无线电波的传播
- 格式:ppt
- 大小:2.27 MB
- 文档页数:14
无线电波在均匀介质 (如空气)中,具有直线传播的特点。
只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。
无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。
一、无线电波的发射与传播无线电波既看不见,也摸不着,却充满了整个空间。
广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。
无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。
无线电波的频率范围很宽,频段不同,特性也不尽相同。
我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。
(一)无线电波的发射过程无线电波是通过天线发射到空间的。
当电流在天线中流动时,天线周围的空间不但产生电力线 (即电场),同时还产生磁力线。
其相互间的关系,如图2-1-1所示。
如果天线中电流改变方向,空间的电力线和磁力线方向随之改变。
如果加在天线上的是高频交流电,由于电流的方向变化极快,根据电磁感应的原理,在这些交替变化的电场和磁场的外层空间,又激起新的电磁场,不断地向外扩散,天线中的高频电能以变化的电磁场的形式,传向四面八方,这就是无线电波。
从图2-l可知,电力线 (即电场)方向与天线基本平行,磁力线 (磁场)的形状则是以天线为圆心,与天线相垂直的方向随之变化的无数同心圆。
图2-1-1 无线电波的发射(二)无线电波的特性l.无线电波的极化交变电磁场在其附近空间又激起新的电磁场的现象称无线电波的极化。
空间传播的无线电波都是极化波。
当天线垂直于地平面时,天线辐射的无线电波的电场垂直于地平面称垂直极化波。
天线平行于地平面时,天线辐射的无线电波的电场平行于地面称水平极化波。
无线电波的传播特性(一)移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长 1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等。
为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:1. 表面波传播表面波传播是指电波沿着地球表面传播的情况。
这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响电波的传播。
当电波紧靠着实际地面--起伏不平的地面传播时,由于地球表面是半导体,因此一方面使电波发生变化和引起电波的吸收。
另一方面由于地球表面是球型,使沿它传播的电波发生绕射。
从物理知识中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能。
由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方。
在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播。
2. 天波传播短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释。
直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层。
籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方。
我们把经过电离层反射到地面的电波叫作天波。
电离层是指分布在地球周围的大气层中,从60km以上的电离区域。
在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子。
发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究。
当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广。
在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度。
无线电波传播特性的研究与应用在我们的日常生活中,无线电波无处不在。
从手机通信到广播电视,从卫星导航到无线网络,无线电波在信息传递和通信领域发挥着至关重要的作用。
然而,要实现高效、稳定和可靠的无线电通信,就必须深入了解无线电波的传播特性。
本文将对无线电波的传播特性进行研究,并探讨其在各个领域的广泛应用。
无线电波是一种电磁波,其频率范围非常广泛,从低频的长波到高频的微波和毫米波。
它们在空间中以光速传播,不需要任何介质,可以在真空、空气、水和其他物质中传播。
但无线电波在不同的环境中传播时,会受到多种因素的影响,从而表现出不同的特性。
首先,让我们来了解一下无线电波的直射传播特性。
当无线电波在自由空间中传播时,没有障碍物的阻挡,它会沿着直线传播。
这种传播方式称为直射传播。
在直射传播中,无线电波的强度会随着距离的增加而逐渐减弱,遵循反平方定律。
也就是说,距离发射源的距离增加一倍,信号强度会降低为原来的四分之一。
这是因为无线电波的能量在传播过程中会逐渐扩散,导致单位面积上的能量减少。
然而,在实际环境中,很难存在完全没有障碍物的自由空间。
建筑物、山脉、树木等都会对无线电波的传播产生阻挡和反射。
这就引出了无线电波的反射传播特性。
当无线电波遇到障碍物时,一部分能量会被反射回来。
反射的程度取决于障碍物的材质、形状和粗糙度等因素。
例如,金属表面会对无线电波产生强烈的反射,而粗糙的墙壁则会导致反射信号的散射和衰减。
除了反射,无线电波还会发生折射现象。
当无线电波穿过不同介质的分界面时,由于介质的折射率不同,电波的传播方向会发生改变。
这就像光线从空气进入水中会发生折射一样。
在大气中,由于温度、湿度和气压的变化,会导致大气层的折射率不均匀,从而影响无线电波的传播路径。
这种现象在卫星通信和远程通信中尤为重要。
另外,无线电波还会发生散射传播。
当无线电波遇到尺寸小于波长的障碍物时,会向各个方向散射。
例如,雨滴、灰尘颗粒等都会引起无线电波的散射。
无线电波的传播方式一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1.电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。
由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。
无线电波空间传播模型一、引言无线电波是一种电磁波,它的传播是通过空间介质进行的。
无线电波的传播模型是对无线电波在空间中传播过程的一种描述和模拟。
了解无线电波空间传播模型对于实现高效的无线通信系统设计和优化至关重要。
本文将介绍几种常见的无线电波空间传播模型,包括自由空间传播模型、二维和三维传播模型以及多径传播模型。
二、自由空间传播模型自由空间传播模型是最简单也是最常用的一种传播模型。
它假设无线电波在真空中传播,没有遇到任何障碍物和干扰。
根据自由空间传播模型,无线电波的传播损耗与距离的平方成反比。
具体而言,传播损耗(L)可以通过以下公式计算:L = 20log(d) + 20log(f) + 20log(4π/c)其中,d是发送端和接收端之间的距离,f是无线电波的频率,c是光速。
自由空间传播模型适用于开阔的空间环境,如农村、海洋等,但在城市和山区等环境中,由于有大量建筑物和地形等障碍物的存在,自由空间传播模型并不适用。
三、二维和三维传播模型二维和三维传播模型考虑了障碍物和地形等因素对无线电波传播的影响。
在二维传播模型中,地面被简化为平面,建筑物和其他障碍物被建模为二维形状。
在三维传播模型中,地面和建筑物等障碍物被建模为三维形状。
为了计算二维和三维传播模型中的传播损耗,常用的方法是射线追踪。
射线追踪将无线电波视为一束射线,通过计算射线与障碍物的相交点,从而确定传播路径和传播损耗。
射线追踪可以基于几何光学原理进行,也可以使用电磁波的波动性质进行更精确的计算。
四、多径传播模型多径传播模型是一种复杂的传播模型,考虑了多个传播路径和多个传播信号的叠加效应。
当无线电波传播过程中遇到建筑物、地形等障碍物时,会发生反射、折射和散射等现象,导致信号在接收端出现多个传播路径。
这些多个传播路径的信号叠加在一起,会引起传播信号的衰减和时延扩展。
多径传播模型通常使用统计方法进行建模和仿真。
常见的多径传播模型包括瑞利衰落模型和莱斯衰落模型。
无线电波传播方式与各频段的利用无线电通信是利用电磁波在空间传送信息的通信方式。
电磁波由发射天线向外辐射出去,天线就是波源。
电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。
无线电波共有以下七种传播方式(附图为无线电波传播方式示意图)。
(1)波导方式当电磁波频率为30kHz以下(波长为10km以上)时,大地犹如导体,而电离层的下层由于折射率为虚数,电磁波也不能进入,因此电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导传波方式;(2)地波方式沿地球表面传播的无线电波称为地波(或地表波),这种传播方式比较稳定,受天气影响小;(3)天波方式射向天空经电离层折射后又折返回地面(还可经地面再反射回到天空)的无线电波称为天波,天波可以传播到几千公里之外的地面,也可以在地球表面和电离层之间多次反射,即可以实现多跳传播。
(4)空间波方式主要指直射波和反射波。
电波在空间按直线传播,称为直射波。
当电波传播过程中遇到两种不同介质的光滑界面时,还会像光一样发生镜面反射,称为反射波。
(5)绕射方式由于地球表面是个弯曲的球面,因此电波传播距离受到地球曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。
(6)对流层散射方式地球大气层中的对流层,因其物理特性的不规则性或不连续性,会对无线电波起到散射作用。
利用对流层散射作用进行无线电波的传播称为对流层散射方式。
(7)视距传播指点到点或地球到卫星之间的电波传播。
附表给出了从甚低频(VLF)至极高频(EHF)频段的电波传播方式、传播距离、可用带宽以及可能形成的干扰情况。
序频段名号称 4 5 甚低频(VLF)低频频段范围 3-30kHz 传播可用干扰传播距离方式带宽量波导数千公里利用极有宽扩世界范围长距离无线限展电导航 30-300kHz 地波数千公里很有宽扩长距离无线电民航战(LF) 6 7 天波限展略通信中频地波宽扩中等距离点到点广播300-3000kHz 几千公里适中(MF)天波展和水上移动高频(HF) 3-30MHz 天波几千公里宽有限长和短距离点到点全的球广播,移动空间波对短和中距离点到点移甚高频几百公里有限8 30-300MHz 流层很宽动,LAN声音和视频广(VHF)以内的散射播个人通信绕射空间波对短和中距离点到点移特高频流层100公里有限9 300-3000MHz 很宽动,LAN声音和视频广(UHF)散射以内的播个人通信卫星通信绕射祝距超高频(SHF)短和中距离点到点移通常30公里左动LAN声音和视频广视距很宽是有右播移动/个人通信卫限的星通信 10 3-30GHz 通常短和中距离点到点移极高频 11 30-3000GHz 视距 20公里很宽是有动,LAN个人通信卫星(EHF)限的通信在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。
《无线电波的发射、接收和传播》讲义一、无线电波的概述在我们的日常生活中,无线电波无处不在。
从手机通信到广播电视,从卫星导航到无线局域网,无线电波在信息传递中扮演着至关重要的角色。
那么,什么是无线电波呢?无线电波是一种电磁波,其频率范围非常广泛,从低频的几千赫兹到高频的几十亿赫兹。
它们能够在自由空间中传播,不需要像电线那样的物理连接就能传递信息。
二、无线电波的发射要实现无线电通信,首先需要发射无线电波。
无线电波的发射主要依靠天线和发射机。
天线是发射和接收无线电波的重要设备。
发射时,电流通过天线,产生变化的电磁场,从而向周围空间辐射出无线电波。
天线的形状和尺寸会影响发射的效率和方向性。
发射机则负责产生高频振荡电流。
这个电流具有特定的频率和功率,决定了发射的无线电波的特征。
为了有效地发射无线电波,发射机通常会对信号进行调制。
调制就是把要传递的信息加载到高频载波上。
常见的调制方式有调幅(AM)和调频(FM)。
调幅是使载波的振幅随信号变化,而调频则是使载波的频率随信号变化。
经过调制后的信号,能够携带更多的信息,并且更适合在空间中传播。
三、无线电波的传播无线电波在空间中的传播方式主要有地波传播、天波传播和直线传播三种。
地波传播是指无线电波沿着地球表面传播。
这种传播方式适合频率较低的无线电波,如长波和中波。
地波传播比较稳定,但传播距离有限,且容易受到地面障碍物和地球曲率的影响。
天波传播是指无线电波被发射到高空的电离层,然后被反射回地面。
这种传播方式适合中波和短波。
电离层是地球大气层中的一个区域,其中存在大量的自由电子和离子,能够反射无线电波。
但电离层的状态会随时间和季节变化,导致天波传播的稳定性较差。
直线传播是指无线电波以直线的方式传播。
这种传播方式适合频率较高的无线电波,如超短波和微波。
直线传播的信号强度随距离的增加而迅速衰减,因此需要通过中继站来延长传播距离。
此外,无线电波在传播过程中还会受到各种因素的影响,如大气衰减、障碍物阻挡、多径传播等。
手机信号传播原理
手机信号的传播原理是指无线电波在空间中的传播方式。
手机信号是通过电磁波进行传输的,具体的传播过程主要包括三个环节:发射、传播和接收。
在发射环节,手机内部的发射器产生电磁波。
这些电磁波属于无线电波的一种,具有特定的频率和振幅。
手机发射器通过天线将电磁波传输到周围的空间中。
传播环节是指无线电波在空间中的传输过程。
传播过程中,无线电波会受到多种因素的影响,包括传播距离、地形、建筑物、大气等。
无线电波的传播有以下几种方式:
1. 直射路径传播:当无线电波没有受到任何障碍物的遮挡时,可以直接沿着直射路径传播。
在这种情况下,传播距离较远,信号衰减较小。
2. 绕射传播:当无线电波遇到建筑物、山脉等遮挡物时,会发生绕射现象。
绕射使得无线电波沿着物体的边缘传播,达到遮挡物背后的区域。
3. 折射传播:无线电波在不同介质之间传播时,会由于介质的折射率不同而发生折射。
这种传播方式常见于大气环境中,例如夜晚的折射现象可以使得信号传播更远。
接收环节是指手机对传输的无线电波进行接收和解码的过程。
当无线电波到达手机的天线时,接收器会将电磁波转化为电信
号,并进行解码处理,以还原出原始的信息内容。
手机信号的传播原理是基于电磁波的传输和接收机制,通过发射、传播和接收环节,实现了手机之间的通信和信息交流。