02 无线电波传播理论
- 格式:ppt
- 大小:646.00 KB
- 文档页数:19
无线电波在均匀介质 (如空气)中,具有直线传播的特点。
只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。
无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。
一、无线电波的发射与传播无线电波既看不见,也摸不着,却充满了整个空间。
广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。
无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。
无线电波的频率范围很宽,频段不同,特性也不尽相同。
我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。
(一)无线电波的发射过程无线电波是通过天线发射到空间的。
当电流在天线中流动时,天线周围的空间不但产生电力线 (即电场),同时还产生磁力线。
其相互间的关系,如图2-1-1所示。
如果天线中电流改变方向,空间的电力线和磁力线方向随之改变。
如果加在天线上的是高频交流电,由于电流的方向变化极快,根据电磁感应的原理,在这些交替变化的电场和磁场的外层空间,又激起新的电磁场,不断地向外扩散,天线中的高频电能以变化的电磁场的形式,传向四面八方,这就是无线电波。
从图2-l可知,电力线 (即电场)方向与天线基本平行,磁力线 (磁场)的形状则是以天线为圆心,与天线相垂直的方向随之变化的无数同心圆。
图2-1-1 无线电波的发射(二)无线电波的特性l.无线电波的极化交变电磁场在其附近空间又激起新的电磁场的现象称无线电波的极化。
空间传播的无线电波都是极化波。
当天线垂直于地平面时,天线辐射的无线电波的电场垂直于地平面称垂直极化波。
天线平行于地平面时,天线辐射的无线电波的电场平行于地面称水平极化波。
无线电波如何传输信息无线电波是一种电磁波,它在无需导体的情况下传输信号和信息。
能够利用无线电波进行通信的设备广泛应用于无线电、电视、移动通信等领域。
在本文中,我们将探讨无线电波如何传输信息的原理和过程。
一、无线电波的载波和调制无线电波传输信息的过程可以简单地理解为将信息载入到无线电波中,然后通过空气介质传播。
在这个过程中,无线电波的载波和调制起着关键作用。
载波是指频率稳定的正弦波,它作为信号的基准存在,用来传输和接收信息。
调制则是通过改变载波的某些特性来携带信息。
常见的调制方式有调频(FM)和调幅(AM),它们通过改变载波的频率或振幅来实现信息的传输。
二、调频(FM)的原理和传输信息调频是一种通过改变无线电波的频率来传输信息的调制方式。
在调频过程中,音频信号(即要传输的信息)会改变载波的频率,频率的改变程度与音频信号的幅度有关。
在调频广播中,音频信号被转换为模拟电压信号,然后通过频率调制电路,将这个电压信号应用在载波上。
当音频信号的幅度增大时,载波的频率也会相应增加;当音频信号的幅度减小时,载波的频率也会相应减小。
然后,通过天线将调制后的无线电波发送出去。
接收端的调频广播接收机会收到传输的无线电波,并通过解调过程将音频信号从无线电波中提取出来。
解调的过程中,频率偏移将被检测并转换为与原始音频信号相匹配的电压信号。
通过这种方式,调频广播可以传输语音、音乐等模拟信号,并且具有较高的抗干扰能力和较好的音质效果。
三、调幅(AM)的原理和传输信息调幅是一种通过改变无线电波的振幅来传输信息的调制方式。
在调幅过程中,音频信号会改变载波的振幅,振幅的改变程度与音频信号的幅度有关。
在调幅广播中,音频信号经过模拟电压信号转换后,被应用在载波上,改变载波的振幅。
当音频信号的幅度增大时,载波的振幅也会增大;当音频信号的幅度减小时,载波的振幅也会相应减小。
然后,通过天线将调制后的无线电波发送出去。
接收端的调幅广播接收机会收到传输的无线电波,并通过解调过程将音频信号从无线电波中提取出来。
无线电波传播原理1无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.1 电磁场与电磁波基础1820年奥斯特电磁1831年法拉第磁电产生产生变化的电场磁场变化的磁场电场激发?电磁场理论麦克斯韦在总结前人工作的基础上,提出了著名的电磁场理论(经典电磁场理论),指出变化电场和变化磁场形成了统一的电磁场,预言电磁场能以波动的形式在空间传播,称为电磁波;并得到电磁波在真空中传播的速度等于光速,从而断定光在本质上就是一种电磁波。
后来,赫兹用振荡电路产生了电磁波,使麦克斯韦的学说得到了实验证明,为电学和光学奠定了统一的基础。
因此,麦克斯韦的经典电磁场理论是人类对电磁规律的历史性总结,是19世纪物理学发展的最辉煌成就,是物理学发展史上一个重要的里程碑。
电磁波的诞生赫兹----德国物理学家赫兹对人类伟大的贡献是用实验证实了电磁波的存在,发现了光电效应。
1888年,成了近代科学史上的一座里程碑。
开创了无线电电子技术的新纪元。
赫兹用各种实验,证明了不仅电磁波的性质和光波相同,而且传播速度也相同,并可发生反射、折射、干涉、衍射和偏振等现象,即电磁波服从一般波动所具有的一切规律。
如果空间的电场或磁场变化是周期性的,我们用周期和频率来描述变化快慢。
电磁场变化过程中产生的电磁波的频率等于电磁场的变化频率;电磁波在传播中从一种介质进入另一种介质时,其频率不会发生改变,但其传播速度会发生改变。
电磁波的应用从1888年赫兹用实验证明了电磁波的存在,1895年俄国科学家波波夫发明了第一个无线电报系统。
1914年语音通信成为可能。
1920年商业无线电广播开始使用。
20世纪30年代发明了雷达。
40年代雷达和通讯得到飞速发展,自50年代第一颗人造卫星上天,卫星通讯事业得到迅猛发展。
如今电磁波已在通讯、遥感、空间控测、军事应用、科学研究等诸多方面得到广泛的应用。
无线电通信的起源1897 年:马可尼完成无线通信试验——电报发收两端距离为18 海里试验是在固定站与一艘拖船之间进行的20 世纪初:两次世界大战导致无线通信蓬勃发展步话机、对讲机等1941 年美陆军就开始装备步话机短波波段,电子管电磁波分类-按传输方式电磁波分类-按传输方式电磁波分类-按波长电磁波分类-按波长各波段电磁波特点长波通信:沿地面传播,衰减小、穿透能力强 中波通信:地波传播及夜晚电离层反射传播 短波通信:天波传播,适合远距离传输超短波通信:直线传播,视距通信,广播电视、移动通信微波通信:工作频带宽,长距离接力通信第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析传播途径①建筑物反射波②绕射波③直射波④地面反射波①建筑物反射波②绕射波③直射波④地面反射波第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.3 无线传播环境•问题:移动通信比较固定通信有那些特殊性呢?•多径无线传播无线路径是一个很复杂的传播媒介•手机发射功率有限手机的发射功率客观限制了蜂窝小区的服务范围手机电池寿命和对人体危害决定了发射功率大小•频率资源有限带宽一定信道编码等占用额外频率资源频率需要被重复利用==> 产生同频干扰•用户行为的不确定性第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析无线信道分析在移动通信研究中的意义无线通信系统的信道十分复杂:9地理环境的复杂性和多样性9用户移动的随机性9多径传播无线信道是制约移动通信质量的主要因素无线信道是研究各种技术的主要推动力量无线信道的建模对于整个移动通信系统仿真的正确性和可靠性有着举足轻重的意义1.4 无线信道分析•无线信道中的损耗一般分为三个层次:—大尺度(又称路径损耗)【path loss】—中等尺度(阴影衰落、慢衰落)【shadowing】—小尺度衰落(快衰落)【fast fading】无线信道分析场强平均值随距离增加而衰减(路径损耗,大尺度衰落)•电磁波在空间传播的损耗场强中值呈慢速变化(慢衰落,阴影衰落,中等尺度衰落)•由地形地貌导致场强瞬时值呈快速变化(快衰落,小尺度衰落)•多径效应——由移动体周围的局部散射体引起的多径传播,表现为快衰落•多普勒效应——由移动体的运动引起,多径条件下引起频谱展宽三种衰落区别•大尺度衰落主要是路径损耗,可用自由空间传播模型来近似;其特点是:慢变,信道在很长时间内可以认为是恒定的,而且衰落的幅度很小。
无线电波传播无线电波通过介质或在介质分界面的连续折射或反射,由发射点传播到接收点的过程。
无线电通信是利用无线电波的传播特性而实现的。
因此,研究无线电波的传播特性和模式,是提高无线电通信质量的重大课题。
传播模式通常指电磁波在各种介质中传播的一些典型方式。
在地球上,无线电波的传播介质有地壳、海水、大气等。
根据物理性质,可将地球介质由下而上地分为地壳高温电离层、地壳介质岩层、地壳表面导电层、大气对流层、高空电离层。
不同频率的无线电波,在各层介质中传播的折射率n和吸收衰减常数ɑ各不相同。
因而各种频段的无线电波在介质中传播均有其衰减较小的传播模式。
适于通信的传播模式主要有以下九种。
地壳波导传播以地壳表面导电层和地壳高温电离层为界面,以地壳介质岩层为介质形成地壳波导的传播模式。
超长波或更长波段的电波可以在地壳波导中传播到千余公里。
但由于深入地下数公里的天线难以建造,现在还不能实际应用于通信。
水下传播无线电波在海水中传播的传播模式。
电波在海水中的吸收衰减随频率升高而增大,目前仅用于超长波水下通信。
地表波传播无线电波沿地壳表面传播的传播模式,又称地波传播。
地面吸收衰减导致波阵面前倾,使单位距离吸收衰减率随传播距离的增大而增大。
地面吸收衰减随频率升高而增大。
地波传播无线电波传播无线电波传播用于中频(中波)以下频段。
电离层传播利用电离层和地面对电磁波的一次或多次反射进行传播的传播模式,又称天波传播。
电离层按高度由下而上地分为D、E、F1和F2等几个主要层次。
各个层次中部的电子密度最大值由下而上逐层增加,而电子和中性气体分子的单位时间碰撞次数则逐层减少。
电离层的高度和电子密度均随季节、昼夜和太阳黑子活动而变化(见图)。
无线电波只能在折射率n值随高度递减的区域开始折返地面,电波途径最高点处的折射率n值等于电波入射角θ0的正弦函数。
对应于某一折射角,存在一个最高频率,其传播途径的最高点可以达到F2层的最大电子密度区。
此频率称为最高可用频率MUF。
无线电传输原理无线电传输原理是指通过无线电波来传输数据、信号或者信息的一种技术原理。
无线电技术的应用已经广泛渗透到我们的日常生活中,例如手机通话、无线网络、卫星通信等,都离不开无线电传输原理的支持。
本文将详细介绍无线电传输原理的基本原理、应用和发展趋势。
一、无线电传输原理的基本原理无线电传输原理是基于电磁波的传播和接收原理。
电磁波是一种能量的传递方式,包括电场和磁场的变化。
当电磁波通过空气或其他媒介传播时,可以通过天线接收到这些电磁波,并将其转化为电信号。
这一过程中,发送端通过调制技术将要传输的信息转换为电信号,并经过放大、调频等处理后,通过天线将电信号转化为电磁波进行传输。
接收端的天线接收到电磁波后,通过解调等技术将电磁波转化为原来的信号,实现数据的传输。
二、无线电传输原理的应用1. 通信领域:无线电传输技术在通信领域得到广泛应用。
手机通话、无线网络、卫星通信等都是基于无线电传输原理实现的。
通过无线电传输技术,我们可以随时随地进行通信,实现信息的快速传递。
2. 广播电视:广播电视是无线电传输原理的重要应用之一。
广播电视通过无线电波将音视频信号传输到用户终端,实现大规模信息的传播和共享。
3. 无线电测量:无线电传输原理在无线电测量中也得到广泛应用。
例如雷达测量、无线电定位等技术,都是基于无线电传输原理实现的。
4. 定位导航:无线电传输原理在定位导航领域有着重要应用。
全球定位系统(GPS)就是一种通过卫星和接收器进行无线电传输的定位导航技术。
5. 无线电频谱利用:无线电传输原理中的频谱利用是一项重要内容。
通过合理规划和管理无线电频谱,可以提高频谱利用效率,避免频谱资源的浪费。
三、无线电传输原理的发展趋势1. 高频带宽应用:随着无线通信的发展,对传输带宽的需求越来越高。
未来无线电传输技术将朝着更高频段的方向发展,以满足更大的数据传输需求。
2. 高效能量利用:无线电传输中的能量利用效率也是一个重要的研究方向。
无线电波的传播方式一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1.电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。
由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。