1最优化问题与数学预备知识
- 格式:doc
- 大小:478.50 KB
- 文档页数:7
数学预习方法数学作为一门基础学科,对于学生来说常常是一个难以逾越的障碍。
许多学生在学习数学时感到困惑和压力,但是通过科学的预习方法,可以帮助学生更好地准备数学课程,提高学习效率。
下面将介绍一些数学预习方法,希望对大家有所帮助。
首先,了解课程大纲和重点。
在开始预习之前,学生应该仔细阅读课程大纲,了解课程的整体框架和重点内容。
这样可以帮助学生明确自己需要重点关注哪些知识点,有针对性地进行预习。
其次,查阅相关资料。
在进行数学预习时,学生可以通过查阅相关资料,如教材、参考书、网络资源等,来获取更多的学习资料。
这样可以帮助学生更好地理解知识点,扩大知识面,提高学习的深度和广度。
接着,进行基础知识的复习。
数学是一门建立在基础知识上的学科,因此在进行预习时,学生应该重点复习课程前的基础知识,确保自己对基础知识有扎实的掌握。
只有建立在扎实的基础上,才能更好地理解和应用后续的知识点。
然后,进行习题练习。
在进行数学预习时,学生可以通过做一些相关的习题来巩固所学知识。
通过练习可以帮助学生更好地理解知识点,发现自己的不足之处,并及时进行弥补。
同时,通过练习可以帮助学生培养解决问题的能力,提高数学思维能力。
最后,与同学讨论交流。
在进行数学预习时,学生可以与同学进行讨论交流,共同探讨问题,互相学习。
通过与同学的交流,可以帮助学生更好地理解知识点,发现问题并及时解决,同时也可以帮助学生建立学习动力,提高学习效率。
总之,通过科学的预习方法,可以帮助学生更好地准备数学课程,提高学习效率。
希望以上方法对大家有所帮助,祝大家学习进步!。
第一章、预备知识一、考虑二次函数()2211221223f X x x x x x x =++-+1) 写出它的矩阵—向量形式: ()f X =12TTQx x xb +2) 矩阵Q 是不是奇异的? 3) 证明: f(x)是正定的 4) f(x)是凸的吗? 5) 写出f(x)在点x =()2,1T处的支撑超平面(即切平面)方程解: 1) f(x)=xx x x x x2122212132+-++=⎪⎪⎭⎫ ⎝⎛x x 2121⎪⎪⎭⎫⎝⎛6222⎪⎪⎭⎫ ⎝⎛x x 21+11T-⎛⎫ ⎪⎝⎭⎪⎪⎭⎫ ⎝⎛x x 21 其中 x=⎪⎪⎭⎫ ⎝⎛x x 21 ,Q=⎪⎪⎭⎫ ⎝⎛6222, b=⎪⎪⎭⎫⎝⎛-11 2) 因为Q=⎪⎪⎭⎫ ⎝⎛6222,所以 |Q|=6222=8>0 即可知Q 是非奇异的3) 因为|2|>0, 6222=8>0 ,所以Q 是正定的,故f(x)是正定的4) 因为2()f x ∇=⎪⎪⎭⎫ ⎝⎛6222,所以|)(2x f ∇|=8>0,故推出)(2x f ∇是正定的, 即)(2x f ∇是凸的5) 因为)(x f ∇=2121(2x 2-1,261)x x x T+++,所以)(x f ∇=(5,11)所以 ()f x 在点x 处的切线方程为5(21-x )+11(12-x )=0 二、 求下列函数的梯度问题和Hesse 矩阵 1) ()f x =2x 12+xx x x x 23923121+++x x x 2322+2) ()f x =2212()21n l x x x x ++解: 1) )(x f ∇= (,94321x xx ++ 26321+++xx x, xx 219+))(2x f ∇=⎪⎪⎪⎭⎫ ⎝⎛019161914 2) )(x f ∇=(x x x x xx 112221221+++,x x x x x x112221221+++))(2x f ∇=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----------++++++++)()()()(2221212222212142221214222121222222121222212122221212212122x x x x x x x x x x x x x x x x x x x x xx x xx x x x x x x x 三、 设f(x)=xx x x x x x323223322122--+++,取点)1,1,1()1(Tx=.验证d )1(=(1,0,-1)是f(x)在点x )1(处的一个下降方向,并计算min >t f(x )1(+t d)1()证明: )(x f ∇=)124,123,x 2(233221-+-+x x x x T)5,4,2()(1Tx f =∇d )(1x f ∇=(1,0,-1)⎪⎪⎪⎭⎫ ⎝⎛542= -3<0所以d)1(是f(x)在x )1(处的一个下降方向f(x )1(+t d)1()=f((1+t,1,1-t))=433)1(1)1(221(222)1()1+-=----+++-+t t t t t t∇f(x )1(+t d)1()=6t-3=0 所以t=0.5>0所以0min >t f(x )1(+t d)1()=3*0.25-3*0.5+4=3.25四、设,,i i i a b c (j=1,2,….,n )考虑问题Min f(x)=∑=nj jj xc 1s.t. b nj jjxa =∑=10≥xj(j=1,2,….,n)1) 写出其Kuhn Tuker 条件 2) 证明问题最优值是])([12112∑=nj j j b c a解:1)因),....,1(n j x j = 为目标函数的分母故0>x j所以λ*j (j=1,…,n )都为0所以Kuhn Tuker 条件为 0)()(=∇+∇x h x f μ即 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---x c x c x c n n 2222211 +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a a a n 21μ=0 2)将ac xjjjμ=代入 h(x)=0 只有一点得221(nj b n j bμ==⇒=∑=故有ac ca x jj nj jjj b∑==1所以最优解是21211()n j j j b a c =⎡⎤⎢⎥⎢⎥⎣⎦∑.五、使用Kuhn Tuker 条件,求问题min f(x)=)2()1(2122--+x xs.t.,021212112≥≥=+=-x x x x x x 的Kuhn Tuker 点,并验证此点为问题的最优解 解:x=(1/2,3/2) 0≠ 故1λ*,λ*2=0 则 0)()()(2211=+∇+∇x x x f h h μμ 即0111142222121=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛--μμx x ⇒120,1μμ==-而⎪⎪⎭⎫ ⎝⎛=∇2002)(2x f ()210g x *∇= ()220g x *∇= ()210h x *∇=()220h x *∇=,()()()()()()()22222211221122H x f x g x g x h x h x f x λλμμ***********=∇+∇+∇+∇+∇=∇(){}{}12121213|00|1020,22T T T x y h y h y y y y y y *⎧⎫⎛⎫=∇=∇==-+-=+-==⎨⎬⎪⎝⎭⎩⎭故08)(2>=∇x x f x T ,即其为最优解.第二章、无约束优化问题一、设f(x)为定义在区间[a,b]上的实值函数,x *是问题min{f(x)|a b x ≤≤}的最优解。
《最优化方法》复习提要 第一章 最优化问题与数学预备知识§1. 1 模型无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈.约束最优化问题(},,2,1,0)(;,,2,1,0)(,|{l j x h m i x g R x x S j i n ===≥∈=∧)min ();...f x s t x S ⎧⎨∈⎩ 即 m i n ();..()0,1,2,,,()0,1,2,,.i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域,()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥===称为约束条件.§1. 2 多元函数的梯度、Hesse 矩阵及Taylor 公式定义 设:,n n f R R x R →∈.如果n ∃维向量p ,n x R ∀∆∈,有()()()T f x x f x p x o x +∆-=∆+∆.则称()f x 在点x 处可微,并称()T df x p x =∆为()f x 在点x 处的微分.如果()f x 在点x 处对于12(,,,)T n x x x x =的各分量的偏导数(),1,2,,if x i n x ∂=∂都存在,则称()f x 在点x 处一阶可导,并称向量12()()()()(,,,)Tnf x f x f x f x x x x ∂∂∂∇=∂∂∂ 为()f x 在点x 处一阶导数或梯度.定理1 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处梯度()f x ∇ 存在,并且有()()T df x f x x =∇∆.定义 设:,n n f R R x R →∈.d 是给定的n 维非零向量,de d=.如果 0()()lim()f x e f x R λλλλ→+-∈存在,则称此极限为()f x 在点x 沿方向d 的方向导数,记作()f x d∂∂. 定理2 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处沿任何非零方向d 的方向导数存在,且()()T f x f x e d ∂=∇∂,其中de d=. 定义 设()f x 是n R 上的连续函数,n x R ∈.d 是n 维非零向量.如果0δ∃>,使得(0,)λδ∀∈,有()f x d λ+<(>)()f x .则称d 为()f x 在点x 处的下降(上升)方向.定理3 设:,n n f R R x R →∈,且()f x 在点x 处可微,如果∃非零向量n d R ∈,使得()T f x d ∇<(>)0,则d 是()f x 在点x 处的下降(上升)方向. 定义 设:,n n f R R x R →∈.如果()f x 在点x 处对于自变量12(,,,)T n x x x x =的各分量的二阶偏导数2()(,1,2,,)i j f x i j n x x ∂=∂∂都存在,则称函数()f x 在点x 处二阶可导,并称矩阵22221121222222122222212()()()()()()()()()()n n n n n f x f x f x x x x x x f x f x f x f x x x x x x f x f x f x x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂ ⎪∇=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭为()f x 在点x 处的二阶导数矩阵或Hesse 矩阵. 定义 设:,n m n h R R x R →∈,记12()((),(),,())T m h x h x h x h x =,如果 ()(1,2,,)i h x i m =在点x 处对于自变量12(,,,)T n x x x x =的各分量的偏导数()(1,2,,;1,2,,)i jh x i m j n x ∂==∂都存在,则称向量函数()h x 在点x 处是一阶可导的,并且称矩阵111122221212()()()()()()()()()()n n m n m m m n h x h x h x xx x h x h x h x x x x h x h x h x h x xx x ⨯∂∂∂⎛⎫ ⎪∂∂∂⎪⎪∂∂∂⎪∂∂∂∇= ⎪ ⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭为()h x 在点x 处的一阶导数矩阵或Jacobi 矩阵,简记为()h x ∇.例2 设,,n n a R x R b R ∈∈∈,求()T f x a x b =+在任意点x 处的梯度和Hesse 矩阵.解 设1212(,,,),(,,,)TTn n a a a a x x x x ==,则1()nk k k f x a x b ==+∑,因()(1,2,,)k kf x a k n x ∂==∂,故得()f x a ∇=.又因2()0(,1,2,,)i jf x i j n x x ∂==∂∂,则2()f x O ∇=.例3 设n n Q R ⨯∈是对称矩阵,,n b R c R ∈∈,称1()2TT f x x Qx b x c =++为二次函数,求()f x 在任意点x 处的梯度和Hesse 矩阵.解 设1212(),(,,,),(,,,)T T ij n n n n Q q x x x x b b b b ⨯===,则121111(,,,)2n nnn ij i j k k i j k f x x x q x x b x c ====++∑∑∑,从而111111111()()()nn j j j j j j n n n nj j n nj j j j n f x q x b q x x bf x Qx b f x b q x b q x x ====⎛⎫⎛⎫∂⎛⎫+ ⎪ ⎪ ⎪∂⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪∇===+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭∑∑∑∑.再对1()(1,2,,)nij j i j i f x q x b i n x =∂=+=∂∑求偏导得到2()(,1,2,,)ij i jf x q i j n x x ∂==∂∂,于是1112121222212()n n n n nn q q q q q q f x Q q q q ⎛⎫⎪ ⎪∇== ⎪⎪⎝⎭. 例 4 设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求(),()t t ϕϕ'''.解 由多元复合函数微分法知 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+. 定理4 设:,n n f R R x R →∈,且()f x 在点x 的某邻域内具有二阶连续偏导数,则()f x 在点x 处有Taylor 展式21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.证明 设()(),[0,1]t f x t x t ϕ=+∆∈,则(0)(),(1)()f x f x x ϕϕ==+∆.按一元函数Taylor 公式()t ϕ在0t =处展开,有21()(0)(0)(),(0)2t t t t ϕϕϕϕθθ'''=++<<.从例4得知2(0)(),()()()T T f x x x f x x x ϕϕθθ'''=∇∆=∆∇+∆∆.令1t =,有21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.根据定理1和定理4,我们有如下两个公式()()()()()T f x f x f x x x o x x =+∇-+-,221()()()()()()()()2T T f x f x f x x x x x f x x x o x x =+∇-+-∇-+-.§1. 3 最优化的基本术语定义 设:n f R R →为目标函数,n S R ⊆为可行域,x S ∈.(1) 若x S ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的全局(或整体)极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的全局(或整体)最优解,并称()f x为其最优值.(2) 若,x S x x ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格全局(或整体)极小点.(3) 若x ∃的δ邻域(){}(0)n N x x R x x δδδ=∈-<>使得()x N x S δ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的局部极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的局部最优解.(4) 若x ∃的δ邻域()(0)N x δδ>使得(),x N x S x x δ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格局部极小点.第二章 最优性条件§2.1 无约束最优化问题的最优性条件定理 1 设:n f R R →在点x 处可微,若x 是问题min ()f x 的局部极小点,则()0f x ∇=.定义 设:()n f S R R ⊆→在int x S ∈处可微,若()0f x ∇=,则称x 为()f x 的平稳点.定理2 设:n f R R →在点x 处具有二阶连续偏导数,若x 是问题min ()f x 的局部极小点,则()0f x ∇=,且2()f x ∇半正定.定理3 设:n f R R →在点x 处具有二阶连续偏导数,若()0f x ∇=,且2()f x ∇正定,则x 是问题min ()f x 的严格局部极小点. 注:定理2不是充分条件,定理3不是必要条件.例1 对于无约束最优化问题2312min ()f x x x =-,其中212(,)T x x x R =∈,显然 2212()(2,3),T f x x x x R ∇=-∀∈,令()0f x ∇=,得()f x 的平稳点(0,0)T x =,而且2222020(),()0600f x f x x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.易见2()f x ∇为半正定矩阵.但是,在x 的任意δ邻域x x δ-<,总可以取到(0,)2T x δ=,使()()f x f x <,即x 不是局部极小点.例2 对于无约束最优化问题42241122min ()2f x x x x x =++,其中212(,)T x x x R =∈, 易知3223112122()(44,44)Tf x x x x x x x ∇=++,从而得平稳点(0,0)T x =,并且 22221212221212001248(),()008412x x x x f x f x x x x x ⎛⎫+⎛⎫∇=∇=⎪ ⎪+⎝⎭⎝⎭. 显然2()f x ∇不是正定矩阵.但是,22212()()f x x x =+在x 处取最小值,即x 为严格局部极小点.例3 求解下面无约束最优化问题332122111min ()33f x x x x x =+--,其中212(,)T x x x R =∈, 解 因为21212222201(),()0222x x f x f x x x x ⎛⎫-⎛⎫∇=∇= ⎪ ⎪--⎝⎭⎝⎭,所以令()0f x ∇=,有2122210,20.x x x ⎧-=⎪⎨-=⎪⎩解此方程组得到()f x 的平稳点(1)(2)(3)(4)1111,,,0202x x x x --⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.从而2(1)2(2)2020(),()0202f x f x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭,2(3)2(4)2020(),()0202f x f x --⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.由于2(1)()f x ∇和2(4)()f x ∇是不定的,因此(1)x 和(4)x 不是极值点.2(3)()f x ∇是负定的,故(3)x 不是极值点,实际上它是极大点.2(2)()f x ∇是正定的,从而(2)x 是严格局部极小点.定理4 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微,若()0f x ∇=,则x 为min ()f x 的全局极小点.推论5 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微.则x 为min ()f x 的全局极小点的充分必要条件是()0f x ∇=. 例 4 试证正定二次函数1()2TT f x x Qx b x c =++有唯一的严格全局极小点1x Q b -=-,其中Q 为n 阶正定矩阵.证明 因为Q 为正定矩阵,且(),n f x Qx b x R ∇=+∀∈,所以得()f x 的唯一平稳点1x Q b -=-.又由于()f x 是严格凸函数,因此由定理4知,x 是()f x 的严格全局极小点.§2.2 等式约束最优化问题的最优性条件定理1 设:n f R R →在点x 处可微,:(1,2,,)n j h R R j l →=在点x 处具有一阶连续偏导数,向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的局部极小点,则,1,2,,j v R j l ∃∈=,使得1()()0lj j j f x v h x =∇-∇=∑.称(,)()()T L x v f x v h x =-为Lagrange 函数,其中12()((),(),,())T l h x h x h x h x =.称12(,,,)T l v v v v =为Lagrange 乘子向量.易见(,)x v L L x v L ∇⎛⎫∇= ⎪∇⎝⎭,这里1(,)()(),(,)()lx j j v j L x v f x v h x L x v h x =∇=∇-∇∇=-∑.定理 2 设:n f R R →和:(1,2,,)n j h R R j l →=在点n x R ∈处具有二阶连续偏导数,若l v R ∃∈,使得(,)0x L x v ∇=,并且,,0n z R z ∀∈≠,只要()0,1,2,,T j z h x j l ∇==,便有2(,)0T xx z L x v z ∇>,则x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的严格局部极小点.例1 试用最优性条件求解 221212min ();..()80.f x x x s t h x x x ⎧=+⎨=-=⎩解 Lagrange 函数为221212(,)(8)L x v x x v x x =+--,则1221122(,)2(8)x vx L x v x vx x x -⎛⎫⎪∇=- ⎪ ⎪--⎝⎭, 从而得(,)L x v 的平稳点(8,8,2)T 和(8,8,2)T --,对应有(8,8),2T x v ==和(8,8),2T x v =--=.由于221222(,),()222xx x v L x v h x x v--⎛⎫⎛⎫⎛⎫∇==∇= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 因此1212(){(,)|(,)()0}T M x z z z z h x =∇=121221{(,)|0}T z z z x z x =+= 1212{(,)|}T z z z z ==-.并且(),0z M x z ∀∈≠,有222211221(,)24280T xx z L x v z z z z z z ∇=-+=>.利用定理2,所得的两个可行点(8,8)T x =和(8,8)T x =--都是问题的严格局部极小点.§2.3 不等式约束最优化问题的最优性条件定义 设,,,0n n S R x clS d R d ⊆∈∈≠,若0δ∃>,使得,,(0,)x d S λλδ+∈∀∈, 则称d 为集合S 在点x 处的可行方向. 这里{|,(),0}n clS x x R SN x δδ=∈≠∅∀>.令 {|0,0,,(0,)}D d d x d S δλλδ=≠∃>+∈∀∈使,0{|()0}T F d f x d =∇<.定理 1 设n S R ⊆是非空集合,:,,()f S R x S f x →∈在点x 处可微.若x 是问题min ()x Sf x ∈的局部极小点,则 0F D =∅.对于min ();..()0,1,2,,,i f x s t g x i m ⎧⎨≥=⎩ (1)其中:,:(1,2,,)n n i f R R g R R i m →→=.令(){|()0,1,2,,}i I x i g x i m ===,其中x 是上述问题(1)的可行点.定理 2 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,如果x 是问题(1)的局部极小点,则 00F G =∅,其中0{|()0,()}T i G d g x d i I x =∇>∈.定理 3 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,若x 是问题(1)的局部极小点,则存在不全为0的非负数0,(())i u u i I x ∈,使0()()()0iii I x u f x u g x ∈∇-∇=∑. (x 称为Fritz John 点)如果()(())i g x i I x ∉在点x 处也可微,则存在不全为0的非负数01,,,m u u u ,使01()()0,()0,1,2,,.mi i i i iu f x u g x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为Fritz John 点) 例1 设1311222min ();..()(1)0,()0.f x x s t g x x x g x x =-⎧⎪=--≥⎨⎪=≥⎩试判断(1,0)T x =是否为Fritz John 点. 解 因为12100(),(),()011f x g x g x -⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,所以为使Fritz John 条件01210000110u u u -⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.取0120,0u u u α===>即可,因此x 是Fritz John 点.定理 4 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,并且()(())i g x i I x ∇∈线性无关.若x 是问题(1)的局部极小点,则存在0(())i u i I x ≥∈,使得()()()0iii I x f x u g x ∈∇-∇=∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在0(1,2,,)i u i m ≥=,使得1()()0,()0,1,2,,.mi i i i if x ug x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为K-T 点) 例2 求最优化问题21211222min ()(1);..()20,()0f x x x s t g x x x g x x ⎧=-+⎪=--+≥⎨⎪=≥⎩的K-T 点. 解 因为1122(1)10(),(),()111x f x g x g x --⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,所以K-T 条件为111211222122(1)0,10,(2)0,0,0,0.x u u u u x x u x u u -+=⎧⎪+-=⎪⎪--+=⎨⎪=⎪⎪≥≥⎩ 若20u =,则11u =-,这与10u ≥矛盾.故20u >,从而20x =;若120x -+=,则12u =-,这与10u ≥矛盾.故10u =,从而211,1u x ==; 由于120,0u u ≥≥,且(1,0)T x =为问题的可行点,因此x 是K-T 点. 定理5 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.§2.4 一般约束最优化问题的最优性条件考虑等式和不等式约束最优化问题min ();..()0,1,2,,,()0,1,2,,,i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩(1) 其中:,:(1,2,,),:(1,2,,)n n n i j f R R g R R i m h R R j l →→=→=.并把问题(1)的可行域记为S .,(){|()0,1,2,,}i x S I x i g x i m ∀∈==.定理 1 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,并且向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题(1)的局部极小点,则 00F G H =∅,这里0{|()0}T F d f x d =∇<,0{|()0,()}T i G d g x d i I x =∇>∈,0{|()0,1,2,,}T j H d h x d j l =∇==.定理 2 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续.若x 为问题(1)的局部极小点,则存在不全为0的数0,(())i u u i I x ∈和(1,2,,)j v j l =,且0,0(())i u u i I x ≥∈,使0()1()()()0liijji I x j u f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为Fritz John 点)若()(())i g x i I x ∉在点x 处也可微,则存在不全为0的数0,(1,2,,)i u u i m =和(1,2,,)j v j l =,且0,0(1,2,,)i u u i m ≥=,使011()()()0,()0,1,2,,.m li i j j i j i iu f x u g x v h x u g x i m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为Fritz John 点)例1 设2212311222212min ();..()0,()0,()(1)0.f x x x s t g x x x g x x h x x x ⎧=+⎪=-≥⎪⎨=≥⎪⎪=--+=⎩试判断(1,0)T x =是否为Fritz John 点.解 (){2}I x =,且2200(),(),()011f x g x h x ⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,因此为使Fritz John 条件022*******u u v ⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.所以取020,1,1u u v ===-,即知x 是Fritz John 点.定理 3 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,且向量组()(()),()(1,2,,)i j g x i I x h x j l ∇∈∇=线性无关.若x 是问题(1)的局部极小点,则存在数0(())i u i I x ≥∈和(1,2,,)j v j l =,使()1()()()0liijji I x j f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在数0(1,2,,)i u i m ≥=和(1,2,,)j v j l =,使11()()()0,()0,1,2,,.m li i j j i j i if x ug x vh x u g xi m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为K-T 点) 令 1212()((),(),,()),()((),(),,())T T m l g x g x g x g x h x h x h x h x ==,1212(,,,),(,,,)T T m l u u u u v v v v ==,称u 与v 为广义Lagrange 乘子向量或K-T 乘子向量.()()()0,()0,0.T T Tf xg x uh x v u g x u ⎧∇-∇-∇=⎪=⎨⎪≥⎩令(,,)()()()T T L x u v f x u g x v h x =--为广义Lagrange 函数.称(,,)L x u v 为广义Lagrange 函数.则K-T 条件为(,,)0,()0,0.x TL x u v u g x u ∇=⎧⎪=⎨⎪≥⎩定理 4 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,()(1,2,,)j h x j l =是线性函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.例2 求解最优化问题221221212min ()(3)(1);..()0,()230.f x x x s t g x x x h x x x ⎧=-+-⎪=-+≥⎨⎪=+-≥⎩ 解 广义Lagrange 函数为222121212(,,)()()()(3)(1)()(23)L x u v f x ug x vh x x x u x x v x x =--=-+---+-+-.因为111(,,)2(3)22L x u v x ux v x ∂=-+-∂,22(,,)2(1)L x u v x u v x ∂=---∂.所以K-T 条件及约束条件为112212212122(3)220,2(1)0,()0,0,230,0.x ux v x u v u x x x x x x u -+-=⎧⎪---=⎪⎪-+=⎪⎨-+≥⎪⎪+-=⎪≥⎪⎩ 下面分两种情况讨论. (1) 设0u =,则有12122(3)20,2(1)0,230.x v x v x x --=⎧⎪--=⎨⎪+-=⎩ 由此可解得12718,,555x x v ===-,但71(,)55T x =不是可行点,因而不是K-T 点.(2) 设0u >,则有112212122(3)220,2(1)0,0,230.x ux v x u v x x x x -+-=⎧⎪---=⎪⎨-+=⎪⎪+-=⎩ 由此可得211230x x --+=,解得11x =或13x =-。
《最优化理论》课程教学大纲一、课程基本信息
二、课程目标及对毕业要求指标点的支撑
三、教学内容及进度安排
四、课程考核
五、教材及参考资料
教材:《最优化理论与算法(第2版)》,陈宝林著,清华大学出版社,2005年,ISBN:97873021137680
参考书:
1、《最优化方法》,孙文瑜、徐成贤、朱德通主编,高等教育出版社,2004年第一版,ISBN:9787040143751o
2、《最优化理论与方法》,袁亚湘,孙文瑜著,科技出版社,2010年(第二版),ISBN:9787030054135o
3、《最优化计算方法》,黄正海,苗新河著,科技出版社,2015年(第二版),ISBN:9787030433053o
六、教学条件
本课程属于基础理论与应用型课程,对实验条件要求不是很高。
学校实验大楼拥有的计算机软硬件资源,高性能计算机,投影仪等设备,基本能够完成所需的理论计算任务、数值模拟试验以及程序测试等。
需要使用多媒体教室授课,授课电脑安装了WindoWS7、
OffiCe2010、1ingo11Python>Mat1ab2015>Mathematica11>MathTyPe6.9以上版本的正版软件。
附录:各类考核评分标准表。
课程大纲课程编号(理学院)课程名称随机规划学时40基本预备知识 1. 概率统计2. 最优化理论与算法3. 随机过程授课方式讲授、研讨基本要求掌握随机规划模型的类型。
(3TKH 主要类型),了解分布问题中参数LP 及其最优值得表达式,了解Z(3 )的可测性及其概率分布,掌握简单分布问题的计算方法,了解逼近方法和最优值的数学期望的估计,掌握有补偿的二阶段问题和二阶段问题的数值解法,了解概率约束规划和随机拟次梯度法,了解上图收敛性。
教材及参考书《随机规划》,王全德编著,南京大学出版社,1990 年。
《随机线性规划》,Kall 著,王金德译,南京大学出版社。
讲授的主要内容:(每章后附学时数)1.随机规划的模型(6 学时)1.1分布问题,二阶段有补偿问题,概率约束问题;1.2多阶段有补偿问题和多阶段概率约束计划;1.3各类问题的统一形式与相互关系。
2.分布问题:(6 学时)2.1参数LP;2.2Z(3)的可测性;2.3最优化Z(3 )的概率分布;2.4简单分布问题的计算方法;2.5逼近方法与最优值的数学期望的估计。
3.有补偿二阶段问题(8 学时)3.1一般有补偿二阶段的问题;3.2具有固定补偿矩阵的情形;3.3具有完备和简单补偿矩阵的二阶段问题。
4.二阶段问题的数值解法(8 学时)4.1具有离散随机变量的二阶段问题的解法;4.2简单补偿问题的解法。
5.概率约束规划(6 学时)可行解集合的特性,约束函数的分析性质,数值解法,逼近方法。
6.随机拟次梯度法(* )(2 学时)7. 应用举例(2 学时)8. 上图收敛性(2 学时)注:(*)只做了解课程名称学时基本预备知识值代数601. 数学分析2. 线性代数3. 矩阵论4. 计算方法授课方式讲授基本要求1. 知道矩阵计算的基本工具,熟悉Vandermonde、Toeplitz 等方程组的解法及某些迭代法的收敛性,了解多项式加速技巧。
2.掌握不完全分解预先共轭梯度法,广义共轭剩余法,Lanczos 方法,求解特征值问题的同伦方法和分而治之法以及求解Jacobi 矩阵特征值反问题的正交约化法。
最优化方法》课程教学大纲课程编号:100004英文名称:Optimizatio n Methods一、课程说明1. 课程类别理工科学位基础课程2. 适应专业及课程性质理、工、经、管类各专业,必修文、法类各专业,选修3. 课程目的(1 )使学生掌握最优化问题的建模、无约束最优化及约束最优化问题的理论和各种算法;(2)使学生了解二次规划与线性分式规划的一些特殊算法;(3)提高学生应用数学理论与方法分析、解决实际问题的能力以及计算机应用能力。
4. 学分与学时学分2,学时405. 建议先修课程微积分、线性代数、Matlab语言6. 推荐教材或参考书目推荐教材:(1)《非线性最优化》(第一版).谢政、李建平、汤泽滢主编.国防科技大学出版社.2003年.孙(第一版)参考文瑜、徐成贤、朱德通主编.高等教育出版社.2004年(2)《最优化方法》书目:(第一版).胡适耕、施保昌主编.华中理工大学出版社.2000年(1)《最优化原理》(2)《运筹学》》(修订版).《运筹学》教材编写组主编.清华大学出版社.1990年7. 教学方法与手段(1)教学方法:启发式(2)教学手段:多媒体演示、演讲与板书相结合8. 考核及成绩评定考核方式:考试成绩评定:考试课(1)平时成绩占20%形式有:考勤、课堂测验、作业完成情况(2)考试成绩占80%形式有:笔试(开卷)。
9. 课外自学要求(1)课前预习;(2)课后复习;(3)多上机实现各种常用优化算法。
二、课程教学基本内容及要求第一章最优化问题与数学预备知识基本内容:(1 )最优化的概念;(2)经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)最优化问题的模型及分类;(4)向量函数微分学的有关知识;5)最优化的基本术语。
基本要求:(1)理解最优化的概念;(2)掌握经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)了解最优化问题的模型及分类;(4)掌握向量函数微分学的有关知识;(5)了解最优化的基本术语。
第一章最优化问题及数学预备知识最优化分支:线性规划,整数规划,几何规划,非线性规划,动态规划。
又称规划论。
应用最优化方法解决问题时一般有以下几个特点:1. 实用性强2. 采用定量分析的科学手段3. 计算量大,必须借助于计算机4. 理论涉及面广应用领域:工业,农业,交通运输,能源开发,经济计划,企业管理,军事作战……。
§1.1 最优化问题实例最优化问题:追求最优目标的数学问题。
经典最优化理论:(1) 无约束极值问题:),,,(opt 21n x x x f(),,,(m in 21n x x x f 或),,,(m ax 21n x x x f )其中,),,,(21n x x x f 是定义在n 维空间上的可微函数。
解法(求极值点):求驻点,即满足⎪⎪⎩⎪⎪⎨⎧='='='0),,(0),,(0),,(11121n x n x n x x x f x x f x x f n并验证这些驻点是否极值点。
(2) 约束极值问题:),,,(opt 21n x x x fs.t. )(,,2,1,0),,,(21n l l j x x x h n j <==解法:采用Lagrange 乘子法,即将问题转化为求Lagrange 函数),,(),,,(),,;,,,(1121121n j j lj n l n x x h x x x f x x x L λλλ∑=+=的无约束极值问题。
近代最优化理论的实例:例1 (生产计划问题) 设某工厂有3种资源B 1,B 2,B 3,数量各为b 1,b 2,b 3,要生产10种产品A 1,…,A 10 。
每生产一个单位的A j 需要消耗B i 的量为a ij ,根据合同规定,产品A j 的量不少于d j ,再设A j 的单价为c j 。
问如何安排生产计划,才能既完成合同,又使总收入最多?(线性规划问题)数学模型:设A j 的计划产量为 j x ,z 为总产值。
第一章 数学预备知识本章讲述若干数学预备知识,包括导数及其应用、静态优化、积分、微分方程、差分方程以及相位图分析等内容。
这些预备性的数学知识对于学习高级宏观经济学是必须的,但是在微观经济学、数理经济学、时间序列分析、高等数学等课程中有详细的讨论,在这里我们只是将与我们后面的学习有关的知识要点罗列在一起并在必要时做出一定的经济解释。
这里的数学知识只是与动态优化相关的部分,对于学习高级宏观经济学必须的其他数学知识并未涉及,特别是时间序列、概率论等知识。
第一节 导数及其应用一、导数有函数()f q π=,导数就是111()()limlim q q q f q q f q d dqq qππ∆→∞∆→∞+∆-∆==∆∆。
导数的经济含义是:边际量、q 变动一单位时π变动的大小、q 对π的变动速率。
二、常用求导公式(1)f b =为常数,0df dbdx dx ==; (2)b 为常数,(())d bf x dfb bf dx dx'==; (3)b 为常数,1bb dx bx dx-=; (4)1(ln )x x'=; (5)()ln x x a a a '=; (6)()x x e e '=; (7)()f g f g '''+=+;(8)()fg f gfg '''=+; (9)2()f f gfg g g ''-'=;(10)链式法则:(),()y f x x g z dy dy dxdz dx dz===【例题1-1】:求下面各题的导数。
(1)32 3y x y x '=⇒= (2)34 3y x y x --'=⇒=-(3)23 25621212(25)z y y x dz d z dy y y x dx dy dx ==+'=⋅=⨯==+(4)()()ax ax ax de de d ax e a dx d ax dx =⋅=⋅练习:求导数[]ln()d ax dx、[]ln ()d x t dt、2(ln )d x dx三、二阶导数二阶导数表示边际量的变化速率,可用如下方式表示:22(),,()d y d dy f x dx dx dx''四、微分22(),[]()y f x dy f dx d f dx d dy d y dx f dx dx f dxdx'=='''''==== 导数是微商。
预习数学的方法初中
预习数学是提高学习效率的重要方法之一,通过预习,可以帮助我们更好地理解课程内容,提前掌握知识点,为课堂学习打下良好的基础。
下面我将介绍一些初中生预习数学的方法。
首先,要提前了解本节课的内容。
在课前,可以通过查阅教科书或课外资料,了解本节课将要讲解的知识点和重点。
可以先浏览一遍课本,了解大致内容,然后再深入研究重点内容,这样可以更有针对性地进行预习。
其次,要做好笔记。
在预习的过程中,可以适当做一些笔记,记录下重点知识点和难点,以便在课堂上更好地理解和消化。
可以将重点知识点用不同颜色的笔标记出来,这样可以更容易地找到重点内容。
另外,可以通过做一些相关的练习题来巩固知识。
在预习的过程中,可以选择一些与本节课内容相关的练习题进行练习,这样可以更好地理解知识点,加深记忆。
可以选择一些难度适中的题目进行练习,不仅可以检验自己的掌握程度,还可以提前发现自己的不足之处。
此外,可以利用互联网资源进行预习。
现在有很多在线教育平台和学习网站,可以通过这些平台找到相关的视频教程和习题,帮
助我们更好地预习数学知识。
可以选择一些优质的教学视频进行观看,这样可以更形象地理解知识点,提高学习效率。
总的来说,预习数学是一项需要耐心和细心的工作,通过预习,可以更好地理解知识点,提高学习效率。
希望以上介绍的方法可以
帮助初中生更好地进行数学预习,取得更好的学习成绩。
四年级下册数学教案-数学好玩《优化》北师大版一、教学目标1. 让学生理解优化问题的概念,掌握优化问题的解决方法。
2. 培养学生运用数学知识解决实际问题的能力,提高学生的数学思维。
3. 培养学生团结协作、积极思考的良好学习习惯。
二、教学内容1. 优化问题的概念及分类2. 优化问题的解决方法3. 优化问题在实际生活中的应用三、教学重点与难点1. 教学重点:优化问题的概念、解决方法及实际应用。
2. 教学难点:如何引导学生运用数学知识解决实际问题。
四、教学方法1. 采用启发式教学法,引导学生自主探究、合作交流。
2. 结合实际生活案例,让学生在实际情境中感受数学的魅力。
3. 利用多媒体辅助教学,提高学生的学习兴趣。
五、教学过程1. 导入新课利用多媒体展示一些生活中的优化问题,如:如何安排时间最省力、如何分配资源最合理等,引发学生思考,导入新课。
2. 讲解优化问题的概念及分类通过实例讲解优化问题的概念,让学生了解优化问题就是要在一定的条件下,寻找一种方案,使得某个指标达到最优。
同时,介绍优化问题的分类,如线性规划、非线性规划等。
3. 讲解优化问题的解决方法以线性规划为例,讲解优化问题的解决方法,包括图解法、单纯形法等。
通过实例演示,让学生了解优化问题解决的具体步骤。
4. 实际应用结合实际生活案例,让学生运用所学知识解决实际问题。
如:如何安排时间最省力、如何分配资源最合理等。
引导学生进行小组讨论,共同寻找解决方案。
5. 总结与拓展对本节课所学内容进行总结,强调优化问题在实际生活中的重要性。
同时,布置一些拓展练习,让学生巩固所学知识。
六、课后作业1. 完成教材课后练习题。
2. 结合实际生活,寻找一个优化问题,并尝试运用所学知识解决。
七、板书设计1. 优化问题的概念及分类2. 优化问题的解决方法3. 优化问题在实际生活中的应用八、教学反思本节课通过讲解优化问题的概念、解决方法及实际应用,让学生了解数学知识在实际生活中的重要性。
新高中数学新课程标准2021版数学建模、数学沟通〕,并能够运用所学数学知识解决实际问题。
3.培养数学思维能力和创新意识,能够灵活运用数学方法解决实际问题,具备数学思维和创新能力。
4.增强数学应用意识,能够将所学数学知识应用到实际生活中,理解数学在现实世界中的重要性和价值。
5.理解数学的文化价值,认识数学在科学技术和社会发展中的重要作用。
三、课程结构新课标的课程结构分为必修部分和选修部分两个部分,其中必修部分包括数学核心素养、数学基础知识和数学方法三个方面,选修部分则根据学生的兴趣和特长进行选择。
必修部分1.数学核心素养:包括数学抽象、逻辑推理、数学建模和数学沟通四个方面,是数学学科的核心内容。
2.数学基础知识:包括数学基本概念、数学定理和数学公式等基础知识,是数学学科的基础部分。
3.数学方法:包括数学思维方法、数学问题解决方法和数学证明方法等,是数学学科的方法论部分。
选修部分根据学生的兴趣和特长,选修内容包括数学竞赛、数学实践、数学研究和数学拓展等方面,旨在提供多样化的数学研究体验和开展平台。
四、教学要求新课标提出了教学要求,要求教师在教学过程中注重培养学生的数学思维能力和创新意识,注重开展学生的数学应用意识,注重发掘学生的数学潜能,注重提高学生的数学素养。
1.培养学生的数学思维能力和创新意识:注重培养学生的逻辑思维、抽象思维、创新思维和应用思维能力。
2.开展学生的数学应用意识:注重将所学数学知识与实际生活相结合,培养学生的数学应用能力。
3.发掘学生的数学潜能:注重发现和挖掘学生的数学潜能,激发学生的研究兴趣和研究动力。
4.提高学生的数学素养:注重培养学生的数学基本素养和数学核心素养,提高学生的数学思维能力和数学应用能力。
五、教学方法新课标提出了教学方法,要求教师在教学过程中采用多种教学方法,注重启发式教学、探究式教学和问题式教学,注重培养学生的自主研究能力和合作研究能力。
1.启发式教学:注重启发学生的研究兴趣和研究动力,激发学生的研究积极性。
第一章 最优化问题与数学预备知识本章主要内容:最优化的概念 经典最优化中两种类型的问题——无约束极值问题、具有等式约束的极值问题的求解方法 最优化问题的模型及分类 向量函数微分学的有关知识 最优化的基本术语教学目的及要求:理解最优化的概念,掌握经典最优化中两种类型的问题——无约束极值问题、具有等式约束的极值问题的求解方法,了解最优化问题的模型及分类,掌握向量函数微分学的有关知识,了解最优化的基本术语.教学重点:向量函数微分学的有关知识.教学难点:向量函数微分学的有关知识.教学方法:启发式.教学手段:多媒体演示、演讲与板书相结合.教学时间:2学时.教学内容:§1.1 模型与实例无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈ .约束最优化问题({|,()0,1,2,,;()0,1,2,,}n i j S x x R g x i m h x j l ∈≥=== )min ();.f x x S ⎧⎨∈⎩s.t. 即 m i n ();()0,1,2,,,()0,1,2,,.i j f x g x i m h x j l ⎧⎪≥=⎨⎪==⎩s.t. 其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域,()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥=== 称为约束条件.例1 (海洋运输问题)某航运公司承接了一项将客户停放在港口等待运输的N 种货物运往目的地的业务.设航运公司运输单位货物i 的收益为i c (元/吨),货船能够装载的货物的重量限制为W (吨),相应的容积限制为V (立方米),设i a 是单位货物i 所占的容积(立方米/吨),i b 是货物i 可提供的最大数量(吨),i w 是货物i 的日平均装船速度(吨/日),1q 为货船的日泊位费(元/日),2q 为货船在海上航行时的日费用(元/日),d 为航行距离(公里),v 为航行速度(公里/日).问如何确定货船的装载方案,使航运公司获利最大?解 设(1,2,,)i x i N = 是货船装载货物的数量(吨),则得到该问题的线性分式规划模型1211111max ;,,0.N N i i i i i i N i i i N i i N i i i i i q x q d c x w v z x d w v x W a x V x b =====⎧--⎪⎪=⎪+⎪⎪⎪⎨≤⎪⎪⎪≤⎪⎪≤≤⎪⎩∑∑∑∑∑s.t.§1.2 数学预备知识1.向量的范数和矩阵的条件数定义 如果n R 上的实值函数 满足以下三个条件:(1)n x R ∀∈,有0x ≥,同时,当且仅当0x =时,0x =;(2),n x R R α∀∈∈,有x x αα=⋅;(3),n x y R ∀∈,有x y x y +≤+. 则称x 为x的范数.通常取1/2()T x x x =. x 的p 范数:1/1(||)(1)np p i p i x x p =≥∑ .x 的最大范数:max{||1}i x x i n ∞≤≤ .性质 设A 和B 是定义于n R 中的两种范数,则总存在正数1c 和2c ,使n x R ∀∈,有12A B A c x x c x ≤≤.定义 设A 是n 阶方阵,12,,,n λλλ 是A 的全部特征值.1max ||i i n λ≤≤称为A 的谱半径,记作()A ρ.设m n A R ⨯∈,称T A A 的特征值的正平方根为A 的奇异值.A 的最大奇异值与最小非零奇异值之商称为A 的谱条件数,记为()A κ,即1()()()t A A A σκσ=, 其中12()()()n A A A σσσ≥≥≥ 为A 的所有奇异值,且()t R A =.性质 如果A 为n 阶正定矩阵,12()()()0n A A A λλλ≥≥≥> 和12()()()n A A A σσσ≥≥≥ 分别为A 的特征值和奇异值,则()(),1,2,,i i A A i n σλ== ,于是1()()()n A A A λκλ=. 如果A 为n 阶满秩矩阵,则A 的所有奇异值12()()()0n A A A σσσ≥≥≥> ,从而1()()()n A A A σκσ=. 定义 一个n 阶满秩矩阵A 称为病态的,如果A 的n 个列向量之间存在着近似线性关系.性质 条件数可以用来度量矩阵的病态程度.2.多元函数的梯度、Hesse 矩阵及Taylor 公式定义 设:,n n f R R x R →∈.如果n ∃维向量p ,使得n x R ∀∆∈,有()()()T f x x f x p x o x +∆-=∆+∆.则称()f x 在点x 处可微,并称d ()T f x p x =∆为()f x 在点x 处的微分.如果()f x 在点x 处对于12(,,,)T n x x x x = 的各分量的偏导数(),1,2,,if x i n x ∂=∂ 都存在,则称()f x 在点x 处一阶可导,并称向量 12()()()()(,,,)T nf x f x f x f x x x x ∂∂∂∇=∂∂∂ 为()f x 在点x 处一阶导数或梯度.定理1 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处梯度()f x ∇存在,并且有d ()()T f x f x x =∇∆.定义 设:,n n f R R x R →∈.d 是给定的n 维非零向量,d e d =.如果 0()()lim ()f x e f x R λλλλ→+-∈存在,则称此极限为()f x 在点x 沿方向d 的方向导数,记作()f x d∂∂. 定理2 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处沿任何非零方向d 的方向导数存在,且()()T f x f x e d ∂=∇∂,其中d e d=. 定义 设()f x 是n R 上的连续函数,n x R ∈.d 是n 维非零向量.如果0δ∃>,使得(0,)λδ∀∈,有()f x d λ+<(>)()f x .则称d 为()f x 在点x 处的下降(上升)方向.定理3 设:,n n f R R x R →∈,且()f x 在点x 处可微,如果∃非零向量n d R ∈,使得()T f x d ∇<(>)0,则d 是()f x 在点x 处的下降(上升)方向.定义 设:,n n f R R x R →∈.如果()f x 在点x 处对于自变量12(,,,)Tn x x x x = 的各分量的二阶偏导数2()(,1,2,,)i j f x i j n x x ∂=∂∂ 都存在,则称函数()f x 在点x 处二阶可导,并称矩阵22221121222222122222212()()()()()()()()()()n n n n n f x f x f x x x x x x f x f x f x f x x x x x x f x f x f x x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂ ⎪∇=∂∂∂∂∂ ⎪ ⎪ ⎪ ⎪∂∂∂ ⎪∂∂∂∂∂⎝⎭为()f x 在点x 处的二阶导数矩阵或Hesse 矩阵.定义 设:,n m n h R R x R →∈,记12()((),(),,())T m h x h x h x h x = ,如果 ()(1,2,,)i h x i m = 在点x 处对于自变量12(,,,)T n x x x x = 的各分量的偏导数()(1,2,,;1,2,,)i jh x i m j n x ∂==∂ 都存在,则称向量函数()h x 在点x 处是一阶可导的,并且称矩阵111122221212()()()()()()()()()()n n m n m m m n h x h x h x x x x h x h x h x x x x h x h x h x h x x x x ⨯∂∂∂⎛⎫ ⎪∂∂∂ ⎪ ⎪∂∂∂ ⎪∂∂∂∇= ⎪ ⎪ ⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭ 为()h x 在点x 处的一阶导数矩阵或Jacobi 矩阵,简记为()h x ∇.例2 设,,n n a R x R b R ∈∈∈,求()T f x a x b =+在任意点x 处的梯度和Hesse 矩阵.解 设1212(,,,),(,,,)T Tn n a a a a x x x x == ,则1()nk k k f x a x b ==+∑, 因()(1,2,,)k kf x a k n x ∂==∂ ,故得()f x a ∇=. 又因2()0(,1,2,,)i jf x i j n x x ∂==∂∂ ,则2()f x O ∇=. 例3 设n n Q R ⨯∈是对称矩阵,,n b R c R ∈∈,称1()2T T f x x Qx b x c =++为二次函数,求()f x 在任意点x 处的梯度和Hesse 矩阵.解 设1212(),(,,,),(,,,)T T ij n n n n Q q x x x x b b b b ⨯=== ,则121111(,,,)2n nn n ij i j k k i j k f x x x q x x b x c ====++∑∑∑ , 由于12(,,,)n f x x x 中所有含i x 的项为211,11,1112i i i i i i ii i i i i i in i n i i q x x q x x q x q x x q x x b x --+++++++++ , 所以1()nij j i j i f x q x b x =∂=+∂∑,从而111111111()()()nn j j j j j j n n n nj j n nj j j j n f x q x b q x x b f x Qx b f x b q x b q x x ====⎛⎫⎛⎫∂⎛⎫+ ⎪ ⎪ ⎪∂⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪∇===+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭∑∑∑∑ . 再对1()(1,2,,)n ij j i j i f x q x b i n x =∂=+=∂∑ 求偏导得到2()(,1,2,,)ij i j f x q i j n x x ∂==∂∂ ,于是1112121222212()n n n n nn q q q q q q f x Q q q q ⎛⎫ ⎪ ⎪∇== ⎪ ⎪⎝⎭. 例4 设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求(),()t t ϕϕ'''.解 由多元复合函数微分法知11d()()()d nn T i i i i i i i x td f f t d f x td d u t u ϕ==+∂∂'===∇+∂∂∑∑ , 221111d()()()()d nn n n j j T i i j j i i j j i i j x td f f t d d d d f x td d u u t u u ϕ====+∂∂∂''===∇+∂∂∂∂∑∑∑∑ . 定理4 设:,n n f R R x R →∈,且()f x 在点x 的某邻域内具有二阶连续偏导数,则()f x 在点x 处有Taylor 展式21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<. 证明 设()(),[0,1]t f x t x t ϕ=+∆∈,则(0)(),(1)()f x f x x ϕϕ==+∆.按一元函数Taylor 公式()t ϕ在0t =处展开,有21()(0)(0)(),(0)2t t t t ϕϕϕϕθθ'''=++<<.从例4得知2(0)(),()()()T T f x x x f x x x ϕϕθθ'''=∇∆=∆∇+∆∆.令1t =,有21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<. 根据定理1和定理4,我们有如下两个重要公式:()()()()()T f x f x f x x x o x x =+∇-+-,221()()()()()()()()2T T f x f x f x x x x x f x x x o x x =+∇-+-∇-+-.§1.3 最优化的基本术语定义 设:n f R R →为目标函数,n S R ⊆为可行域,x S ∈.(1) 若x S ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的全局(或整体)极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的全局(或整体)最优解,并称()f x 为其最优值.(2) 若,x S x x ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格全局(或整体)极小点.(3) 若x ∃的δ邻域(){}(0)n N x x R x x δδδ=∈-<>使得()x N x S δ∀∈ ,都有()()f x f x ≥,则称x 为()f x 在S 上的局部极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的局部最优解. (4) 若x ∃的δ邻域()(0)N x δδ>使得(),x N xS x x δ∀∈≠ ,都有()()f x f x >,则称x 为()f x 在S 上的严格局部极小点.。