2010年成人高考专升本数学(文)考试真题及参考答案
- 格式:pdf
- 大小:311.41 KB
- 文档页数:6
12010年江苏省普通高校“专转本”统一考试高等数学注意事项:1、考生务必将密封线内的各项目及第2页右下角的座位号填写清楚。
2、考生须用钢笔或圆珠笔将答案直接答在试卷上,答在草稿纸上无效。
3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟。
一、选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价无穷小,则常数,a n 的值为()A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n ==2.曲线223456x x y x x -+=-+的渐近线共有()A.1条B.2条C.3条D.4条3.设函数22()cos tx x e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于()A.222cos x xe xB.222cos x xe x -C.2cos x xe x -D.22cos x e x -4.下列级数收敛的是()A.11n n n ∞=+∑ B.2121n n n n ∞=++∑ C.11(1)nn n ∞=+-∑ D.212n n n ∞=∑5.二次积分1101(,)y dy f x y dx +⎰⎰交换积分次序后得()A.1101(,)x dx f x y dy +⎰⎰B.2110(,)x dx f x y dy-⎰⎰C.2111(,)x dx f x y dy -⎰⎰ D.2111(,)x dx f x y dy-⎰⎰6.设3()3f x x x =-,则在区间(0,1)内()A.函数()f x 单调增加且其图形是凹的B.函数()f x 单调增加且其图形是凸的C.函数()f x 单调减少且其图形是凹的D.函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分)7.1lim()1x x x x →∞+=-8.若(0)1f '=,则0()()lim x f x f x x →--=9.定积分312111x dx x -++⎰的值为10.设(1,2,3),(2,5,)a b k == ,若a 与b 垂直,则常数k =11.设函数2ln 4z x y =+,则10x y dz ===12.幂级数0(1)n n n x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限2011lim()tan x x x x→-14、设函数()y y x =由方程2x y y e x ++=所确定,求22,dy d y dx dx15、求不定积分arctan x xdx ⎰16、计算定积分40321x dx x ++⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线方程。
山东大学成人教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C )A. 023=-+x yB. 03231=-+x yC.023=+-x yD. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 奇函数3、=-+∞→531002lim 33x xx x 23 4、13+=x y 的反函数是()3log 1y x =-5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lim 1 7、设x x x y -=ln ,则y '=8、曲线22xy =在)2,1(处的切线方程是46y x =-+9、设x x y sin =,则''y =2cos sin y x x x =-10、=-=dy x y 则设,)1(4323312(1)x x dx - 11、不定积分⎰=+dx x 121()1ln 212x C ++ 12、不定积分⎰dx x xe = x x xxe e e +-13、定积分dx x⎰-+11211=π 14、定积分=⎰e xdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则= 123(1)x x +三、计算题:本大题共10个小题,每小题6分, 共60分。
《高等数学》试卷一、单项选择题(每题2分,共计60分,在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题无分)1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.)1lg()(2x x x f -+=在),(+∞-∞是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01lg )1lg()1lg()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x s i n 2-是x的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim20-=-→x x x x , C ⇒. 4.=+∞→nn n n sin 32lim ( )A. ∞B. 2C. 3D. 5 解:B n n n n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim . 5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax 在0=x 处连续,则 =a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a ae x e x f ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在1=x 可导 ,则=--+→xx f x f x )1()21(lim0 ( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:x x f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→ C f x f x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,5422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.已知x x x f n ln )()2(=-,则=)()(x f n ( )A.211x+ B. x 1C. x lnD. x x ln 解:B x x f x x f x x x f n n n ⇒=⇒+=⇒=--1)(ln 1)(ln )()()1()2(.10.233222++--=x x x x y 有 ( )A. 一条垂直渐近线,一条水平渐近线B. 两条垂直渐近线,一条水平渐近线C. 一条垂直渐近线,两条水平渐近线D. 两条垂直渐近线,两条水平渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→∞→2122lim ,4lim ,2lim )2)(1()3)(1(2332 . 11.在下列给定的区间满足罗尔中值定理的是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解: 由罗尔中值定理 条件:连续、可导及端点的函数值相等C ⇒12. 函数x e y -=在区间),(+∞-∞为 ( )A. 单增且凹B. 单增且凸C. 单减且凹D. 单减且凸解: C e y e y x x ⇒>=''<-='--0,0.13.⎰+=C x F dx x f )()(曲线 ,则⎰=--dx e f e xx )( ( ) A.C e F e x x ++--)( B. C e F e x x +---)(C. C e F x +-)(D. C e F x +--)(解:D C e F e d e f dx e f e xx x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设函数x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C e x +-)1(212 C. C e x ++1221 D. C e x ++)1(212解:D C e x f e x f e x f x x x ⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. =⎰b axdx dx darctan ( )A.x arctanB. 0C. a b arctan arctan -D. a b arctan arctan + 解:⎰b a xdx arctan 是常数,所以 B xdx dx d ba ⇒=⎰0arctan .16.下列广义积分收敛的为 ( ) A. ⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx x D. ⎰+∞1cos xdx 解:C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为() A. ⎰-b a dx x g x f )]()([ B. ⎰-b a dx x g x f )]()([ C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设y xy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 方程02=-xyz e z 确定函数),(y x f z = ,则x z ∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令⇒-='-='⇒-=xy e F yz F xyz e z y x F z z x z 222,),,( A z x zxy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222 21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222x ydx xdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zy z 是极大值A ⇒. 23由012222=+--+y x y x 围成的闭区域D ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24累次积分⎰⎰>axa dy y x f dx 0)0(),(交换后为( )A. ⎰⎰a x dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.二重积分⎰⎰20sin 20)sin ,cos (πθθθθrdr r r f d 在直角坐标系下积分区域可表示为( )A. ,222y y x ≤+B. ,222≤+y xC. ,222x y x ≤+D. 220y y x -≤≤ 解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 坐标从点)0,1(A 到)1,0(B 的有向线段,则⎰-+L dy dx y x )( ( ) A. 2 B.1 C. -1 D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0 ,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L . 27.下列级数绝对收敛的是 ( )A .∑∞=1sin n n πB .∑∞=-1sin )1(n n n π C . ∑∞=-12sin )1(n n n π D . ∑∞=0cos n n π解: ⇒<22sin n n ππC n n ⇒∑∞=12sin π. 28. 设幂级数n n n n a x a (0∑∞=为常数 ,2,1,0=n ),在 2-=x 处收敛,则∑∞=-0)1(n n na ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A.C y x =sin cos B. C y x =cos sin C. C y x =sin sin D. C y x =cos cos 解:dx x x dy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C x y x x d y y d ⇒=+⇒-=⇒ln sin ln sin ln sin sin sin sin . 30.微分方程x xe y y y -=-'+''2,特解用特定系数法可设为 ( ) A.x e b ax x y -+=*)( B. x e b ax x y -+=*)(2 C. x e b ax y -+=*)( D. x axe y -=* 解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每题2分,共30分) 31.设 ,1||,01||,1)(⎩⎨⎧>≤=x x x f ,则=)(sin x f _________ 解:1)(sin 1}sin |=⇒≤x f x .32.若=--+→x x x x 231lim 22=_____________ 解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.已知x y 2arctan =,则=dy __________ 解:dx xdy 2412+= . 34.函数 bx x a x x f ++=23)(,在1-=x 处取得极值-2,则_______,==b a . 解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(2.5,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设)(),(x g x f 是可微函数,且为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππ)sin (32x x _________解:3202sin )sin (023232ππππππππ=+=+=+⎰⎰⎰⎰---x xdx dx x x x . 38.设⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________解:⎰⎰⎰⎰--=--=+==-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 已知 }1,1,2{},2,1,1{-==b a,则向量a 与b 的夹角为=__________解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a.40.空间曲线⎩⎨⎧==022z xy 绕x 轴旋转所得到的曲面方程为 _________.解:把x y 22=中的2y 换成22y z +即得所求曲面方程x y z 222=+.41. 函数y x x z sin 22+=,则 =∂∂∂yx z2_________解: ⇒+=∂∂y x x x z sin 22y x yx z cos 22==∂∂∂ . 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2⎰⎰=-Ddxdy xy . 解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( .43. 函数2)(x e x f -=在0=x 处的展开成幂级数为________________解: ∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________ 解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n nn n n n n n nx n x n x n x .45.通解为x x e C e C y 321+=-的二阶线性齐次常系数微分方程为_________解:x x e C e C y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46. x x e x xx 2sin 1lim 3202-→-- 解:20300420320161lim 3222lim 81lim 2sin 1lim2222x e x xe x x ex xx e x x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim220000-=-=-=-→-→x x x x e x xe . 47.设x x x y 2sin 2)3(+=, 求dxdy解:取对数得 :)3ln(2sin ln 2x x x y +=,两边对x 求导得:xx x x x x x y y 3322sin )3ln(2cos 2122++++='所以]3322sin )3ln(2cos 2[)3(222sin 2xx x x x x x x x y x +++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求 ⎰-dx x x 224解:⎰⎰⎰⎰-===-=dt t tdt tdt t tdx x x tx )2cos 1(2sin 4cos 2cos 2sin 4422sin 222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.求⎰--+102)2()1ln(dx x x解:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x ..50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 是可微函数,求 yzx z ∂∂∂∂,解:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2( ),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂y vv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.计算积分⎰⎰=Dydxdy x I 2 ,其中:D 由直线1,2,===x x y x y 所围成的闭区域.解:积分区域如图所示,可表示为:x y x x 2,10≤≤≤≤.所以 ⎰⎰⎰⎰==1222xx Dydy x dx ydxdy x I10310323)2(10510421022====⎰⎰x dx x y dx x xx52.求幂级数nn nx ∑∞=--+0)1()3(11的收敛区间(不考虑端点). 解: 令t x =-1,级数化为 n n nt ∑∞=-+0)3(11,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim )3(1)3(1lim lim 11=--+-=-+-+==∞→+∞→+∞→nnn n n n n n n a a ρ,故级数nn nt ∑∞=-+0)3(11的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx ∑∞=--+0)1()3(11有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-.53.求微分方程 0)12(2=+-+dy x xy dy x 通解.解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xxy x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2xCy =.设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(xx C x C x y -'=',代入方程得C x x x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xCx y +-=.四、应用题(每题7分,共计14分)54.某公司甲乙两厂生产一种产品,甲乙两厂月产量分别为y x ,千件;甲厂月产量成本为5221+-=x x C ,乙厂月产量成本为3222++=y y C ;要使月产量为8千件,且总成本最小,求甲乙两厂最优产量和最低成本?解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 . 由8=+y x 得x y -=8,代入得目标函数为0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故5=x 使C 得到极小唯一极值点,即最小值点.此时有38,3==C y . 所以 甲乙两厂最优产量分别为5千件和3千件,最低成本为38成本单位. 55.求曲线)2)(1(--=x x y 和x 轴所围成图形绕y 轴旋转一周所得的体积. 解:平面图形如下图所示:此立体可看作x 区域绕y利用体积公式⎰=ba y dx x f x V |)(|2π.显然,抛物线与x 两交点分别为(1,0);(2平面图形在x 轴的下方.故⎰⎰---==21)2)(1(2|)(|2x x x dx x f x V ba y ππ2)4(2)23(2212342123πππ=+--=+--=⎰x x x dx x x x .xx五、证明题(6分)56设)(x f 在],[a a -上连续,且>a ,求证⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .证明:因为⎰⎰⎰--+=aaaadx x f dx x f dx x f 0)()()(,而⎰⎰⎰⎰-=-=--=-=-0)()()()()(aaa tx a dx x f dt t f t d t f dx x f ,故⎰⎰⎰⎰⎰-+=+=--aaa aa adx x f dx x f dx x f dx x f dx x f 0)()()()()( 即有⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.利用上述公式有dx e e e x dx e x e x dx e x x x x x x x ⎰⎰⎰⎥⎦⎤⎢⎣⎡+++=+-++=+---404044111cos ]1)cos(1cos [1cos ππππ 22sin cos 4040===⎰ππx dx x .说明:由于时间紧,个别题目语言叙述与试卷有点不近相同,没有进行认真检查,考生仅作参考.河南省“专升本”考试《高等数学》辅导专家葛云飞提供.。
2010年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数y=-arccos的定义域是( )A.[-3,1]B.[ -8,-1)C.[-8,-1]D.[-1,1]正确答案:D解析:因,故,,所以-1≤x≤1,故选项D正确2.极限等于( )A.0B.1C.1/3D.3正确答案:D解析:,故选项D正确3.已知(1)=1,则等于( )A.1B.-1C.2D.-2正确答案:D解析:根据导数的定义,=-2(1)=-2,选D正确4.设φ(x)=,则(x)等于( )A.B.C.D.正确答案:C解析:(x)===,选项C正确5.曲线y=x2与直线y=1所围成的图形的面积为( )A.2/3B.3/4C.4/3D.1正确答案:C解析:曲线y=x2与曲线y=1的交点坐标为(-1,1)和(1,1),则所围图形的面积为(1-x2)dx-=.选项C正确6.定积分xcos xdx等于( )A.-1B.0C.1D.1/2正确答案:B解析:因被积函数xcosx在[-2,2]上为奇函数,故xcosxdx=0.选项B 正确7.已知向量=(-1,-2,1)与向量=(1,2,t)垂直,则t等于( ) A.-1B.1C.-5D.5正确答案:D解析:因向量a与b垂直,故a.b=0,即(-1).1+(-2).2+1.t=0,也即-5+t=0,故t=5.选项D正确8.曲线y=x2在点(1,1)处的法线方程为( )A.y=xB.y=+C.y=+D.y=--正确答案:B解析:根据导数的几何意义,切线的斜率k=|x=1=2x|x=1=2,故法线方程为y-1=(x-1),即y=-+,选B正确9.设函数f(x)在点x0处不连续,则( )A.(x0)存在B.(x0)不存在C.f(x)必存在D.f(x)在点x0处可微正确答案:B解析:根据“可导必连续”,则“不连续一定不可导”,选项B正确10.=0是级数收敛的( )A.必要条件B.充分条件C.充分必要条件D.不确定正确答案:A解析:根据收敛级数的性质,=0是级数收敛的必要条件.选项A正确填空题11.若函数f(x)=在x=1处连续,则a=_______.正确答案:f(x)=(-2x+1)=-1,f(x)=(x-a)=1-a,因f(x)在点x=1处连续,故f(x)=f(z),即-1=1-a,a=212.x=0是函数f(x)=xcos的第_______类间断点.正确答案:f(x)==0,故x=0是函数f(x)的第一类间断点13.若曲线y=f(x)在点(x0,f(x0))处的切线平行于直线y=2x-3,则(x0)=________.正确答案:切线与直线平行,则切线的斜率与直线的斜率相等,故(x0)=2 14.函数f(x)=2x3-9x2+12x的单调减区间是_______.正确答案:令(x)=6x2-18x+12=6(x-1)(x-2)=0,得驻点x=1和x=2;当x(x)>0,当1(x)2时,(x)>0,故函数的单调递减区间为[1,2]15.设y=cos(sin x),则dy=______.正确答案:dy=dcos(sinx)=-sin(sinx)cosxdx16.不定积分∫df(x)=________.正确答案:根据不定积分与微分的关系可得,∫df(x)=f(x)+C17.dx=________ .正确答案:由定积分的几何意义,dx表示曲线y=,直线x=0,x=1和x轴所围成的图形的面积,即圆面积,故18.“函数z=f(x,y)的偏导数,在点(z,y)存在”是“函数z=f(x,y)在点(x,y)可微分”的_______条件.正确答案:根据二元函数微分的存在性定理可知,二元函数z=f(x,y)在点(x,y)处可微分则偏导数一定存在,但反之不一定成立,故“函数z=f(x,y)的偏导数、在点(x,y)存在”是“函数z=f(x,y)在点(x,y)可微分”的必要非充分条件19.微分方程-4-5y=0的通解为_______.正确答案:原方程的特征方程为r2-4r-5=0,有两个不相等的实根r1=-1,r2=5,故原方程的通解为y=+20.幂级数的收敛区间为_______.正确答案:因==故R==+∞所以原幂级数的收敛区间为(-∞,+∞)解答题解答时应写出推理、演算步骤。
一1.下列词语中加点字的读音完全相同的一组是 CA.馈赠.曾.孙磨蹭.面目可憎.僧.多粥少B.着.装着.眼着.落沉着.冷静着.手成春C.烙.印骆.驼奶酪.亭台楼阁.络.绎不绝D.笨拙.罢黜.茁.壮咄咄..逼人相形见绌.2.依次填入句中横线上的词语,恰当的一组是 B(1)各级党组织要从我国社会主义现代化建设的实际出发,认真________和识别干部。
(2)一条新修建的道路,供水部门挖开路面,安装水管;刚刚填平,煤气公司又挖开安装煤气管;不久,环卫系统又来修理污水管……如果几个部门________一下,可以节省多少劳动力和资金啊!(3)一连几天,他高烧不退,________不清。
A. 考查协调神智B.考察协调神志C.考察谐调神志 D.考查谐调神智3.下列各句,没有语病,句意明确的一句是 CA.现在,许多青年男女不再以财产多寡和门第高低为条件,而以能劳动,有科学文化知识为标准去选择自己的伴侣。
B.这个村今年水稻获得了大丰收,不但向国家交售了六万斤谷子,而且不吃国家的供应粮了。
C.厂长采纳了两个工人的合理化建议,这大大激发了全厂职工出谋献策的积极性。
D.鉴于动物有上述特点,我们可以预测,随着信息时代的到来,科学技术的不断发展,在未来的战争舞台上,将有越来越多的“动物兵”出现。
二1.下列各组词语中加点的字的读音,与所给注音全都相同的一组是: CA.角jiǎo 号角.角.落头角.群雄角.逐B.笼lóng 笼.子牢笼.笼.屉烟笼.雾锁C.量liáng 思量.打量.测量.量.体裁衣D.削xuē剥削.削.减瘦削.日削.月割2.依次填入句中横线上的词语,正确的一组是 C《四世同堂》是一部很好的电视剧。
它忠实地体现了老舍先生作品的_______,浓郁而亲切的_______人情气息弥温始终,它记述了历史,同时又记述了北平的_______,北平人及他们的思绪、感情和生活。
这种深沉、朴实的_______,是与导演对作品的深刻理解分不开的。
2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上。
本试卷的试题答案必须答在答题卡上,答在试卷上无效。
一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标 号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
1.设函数)(x f 的定义域为区间(1,1]-,则函数(1)e f x -的定义域为A .[2,2]-B .(1, 1]-C .(2, 0]-D .(0, 2]2.若()f x ()x R ∈为奇函数,则下列函数为偶函数的是A .()y x =,[1, 1]x ∈-B .3()tan y xf x x =+,(π, π)x ∈-C .3sin ()y x x f x =-,[1, 1]x ∈-D .25()e sin x y f x x =,[π, π]x ∈- 3.当0→x 时,2e1x-是sin 3x 的A .低阶无穷小B .高阶无穷小C .等价无穷小D .同阶非等价无穷小4.设函数2511sin , 0()e , 0xx x x f x x ⎧>⎪=⎨⎪<⎩,则0x =是)(x f 的 A .可去间断点 B .跳跃间断点 C .连续点D .第二类间断点5.下列方程在区间(0, 1)内至少有一个实根的为 A .220x +=B .sin 1πx =-C .32520x x +-=D .21arctan 0x x ++=6.函数)(x f 在点0x x =处可导,且1)(0-='x f ,则000()(3)lim2h f x f x h h→-+=A .23B .23-C .32-D .327.曲线x x y ln =的平行于直线01=+-y x 的切线方程是 A .1-=x y B .)1(+-=x y C .1y x =-+D .)1)(1(ln -+=x x y8.设函数π2sin 5y =,则='y A.π2cos 5-B.CD.2πcos 55-9.若函数()f x 满足2d ()2sin d f x x x x =-,则()f x = A .2cos xB .2cos x C +C .2sin x C +D .2cos x C -+10.d e sin(12)d d b xax x x --=⎰ A .e sin(12)x x -- B .e sin(12)d x x x -- C .e sin(12)x x C --+D .011.若()()f x f x -=,在区间(0, )+∞内,()0f x '>,()0f x ''>,则()f x 在区间(, 0)-∞内A .()0f x '<,()0f x ''<B .()0f x '>,()0f x ''>C .()0f x '>,()0f x ''<D .()0f x '<,()0f x ''>12.若函数()f x 在区间(, )a b 内连续,在点0x 处不可导,0(, )x a b ∈,则 A .0x 是()f x 的极大值点 B .0x 是()f x 的极小值点 C .0x 不是()f x 的极值点 D .0x 可能是()f x 的极值点13.曲线e xy x -=的拐点为 A .1x =B .2x =C .222,e ⎛⎫ ⎪⎝⎭D .11,e ⎛⎫ ⎪⎝⎭14.曲线2arctan 35xy x=+ A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线 15.若x cos 是)(x f 的一个原函数,则=⎰)(d x fA .sin x C -+B .sin xC + C .cos x C -+D .cos x C +16.设曲线()y f x =过点(0, 1),且在该曲线上任意一点(, )x y 处切线的斜率为e x x +,则=)(x fA .2e 2x x -B .2e 2x x +C .2e x x +D .2e x x -17.2 π4πsin d 1x xx x -=+⎰A .2B .0C .1D .1-18.设)(x f 是连续函数,则2()d x af t t ⎰是A .)(x f 的一个原函数B .)(x f 的全体原函数C .)(22x xf 的一个原函数D .)(22x xf 的全体原函数19.下列广义积分收敛的是 A.1x +∞⎰ B .2 e ln d xx x +∞⎰C .2e1d ln x x x+∞⎰D .21d 1xx x+∞+⎰20.微分方程0)(224=-'+''y x y y x 的阶数是 A .1B .2C .3D .421.已知向量{5, , 2}a x =-和{, 6, 4}b y = 平行,则x 和y 的值分别为A .4-,5B .3-,10-C .4-,10-D .10-,3-22.平面1x y z ++=与平面2=-+z y x 的位置关系是 A .重合 B .平行C .垂直D .相交但不垂直23.下列方程在空间直角坐标系中表示的曲面为柱面的是 A .221y z += B .22z x y =+ C .222z x y =+D .22z x y =-24.关于函数222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩下列表述错误的是A .(, )f x y 在点(0, 0)处连续B .(0, 0)0x f =C .(0, 0)0y f =D .(, )f x y 在点(0, 0)处不可微25.设函数)ln(y x y x z -=,则=∂∂yzA .)(y x y x -B .2ln()x x y y --C .ln()()x y xy y x y -+- D .2ln()()x x y xy y x y ---- 26.累次积分2d (, )d x f x y y ⎰⎰写成另一种次序的积分是A .1d (, )d yyy f x y x -⎰⎰B.2d (, )d y f x y x ⎰⎰C.11d (,)d y f x y x -⎰⎰D.11 11d (, )d y f x y x -⎰⎰27.设{(, )|D x y x =≤2, y ≤2},则⎰⎰=Dy x d dA .2B .16C .12D .428.若幂级数∑∞=0n nnx a的收敛半径为R ,则幂级数∑∞=-02)2(n n n x a 的收敛区间为A.( B .(2, 2)R R -+ C .(, )R R -D.(2 229.下列级数绝对收敛的是 A .∑∞=-11)1(n nnB .∑∞=-1223)1(n n nnC .∑∞=-+-1121)1(n n n nD .∑∞=--1212)1(n nn n30.若幂级数(3)nn n a x ∞=-∑在点1x =处发散,在点5x =处收敛,则在点0x =,2x =,4x =,6x =中使该级数发散的点的个数有A .0个B .1个C .2个D .3个二、填空题(每空2分,共20分)31.设(32)f x -的定义域为(3, 4]-,则)(x f 的定义域为________. 32.极限limx =________.33.设函数()(1)(2)(3)(4)f x x x x x =++--,则(4)()f x =________.34.设参数方程22 1 31x t y t =+⎧⎨=-⎩所确定的函数为()y y x =,则22d d yx =________. 35.(ln 1)d x x +=⎰________.36.点(3, 2, 1)-到平面10x y z ++-=的距离是________. 37.函数(1)x z y =+在点(1, 1)处的全微分d z =________.38.设L 为三个顶点分别为(0, 0),(1, 0)和(0, 1)的三角形边界,L 的方向为逆时针方向,则2322()d (3)d Lxyy x x y xy y -+-=⎰ ________.39.已知微分方程x ay y e =+'的一个特解为x x y e =,则a =________.40.级数03!nn n ∞=∑的和为________.三、计算题(每小题5分,共45分)41.求极限2040sin d (e 1)sin lim 1cos x x x t t x x x →⎛⎫- ⎪- ⎪- ⎪⎝⎭⎰. 42.设由方程22e e y xy -=确定的函数为)(x y y =,求d d x yx =. 43.求不定积分2xx .44.求定积分( 2d x x ⎰.45.求过点(1, 2, 5)-且与直线213 3 x y z x y -+=⎧⎨-=⎩平行的直线方程.46.求函数x xy y x y x f 823),(22+-+=的极值. 47.将23()21xf x x x =+-展开成x 的幂级数. 48.计算二重积分Dσ⎰⎰,其中D 是由圆223x y +=所围成的闭区域.49.求微分方程069=+'-''y y y 的通解.四、应用题(每小题8分,共16分)50.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时用料最省? 51.平面图形D 由曲线2x y =,直线x y -=2及x 轴所围成.求: (1)D 的面积;(2)D 绕x 轴旋转形成的旋转体的体积.五、证明题(9分)52.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且(0)0f =,(1)2f =.证明:在)1,0(内至少存在一点ξ,使得()21f ξξ'=+成立.2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学试题参考答案及评分标准一、选择题(每小题2分,共60分)二、填空题(每小题2分,共20分)31.[5, 9)- 32.5233.24 34.3235.ln x x C + 3637.2ln 2d d x y + 38.0 39.1- 40.3e三、计算题(每小题5分,共45分)41.3242.222002d d 24e d d e 0x x y y y xx-======- 43.322(e 1)3x C +-44.π22+ 45.125315x y z --+==- 46.函数在(6, 2)--处有极小值(6, 2)24f --=- 47.00111()(1)2[(1)2], , 22nnnnn n nn n n f x x x x x ∞∞∞===⎛⎫=--=--∈- ⎪⎝⎭∑∑∑48.49.1312()e x y C C x =+(1C ,2C 是任意常数) 四、应用题(每小题8分,共16分)50.3232ππ2πππV h V V V r r r r V===⋅=⋅= 51.(1) 1201d 112A x x =+⋅⋅⎰ 13015326x =+= (2) 14201πd π113x V x x =+⋅⋅⎰ 150π8ππ5315x =+=第51题图五、证明题(9分)52.证明:构造函数2()()F x f x x =-,因)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,所以函数)(x F 在闭区间]1,0[上连续,在开区间)1,0(内可导,且()()2F x f x x ''=-.于是)(x F 在]1,0[上满足拉格朗日中值定理的条件,故在开区间)1,0(内至少存在一点ξ,使得(1)(0)()10F F F ξ-'=-,将(0)0f =,(1)2f =代入上式,得(1)(0)()[(1)1][(0)0]110F F F f f ξ-'==---=-,即()21f ξξ'-=,于是()21f ξξ'=+.。
山东大学成人教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21 D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 奇函数3、=-+∞→531002lim 33x xx x 23 4、13+=x y 的反函数是()3log 1y x =-5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lim 1 7、设x x x y -=ln ,则y '=ln x8、曲线22xy =在)2,1(处的切线方程是46y x =-+9、设x x y sin =,则''y =2cos sin y x x x =-10、=-=dy x y 则设,)1(4323312(1)x x dx - 11、不定积分⎰=+dx x 121()1ln 212x C ++ 12、不定积分⎰dx x xe = x x xxe e e +-13、定积分dx x⎰-+11211=π14、定积分=⎰exdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则= 123(1)x x +三、计算题:本大题共10个小题,每小题6分, 共60分。
2010年江苏专转本高等数学真题(附答案)2010年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A. 1,36a n ==B. 1,33a n ==C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdtΦ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A.222cos x xe x B.222cos x xe x - C. 2cos xxex-D. 22cos x e x - 4.下列级数收敛的是( ) A. 11n n n ∞=+∑ B.2121n n n n∞=++∑ C.1n n n ∞=D.212n n n ∞=∑5.二次积分111(,)y dy f x y dx+⎰⎰交换积分次序后得( ) A. 1101(,)x dx f x y dy+⎰⎰B.211(,)x dx f x y dy-⎰⎰C. 2111(,)x dx f x y dy-⎰⎰D.2111(,)x dx f x y dy-⎰⎰6.设3()3f x x x=-,则在区间(0,1)内( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分)7. 1lim()1xx x x →∞+=-8. 若(0)1f '=,则0()()lim x f x f x x →--=9. 定积分312111x dxx -++⎰的值为10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11. 设函数24z x y=+,则10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限211lim()tanx x x x→- 14、设函数()y y x =由方程2x yy e x++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰ 16、计算定积分4021dx x +⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。
2010年江苏专转本(高等数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.设当x→0时,函数f(x)=x-sinx与g(x)=axn是等价无穷小,则常数a,n 的值为( )A.a=,n=3B.a=,n=3C.a=,n=4D.a=,n=4正确答案:A解析:由题意,n=3.2.曲线的渐近线共有( )A.1条B.2条C.3条D.4条正确答案:C解析:3.设函数ψ(x)=∫x22etcostdt,则函数ψ(x)的导数ψ’(x)等于( ) A.2xex2 cos x2B.-2xex2cosx2C.-2xexcosxD.-ex2cosx2正确答案:B解析:φ’(x)=(-∫2x2etcostdt)’=-ex2cosx2.2x=-2xex2cosx24.下列级数收敛的是( )A.B.C.D.正确答案:D解析:选项D通项公式为分子是幂函数,分母是指数函数,因为指数函数的增长速度高于幂函数的增长速度,而幂函数又大于对数函数的增长速度,故D是一个收敛级数,其余都发散.5.二次积分∫01dy∫1y+1f(x,y)如交换积分次序后得( )A.∫01dx∫1x+1f(x,y)dyB.∫12dx∫0x-1f(x,y)dyC.∫12dx∫1x-1f(x,y)dyD.∫12dx∫x-11f(x,y)dy正确答案:D解析:画出积分区域,若先对y后对x积分,则积分变为∫01dy∫1y+1f(x,y)dx=∫12dx∫x-11f(x,y)dy.6.设f(x)=x3-3x,则在区间(0,1)内( )A.函数f(x)单调增加且其图形是凹的B.函数f(x)单调增加且其图形是凸的C.函数f(x)单调减少且其图形是凹的D.函数f(x)单调减少且其图形是凸的正确答案:C解析:利用导数性质,当x∈(0,1)时,有f’(x)=3x2-3<0,f”(x)=6x>0,故在区间(0,1)内,函数f(x)单调减少且其图形是凹的.填空题7._______.正确答案:e2解析:这是“12”型未定式,根据两个重要极限,8.若f’(0)=1,则_______.正确答案:2解析:由已知,根据导数定义,9.定积分的值为_____.正确答案:解析:由定积分的对称性质,10.设a=(1,2,3),b=(2,5,k),若a与b垂直,则常数k=______.正确答案:-4解析:由题意a.b=1×2+2×5+3×k=0,解得k=-4.11.设函数=______.正确答案:dx+2dy解析:12.幂级数的收敛域为______.正确答案:(-1,1]解析:因为,收敛半径为R==1,当x=1时,收敛(莱布尼兹级数),当x=-1时,发散(调和级数),故收敛域为(-1,1].解答题解答时应写出推理、演算步骤。
2010年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一、选择题:每小题6分,共10小题,共60分.在每小题的四个选项中,只有一项是符合要求的.1.已知集合A ={x|x 2―1>0},B ={x|log 2x <0},则A ∩B 等于 ( )A .ØB .{x|x <-1}C .{x|x >1}D .{x|x <-1或x >1}2. 若不等式||x a -<1成立的充分条件是04<<x ,则实数a 的取值范围是( ) A. a ≥3B. a ≤3C. a ≥1D. a ≤13.函数)1(log 2-=x y 的反函数图像是 ( )A B4. 如图所示,∆OAB 是边长为2的等边三角形,直线x t =截这个三角形位于此直线左方的图形面积为y (见图中阴影部分)则函数y f t =()的大致图形为( )5.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π6椭圆22143x y +=的右焦点到直线y x =的距离是 ( )A.127. 过圆锥曲线C 的一个焦点F 的直线l 交曲线C 于A 、B 两点,且以AB 为直径的圆与F 相应的准线相交,则曲线C 为A. 双曲线B. 抛物线C. 椭圆D. 以上都有可能 8.若αααααcos sin cos 3sin ,2tan +-=则的值是( )A .31-B .-35C .31 D .35 9.直线052)3(057)3()1(2=-+-=-+-++y x m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或10.已知1(2)2x f x x ++=+,则1(2)f x -+= ( ) A.12x x -+ B.11x -+ C.211x x +-- D.21x x +-+二、填空题:每小题5分,共8小题,共计40分.将答案填在题中的横线上。