矩阵理论第3章习题解答
- 格式:doc
- 大小:346.00 KB
- 文档页数:5
第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。
由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。
2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。
3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。
4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。
5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。
6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。
7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。
矩阵分析第3章习题答案第三章1、 已知()ijA a =是n 阶正定Hermite 矩阵,在n维线性空间nC 中向量1212(,,,),(,,,)n n x x x y y y αβ==L L 定义内积为(,)HA αβαβ=(1) 证明在上述定义下,nC 是酉空间;(2) 写出nC 中的Canchy-Schwarz 不等式。
2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。
提示:即求方程0AX =的基础解系再正交化单位化。
3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HUAU是上三角矩阵。
提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。
5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HUAU为对角矩阵,已知133261(1)6322312623A ⎡⎢⎢⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQAQ为对角矩阵,已知 220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使HPAP E=(或TPAP E=),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。
习题三(A )1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵:(1) 112332141022-⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)1111131320461135-⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭(3)24512122111212136363--⎛⎫⎪-- ⎪=⎪-- ⎪---⎝⎭2.设A 123012425⎛⎫⎪=- ⎪ ⎪⎝⎭,010(1,2)100001⎛⎫⎪= ⎪ ⎪⎝⎭E ,100(3,2(5))010051⎛⎫ ⎪= ⎪ ⎪⎝⎭E .试求(1,2)E A ;(1,2)AE ;(3,2(5))E A .3.用初等变换求下列方阵的逆矩阵:(1) A 101110012⎛⎫ ⎪=- ⎪ ⎪⎝⎭ (2)A 211124347--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭(3)A1111022200330004⎛⎫⎪⎪= ⎪ ⎪⎝⎭4.用初等变换解下列矩阵方程:(1) 设A 101110120⎛⎫ ⎪= ⎪ ⎪⎝⎭,102102-⎛⎫⎪= ⎪ ⎪⎝⎭B ,且AX =B ,求X .(2)设A 220213010⎛⎫⎪= ⎪ ⎪⎝⎭,且+AX =A X ,求X .5.设矩阵A 122324111222-⎛⎫⎪=-- ⎪ ⎪-⎝⎭,计算A 的全部三阶子式,并求()R A .6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明.7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明.8.求下列矩阵A 的秩:(1) 310211311344⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(2)1121224230610304-⎛⎫ ⎪- ⎪=⎪- ⎪-⎝⎭(3)12211248022423336064--⎛⎫⎪-⎪= ⎪-- ⎪--⎝⎭(4) 112205123λλλ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ (5)111111λλλ⎛⎫⎪= ⎪ ⎪⎝⎭9. 设有矩阵A101110112111022264μμ-⎛⎫⎪⎪=⎪⎪⎝⎭,若()3R=A,求μ的值.10.判断下列命题是否正确.(1) 如果线性方程组AX=0只有零解,那么线性方程组AX=B有唯一解;(2) 如果线性方程组AX=B有唯一解,那么线性方程组AX=0只有零解.11. 解下列齐次线性方程组:(1)12312312325502303570x x xx x xx x x+-=⎧⎪+-=⎨⎪+-=⎩(2)1234123412342202220430x x x xx x x xx x x x+++=⎧⎪+--=⎨⎪---=⎩(3)31243124312431242530420476023950xx x xxx x xxx x xxx x x-+-=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩(4)3124312412431242350240347045530xx x xxx x xx x xxx x x-+-+=⎧⎪-+-=⎪⎨--=⎪⎪-+-=⎩12. 解下列非齐次线性方程组:(1)123123123343322323x x xx x xx x x-+=⎧⎪+-=-⎨⎪-+-=-⎩(2)12341234123443222333244x x x xx x x xx x x x+-+=⎧⎪++-=-⎨⎪---+=⎩(3)3124312431243124235324434733749xx x xxx x xxx x xxx x x+++=⎧⎪++-=⎪⎨+++=⎪⎪++-=⎩(4)31231231231224523438214496xx xxx xxx xxx x-+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩13. 确定λ的值,使下列齐次线性方程组有非零解,并求其一般解.(1)123123123x x xx x xx x xλλλ++=⎧⎪++=⎨⎪++=⎩(2)123123123240356020x x xx x xx x x-+=⎧⎪-+=⎨⎪-+=⎩λ14.讨论下列非齐次线性方程组,当λ取何值时,方程组无解、有唯一解、有无穷多解?并在有无穷多解时求出一般解:(1)12312321231x x xx x xx x xλλλλλ++=⎧⎪++=⎨⎪++=⎩(2)212312312313422321x x xx x xx x x++=⎧⎪++=⎨⎪+-=⎩λλ15. 设有方程组112223334445551x axx axx axx axx ax-=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩,证明方程组有解的充分必要条件是51iia==∑.(B )1.设A 是n 阶可逆阵,互换A 的第i 行与第j 行(i j ≠)得到矩阵B ,求1-AB .2. (研2007数一、二、三)设矩阵0100001000010000⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为___ ____. 3. (研2010数一)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若AB =E ,则正确的是( )(A) ()R m =A ,()R m =B (B) ()R m =A ,()R n =B(C) ()R n =A ,()R m =B (D) ()R n =A ,()R n =B4. (研2015数一、二、三)设矩阵A 21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,21d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭b .若集合={1,2}Ω,则线性方程组Ax =b 有无穷多解的充分必要条件是( )(A) a ∉Ω,d ∉Ω (B) a ∉Ω,d ∈Ω (C) a ∈Ω,d ∉Ω (D) a ∈Ω,d ∈Ω5. (研2016数二、三)设矩阵111111a a a --⎛⎫ ⎪-- ⎪ ⎪--⎝⎭与110011101⎛⎫ ⎪- ⎪ ⎪⎝⎭等价,则a =____ ____.6.证明:()()R R R ⎛⎫=+ ⎪⎝⎭A O AB O B . 7.设A ,B 是n 阶非零矩阵,证明:若=AB O ,则()R n <A 及()R n <B .8.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且n m <.证明:||0=AB .。
西南科技大学研究生试题单(B 卷)(2014级高等工程数学A)第一部分 矩阵理论(共32分)1、(8分)填空题(1)每个n 阶矩阵都相似于一个 矩阵。
(2)n nA C⨯∈,A 为正规矩阵的充要条件是A 对角形矩阵。
(3)正交变换在规范正交基下的矩阵是 矩阵。
(4)A 的最小多项式 A 的零化多项式。
2、(6分) 求4R 的子空间1234123412341234{(,,,)|0},{(,,,)|0}V a a a a a a a a W a a a a a a a a =-+-==+++=的交V W I 的一组基。
3、(8分) 已知111111,012A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭计算5432()2822g A A A A A E =-++-。
4、(10分)求矩阵213121242A -⎛⎫⎪= ⎪ ⎪⎝⎭的Doolittle 分解和LDU 分解。
第二部分 数值分析(共36分)5、 (4分)解答下列各题 设函数2015201420131()5.2015!f x x x x =++,求差商0120142015[2,2,2,2]?f =L 6、(8分)设函数4()f x x =,不直接用拉格朗日插值公式,而用拉格朗日余项公式求出以1,0,1,2x =-为插值节点的三次插值多项式3().L x7、(8分)设有求积公式2120()(0)(1)(2)f x dx af a f a f ≈++⎰试确定系数012,,a a a 使上述公式的代数精度尽量高,且指出其代数精度。
8、(8分)已知方程组123123123102212100.51.931x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ (1) 构造Jacobi 迭代法的迭代格式,迭代格式是否收敛?说明理由; (2) 取(0)(0,0,0)T x=,用上述迭代法来计算一步迭代值(保留小数点后4位)。
9、(8分)若求解初值问题为24,015(0)1x y y x y y ⎧'=-≤≤⎪⎨⎪=⎩, 试写出Euler 方法求解的迭代格式(0.2)h =,并计算(0.2),(0.4)y y 的值(保留小数点后至少8位)。
第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。
(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。
(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。
第三章矩阵§3.1 矩阵的运算练习题1. 如果矩阵X满足X+2A=B-X,其中A=101032302-⎛⎫⎪⎪⎪-⎝⎭,B=321402010⎛⎫⎪⎪⎪-⎝⎭求X。
2. 已知矩阵A=123031⎛⎫⎪⎝⎭,B=130210101⎛⎫⎪⎪⎪⎝⎭,计算AB,AB-AB T.3. 设矩阵A=110 011 001⎛⎫ ⎪ ⎪ ⎪⎝⎭,计算A n,其中n为正整数。
4. 设()1,0,1Tα=-,矩阵A=T αα。
计算n aE A -,其中E 为三阶单位阵,n 为正整数。
5. 设4阶矩阵A=()234,,,αγγγ,B=()234,,,βγγγ,其中234,,,,αβγγγ均为4维列向量,且已知行列式4, 1.A B ==求A B +。
6. 设A为n阶矩阵,n为奇数,且满足AA T=E,A1=。
求A-E。
7. 设矩阵A=110011001⎛⎫⎪⎪⎪⎝⎭。
求3阶矩阵X,使得AX=XA。
8.设A是n阶实矩阵。
证明如果AA T=O,则A=O。
9. 设A,B是n阶实矩阵,若A2=A,B2=B,则称A,B为幂等阵。
已知A,B是幂等阵,证明A+B也是幂等阵的充要条件是AB=BA=O。
§3.2 几种特殊的矩阵练习题1. 设矩阵A=12n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭, 其中12,,,n a a a 两两不同。
证明:与A 可交换的矩阵必是对角阵。
2. 设A 是n 阶对称矩阵,B 是n 阶反对称矩阵。
证明:AB 是反对称矩阵的充分必要条件是AB=BA 。
§3.3 分块矩阵练习题1. 设矩阵A=3400 4300 0020 0022⎛⎫ ⎪-⎪ ⎪ ⎪⎝⎭利用分块矩阵求8A。
2. 设矩阵A=100000001000aabb⎛⎫⎪⎪⎪⎪⎝⎭,B=000100001000aabb⎛⎫⎪⎪⎪⎪⎝⎭利用分块矩阵计算AA T,(A-B)B T。
3. 设矩阵A=1111 1111 1111 1111 --⎛⎫ ⎪--⎪ ⎪--⎪--⎝⎭利用分块矩阵求A6。
矩阵分析第3章习题答案第三章1、已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间nC 中向量1212(,,,),(,,,)n n x x x y y y αβ==定义内积为(,)H A αβαβ=(1)证明在上述定义下,nC 是⾣空间;(2)写出nC 中的Canchy-Schwarz 不等式。
2、已知2111311101A --??=?-??,求()N A 的标准正交基。
提⽰:即求⽅程0AX =的基础解系再正交化单位化。
3、已知308126(1)316,(2)103205114A A --??=-=-??----??试求⾣矩阵U ,使得HU AU 是上三⾓矩阵。
提⽰:参见教材上的例⼦4、试证:在nC 上的任何⼀个正交投影矩阵P 是半正定的Hermite 矩阵。
5、验证下列矩阵是正规矩阵,并求⾣矩阵U ,使H U AU 为对⾓矩阵,已知11332611(1)6322312623i i A i i ??--=--???01(2)10000i A i -=??,434621(3)44326962260ii i A i i i i i +--=----?+--??11(4)11A -??=??6、试求正交矩阵Q ,使TQ AQ 为对⾓矩阵,已知220(1)212020A -=---??,11011110(2)01111011A -??-?=-??-??7、试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +=-??-,222(2)254245A -??=---8、设n 阶⾣矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是⾣矩阵。
证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,⽭盾,所以矩阵E U +满秩。
第三章 习题解答1.求矩阵1141⎡⎤=⎢⎥⎣⎦A 的谱分解.解:(1) 求特征值()()12310E A λλλ-=-+=,所以特征值为123,1λλ==-.(2) 求特征向量:13λ=对应的特征向量为()11,2;Tp =21λ=-对应的特征向量为()21,2Tp =-.(3)谱分解:令1211(,)22P p p ⎡⎤==⎢⎥-⎣⎦,则1121124.1124TT P ωω-⎡⎤⎢⎥⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎣⎦令1111124,112TA p ω⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦2221124,112T A p ω⎡⎤-⎢⎥==⎢⎥⎢⎥-⎢⎥⎣⎦故谱分解式为123A A A =- 2 求单纯矩阵296182051240825A -⎛⎫⎪=- ⎪ ⎪-⎝⎭的谱分解式.3.设()1,2,i i n λ=是正规矩阵n?n A ∈C 的特征值,证明:()21,2,ii n λ=是H A A 与HAA 的特征值.证:根据题设矩阵A ,则A 酉相似与对角矩阵,即()12diag ,,,H n A U U λλλ=其中U 为酉矩阵,则()()()()1212diag ,,diag ,,HH H H n n A A U U U U λλλλλλ=()22212diag ,,,HnU Uλλλ=即HA A 的特征值为()21,2,ii n λ=,同理可证()21,2,i i n λ=也是H AA 的特征值。
4 设A 是n n ⨯阶的实对称矩阵,并且20,A =你能用几种方法证明0.A =证:(1)设λ是矩阵A 的一个特征值,x 是对应于λ的一个非零特征向量,即,Ax x λ=220,A x x λ==所以20,λ=即0,λ=所以矩阵A 的特征值全为零,又A 酉相似与对角矩阵()12diag ,,,n λλλ所以0.A =(2)设0,A ≠则20,HA A A =≠与题设矛盾,所以结论成立。
5 试证:对于每一个实对称矩阵A ,都存在一个n 阶方阵S ,使3A S =。
习题三A 组1 •填空题.(1)设口 = (1,1,1), 6 = (-1,-1,-1),则ah x= _____________ , a vh= _________ro o>1 ](3)若么=(1, 2, 3), B — 1, —, — , A — a}d ,则 A n =I 2 3丿‘1 0⑷设A= 0 2J o解0.(5)设 a = (l, 0, -if ,矩阵 A=aa l \ 斤为正整数,贝 i\kE - A n解 k 2(k-2n ).(6)设昇为斤阶矩阵,且A =2,贝ij AA T= _________ , AA : = _______2(2)设八1-3 2),B =-3丿1 -13 1 3>则AB = (0 0丿(—3 -3丿2 13232 3 1 1)0 ,正整数 /7 > 2 ,则 A n -2A ,l ~' =2“+i2".(cos& -sin&\(7)、sin& cos& 丿cos& sin&\、一sin& cos& 丿0 0、2 0 ,则(A*y =4 5,解討丫2(10)设矩阵/二,矩阵B满足BA = B + 2E,则B二,B<-1 2(2 0(11)设/,〃均为三阶矩阵,AB = 2A + B f B= 0 4,2 0‘0 0 P解0 1 0b o oj(12)设三阶矩阵/满足|力|二*, (3A)~l-2A* =1627(13)设/为加阶方阵,B为兀阶方阵,同=Q,\B\ = b, C =°, 则\c\ =(8)设…®?工0 ,则、\Z曾丿1)a n1%■■1 1■色丿丿a lP(9)设A= 22、0 ,贝=2丿/0、0 ,矩阵〃满足关系式ABA =2BA ^E,其屮才'为力的伴随矩阵,则|B | =解*•解0.解一3・是nxp 矩阵,C 是pxm 矩阵,加、n 、p 互不相等,则下列运算没有(B) ABC ;解D.(2)设/是mxn 矩阵(m n), B 是nxm 矩阵,则下列解(一l)〃5b ・(15)设4阶矩阵/的秩为1,则其伴随矩阵/的秩为 (14)设三阶矩阵/ =R(4)解1.(17)设矩阵力'a 、b\ a }b 2■ ■a 2b 2 ■ • ■a n b2,其中匕・工0, (Z=l,2,•••,/?),则力的秩,且7?(J) = 3,则丘=0、 -2i,则将/可以表示成以下三个初等矩阵的乘积(D) AC T .的运算结果是n 阶力•阵.(A) AB ;解B.(B) A YBT;(C) B r A T ;(D) (4B)T.(16 )设?1 = •咕、 ・仇 ・ a n b n)解2.选择题.(1)设/是mxn 矩阵,(3) 设力」是斤阶方阵,AB = O,贝I 」有 ________ • (A) A = B = Ox(B) A + B = O ; (C)同=0或|同=0;(D)同 + 圖=0・解C ・(4) 设力,〃都是斤阶矩阵,则必有 _______ . (A) \A + B\ = \^ + \B\; (B) AB = BA ; (C) \AB\ = \BA\ ;(D) (/1 + B)T M /T + BT ・解C ・(5) 设/,B 是斤阶方阵,下列结论正确的是 __________ ・ (A)若均可逆,则A^B 可逆; (B)若力,〃均可逆,则力〃可逆; (C)若A + B 可逆,则A-B 可逆;(D)若A + B 可逆,则4〃均可逆.解B.(6) 设斤阶方阵A,B,C 满足关系式 ABC = E ,则必有 ___________ ・ (A) ACB = E ; (B) CBA = E ;(C) BAC = E ;(D) BCA = E .解D.(7) 设昇,B,力 + B, /T+BT 均为斤阶可逆矩阵,贝等于 ________________________ (A)(B) A + B ;(C) (D) g + 3)".解C.(8) 设£B,C 均为兀阶矩阵,若B = E + MB , C = A^CA.则B-C 为 ________________ . (A) E\ (B) —E ; (C) ; (D) —A.. 解A.(9) 设矩阵A = (a i .} 满足才其中才是/的伴随矩阵,川为昇的转置矩阵.若\ "3x3。
第三章 矩阵的初等变换练习题参考答案一、判断题( √ )1.设A 是n 阶可逆方阵,则齐次线性方程组0Ax =只有零解。
( √ )2.若n 阶矩阵A 可逆,则()R A n =。
( × )3.n 元非齐次线性方程组Ax b =有解的充分必要条件()R A n =。
( √ )4. 两个n 阶矩阵A ,B 行等价的充要条件是存在n 阶可逆矩阵P 使得B PA =。
( × )5. 任何矩阵都可以经过有限次初等行变换化为行阶梯形矩阵,并且化为的行阶梯形矩阵是唯一确定的。
( × )6. 若n 阶矩阵A 的秩为1n -,则A 的所有1n -阶子式均不为零。
( √ )7. 可逆矩阵A 总可以只经过有限次初等行变换化为单位矩阵E 。
( √ )8. 设矩阵A 的秩为r ,则A 中所有1+r 阶子式必为零。
( × )9.设A 为)n m (n m <⨯矩阵,则Ax b =有无穷多解。
( × )10. 只有行等价的矩阵才具有相同的秩,列等价的矩阵不具有相同的秩.二、填空题1. 矩阵102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭的行最简形矩阵为100000100001⎛⎫⎪ ⎪ ⎪⎝⎭。
2. 设A 是5阶方阵,且满足2A A E +=, 则()R A E += 5 。
3.非齐次线性方程组的增广矩阵为B =21011101400000122000(1)1k k k kk --⎛⎫⎪⎪⎪-- ⎪--⎝⎭,则当k =0时方程组无解;当k =1时方程组有无穷解。
4.设线性方程组的增广矩阵为132331234102420210400130000a a a a a a a a a +⎛⎫⎪-⎪ ⎪- ⎪⎪+--⎝⎭,则该方程组有解的充要条件是12340a a a a +--=。
5. 设矩阵A 经初等行变换可化为行阶梯形矩阵B 。
若A 的秩为3,则B 中非零行的行数为 3 。
习题3-1 矩阵的初等变换及初等矩阵1.用初等行变换化矩阵102120313043A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为行最简形.2.用初等变换求方阵321315323A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的逆矩阵.3.设412221311A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,32231-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦1B=,求X使AX B=.4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B.(1) 证明B可逆(2)求1AB-.习题 3-2 矩阵的秩1.求矩阵的秩:(1)310211211344A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦(2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 01,2,,i i a b i n ≠⎡⎤⎢⎥=⎣⎦L2.设12312323k A k k -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 ..()()a R A R B = .()()b R A R B <;.()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥-4. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4.5. 设n (n ≥3)阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 11-n .6.设A 为n 阶方阵,且2A A =,试证:()()R A R A E n +-=习题 3-3线性方程组的解1. 选择题(1)设A 是m n ⨯矩阵,0Ax =是非齐次线性方程组Ax b =所对应的齐次线性方程组,则下列结论正确的是( ).A. 若0Ax =仅有零解,则Ax b =有唯一解B. 若0Ax =有非零解,则Ax b =有无穷多个解C. 若Ax b =有无穷多个解,则0Ax =仅有零解D. 若Ax b =有无穷多个解,则0Ax =有非零解,(2)对非齐次线性方程组m n A x b ⨯=,设()R A r =,则( ).A.r m =时,方程组Ax b =有解B.r n =时,方程组Ax b =有唯一解C.m n =时,方程组Ax b =有唯一解D.r n <时,方程组Ax b =有无穷多解(3)设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵为A ,且存在三阶方阵B ≠0,使AB =0,则 .2.-=λa 且0=B ; 2.-=λb 且0≠B ;C. 1=λ且0=B ; d . 1=λ且0≠B .(4)设非齐次线性方程组AX=b 的两个互异的解是21,X X ,则 是该方程组的解.121212121.;.;.();..22X X a X X b X X c X X d -+-+2.解下列方程组: (1)12341234123420363051050x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩(2)21 422221x y z wx y z wx y z w+-+=⎧⎪+-+=⎨⎪+--=⎩3.设123123123(2)2212(5)42 24(5)1x x xx x xx x xλλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩问λ为何值时,此方程组有唯一解,无解或有无穷多解?并在有无穷多解时求其通解.4. 设线性方程组⎪⎩⎪⎨⎧=++=++=++000222z c y b x a cz by ax z y x(1) a,b,c 满足何种关系时,方程组仅有零解?(2) a,b,c 满足何种关系时,方程组有无穷多解?求出其解.5.设,,,,,515454343232121a x x a x x a x x a x x a x x =-=-=-=-=-证明这个方程组有解的充分必要条件为051=∑=j j a,且在有解的情形,求出它的一般解.。