第四章 矩阵力学基础——表象理论
- 格式:ppt
- 大小:4.39 MB
- 文档页数:79
第四章 表象理论4.1 态的表象变换和态的矩阵表示1.态的表象变换将F 表象中的态函数对力学量算符ˆQ 在F 表象中的本征函数组展开,则展开系数就是在Q 表象中的态函数。
这就是将F 表象中的态函数变换到Q 表象中的态函数的方法。
为了便于求出展开系数,通常要求ˆQ的本征函数组为幺正基组。
以从r 表象变换到Q 表象为例。
r 表象中的态函数为(,)r t ϕ [或()r ϕ]。
设ˆQ的本征值为分立谱Q n ,对应的本征函数为()n r φ 。
当各Q n 都无简并时,(,)r t ϕ 对()n r φ的展开式为:(,)()()n n nr t a t r ϕφ=∑(4.1-1) 若Q n 表示几个对易力学量算符本征值的集合,则上式中的n 应表示几个对应的量子数的集合。
当Q n 存在简并时,展开式为:(,)()()iiin n n r t a t r ϕφ=∑(4.1-2)其中i 为描写简并的角标。
下面只讨论无简并的情况。
在(4.1-1)式中,a n (t)是Q n 与t 的函数,a n (t)相当于a(Q n ,t)的简写。
当Q n 在整个展开系数中变动。
由于Q n 为分立谱,所以函数关系a n (t)-Q n 不是连续的。
a n (t)就是(,)r t ϕ 变换到Q表象中的态函数。
例如,将r表象中的某态函数(,,)r ϕθϕ对2ˆL 与ˆzL 的共同本征函数组(,)lm Y θφ展开: 0(,,)()(,)llm lm l m lr C r Y ϕθφθϕ∞==-=∑∑ (4.1-3)上式相当于(4.1-1)式中的n 表示两个量子数lm 的集合。
上式中的()lm C r 就是在2L 与z L 共同表象中的态函数。
2.本征态的排序本征态的排序可以化为对应的本征值的排序。
若本征值无简并,则参与排序的本征值没有相同者;若本征值有简并,则参与排序的本征值有相同者,其相同本征值的个数应与该本征值的简并度相同。
第4章 量子力学的矩阵形式与表象变换§1 量子态的不同表象态的表象 量子力学中态和力学量的具体表示方式研究表象的意义 根据不同问题选择不同表象,还可以进行表象变换。
一、坐标表象波函数ψ(x ,t ) 1、ψ(x ,t )2、dx t x 2),(ψ——表示体系处在ψ(x ,t )所描述的态中,在x →x +d x 范围内找到粒子的几率,也就是说,当体系处在ψ(x ,t )所描述的态中,测量坐标x 这个力学量所得值在x →x +d x 这个范围内的几率。
3、2(,)1x t dx ψ=⎰4、动量为x p '的自由粒子的本征函数 xp ip e x ''=2/1)2(1)(πψ5、x 在坐标表象中对应于本征值x '的本征函数)(x x '-δ, 即,)()(x x x x x x '-'='-δδ 二、动量表象波函数 动量本征函数:pxip e x2/1)2(1)(πψ=组成完备系,任一状态ψ可按其展开(,)(,)()p x t c p t x dp ψψ=⎰ (1) 展开系数*(,)()(,)pc p t x x t dx ψψ=⎰ (2) ψ(x ,t )与c (p ,t )互为Fourier (付里叶)变换,一一对应关系,所不同的是变量不同。
认为c (p ,t )和ψ(x ,t )描述同一个状态。
ψ(x ,t )是这个状态在坐标表象中的波函数,c (p ,t )是同一个状态在动量表象中的波函数。
1、),(t p c ——状态波函数2、dp t p c 2),(表示体系处在c (p ,t )所描述的态中测量动量这个力学量p 所得结果为p →p +d p 范围内的几率。
3、1),(2=⎰dp t p c命题:假设ψ(x ,t )是归一化波函数,则c (p ,t )也是归一。
(在第一章中已经证明) 4、x p '的本征函数(具有确定动量x p '的自由粒子的态)若ψ(x ,t )描写的态是具有确定动量 p'的自由粒子态,即:1/21()(2)ip xp x eψπ''=则相应动量表象中的波函数:*(,)()(,)pc p t x x t dx ψψ=⎰()p i E te p p δ'-'=-所以,在动量表象中,具有确定动量p' 的粒子的波函数是以动量p 为变量的δ函数。
量⼦⼒学讲义IV.表象理论(矩阵表述)IV. 表象理论 ( 矩阵表述 )1.如何⽤矩阵表⽰量⼦态与⼒学量,并说明理由?答:矩阵表⽰⼀般⽤于本征值为离散谱的表象(相应的希尔伯空间维数是可数的)。
具体说,如果⼒学量的本征⽮为,相应本征值分别为。
假定⼀个任意态⽮为,将它展开For personal use only in study and research; not for commercial use则态⽮在表象中波函数便可⽤展开系数的⼀列矩阵表⽰其意义是:在态中,取的概率为,这与表象中波函数意义是类似的。
⼒学量⽤厄⽶⽅阵表⽰,。
显然,⼀列矩阵和⽅阵维数与希尔伯空间维数是相等的。
⽤矩阵表⽰⼒学量,有如下理由:第⼀可以反映⼒学量作⽤于⼀个量⼦态得到另⼀个量⼦态的事实。
设,式中,。
取,两端左乘,取标积得,即第⼆矩阵乘法⼀般不满⾜交换率,这恰好能满⾜两个⼒学量⼀般不对易的要求。
第三厄⽶矩阵的性质能体现⼒学量算符的厄⽶性。
对于本征值为连续谱的表象(希尔伯空间维数不可数),也可形式的运⽤矩阵表⽰,这时可将矩阵元素看成式连续分布的。
2.量⼦⼒学中,不同表象间:基⽮、波函数、⼒学量是如何变换的?答:量⼦⼒学中由⼀个表象到另⼀个表象的变换为⼳正变换,它类似于欧⽒空间中坐标转动。
设表象中的基⽮为表象中的基⽮为(1) 基⽮变换关系为式中,(为⼳正矩阵)。
设有任意态,则态在及表象中波函数分别为矩阵。
(2) 波函数变换规则为:矩阵。
(3) ⼒学量变换规则为:。
(式中与为⼒学量在、表象中矩阵)3.正变换有什么特征?答:⼳正变换特点:(1⼳正变换不改变态⽮的模,这⼀特征相当于坐标旋转变换;(2⼳正变换不改变⼒学量本征值;(3)⼒学量矩阵之迹 TrF与矩阵⾏列式 dgtF亦不因⼳正变换⽽改变.4. 学量在其⾃⾝表象中如何表⽰?其本征⽮是什么 ?答:如果⼒学量本征值为离散谱,那么,它在其⾃⾝表象中表⽰式为对⾓矩阵,为诸本征值。
本征⽮为单元素⼀列矩阵如果⼒学量本征值为连续谱,则它在其⾃⾝表象中为纯变量其本征⽮为函数。
第四章矩阵力学基础(Ⅱ)——表象理论4.1态和算符的表象表示1.态的表象表示 (1) 坐标表象以坐标算符的本征态为基底构成的表象称为坐标表象。
以一维的x 坐标为例。
算符xˆ本征方程是)()(ˆx x x x x x'-'='-δδ (4-1-1) 本征函数是).(x x '-δ量子态)(x 'ψ总可按x 的本征函数系展开,得dxx x x x )()()('-='⎰δϕϕ (4.1.2)展开系数必)(x ϕ就是该量子态在x 表象的表示,即波函数。
(2) 动量表象以动量算符的本征态为基底构成的表象是动量表象。
选x 为自变量,动量算符的本征函数是平面波。
以动量算符x pˆ为例,其本征态为: x p ip x x ex2121=/)()(πϕ (4 .1 .3)将量子态)(x ϕ按)(x xp ϕ展开==⎰x p x dp x p C x x )()()(ψϕxx x p i dp p C ex )()(/⎰2121π (4 .1 .4)C(p x )就是动量表象中的波函数。
这正是第二章中已熟知的结果。
动量表象也可以用动量为自变量表示。
在P x 表象中,粒子具有确定动量分量P x 的波函数是以P x 为自变量的函数)()(ˆx x x x x x p p p p p p'-'='-δδ (4.1.5) 在动量表象中的波函数也可以用类似于(4. 1. 2)式的方式给出。
(3) 任意表象设有某一线性厄米算符Q ˆ。
为叙述方便起见,假定算符Q ˆ具有分立本征值谱。
它的本征方程为)()(ˆr u Q r u Q nn n = (4.1.6) 将波函数),(t r ϕ按Q ˆ算符的正交归一本征函数系)}({r u展开∑=nn n r u t a t r )()(),(ϕ (4.1.7)展开系数{a n (t)}就是波函数必),(t rϕ在Q 表象中的表示。
第四讲 表象理论例1[武大5.22] 试在2ˆL 和zL ˆ的共同表象中并且在1= 的角动量子空间中,写出轨道角动量算符y x y x z L i L L L L L L ˆˆˆˆˆˆˆ2+=+,,,,和yx L i L L ˆˆˆ-=-这六个算符的矩阵表示。
解:对于1= ,由于2ˆL 的本征值是22 ,zL ˆ的本征值是 -,,0,可得⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=100000001ˆ,1000100012ˆ22 z L L (1)再由)ˆˆ(21ˆ-++=L L L x (2) 1,)1)((ˆ±+±=±m m m m L (3) m L L m L mm x ,)ˆˆ(21,)ˆ(, -+''+''=})1)(()1)(({211-''+''+-++++-=m m m m m m m m δδδδ(4) 对于固定的 值而言,还由于xx L L ˆˆ=+,由(4)式可得)1)((2)ˆ()ˆ(,11,+-+==--m m L L mm x m m x (5) 当,1,0,1,1-==m 代入(5)式可得2)ˆ()ˆ(2)ˆ()ˆ(1,00,10,11,0 ====--x x x x L L L L (6) 注意(6)式中出现了不能用磁量子数m 的值标记算符矩阵元行、列脚码的现象。
此时,可以m 的取值为依据,从大到小依次排列,对它们重新编号,再将新编号码作为算符矩阵元行、列脚码的标记。
例如 m=+1——用脚码“1”表示; m=0 ——用脚码“2”表示; m=-1——用脚码“3”表示。
重新编号后(6)式所示矩阵元改写成2)ˆ()ˆ()ˆ()ˆ(2)ˆ()ˆ()ˆ()ˆ(32231,00,12,11,20,11,0 ==→===→=--,,x x x x x x x x L L L L L L L L将它们依次排列起来即得在2ˆL 和zL ˆ的共同表象内,1= 时x L ˆ的矩阵表示为⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=010*********202020ˆ x L (7) 同理可得⎪⎪⎪⎭⎫⎝⎛--=000002ˆi i i i L y (8)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛=-+02000200ˆ,000200020ˆ L L (9) #例2[全美4.17] 考虑一个两维的物理体系,右矢1ψ和2ψ构成态空间的正交归一基,我们用下式)(),(2122112121ψψφψψφ-=+=定义新基1φ和2φ。