人教版七年级数学下册《第五章测评卷》(含答案)
- 格式:doc
- 大小:1.01 MB
- 文档页数:4
人教版七年级下册数学第五章测试题及答案七年级数学下册第五章测试题姓名:________ 成绩:_______一、单项选择题(每小题3分,共30分)1、如图所示,∠1和∠2是对顶角的是()A、12.B、1 2.C、1 2.D、1 22、如图AB∥CD可以得到()A、1 2.B、4.C、2.D、33、直线AB、CD、EF相交于O,则∠1+∠2+∠3()。
A、90°。
B、120°。
C、180°。
D、140°4、如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b的条件的序号是()A、①②。
B、①③。
C、①④。
D、③④5、某人在广场上练驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°B、第一次右拐50°,第二次左拐130°C、第一次右拐50°,第二次右拐130°D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()DCBA7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A、3:4.B、5:8.C、9:16.D、1:28、下列现象属于平移的是()A、③。
B、②③。
C、①②④。
D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
D、在平面内过一点有且只有一条直线与已知直线垂直。
10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=()A、23°。
B、42°。
C、65°。
D、19°二、填空题(本大题共6小题,每小题3分,共18分)11、直线AB、CD相交于点O,若∠AOC=100°,则∠AOD=80°。
A BC D E(第10题)(第14题)ABCDEF G H第13题ABCD 1234(第2题)12345678(第4题)ab cABCD(第7题)1A BOFDEC (第18题)第17题A B CDMN12七年级数学下册第五章测试题班级:______ 姓名:_________ 得分:__________一、单项选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3( )。
A 、90° B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门 ⑤ 汽车在一条笔直的马路上行走A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
A BC D E(第10题)(第14题)ABCDEF G H第13题ABCD 1234(第2题)12345678(第4题)ab cABCD(第7题)1A BOFDEC (第18题)第17题A B CDMN12七年级数学下册第五章测试题班级:______ 姓名:_________ 得分:__________一、单项选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3( )。
A 、90° B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门 ⑤ 汽车在一条笔直的马路上行走A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
人教版七年级数学下册第五章测试卷(含答案)一、选择题(每小题3分,共18分)1.下列各组图形可以通过平移得到另一个图形的是( ).A. B. C. D. 2.下列作图能表示点A 到BC 的距离的是( ).A .B .C .D .3.下列图形中,∠1和∠2是同位角的是( ).A .B .C .D .4.两条直线被第三条直线所截形成的角中,下列说法不正确的是( ). A .对顶角相等 B .邻补角互补 C .内错角相等 D .如果同位角相等,则内错角也相等5. 如图,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD , 那么图中与∠AGE 相等的角有 ( ). A.5个 B.4个C.3个D.2个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;题号 一 二 三 四 五 六 总分 得分(第5题)③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180° 能判定AB ∥CD 的有( ).A.3个B.2个C.1个D.0个二,填空题(每小题3分,共18分)7.如图,计划在河边建一水厂,过C 点作CD ⊥AB 于D 点.在D 点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是____________________. 8.如图是一把剪刀,若∠AOB +∠COD =60°,则∠BOD =__ __°.9.如图,把一个三角尺的直角顶点放在直尺的一边上,如果∠1=23°,∠2= . 10.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 周长为16cm,则四边形ABFD 周长为 .11.如图,已知∠1=∠2,∠A =60°,则∠ADC = .12.若A ∠和B ∠的两条边分别平行,其中(30)A x ∠=+,(310)B x ∠=-,则A ∠的度数是 .12(第7题)(第8题)(第9题)(第6题)(第10题)(第11题)三,解答题(每小题6分,共30分)13.(1)如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数.(2)已知一个角的邻补角比它的对顶角大70°,求这个角度数.14.已知:如图,∠B =∠C ,AE ∥BC ,求证:AE 平分∠CAD .15.如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数.(第13(1)题)(第14题)(第15题)16.在如图所示的方格纸中,网络中每个小正方形的边长 都是1,点A 、B 、C 均在格点上.(1)画线段BC ,将线段BC 平移,使点B 到A 位置,画出平移后的线段AD ;(2)连接BA 、CD ,则线段BA 和线段CD 的关系是 ; (3)直接写出四边形ABCD 的面积.17.如图所示,一块边长为8米的正方形土地,上面修了两条道路,一条路是宽为1米的长方形,另一条路为平行四边形,其余部分种上各种花草,若种花草的面积为49平方米,请问平行四边形道路的短边长为多少米?四,解答题(每小题8分,共24分)18.如图,已知AC ⊥BC ,CD ⊥AB ,DE ⊥AC ,∠1与∠2互补,判断GF 与AB 的位置关系,并证明.(第16题)(第17题)21FED CABG(第18题)19. 如图∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF . (1)求证:AE ∥ FC .(2)AD 与BC 的位置有怎样的位置关系?请说明理由. (3)BC 平分∠DBE 吗? 请说明理由.20.已知大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向大正方形的内部沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 厘米2,完成下列问题: (1)平移到1.5秒时,重叠部分的面积为 厘米2. (2)当S =3.6厘米2时,求t 的值.五,解答题(每小题9分,共18分) 21.如图,∠B 和∠D 的两边分别平行.(1)在图1 中,∠B 和∠D 的数量关系是 ,在图2中,∠B 和∠D 的数量关系是 ; (2)用“如果……,那么……”的形式归纳(1)中命题 :___________________ ; (3)应用:若两个角的两边分别互相平行,其中一个角比另一个角的2倍少10°,求这两个角的度数.(第19题)(第20题)(第21题)22、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?六,解答题(12分)23.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,若∠EPF=80°求∠EQF的度数(3)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)(第22题)(第23题)参考答案一,选择题(每小题3分,共18分)1.C 2.B 3.D 4.C 5. A 6.C二,填空题(每小题3分,共18分)7. 垂线段最短; 8.150°; 9. 67°;10.20cm ; 11.120°; 12. 5070或.三,解答题(每小题6分,共30分)13.解:(1)如图所示,∵AB∥CD,∠1=75°∴∠3=∠1=75°∴∠2=180°-∠3=180°-75°=105°解:(1)设这个角为x度,则它的对顶角为x度、邻补角为(180-x)度。
A BC D E(第10题)(第14题)ABCDEF G H第13题ABCD 1234(第2题)12345678(第4题)ab cABCD(第7题)1A BOFDEC (第18题)第17题A B CDMN12七年级数学下册第五章测试题班级:______ 姓名:_________ 得分:__________一、单项选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3( )。
A 、90° B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门 ⑤ 汽车在一条笔直的马路上行走A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
A BC D E(第10题)(第14题)ABCDEF G H第13题ABCD 1234(第2题)12345678(第4题)ab cABCD(第7题)1A BOFDEC (第18题)第17题A B CDMN12七年级数学下册第五章测试题班级:______ 姓名:_________ 得分:__________一、单项选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3( )。
A 、90° B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门 ⑤ 汽车在一条笔直的马路上行走A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
人教版七下数学第五章测试题一、选择题(共12小题;共36分)1. 如图,∠1与∠2是A. 对顶角B. 同位角C. 内错角D. 同旁内角2. 如图,能判定EB∥AC的条件是A. ∠C=∠ABEB. ∠A=∠EBDC. ∠C=∠ABCD. ∠A=∠ABE3. 下列结论中不正确的是 ( )A. 互为邻补角的两个角的平分线互相垂直B. 互不相等的两个角,一定不是对顶角C. 两条直线相交,若有一个角为90∘,则这四个角中任取两个角都互为补角D. 不是对顶角的两个角互不相等4. 下列命题是真命题的有①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A. 1个B. 2个C. 3个D. 4个5. 下列语句是命题的有个.①两点之间线段最短;②不平行的两条直线有一个交点;③x与y的和等于0吗?④对顶角不相等;⑤互补的两个角不相等;⑥作线段AB.A. 1B. 2C. 3D. 46. 下列图形中,∠1和∠2不是内错角的是 ( )A. B. C. D.7. 某校九年级四个班的代表队准备举行篮球友谊赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“902 班得冠军,904 班得第三”;乙说:“901 班得第四,903 班得亚军”;丙说:“903 班得第三,904 班得冠军”.赛后得知,三人都只猜对了一半,则得冠军的是 ( )A. 901 班B. 902 班C. 903 班D. 904 班8. 希望一中初一21班班主任邓老师打电话通知班上53名同学,每名被通知到的同学再打电话通知其他的同学,如果打电话每分钟可以通知1个人,要将全班53名同学全部通知到,至少要用分钟.A. 6B. 52C. 51D. 79. 如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28∘,则∠AOG为A. 56∘B. 59∘C. 60∘D. 62∘10. 如图,AB∥CD,EF与AB,CD分别相交于点E,F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50∘,则∠EPF=度.A. 70B. 65C. 60D. 5511. 如图所示,NO,QO分别是∠QNM和∠PQN的平分线,且∠QON=90∘,那么MN与PQ的关系是A. 可能平行也可能相交B. 一定平行C. 一定相交D. 以上答案都不对12. 甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是 ( )A. 甲B. 乙C. 丙D. 不能确定二、填空题(共6小题;共18分)13. 图中与∠C是同旁内角的角是.14. 将“对顶角相等”改写成“如果……那么……”的形式为.15. 如图,直线l1∥l2,∠α=∠β,∠1=40∘,则∠2=.16. 下列说法正确的是.(写出正确的序号)①三条直线两两相交有三个交点;②两条直线相交不可能有两个交点;③在同一平面内的三条直线的交点个数可能为0,1,2,3;n(n−1)个交点;④同一平面内的n条直线两两相交,其中无三线共点,则可得12⑤同一平面内的n条直线经过同一点可得2n(n−1)个角(平角除外).17. 如图所示,AB∥CD,∠1=56∘,∠2=56∘,则直线EF与GH的位置关系为.18. 电脑系统中有个"扫雷"游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,为方便大家识别与印刷,我把图乙中的0都标出来了,以示与未掀开者的区别),如图甲中的"3"表示它的周围八个方块中仅有3个埋有雷.图乙是张三玩游戏中的局部,图中有4个方块己确定是雷(方块上标有旗子),则图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有.(请填入方块上的字母)三、解答题(共6小题;共46分)19. 判断下列语句是不是命题,如果是命题,判断是真命题,还是假命题,对于假命题请举出反例.①画线段AB=3 cm.②平行于同一条直线的两条直线互相平行.③两条直线相交,有几个交点?④相等的角都是直角.⑤如果a2=b2,那么a=b.⑥直角都相等.20. 如图所示,试判断下列各对角的位置关系:∠1与∠5,∠3与∠5,∠3与∠4,∠5与∠4,∠2与∠4.21. 如图所示,AD,BC相交于点O,∠1=∠B,∠2=∠C.问AB与CD平行吗?为什么?22. 求证:如果一个角的两条边与另一个角的两条边分别平行,那么这两个角相等或互补.23. 如图,直线AB,CD,EF相交于点O,AB⊥CD,OC平分∠EOG,∠FOD=25∘,求∠AOG的度数.24. 问题情境:如图1,AB∥CD,∠PAB=130∘,∠PCD=120∘.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50∘+60∘=110∘.问题迁移:(1) 如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2) 在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.答案第一部分1. B2. D3. D4. C5. D6. D7. B8. D9. B 10. A11. B 12. C第二部分13. ∠A,∠B14. 如果两个角是对顶角,那么这两个角相等15. 140∘16. ②③④⑤17. 平行18. B、D、F、G第三部分19. (1) ①③不是命题,因为句子中没有作出任何判断.②⑥是真命题;④⑤是假命题.对于④,如:∠A=30∘,∠B=30∘,∠A=∠B,但∠A,∠B都不是直角.对于⑤,如:a=−5,b=5时,a2=25,b2=25,满足a2=b2,但a≠b,结论不成立.20. (1) ∠1与∠5是同位角,∠3与∠5,∠3与∠4,∠5与∠4是同旁内角,∠2与∠4是内错角.21. (1) AB∥CD.理由如下:因为AD,BC交于点O,所以∠1=∠2.又因为∠1=∠B,∠2=∠C,所以∠B=∠C.所以AB∥CD.22. (1) 已知:如图,OA∥OʹAʹ,OB∥OʹBʹ,求证:∠O=∠Oʹ.证明:∵OA∥OʹAʹ,∴∠O=∠AʹCB.∵OB∥OʹBʹ,∴∠AʹCB=∠Oʹ.∴∠O=∠Oʹ.已知:如图,OA∥OʹAʹ,OB∥OʹBʹ,求证:∠AOB+∠AʹOʹBʹ=180∘.证明:∵OA∥OʹAʹ,∴∠O=∠OʹCB.∵OB∥OʹBʹ,∴∠OʹCB+∠Oʹ=180∘.∴∠O+∠Oʹ=180∘.23. (1) 因为OC平分∠EOG,所以∠COG=∠COE.因为∠COE=∠DOF=25∘(对顶角相等),所以∠COG=∠COE=25∘.因为AB⊥CD,所以∠AOC=90∘,所以∠AOG=∠AOC−∠COG=90∘−25∘=65∘.24. (1) 过P作PE∥AD,交CD于E点.∵AD∥BC,PE∥AD,∴PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α+∠β.24. (2) 当P在BO上运动时,∠CPD=∠α−∠β;当P在AM上运动时,∠CPD=∠β−∠α.。
人教版七年级数学下册第五章测试题(附答案)一、单选题(共15题;共30分)1.数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动6个单位长度到达点C ,若点C 表示的数是1,则点A 表示的数为()A. 7B. 3C. -3D. -22.在数轴上,点A,B在原点O的同侧,分别表示数a,3,将点A向左平移5个单位长度得到点C,若点C与点B所表示的数互为相反数,则a的值为()A. 2B. 3C. −1D. 03.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是()A. ﹣3B. 0C. 3D. ﹣24.数轴上一点A表示的数是-2,将点A先向左移动3个单位长度到达点B,再向右移动7个单位长度到达点C,则点C表示的数是()A. 1B. 2C. -1D. -25.数轴上点A表示的数是−3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A. 4B. −4或10C. −10D. 4或−106.在数轴上,A、B两点所表示的数分别为﹣2、3,若移动A点到B点,应把A点()个单位长度.A. 向左移动5B. 向右移动5C. 向右移动4D. 向左移动1或向右移动57.如图,已知直线a、b、c,若∠1=∠2=60°,且∠2=∠3,则图中平行线组数为()A. 0B. 1C. 2D. 38.如图,已知直线l1∥l2,将一块直角三角板ABC按如图所示方式放置,若∠1=39°,则∠2等于()A. 39°B. 45°C. 50°D. 51°9.如图.直线a∥b,直线L与a、b分别交于点A,B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为10.如图,能判定EB//AC的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠5=∠6D. ∠2=∠311.在平面直角坐标系中,点P(2,1)向左平移3个单位长度得到的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限12.如图A、B、C三点共线,C、D、E三点共线,且∠1=∠2,∠1=∠C,下列结论错误的是()A. CE//BFB. ∠F=∠2C. ∠1+∠CBF=180°D. ∠C=∠CBF13.如图,平行线AB,CD被直线AE所截,∠1=75°,则∠2的度数是()A. 75°B. 95°C. 105°D. 115°14.如图,AB//CD,则下列等式正确的是()A. ∠1=∠2+∠3B. ∠1−∠2=180°−∠3C. ∠1−∠3=180°−∠2D. ∠1+∠2+∠3=180°15.如图,将周长为18的△ABC沿BC方向平移2个单位得△DEF,则四边形ABFD的周长为()二、填空题(共4题;共4分)16.如图,数轴上的点A向左移动2个单位长度得到点B,则点B表示的数是________.17.已知点A在数轴上,若一个点从点A处向右移动4个单位长度,再向左移动1个单位长度,此时该点所对应的数是1,那么点A表示的数是________.18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是________.19.如图,将两个含角30°的直角三角板的最长边靠在一起滑动,可知直角AB//CD边,依据是________.三、解答题(共1题;共5分)20.如图,已知,∠1=∠3,∠2=∠E,求证:BE//CD.四、综合题(共1题;共10分)21.如图,在平面直角坐标系中,点A、B的坐标分别为(−1,0)、(3,0),现同时先将点A、B分别向上平移2个单位长度,再向右平移1个单位长度,得到A、B的对应点C、D,连接AC、BD、CD.(1)直接写出点C、D的坐标;(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍?若存在,请求出点F的坐标;若不存在,请说明理由.答案一、单选题1. C2. A3. A4. B5. D6. B7. D8. D9. C 10. D 11. B 12. D 13. C 14. B 15. A二、填空题16. -1 17. -2 18. -119. 内错角相等,两直线平行三、解答题20. 证明:∵∠1=∠3,∴AE//DB,∴∠E=∠4∵∠2=∠E,∴∠4=∠2∴BE//CD四、综合题21. (1)解:因为A(−1,0),B(3,0),所以由点坐标的平移变换规律得:C(−1+1,0+2),D(3+1,0+2),即C(0,2),D(4,2)(2)解:存在,求解过程如下:设点F的坐标为F(a,0),∵C(0,2),D(4,2),∴CD//x轴,即CD//AB,∴△DFC边CD上的高与△DFB边BF上的高相等,则当CD=2BF时,△DFC的面积是△DFB面积的2倍,又∵C(0,2),D(4,2),B(3,0),F(a,0),×4=2,∴CD=4−0=4,BF=|3−a|,∴|3−a|=12解得a=1或a=5,故F(1,0)或F(5,0).。
人教版七年级数学下册第五章达标检测卷一、选择题(每题3分,共30分)1.在下图中,∠1和∠2是对顶角的是()2.如图,在所标识的角中,下列说法不正确的是()A.∠1和∠2是邻补角B.∠1和∠4是同位角C.∠2和∠4是内错角D.∠2和∠3是对顶角(第2题)(第3题)3.如图,在6×6的方格中,图①中的图形N平移后的位置如图②所示,则图形N的平移方法是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格4.点P为直线l外一点,点A,B,C为直线l上三点,P A=4 cm,PB=5 cm,PC=3 cm,则点P到直线l的距离()A.等于4 cm B.等于5 cm C.小于3 cm D.不大于3 cm 5.下列命题中:①对顶角相等;②同位角相等;③互补的两个角为邻补角;④若l1⊥l2,l1⊥l3,则l2⊥l3.其中真命题有()A.①B.①②③C.①③D.①②③④6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是() A.60°B.50°C.40°D.30°(第6题)(第7题)(第8题)7.如图,将木条a绕点O旋转,使其与木条b平行,则旋转的最小角度为()A.65°B.85°C.95°D.115°8.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于() A.73°B.56°C.68°D.146°9.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()A.81°B.99°C.108°D.120°(第9题)(第10题)10.图①是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中∠CFE的度数是()A.160°B.150°C.120°D.110°二、填空题(每题3分,共30分)11.下列语句:①同旁内角相等;②如果a=b,那么a+c=b+c;③对顶角相等吗?④画线段AB;⑤两点确定一条直线.其中是命题的有__________;是真命题的有__________.(只填序号)12.如图,∠3的同旁内角是________,∠4的内错角是________,∠7的同位角是________.(第12题)(第13题)(第14题)13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠COM=________.14.如图,跳远比赛时,小明从点A起跳落在沙坑内B处,跳远成绩是4.6米,则小明从起跳点到落脚点的距离________4.6米(填“大于”“小于”或“等于”).15.如图,小明从A处出发,沿北偏东60°的方向行走至B处,又沿北偏西20°的方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是________.(第15题)(第16题)(第17题)16.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=________.17.如图,将三角形ABC沿着点B到点C的方向平移3 cm得到三角形DEF,且DE交AC于点H,AB=6 cm,BC=9 cm,DH=2 cm,那么图中阴影部分的面积为________cm2.18.如图,a∥b,∠1=65°,∠2=140°,则∠3的度数是________.(第18题)(第19题)(第20题)19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.20.以下三种沿AB折叠的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三、解答题(24题10分,25题12分,26题14分,其余每题8分,共60分) 21.如图是一条河,C是河岸AB外一点.(1)过点C要修一条与河平行的绿化带(用直线表示),请作出正确的示意图;(2)现欲用水管从河岸AB将水引到C处,问:从河岸AB上的何处开口,才能使所用的水管最短?画图表示,并说明设计的理由.(第21题)22.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.(第22题)23.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.(第23题)24.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.(第24题)25.如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1,∠2的度数.(第25题)26.如图,MN∥EF,C为两直线之间一点.(1)如图①,∠CAM与∠CBE的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图②,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图③,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请写出∠ACB与∠ADB的数量关系,并证明你的结论.(第26题)答案一、1.C 2.C 3.D 4.D 5.A 6.C 7.B 8.A(第9题)9.B 点拨:如图,过点B 作MN ∥AD ,∴∠ABN =∠A =72°.∵CH ∥AD ,AD∥MN ,∴CH ∥MN ,∴∠NBC +∠BCH =180°,∴∠NBC =180°-∠BCH=180°-153°=27°.∴∠ABC =∠ABN +∠NBC =72°+27°=99°.10.B 点拨:在题图①中,因为四边形ABCD 为长方形,所以AD ∥BC ,所以∠BFE =∠DEF =10°,则∠EFC =180°-∠BFE =170°.在题图②中,∠BFC=∠EFC -∠BFE =170°-10°=160°.在题图③中,∠CFE =∠BFC -∠BFE =160°-10°=150°.故选B .二、11.①②⑤;②⑤12.∠4,∠5;∠2,∠6;∠1,∠4 13. 38° 14. 大于15.向右转80°16.55° 点拨:∵∠1=110°,纸条的两条对边互相平行,∴∠3=180°-∠1=180°-110°=70°.根据折叠的性质可知∠2=12(180°-∠3)=12(180°-70°)=55°.17.15 点拨:由平移的性质知,DE =AB =6 cm ,HE =DE -DH =4 cm ,CF =BE =3 cm ,所以EC =6 cm ,所以S 阴影部分=S 三角形EFD -S 三角形ECH =12DE ·EF -12EH ·EC =12×6×9-12×4×6=15(cm 2). 18.105° 点拨:反向延长射线b ,如图,∵∠2+∠5=180°,∴∠5=180°-∠2=180°-140°=40°.∴∠4=180°-∠1-∠5=180°-65°-40°=75°.又∵a∥b ,∴∠3=180°-∠4=180°-75°=105°.(第18题)19.140°20.(1)(2)三、21.解:(1)如图,过点C画一条平行于AB的直线MN,则MN为绿化带.(2)如图,过点C作CD⊥AB于点D,从河岸AB上的点D处开口,才能使所用的水管最短.设计的理由是垂线段最短.(第21题)22.解:(1)点D及四边形ABCD的另两条边如图所示.(第22题)(2)得到的四边形A′B′C′D′如图所示.23.解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°.∵BC平分∠ABD,∴∠ABD=2∠ABC=130°.∴∠BDC=180°-∠ABD=50°.∴∠2=∠BDC=50°.24.解:如图,过点C作∠ACF=∠A,则AB∥CF.∵∠A+∠ACD+∠D=360°,∴∠ACF+∠ACD+∠D=360°.又∵∠ACF+∠ACD+∠FCD=360°,∴∠FCD=∠D,∴CF∥DE,∴AB∥DE.点拨:本题运用了构造法,通过添加辅助线构造平行线,从而利用平行公理的推论进行判定.(第24题)25.解:∵AD∥BC,∴∠FED=∠EFG=55°,∠2+∠1=180°.由折叠的性质得∠FED=∠FEG,∴∠1=180°-∠FED-∠FEG=180°-2∠FED=70°,∴∠2=180°-∠1=110°.26.解:(1)如图①,过点C作CG∥MN,过点D作DH∥MN,(第26题)因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG.因为∠MAC与∠EBC的平分线相交于点D,所以∠1=12∠MAC=12∠ACG,∠2=12∠EBC=12∠BCG,所以∠ADB=12(∠ACG+∠BCG)=12∠ACB.因为∠ACB=100°,所以∠ADB=50°.(2)∠ADB=180°-12∠ACB.证明:如图②,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG. 因为∠MAC与∠EBC的平分线相交于点D,所以∠1=12∠MAC,∠2=12∠EBC,所以∠ADB=∠1+∠2=12(∠MAC+∠EBC)=12(180°-∠ACG+180°-∠BCG)=12(360°-∠ACB),所以∠ADB=180°-12∠ACB.(3)∠ADB=90°-12∠ACB.证明:如图③,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠DBE=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG.因为∠MAC的平分线与∠FBC的平分线所在的直线相交于点D,所以∠CAD=12∠MAC,∠DBE=12∠CBF,所以∠ADB=180°-∠CAD-∠CAN-∠BDH=180°-12∠MAC-∠ACG-12∠CBF=180°-12∠MAC-∠ACG-12∠BCG=180°-12(180°-∠ACG)-∠ACG-12∠BCG=180°-90°+12∠ACG-∠ACG-12∠BCG=90°-12∠ACG-12∠BCG=90°-12(∠ACG+∠BCG)=90°-12∠ACB.点拨:解答本题的关键是过“拐点”(折线中两条线段的公共端点)作直线的平行线,利用平行线的判定和性质求角的度数或探究角的数量关系;由于条件类似,因此其解题过程也可以类比完成,所不同的是结论虽类似但也有些变化.。
人教版七年级下册数学第五章测试题(附答案)一、单选题(共12题;共24分)1.下列命题不正确的是()A. 如果AB∥CD,那么∠1=∠4B. 如果AB∥CD,那么∠1=∠3C. 如果AD∥BC,那么∠3=∠4D. 如果AD∥BC,那么∠3+∠2=180°2.如图,直线a、b被直线c所截,下列条件:(1)∠1=∠3;(2)∠3=∠4;(3)∠1=∠4;(4)∠2+∠4=180°,其中能判定a∥b的有( )A. 1个B. 2个C. 3个D. 4个3.如图,能判定EC∥AB的条件是()A. ∠B=∠ACEB. ∠B=∠ECDC. ∠A=∠ACBD. ∠A=∠ECD4.下列命题正确的是()A. 对角线相等的四边形是矩形B. 对角线垂直的四边形是菱形C. 对角线互相垂直平分的四边形是矩形D. 对角线相等的菱形是正方形5.下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个6.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将2020减去它的,再减去余下的,再减去余下的,再减去余下的,……,依此类推,直到最后减去余下的,最后的结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x、y,多项式的值不小于2.其中正确的个数是()A. 1B. 2C. 3D. 47.如图,已知:AB∥CD,∠2=40°,则∠1 =()A. 40°B. 50°C. 60°D. 80°8.如图将△ABC水平向右平移到△DEF,若A、D间的距离为1,CE=2,则BF=()A. 3B. 4C. 5D. 不能确定9.下列说法不正确的个数有( )①. 两条直线被第三条直线所截,同位角相等②. 对顶角一定相等,邻补角的和一定为180°;③.平面直角坐标系把平面上的点分为四部分;④. 体育老师测定同学的跳远成绩的依据是垂线段最短。
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。
初中数学人教版七年级下学期第五章测试卷一、单选题(共6题;共12分)1. ( 2分) 如图所示,下列条件中不能判定DE∥BC的是()A. ∠1=∠CB. ∠2=∠3C. ∠1=∠2D. ∠2+∠4=180°2. ( 2分) 下面四个图形中,∠1与∠2是对顶角的是()A. B. C.D.3. ( 2分) 如图,,若,则的度数是( )A. B. C.D.4. ( 2分) 下列命题中,为真命题的是( )A. 对角线互相垂直的四边形是菱形B. 四边相等的四边形是正方形C. 对角线相等的四边形是矩形D. 两组对角分别相等的四边形是平行四边形5. ( 2分) 如图,已知CD∥BE,如果∠1=60°,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°6. ( 2分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A,B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是( )A. 25°B. 30°C. 35°D. 55°二、填空题(共6题;共10分)7. ( 1分) 如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。
(填序号)8. ( 1分) 如图,直线a、b 被直线c所截,若满足________,则a∥b.9. ( 1分) 命题“等角的余角相等”的逆命题是________命题.10. ( 5分) 已知:如图,射线OA 与OB 被直线CD 和EF 所截,∠1+ ∠2 = 180°,求证:∠3 = ∠4 .11. ( 1分) 直角三角形从点出发沿着方向匀速平移得到三角形(如图1),当点平移至点时停止运动(如图2).若,当点恰好将分为两部分时,四边形的面积为,那么平移的距离是________.12. ( 1分) 如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为________.三、解答题(共3题;共15分)13. ( 5分) 如图,已知∠B=∠C,∠B+∠D=180°,指出图中的平行线,并说明理由.14. ( 5分) 如图18,∠1=∠2,∠C=∠D,问∠A与∠F相等吗?为什么?15. ( 5分) 如图,,,,试求的大小.四、综合题(共2题;共21分)16. ( 10分) 如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.17. ( 11分) 问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.如图2,过点P作PE∥AB,∵PE∥AB(作图知)又∵AB∥CD,∴PE∥CD.________∴∠A+∠APE=180°.∠C+∠CPE=180°.________∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与α、β之间的数量关系.答案解析部分一、单选题1.【答案】C【考点】同位角、内错角、同旁内角【解析】【解答】A、∵∠1=∠C,∴DE∥BC(同位角相等两直线平行),正确,不符合题意;B、∵∠2=∠3,∴DE∥BC(内错角相等两直线平行),正确,不符合题意;C、∠1=∠2,∴DF∥AC(内错角相等两直线平行),而不能得到DE∥BC,错误,符合题意;D、∠2+∠4=180°,∴DE∥BC(同旁内角互补两直线平行),正确,不符合题意;故答案为:C.【分析】根据平行线的判定定理分别分析判断即可,即同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行.2.【答案】B【考点】对顶角、邻补角【解析】【解答】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故答案为:B【分析】根据对顶角的概念,即可.3.【答案】B【考点】同位角、内错角、同旁内角【解析】【解答】∵,∴.∵,∴,故答案为:B.【分析】根据互相平行的两条直线同位角相等、平角为180°的性质,可得出结果。
人教版七年级数学下册第五章综合测试卷01一、选择题(每小题5分,共40分)1.如图所示的四幅图案中,能通过平移得到图①的是()图①A B C D2.直线l 上有A ,B ,C 三点,直线l 外有一点P ,若4cm PA =,3cm PB =,2cm PC =,PC l ⊥,则点P 到直线l 的距离()A .等于2cmB .小于2cmC .不大于2cmD .大于2cm 而小于3cm3.如图,AB BC ⊥,BC CD ⊥,EBC BCF ∠=∠,那么ABE ∠与DCF ∠的位置关系和大小关系分别是()A .是同位角且相等B .不是同位角,但相等C .是同位角,但不相等D .不是同位角,也不相等4.将一直角三角板与两边平行的纸条如图所示放置,给出下列结论:①12∠=∠;②34∠=∠;③2490∠+∠=︒;45180∠+∠=︒.其中正确的个数为()A .1B .2C .3D .45.如图,AD BC ∥,点E 在BD 的延长线上,若155ADE =︒∠,则DBC ∠的度数为()A .155︒B .50︒C .45︒D .25︒6.如图,AB CD ∥,27E ∠=︒,52C ∠=︒,则EAB ∠的度数为()A .25︒B .63︒C .79︒D .101︒7.如图,AE 是FAB ∠的平分线,且1C ∠=∠,则下列结论中错误的是()A .AE BC ∥B .2ABC ∠=∠C .C ABC ∠=∠D .180FAB C ∠+∠=︒8.在55⨯的方格纸中,将图①中的图形N 平移到如图②所示的位置,那么正确的平移方法是()A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格二、填空题(每小题5分,共20分)9.如图,已知AB ,CD 相交于点O ,OE AB ⊥,28EOC ∠=︒,则AOD =∠________.10.把命题“锐角的补角是钝角”改写成“如果……那么……”的形式是______________________________.11.如图,已知AB CD ∥,试再添上一个条件,使1=2∠∠成立(要求给出两个以上答案),所添的条件为_______________________________________________________.12.如图,C 处在B 处的北偏西75︒方向,C 处在A 的北偏西40︒方向,则ACB ∠等于________.三、解答题(共40分)13.(10分)如图,三角形ABC 沿射线x y →方向平移一定距离到三角形'''A B C ,请利用移的相关知识找出图中相等的线段、角和完全相同的图形,并予以解释.14.(10分)如图,已知12∠=∠,50D ∠=︒,求B ∠的度数.15.(10分)如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,:7:1AOD BOE ∠∠=,求AOE ∠的度数.16,(10分)如图,已知AB CD ∥,40B ∠=︒,CN 是BCE ∠的平分线,CM CN ⊥,求BCM ∠的度数.第五章综合测试答案解析一、1.【答案】D 2.【答案】A 3.【答案】B 4.【答案】D【解析】根据平行线的性质,可得12∠=∠;34∠=∠;45180∠+∠=︒,再根据平角定义可得2490∠+∠=︒.5.【答案】D 6.【答案】C【解析】延长EA 交CD 于点F ,所以101EFC ∠=︒所以79EFD ∠=︒因为AB CD ∥所以79EAB ∠=︒7.【答案】D 8.【答案】B 二、9.【答案】62︒【解析】由OE AB ⊥,28EOC ∠=︒,知902862=BOC AOD ∠=︒-︒=︒∠.10.【答案】如果一个角是锐角,那么它的补角是钝角11.【答案】EBC FCB ∠=∠或CF BE ∥或E F ∠=∠12.【答案】35︒【解析】过点C 作CD AB ∥,则75BCD ∠=︒,40DCA ∠=︒所以35ACB BCD DCA ∠=∠-∠=︒.三、13.【答案】解:相等的线段有''AB A B =,''BC B C =,''AC A C =(平移运动中,对应线段分别相等),'''AA BB CC ==(平移运动中,连接对应点的线段相等).相等的角有'''BAC B A C ∠=∠,'''ABC A B C ∠=∠,'''ACB A C B ∠=∠(平移运动中,对应角分别相等).三角形ABC 与三角形''A BC 完全相同(平移变换不改变图形的形状和大小).14.【答案】解:因为1AGF ∠=∠,12∠=∠,所以2AGF ∠=∠.所以AB CD ∥.所以180B D ∠+∠=︒.因为50D ∠=︒,所以18050130B ∠=︒-︒=︒.15.【答案】解:设7AOD x ∠=,则BOE x ∠=.因为OE 平分BOD ∠,BOE x ∠=,所以22BOD BOE x ∠=∠=.因为180AOB ∠=︒,所以9180x =︒,解得20x =︒.所以20DOE ∠=︒.所以40AOC BOD ∠=∠=︒,160COE ∠=︒.因为OF 平分COE ∠,所以1802COF COE ∠=∠=︒.所以120AOF AOC COF ∠=∠+∠=︒.16.【答案】解:因为AB CD ∥,所以180B BCE ∠+∠=︒.因为40B ∠=︒,所以180********BCE B ∠=︒-∠=︒-︒=︒.所以1702BCN BCE ∠=∠=︒.因为CM CN ⊥,所以90BCN BCM ∠+∠=︒.所以90907020BCM BCN ∠=︒-∠=︒-︒=︒.人教版七年级数学下册第五章综合测试卷02一、选择题(30分)1.下面各图中,1∠和2∠是对顶角的是()AB CD 2.如图,已知a b ∥,l 与a ,b 相交,若170∠=︒,则2∠的度数等于()A .120︒B .110︒C .100︒D .70︒3.如图,直线AB CD ∥,则下列结论正确的是()A .12∠=∠B .34∠=∠C .13180∠+∠=︒D .34180∠+∠=︒4.如图,直线a b ∥,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=︒,则2∠的度数是()A .50︒B .70︒C .80︒D .110︒5.下列命题中,正确的是()A .在同一平面内,垂直于同一条直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同位角相等D .和为180︒的两个角叫做邻补角6.如图,将三角尺与直尺贴在一起,使三角尺的直角顶点()90C ACB ∠=在直尺的一边上,若160∠=︒,则2∠的度数等于()A .75︒B .60︒C .45︒D .30︒7.如图,直线AB EF ∥,点C 是直线AB 上一点,点D 是直线AB 外一点,若95BCD ∠=︒,25CDE ∠=︒,则DEF ∠的度数是()A .110︒B .115︒C .120︒D .125︒8.点P 为直线l 外一点,点A ,B ,C 为直线l 上三点, 4 cm PA =, 5 cm PB =, 2 cm PC =,则点P 到直线l 的距离为()A .4 cmB .2 cmC .小于2 cmD .不大于2 cm9.如图,将三角形ABE 向右平移2 cm 得到三角形DCF ,如果三角形ABE 的周长是16 cm ,那么四边形ABFD 的周长是()A .16 cmB .18 cmC .20 cmD .21 cm10.如图所示,下列条件:①13∠=∠;②23∠=∠;③45∠=∠;④24180∠+∠=︒中,能判断直线12l l ∥的有()A .1个B .2个C .3个D .4个二、填空题(24分)11.图中是对顶角量角器,用它测量角的原理是___________.12.如图,要使AB CD ∥,请添上一个前提条件___________,根据是___________.13.如图所示,将一个含有45︒角的直角三角板摆放在矩形上,若140∠=︒,则2∠=___________.14.若A ∠与B ∠的两边分别平行,且35A ∠=︒,则B ∠=___________.15.已知a ,b ,c 为平面内三条不同直线,若a b ⊥,c b ⊥,则a 与c 的位置关系是___________.16.如图,直线a b ∥,直线c 与直线a ,b 分别交于点A ,B .若145∠=︒,则2∠=___________.17.命题“如果a b =,那么33a b =”是一个___________(填“真”或“假”)命题。
人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。
A BC D E(第10题)(第14题)ABCDEF G H第13题ABCD 1234(第2题)12345678(第4题)ab cABCD(第7题)1A BOFDEC (第18题)第17题A B CDMN12七年级数学下册第五章测试题班级:______ 姓名:_________ 得分:__________一、单项选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3( )。
A 、90° B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门 ⑤ 汽车在一条笔直的马路上行走A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
第五章检测卷考试时间:120分钟满分:120分一、选择题(每小题3分,共10小题,满分30分)1.下列语句是命题的是( )A.连接A、B两点B.画一个角等于已知角C.过点C作直线AB的垂线D.两直线相交,有且只有一个交点2.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角第2题图第3题图3.如图,已知直线a∥b,直线c与a、b分别交于点A、点B,且∠1=120°,则∠2=( )A.60°B.120°C.30°D.150°4.下列各组图形可以通过平移互相得到的是( )5.如图,BD平分∠ABC,点E在BC上,EF∥AB,若∠CEF=100°,则∠ABD的度数为( )A.60°B.50°C.40°D.30°第5题图第6题图第7题图6.如图,直线a、b被直线c所截,下列说法正确的是( )A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( )A.点B到AC的垂线段是线段CAB.CD和AB互相垂直C.AC与BC互相垂直D.线段AC的长度是点A到BC的距离8.下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,两角的和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行(或在同一直线上)且相等9.如图,可由三角形BOC平移得到的三角形有A.2个B.3个C.4个D.5个第9题图第10题图10.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为A.①②B.③④C.②④D.①③④二、填空题(每小题3分,共8小题,满分24分)11.把命题“三角形内角和为180°”写成“如果……那么……”的形式是.12.如图,CD⊥AB,垂足为C,∠1=130°,则∠2= 度.第12题图第13题图13.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠CED= .14.如图所示,将线段b向右平移3格,再向上平移格,能与线段重合.第14题图第15题图15.如图,FE∥ON,OE平分∠MON,若∠FEO=28°,则∠MFE= .16.如图,若计划把河水引到水池A中,可以先作AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是.第16题图第17题图第18题图17.如图,一只船从点A出发,沿北偏东60°方向航行到点B,再沿南偏西25°方向航行到点C,则∠ABC= .18.如图,在直角三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于.三、解答题(本大题共7小题,满分66分)19.(8分)(山东淄博中考)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.20.(8分)如图,三角形ABC的顶点都在方格纸的格点上.将三角形ABC向左平移2格,再向上平移4格.请在图中画出平移后的三角形A′B′C′,再在图中画出三角形A′B′C′的高C′D′.21.(8分)如图所示,两个边长为5的正方形拼合成一个长方形,则图中阴影部分的面积是多少?22.(10分)已知:如图所示,AB∥CD,∠A=∠C.求证:BC∥AD.证明:∵AB∥CD(已知),∴∠ABE=∠(),∵∠A=∠C(已知),∴(),∴BC∥AD().23.(10分)如图,直线AB交CD于点O,由点O引射线OG、OE、OF,使OC平分∠EOG,∠AOG=∠FOE,∠BOD=56°,求∠FOC.24.(10分)如图,EF∥CD,∠1+∠2=180°,试判断∠BGD与∠BCA 的大小,并给予证明.25.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别为∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别为∠ABE2和∠DCE2的平分线,交点为E3,…第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n. (1)如图①,求证:∠BEC=∠ABE+∠DCE;∠BEC;(2)如图②,求证:∠BE2C=14(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论)。
第五章测评卷
(满分:100分 时间:45分钟)
七年级 班 座号 姓名 成绩
一,选择题(每小题5分,共计30分)
1. 如图,直线a ,b 被直线c 所截,则下列说法中错误的是( ) (A )∠1与∠2是邻补角 (B
)∠1与∠3是对顶角 (C )∠2与∠4是同位角
(D )∠3与∠4是内错角 2. 如图,一条“U ”型水管中AB ∥CD ,若∠B=75°,则 ∠C 应该等于(
)
(A )75° (B )95° (C )105° (D )125°
3. 如图,将三个相同的三角板不重叠不留空隙地拼在一起,观察图形,在线段AB ,BD ,
DE ,EC ,CA ,AE 中,相互平行的线段有( )
(A )4组 (B )3组 (C )2组 (D )1组
4. 如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF 的位置,下面正确的平移步骤是( ) (A )先向左平移5个单位,再向下平移2个单位 (B )先向右平移5个单位,再向下平移2个单位 (C )先向左平移5个单位,再向上平移2个单位 (D )先向右平移5个单位,再向上平移2个单位
5. 下列各命题中,是真命题的是( )
(A )同位角相等 (B )内错角相等 (C )邻补角相等 (D )对顶角相等 6. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ; ②AD ∥BC ;③∠B=∠CDA . 则正确的结论是( ) (A )①②③ (B )①② (C )① (D )②③
二,填空题(每小题5分,共计30分)
a
b
c 1
2 3
4
A
B
C
D
7. 如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足为B ,沿AB 挖水沟,水沟最短. 理由是 .
8. 若直线a ∥b ,a ∥c ,则直线b 与c 的位置关系是 .
9. 如图,请添加一个条件,使AB ∥CD ,那么你添加的这个条件是 . 10. 如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于 .
11. 如图,将周长为8的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD 的周长等于 .
12. 一个小区大门的栏杆如图所示,BA 垂直地面AE 于A ,CD 平行于地面AE ,那么∠ABC +∠BCD= 度.
三,解答题(共计40分)
13.(9分)如图,AB 、CD 相交于点O ,∠A=∠1,∠B=∠2,则∠C =∠D . 理由是:
∵ ∠A=∠1,∠B=∠2,(已知)
且∠1=∠2( )
∴∠A=∠B .(等量代换)
∴AC ∥BD ( ). ∴∠C =∠D ( ).
14.(9分)如图,已知点E 在直线AB 外,请使用三角板与直尺画图,并回答第⑶题: (1)过点E 作直线CD ,使CD ∥AB ;
1 2 3
4
A
B
C
A
B
C
D
O 1
2
(第7题)
(第9题)
(第10题)
A
B
C
D
E
F
(第11题)
(第12题)
(2)过点E 作直线EF ,使EF ⊥AB ,垂足为F ; (3)请判断直线CD 与EF 的位置关系,并说明理由.
15.(10分)如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分∠EAQ ,CD 平分∠CAN ,如果PQ ∥MN ,那么AB 与CD 平行吗?为什么?
16.(12分)如图,已知∠ABC=40°,射线DE 与AB 相交于点O ,且DE ∥BC ,解答以下(1)、(2)两题:
(1)画∠EDF ,使∠EDF 的另一边DF ∥AB ,请在下图①或图②中画出符合题意的图形,
A
B
E
A
B
C
D
P
Q
M
N
E
F
并求∠EDF 的度数;
(2)如果∠EDF 的顶点D 在∠ABC 的内部,边DE ⊥AB ,另一边DF ⊥BC ,请在下图③或图④中画出相应的图形,并使用量角器分别测量出∠ABC 与∠EDF 的度数后,直接写...出.∠ABC 与∠DEF 的关系,不必说明理由.
(图②)
(图④)
(图③)。