初中八年级数学几何定理符号语言
- 格式:doc
- 大小:103.00 KB
- 文档页数:13
初二数学公式定理重要公式与定理的汇总初二数学是整个初中数学学习的重要阶段,其中涉及到众多的公式和定理,这些公式和定理是解决数学问题的关键工具。
下面我们就来详细汇总一下初二数学中的重要公式与定理。
一、代数部分1、整式的乘法公式(1)平方差公式:(a + b)(a b) = a² b²这个公式可以用来快速计算两个数的平方差。
例如,计算(103×97),就可以将其转化为(100 + 3)×(100 3),然后利用平方差公式得出 100²3²= 9991。
(2)完全平方公式:(a ± b)²= a² ± 2ab + b²完全平方公式在整式乘法和因式分解中经常用到。
比如,计算(102)²,可以将其变形为(100 + 2)²,然后利用完全平方公式得到 100²+ 2×100×2 + 2²= 10404。
2、因式分解(1)提公因式法:ma + mb + mc = m(a + b + c)提公因式是因式分解的基础方法,要善于发现多项式各项中的公因式。
(2)公式法:运用上述的平方差公式和完全平方公式进行因式分解。
3、分式(1)分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
(2)分式的运算同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再按同分母分式的加减法法则进行计算。
分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
二、几何部分1、三角形(1)三角形内角和定理:三角形的内角和等于 180°。
在解决与三角形内角有关的问题时,经常会用到这个定理。
(2)三角形的外角性质三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
数学几何符号大全及意义摘要:一、数学符号的分类1.几何符号2.代数符号3.三角函数符号4.数学公式符号二、几何符号的意义1.点、线、面符号2.角度符号3.三角形符号4.四边形符号5.圆相关符号三、代数符号的意义1.运算符号2.关系符号3.集合符号4.函数符号四、三角函数符号的意义1.正弦、余弦、正切符号2.反正弦、反余弦、反正切符号3.三角函数公式符号五、数学公式符号的意义1.乘法公式符号2.除法公式符号3.幂运算符号4.对数公式符号六、总结与建议1.熟练掌握常见数学符号的意义2.了解符号背后的数学原理3.提高数学运算和解决问题的能力正文:数学几何符号大全及意义数学符号是数学学习中不可或缺的一部分,它们帮助我们简化问题、表达关系和进行运算。
本文将对数学几何符号进行分类,并详细介绍它们的意义,以帮助大家更好地理解和应用这些符号。
一、数学符号的分类1.几何符号几何符号主要包括点、线、面符号,角度符号,三角形、四边形符号以及圆相关符号等。
(1)点、线、面符号:表示几何图形的点和线,如点A、B、C等,线段AB、CD等。
(2)角度符号:表示角度大小,如∠A、∠B等。
(3)三角形符号:表示三角形,如△ABC、△DEF等。
(4)四边形符号:表示四边形,如□ABCD、◇ABC等。
(5)圆相关符号:表示圆、弧、角度等,如⊙O、ArcA、∠AOC等。
2.代数符号代数符号包括运算符号、关系符号、集合符号和函数符号等。
(1)运算符号:表示数学运算,如加减乘除等。
(2)关系符号:表示数之间的关系,如大于、小于、等于等。
(3)集合符号:表示集合,如{x,y,z}、∏(A,B)等。
(4)函数符号:表示函数关系,如f(x)、g(y)等。
3.三角函数符号三角函数符号包括正弦、余弦、正切等函数的符号。
(1)正弦、余弦、正切符号:表示sinA、cosA、tanA等。
(2)反正弦、反余弦、反正切符号:表示arcsinA、arccosA、arctanA 等。
八年级上册1、全等三角形的性质:全等三角形的对应边、对应角相等。
FEDABC2、全等三角形的判定方法:(1)边边边:三边对应相等的两个三角形全等。
(SSS ) 几何语言:如图所示∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF(2)边角边:两边和它们的夹角对应相等的两个三角形全等。
(SAS ) 几何语言:如图所示∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF(3)角边角:两角和它们的夹边对应相等的两个三角形全等。
(ASA ) 几何语言:如图所示∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF(4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。
(AAS ) 几何语言:如图所示∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF(5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。
(HL )【例1】判定两个三角形全等的方法是:⑴ 定义 ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .全等三角形的性质是对应边、对应角、周长、面积都分别 .【例2】下列命题错误的是( )A .全等三角形对应边上的高相等B .全等三角形对应边上的中线相等C .全等三角形对应角的角平分线相等D .有两边和一个角对应相等的两个三角形全等(可拓展证明全等三角形对应边上的高,对应边上的中线,对应角的平分线相等)3、轴对称:(1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同;(2)新图形式的每一点,都是原图形上的某一点关于直线的对称点; (3)连接任意一对对应点的线段被对称轴垂直平分。
轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。
4、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
5、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6、角平分线的性质:角的平分线上的点到角的两边的距离相等。
初中基本几何语言汇总一、中点的定义、中线的定义∵M是AB的中点∴__________________或____________________________________( )∵CM是△的中线∴__________________或____________________________________( ) 二、角平分线、三角形的角平分线∵OC平分∠AOB∴__________________或____________________________________( ) ∵CM是△ABC的角平分线∴__________________或____________________________________( ) 三、垂直的定义、高的定义∵AB⊥CD∴__________________( )∵AD是△ABC的高∴__________________( )四、平行的性质(同位角F,内错角Z ,同旁内角CM BAU)∵AB∥CD∴______________( )∵AB∥CD∴_____________( )∵AB∥CD∴_____________( ) 五、平行的判定∵∠1=∠2∴_________( )21DCBA∵∠1=∠2∴_________( )∵∠1+∠2 =180°∴_________( )1、垂直于同一条直线的两条直线平行∵∴( )2、平行于同一条直线的两条直线平行2DCBA21DCBA1∵∴b a ∥ ( )六、 全等的性质∵△ABC ≌△DEF ∴__________,__________,__________ ( )___________,__________,__________ ( )七、 全等的判定在△ABC 和△DEF 中∵∴△ABC ≌△DEF ( )在△ABC 和△DEF 中 ∵⎪⎩⎪⎨⎧___________________________∴△ABC ≌△DEF ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )八、其他常见常用几何语言3、同角或等角的余角相等(区分同角等角)∵∠1+∠2 =90°∠1+∠3=90°∴______________( )∵∠1+∠2 =90°∠4+∠3=90°∠1=∠4∴______________( )4、同角或等角的补角相等(区分同角等角)∵∠1+∠2 =180°∠3+∠4=180°∠1=∠3∴______________( ) 九、三角形的内角和及其推论∠ +∠ +∠=180°()∠4=∠ +∠( )十、几种常见的几何语言∠1=∠2 ()AB=AB ()∵AE=CF∴____________________即__________()或∵AC=EF∴____________________即__________()∠A=∠A ()∵∠EAB=∠DAC∴____________________即__________()或∵∠EAC=∠DAB∴____________________即__________()十一、等腰三角形的性质性质1:(简称:)∵AB=AC∴__________()性质2:(简称:)①△ABC 中∵AB=AC ,AD是BC边上的中线,∴∠ =∠,⊥②△ABC中∵AB=AC,AD是∠BAC的平分线,∴⊥,= ③在△ABC中∵AB=AC,AD⊥BC,∴∠ =∠,=十二、等腰三角形的判定1定义法:两边相等的三角形叫等腰三角形2、两角相等的三角形是等腰三角形。
八年级上册数学必背几何定理
1. 直线相关的定理
- 直线的性质:直线上任意两点可以确定一条直线。
- 平行线的性质:若两条直线平行,则其上的任意两点的连线也平行于这两条直线。
- 垂线的性质:若一条线段与另一条直线相交且垂直,则这条直线为垂线。
2. 角的相关定理
- 余角定理:两个互补角的度数之和为90°。
- 补角定理:两个补角的度数之和为180°。
- 垂直角定理:两个互相垂直的角的度数之和为90°。
3. 三角形相关定理
- 三角形内角和定理:三角形的三个内角的度数之和为180°。
- 直角三角形定理:直角三角形的两个锐角的正弦和余弦满足
勾股定理。
- 等腰三角形定理:等腰三角形的两个底角相等。
- 等边三角形定理:等边三角形的三个角均为60°。
4. 平行四边形相关定理
- 平行四边形对角线定理:平行四边形的对角线相互平分。
- 对角线分割平行四边形定理:平行四边形的对角线互相相等。
以上是八年级上册数学必背的几何定理,掌握这些定理可以帮
助同学们更好地理解和解决与几何有关的问题。
八年级上册数学必背几何定理
1. 线段的垂直平分线定理
如果一条线段的中点在另一条线段的垂直平分线上,那么这两条线段互相垂直且等长。
2. 直角三角形的性质
如果一个三角形的一个角是直角,那么它的两条边的平方和等于斜边的平方。
3. 等腰三角形的性质
如果一个三角形的两条边相等,那么它的两个底角也相等。
4. 相关角的性质
如果两条直线被一条直线截断,那么对于截断直线上的任意一点,其对应的相关角是相等的。
5. 平行线的性质
如果两条直线被一条直线截断,并且对应的相关角相等,则这两条直线平行。
6. 七线定理
一个三角形的三条中线、三角形的三条高线和三角形的三条角平分线都会交于同一个点,这个点被称为三角形的重心。
7. 圆的性质
圆的直径是圆上任意两点之间的最长线段,圆的半径与圆上任意两点之间的线段长度相等。
8. 圆的弧和弦的性质
如果在一个圆上,两个弧所对应的圆心角相等,则这两个弧所对应的弦的长度也相等。
9. 相交弦定理
如果两条弦在圆的内部相交,那么它们所夹的弧所对应的圆心角相等。
10. 切线定理
如果一条直线与一个圆相切于某个点,那么这条切线与半径所在直线的夹角是直角。
以上是八年级上册数学必背的几何定理,掌握这些定理可以帮助我们更好地理解和解决几何问题。
有关初中“数学”的常见符号
有关初中“数学”的常见符号如下:
1.代数符号:
●变量:通常用小写字母如a, b, c, x, y, z 表示。
●常数:表示不会改变的量,常用大写字母如A, B, C 或带有下标的字母表示。
●运算符号:+ (加法),- (减法),× (乘法),÷ (除法),= (等于),≠ (不等于),< (小于),>
(大于),≤ (小于等于),≥ (大于等于)。
2.几何符号:
●点:常用大写字母如A, B, C 表示。
●线段:用端点表示,如AB 表示从点A 到点B 的线段。
●角:用顶点和大写字母表示,如∠A 或∠ABC 表示以A 为顶点的角。
●垂线:用符号⊥表示,如AB ⊥CD 表示线段AB 与CD 垂直。
3.函数符号:
●函数:f(x),g(x) 等表示以x 为自变量的函数。
●函数的值:f(x) = y 表示当自变量x 取某个值时,函数f 的值为y。
4.三角学符号:
●三角函数:sin(x),cos(x),tan(x) 等表示三角函数。
●度数和弧度:° 表示角度,rad 表示弧度。
5.统计与概率符号:
●平均值:用符号¯x(x上有一横线)表示。
●方差:用符号s² 或Var(X) 表示。
●概率:用符号P(A) 表示事件A 发生的概率。
数学几何定理符语言 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】1、基本事实:经过两点有且只有一条直线。
(两点确定一条直线)2、基本事实:两点之间线段最短。
3、补角性质:同角或等角的补角相等。
几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴∠B=∠C(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴∠B=∠D(等角的补角相等)4、余角性质:同角或等角的余角相等。
几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C(同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C∴∠B=∠D(等角的余角相等)5、对顶角性质:对顶角相等。
∠1=∠26、过一点有且只有一条直线与已知直线垂直。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
几何语言:∵ a∥b,a∥c ∴b∥c10、两条直线平行的判定方法:几何语言:如图所示(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b(3)同旁内角互补,两直线平行。
∵∠5+∠6=180°∴a∥b11、平行线性质:几何语言:如图所示(1)两直线平行,同位角相等。
∵a∥b ∴∠1=∠2(2)两直线平行,内错角相等。
∵a∥b ∴∠3=∠4(3)两直线平行,同旁内角互补。
∵a∥b ∴∠5+∠6=180°12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
初中几何定理大全初中数学几何121个定理总结
一、三角形定理:
1、直角三角形三边定理:在直角三角形中,两个直角对边的平方和等于斜边的平方。
2、勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。
3、余弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和减去两倍乘积的余弦值。
4、正弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和加上两倍乘积的正弦值。
5、比例定理:在任意三角形中,斜边的平方等于两条边的乘积除以其外角的余弦值的平方。
6、外接圆定理:任意三角形的外接圆半径等于其三边长的和除以4
7、外切圆定理:任意三角形的外切圆半径等于其两边长的乘积除以4倍其近角的正弦值。
8、锐角三角形边长定理:在锐角三角形中,一条边大于另外两条边的和,小于他们的差。
9、内切圆定理:任意三角形的内切圆半径等于其两边长的乘积除以4倍其外角的正弦值。
10、锐角三角形的内接圆定理:任意锐角三角形内接圆半径等于其三边长乘积除以4其外角的余弦值。
二、平行线定理:
1、平行线定理:平行线与平行线之间分别成等腰角和相邻角成等式。
2、垂线定理:垂线与平行线之间相邻角成等式。
初中数学“图形与几何”内容
在中考中,几何解答题、几何证明题是热点内容,在解答过程中经常要用到定义、定理,而具体的过程需要用到符号语言表示,因此学生必须熟练掌握每个定理的几何表示法,下面就把初中阶段八年级涉及的所有几何定理的符号语言归纳出来:
初中数学“图形与几何”内容
八年级上册
20、全等三角形的性质:全等三角形的对应边、对应角相等。
F
E
D
A
B
C
21、全等三角形的判定方法:
(1)边边边:三边对应相等的两个三角形全等。
(SSS ) 几何语言:如图所示
∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF
(2)边角边:两边和它们的夹角对应相等的两个三角形全等。
(SAS ) 几何语言:如图所示
∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF
(3)角边角:两角和它们的夹边对应相等的两个三角形全等。
(ASA ) 几何语言:如图所示
∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF
(4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。
(AAS ) 几何语言:如图所示
∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF
(5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。
(H L )
23、推论:角的内部到角的两边的距离相等的点在角的平分线上。
24、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。
25 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
E
F
P
A
B
C
D
N
M
A B
C
D
26、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
27、轴对称:
(1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同;
(2)新图形式的每一点,都是原图形上的某一点关于直线的对称点;
(3)连接任意一对对应点的线段被对称轴垂直平分。
28、用坐标表示轴对称:
点(x,y)关于x轴对称的点的坐标为(x,-y);
点(x,y)关于y轴对称的点的坐标为(-x,y)。
29、等腰三角形的性质:
(1)等腰三角形的两个底角相等。
(等边对等角)
几何语言:
如图所示,在△ABC中
∵AB=AC
∴∠B=∠C(等边对等角)C
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
30、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)
几何语言:
如图所示,在△ABC 中
∵∠B =∠C ∴AB =AC (等角对等边)
31、等边三角形的性质定理:
等边三角形的三个内角都相等,并且每一个角都等于60° 。
C
C
32、
等边三角形的判定定理:
(1)三个角都相等的三角形是等边三角形。
(2)有一个角是60°的等腰三角形是等边三角形。
33、直角三角形中,如果一个锐角等于30°,那么它所对的直
角边等于斜边的一半。
几何语言:如图所示
∵∠C =90°,∠B =30°
∴AC =2
1
AB (或者AB =2AC )
八年级下册
为c ,那么a 2+b 2=c 2。
35、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。
36、平行四
边形的性质:
(1)平行四边形的对边平行。
(2)平行四边形的对边相等。
(3)平行四边形的对角相等。
(4)平行四边形的对角线互相平分。
37、平行四边形的判定方法:
D
E
A
B
C
D
(1)两组对边分别平行的四边形是平行四边形。
(定义) (2)两组对边分别相等的四边形是平行四边形。
(3)对角线互相平分的四边形是平行四边形。
(4)一组对边平行且相等的四边形是平行四边形。
(5)两组对角分别相等的四边形是平行四边形。
(练习题中)
38、三角形的中位线定理:
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
几何语言:如图所示,在△ABC 中
∵D 、E 分别是AB 、AC 的中点 ∴DE ∥BC ,DE=
2
1
BC 39、两条平行线间的任何一组平行线段相等 。
40、矩形的性质:(平行四边形具有的性质都具有)
D
AB CD AD BC
(1)矩形的四个角都是直角。
(2)矩形的对角线相等。
41、直角三角形的性质:
(1)直角三角形斜边上的中线等于斜边的一半。
(2
42、矩形的判定方法:
A
C
D
A
C
B
(1)有一个是直角的平行四边形是矩形。
(定义)(2)有三个角是直角的四边形是矩形。
(3)对角线相等的平行四边形是矩形。
43、菱形的性质:(平行四边形具有的性质都具有)(1)菱形的四条边都相等。
(2
组对角。
44、菱形的判定方法:
(1)一组邻边相等的平行四边形是菱形。
(定义)
(2)四边相等的四边形是菱形。
A D
(3
45、菱形的面积=对角线(AC 、BD )乘积的一半,即S=
2
1
(AC ×BD ) 。
46、正方形的性质:(矩形、菱形具有的性质都具有) (
1)正方形的四个角都是直角,四条边都相等。
(2)正方形的两条对角线相等,且互相垂直平分,
每条对角线平分一组对角。
47、正方形的判定:(方法很多,只举三例)
A
B
D
C
A
D
(1)有一组邻边相等的矩形是正方形。
(2)有一个内角是直角的菱形是正方形。
(3)对角线相等且互相垂直平分的四边形是正方形。
48、等腰梯形的性质:
(1)等腰梯形在同一底上的两个角相等。
49、等腰梯形的判定方法: (1)两腰相等的梯形是等腰梯形。
(2)同一底上的两个角相等的梯形是等腰梯形 。
(3)对角线相等的梯形是等腰梯形。
(教材中没有)
C
B B
50、重心:
线段的重心是它的中点;
三角形的重心是三条中线的交点;平行四边形的重心是对角线的交点。