证明:假设 4a(1-b),4b(1-c),4c(1-d),4d(1-a)都大于 1,则 a(1-
b)>14,b(1-c)>14,c(1-d)>14,d(1-a)>14.
∴
������(1-������)
>
1 2
,
������(1-������)
>
1 2
,
������(1-������)
>
1 2
,
������(1-������) > 12.
������ ������ 变式训练 2
设
n
是正整数,求证12
≤
1 ������+1
+
������+1 2+…+21������<1.
分析:要求一个
n
项分式 1
������+1
+
������+1 2+…+21������的范围,它的和又求不
出来,可以采用“化整为零”的方法,先观察每一项的范围,再求整体的 范围.
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
探究一
探究二
探究三
证法二:假设a+b>2,则a>2-b. ∵a3+b3=2,∴2=a3+b3>(2-b)3+b3, 即2>8-12b+6b2,即(b-1)2<0, 这与(b-1)2≥0矛盾, ∴a+b≤2. 证法三:假设a+b>2, 则(a+b)3=a3+b3+3ab(a+b)>8. 由a3+b3=2,得3ab(a+b)>6, ∴ab(a+b)>2. 又a3+b3=(a+b)(a2-ab+b2)=2, ∴ab(a+b)>(a+b)(a2-ab+b2). ∴a2-ab+b2<ab,即(a-b)2<0,这与(a-b)2≥0矛盾,∴a+b≤2.