强度的有利条件,从而对利用增碳剂中的氮的有利作用。
做了理论上的肯定,而实际上的否定,但在实际运用中增碳剂的生产厂家一改不进行氮含量的分析,在采用的技术条件上也没有对氮含量的分析,因而在增碳剂的含氮量及生产出的灰铸铁件中的氮处于一个失控的状态,因此尽管许多铸造厂也采取了高比例的废钢配比,也加入了2%左右的增碳剂,但所得结果,有的厂铸铁件中含氮量超高,产生氮气孔而使铸件报废,而大多数工厂生产出来的铸件性能仍然不高,本体强度难以稳定地满足HT250的要求,仍要采用低碳当量来提高强度。
百铸网在近三年来,一直在宣传要利用增碳剂中的氮有利作用,并且帮助了很多厂,在时间中利用增碳剂中氮和硫,稳定地成批生产了HT250,HT300的铸铁件,合理地选用增碳剂。
掌控好其中的氮和硫就能稳定地生产出高强度高碳当量的铸铁件,根据资料和我们的实验室数据,氮在铸铁中最明显的作用就是稳定珠光体,而保证95%以上的珠光体是生产高强度的基本要求,氮在50-120ppm时能有效地抑制铁素体的生成,而当含量过高时有产生氮气孔的危险,我们控制厚大件的氮含量不超过80ppm,中小件不超过120ppm作为控制界限。
高强度灰铸铁(HT300)研究虽然人类掌握灰铸铁的熔炼技术已有好几千年的历史,但是在如何提高其强度和力学性能方面,我们仍然有很多工作要做。
在探寻企业在有效控制产品成本的前提下,稳定高效的生产高强度、高使用性能的灰铸铁的方法,提高产品的市场适应力,增强企业的市场竞争力。
标签:高强度灰铸铁;铸造;熔炼工艺0 前言随着公司市场开发拓展,越来越多的高技术质量要求的铸造产品纳入公司的生产序列。
在有效控制生产成木的前提下,如何稳定高效的获得高强度灰铸铁,满足顾客的定货要求,是我们一个研究课题,本文叙述了在电炉熔炼的条件下,高强度(HT300)灰铸铁的生产技术。
1 目标在尽量保持原有的熔炼工艺基础上,通过综合运用现有的熔炼技术,达到细化灰铸铁中的石墨,适当增加灰铸铁中珠光体含量,形成碳化物以提高灰铸铁的机械性能,使其抗拉强度达到300N/mm2,并将三角试片白口宽度控制在4mm以下,防止“白口”现象的发生,以保证产品的质量。
2 面临的问题我们厂生产的灰铸铁件主要牌号足HT200和HT250,无法生产抗拉强度达300N/mm2到合格的HT300产品。
主要原因是铸件内部珠光体含量少,石墨多数成片状,从而分割基休,在石墨尖角处且易造成应力集中,形成了许多微小裂纹,使灰铸铁的抗拉强度、塑性和韧性远低于钢,因此降低了铸件的机械性能。
3 分析影响材料性能的因数有:3.1 碳当量对材料性能的影响决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。
当碳当量(CE=C+1/3Si)较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,形成大量片状石墨。
这样的石翠会大大降低灰铸铁的强度。
在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。
当随着C、Si的量提高,会使珠光体量减少,铁素体量增加。
因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。
在熔炼过程控制小,碳当量的控制是解决材料性能的一个很重要的因素。
1.4 提高灰铸铁抗拉强度的途径提高灰铸铁的强度是拓展灰铸铁应用的前提,因此,提高灰铸铁的强度永远是国内外铸铁研究和生产者追求的主要目标。
要生产出满足罗茨风机用的合格叶轮铸件,必须通过合适的化学成分、高温优质的铁液、有效孕育处理的综合作用来完成。
对于如何提高灰铸铁强度,国内外灰铸铁研究者进行了大量的研究工作,归纳起来有如下几种途径:1.4.1 优化灰铸铁成分与提高冶金质量1.4.1.1 优化碳当量CE 与Si/C 比由于石墨的强度和硬度极低,相对于铁来说可以视为零,加之片状石墨对基体的严重割裂作用,故灰铸铁中的碳含量越高,一般来说,其强度和硬度越低,即灰铸铁的抗拉强度随着碳当量的提高而降低[10,20,21]。
在高强度灰铸铁的发展历程中,用降低碳当量,提高锰含量,从而提高灰铸铁中珠光体的比例,提高灰铸铁抗拉强度的方法曾经是重要的措施。
但是,以降低碳当量来提高灰铸铁抗拉强度的方法也带来了许多不利影响,如铸造工艺性能变差;白口倾向增大,难以加工;应力大,容易产生裂纹;铁液收缩大,易产生缩松,造成渗漏;铸件断面敏感性高,容易产生废品等,因此,未能被广泛应用[22,23]。
上世纪60年代初,WALTHER HILLER 等人提出了提高硅碳比可以显著提高灰铸铁抗拉强度的看法[24]。
从80 年代开始,国内也开始重视这方面的研究。
长期以来,国内外的大量研究表明:在一定的CE 范围内,提高Si/C值是提高灰铸铁强度的有效手段,这已被大量的科学实验及广泛的生产实践所证实[25~28]。
一般认为,在相同碳当量条件下,Si/C 比提高,抗拉强度可提高30~60MPa[29]。
这是因为,在相同碳当量的条件下,随着硅碳比的提高,灰铸铁的奥氏体枝晶数量增加。
高硅使奥氏体枝晶在较高的温度即开始生成,且延长了生长时间,使初生奥氏体数量增加,奥氏体骨架得到强化,同时高硅使得共晶结晶时,石墨数量少,也较细小,石墨尖端较钝,石墨割裂基体的作用减弱,加之灰铸铁中更多的Si 固溶于铁素体中使之强化,从而使灰铸铁的抗拉强度得到提高[30]。