光在湍流大气中的传播
- 格式:ppt
- 大小:775.00 KB
- 文档页数:15
第35卷,增刊红外与激光工程2006年10月、,01.35Su pp l e m e n t I n疳ar ed a nd Las er E ngi nee r i n卫O ct.2006湍流大气中空间部分相干奇异光波的传输张逸新1,汤敏霞2(1.江南大学理学院,江苏无锡214122;2.江南大学情报研究所,江苏无锡214122)摘要:自由空间中带有光学涡的部分相干光的传输特性是影响大气光通信系统性能的关键因子之一。
基于弱湍流大气中光波传输的R yt ov方法和部分相干光的互相干函数的交叉谱密度函数近似,研究了带有“光学涡”的空间部分相干拉盖尔一高斯光束在湍流大气中的传输特性,得出了弱湍流大气中传输的部分相干光束互相干函数和平均光强空间分布的解析关系。
研究结果表明,弱湍流大气起伏仅仅影响这类光束相干函数的幅值,不改变光束光学涡的分布特征。
关键词:湍流大气;部分相干光;交叉谱密度;中图分类号:T N929.12,n奶58.98,P407.5,P427.1+13平均光强Pr opaga t i on of par t i aU y coher ent s i ngul am y beam s i n钿r bul ent at I I l ospher eZ H A N GY i.xi I l l.TA N G M i l l.xi a2(1.S chooI of Science,Sou t hem Y抽gt ze U n i vcr s it y,W ux i214122,Ch i n a;2,I嘣岫忙of com m岫i c砒i on R cs能r ch cent他ofcon仃oI scien∞&Engineer ing,s ou恤mⅦ咖uniV哪咄wlⅨi214122,C hi岫A bst豫ct:T he pr o pagat i on pr oper t i e s of t11e pan i al l y co her en t si l l gul ar i t y be am s t hr o ugh a缸nos pher i c t I l r bul e nc e ar e ke y ef佗c t-f沁t or s of at m ospher i c t ur bul ence on行ee s pace opt i c al com m uni cat i ons s yst em s.B aS ed on t he R yt oV appr oxi m at i on锄d t he印pr oxi Il l at i on of cr oss-s pec仃a l dens i t y f or t he m ut ual coherence funct i on of m e pani al l y coh er ent f i el d,t he pr叩agat ion prope rt i e s of t he pa r t i al l y coh er ent Laguel l r e-G auss be am s w i t h opt i ca l V or t i ce s i n t ur bul e nt annospher e ar e di s cuss ed.Ex pr ess i on s f or aV erage i nt ens时and t he m ut ual coherence f ul l ct i on of pan i al l y coh er ent f i e l d w hen be锄s pr o pagat i on i11w ea k t ur bul e nt at m os pher e ar e ob t ai ned f r om t he cr o ss—s pect r al dens i t y缸nct i on.n i s s how n t ha t t he V o r t ex st nJ ct ur e of t he aV erage cr o ss—s pect r al densi够of par t i al l y coh er entL aguer r e-G aus s bea m s has廿l e s锄ehel i c oi da l l y s hape w i t h t ha t of t lle phase of m e fhl l y co her en t Laguerr e—G aussbeam,w hi ch is pr opag at i on i n f he s pace,卸d t he r el at i V e i nt ens i够of t he beam i s degr aded by opt i ca l vonex.K e y w or ds:T hr bul ent a缸nosphe r e;Pa rt i al l y coher ent be锄;C r oss s pec仃a l dens i t y;A V er age i ntens毋0引言无线大气光通信是现代通信技术的重要分支之一,而大气无线光通信系统的性能因大气湍流的干扰而受到限制。
大气光学知识点总结大全一、大气光学基础知识1. 光的传播特性光在地球大气中的传播受多种因素影响,包括折射、散射、吸收、色散等。
这些影响因素会导致光的传播方向、强度和频谱发生变化,对于光学系统的设计和应用都具有重要意义。
2. 大气介质地球大气是光学器件的一个重要参考介质,其密度、温度、湿度等参数对光学系统的性能有着重要影响。
了解大气介质的特性,对于光学系统的设计和定位至关重要。
3. 光的散射和吸收大气中的气体、气溶胶和云等对光的散射和吸收现象在大气光学中占据着重要位置。
它们会影响光的传播路径和范围,对于气象、环境、通信等方面都有重要意义。
4. 大气透明度大气透明度是指大气对可见光的透射率,它受大气中的气体、颗粒和水汽含量等因素的影响。
了解大气透明度对于天文观测、遥感探测等有着重要的意义。
5. 大气湍流大气湍流是指大气中由温度、密度、风速等不均匀性引起的湍流运动现象。
它会导致大气中的光场发生畸变,对光学系统的分辨率和性能都具有重要影响。
二、大气光学技术与应用1. 大气光学探测技术大气光学探测技术是指利用光学方法对大气进行观测和监测的技术。
包括大气透明度测量、大气散射与吸收特性研究、大气湍流分析等。
这些技术对于气象、环境监测等领域具有重要的应用价值。
2. 望远镜大气校正技术望远镜是天文观测和遥感探测中常用的光学设备,但由于大气的影响,其分辨率和成像质量会受到影响。
大气校正技术是指利用大气光学原理对望远镜成像进行补偿和校正的技术,使得成像质量更加清晰和准确。
3. 大气折射校正技术激光通信、光电远程探测等领域需要通过大气进行信息传输,但由于大气折射效应的影响,光信号会发生偏移和扩散。
大气折射校正技术是指利用大气光学原理对光信号进行校正和补偿的技术,使得光信号传输更加可靠和稳定。
4. 大气光学遥感技术大气光学遥感技术是利用光学方法对大气成分、温度、湿度等参数进行遥感探测的技术。
包括红外遥感、紫外遥感、光谱遥感等方法,对于环境、气象、气候等领域都有着重要的应用价值。
2.1 大气折射率在光学频率范围内,对流层(高度<17km)中的地球大气的空气折射率表示如下:n=1+77.6(1+7.52×10-3λ-2)(p/T)×10-6 (2.1)式中,p是以mbar为单位的大气气压,T是热力学温度,λ是以μm为单位的光波波长,由于地面上温度对n1(r)的贡献<1%,故(2.1)式中忽略了与水汽压相关的项,当然这一项对水上传播光路是不可忽略的。
2. 2 大气湍流描述自然界中的流体运动存在着二种不同的形式:一种是层流,看上去平顺、清晰,没有掺混现象;另一种是湍流,看上去毫无规则,显得杂乱无章。
例如,如果流体以一定的速度流过一个管子,我们可以用带颜色的染料对它进行观察,在流体速度低的时候,流线光滑面清晰,流体处于层流状态;不断增加流体速度,当流速达到一定值时,流线就不再是光滑的了,整个流体开始作不规则的随机运动,流体处于湍流状态。
自从1883 年Reynolds 做了著名的湍流实验以来,以Monin-Obukhov 提出的相似理论、Deardorff 提出的大涡模拟、美国Kansas 州观测实验等为代表,大气湍流的研究已经取得了很大的进展和丰硕的成果,并在天气、气候研究和工程实际中获得成功地应用。
湍流对大气中声、光和其它电磁波的传播具有极为重要的影响,例如湍流风速、温度和湿度的脉动都会引起声音散射和减弱,大气小尺度光折射率的起伏(称为光学湍流),会严重影响光的传播和光学成像的质量等等。
长期以来,以Tatarskii 的工作为代表,声光电传播的湍流效应大都是按照Kolmogorov 的均匀、平稳和各向同性假设处理的,而实际的湍流经常不满足这些假设,要建立更加完善的波动传播模型就必须考虑湍流的各向异性、以及间歇性的影响。
2. 3 折射率湍流模型在湍流大气中,折射率在不同地点、不同时刻都是变化的。
一方面,我们还不可能对这些变化作出预测;另一方面,即使已知这些变化,要对所有时刻、所有地点的值作出描述实际上也是不可能的。
大气湍流中光传播的数值模拟* 马保科1,2, 郭立新1 吴振森1(1.西安电子科技大学,陕西西安 710071 2.西安工程大学,陕西西安 710048 )摘 要 光在大气湍流中传播时,受大气分子、气溶胶等粒子的相互作用,将发生光束扩展、漂移和相干性退化等大气湍流效应,这些因素严重影响了光波的远场特性。
文章从大气湍流中光传播的理论研究入手,分析了如何构造较为合理的大气湍流相位屏。
进而采用McGlamery 算法,对Kolmogorov 谱下的大气湍流随机相位屏进行了数值模拟,并分析了光波从发射机经湍流大气传播到达接收机时的远场变化特性。
研究表明,大气湍流的存在对光的远场传播质量造成很大的影响,研究结果也为大气湍流中与光传播相关的工程应用及自适应光学技术的完善提供了参考。
关键词 大气湍流;McGlamery 算法;相位屏模拟; 大气结构常数;中图分类号 TP391 文献标识码 A1 引言大气湍流是一个相当复杂的随机媒质系统,虽然物理学界对湍流的研究已经历了相当漫长的历史,但因涉及的因素千头万绪,其间的相互作用和关系也错综复杂,人们对其物理本质至今未能做到较为清楚的认识。
因此,光在大气湍流中传播问题的研究仍存在理论和实验上的挑战[1,2]。
通常,当光在湍流大气中传播时,光束截面内包含着许多的大气漩涡,这些漩涡各自对照射到它的那一部分光束形成衍射作用,可导致光束的强度和相位随机变化,进而表现出光束扩展,大气闪烁和相位起伏等大气湍流效应,从而严重降低了接收机的接收效率。
目前,突破大气湍流的影响仍是光在随机介质中传播所要解决的关键问题[3]。
早在20世纪中期,苏联的Obukhov 便采用Rytov 平缓微扰法由实验反演湍流特征。
在闪烁的饱和现象被发现之后,物理学界又将Markov 近似引入求解光场的统计矩,研究大气湍流下的光场特性[1]。
然而,在中等起伏条件下,目前仍没有找到很好的解析处理方法。
由于数值模拟能够从光的传播过程出发,较为清楚地反映出所涉及问题的物理本质,因而成为研究湍流效应的主要方法[4]。
4.1 光强起伏(光闪烁)的定义及基本描述光强起伏(光闪烁)是大气湍流导致的最常见且最明显的光传输效应之一,激光在湍流大气中传输时其光强随时间变化而产生随机起伏的现象被称作为光强起伏(光闪烁),其原因是大气折射率起伏在导致传输激光相位变化的同时,也导致了传输激光的振幅起伏,进而产生散射强度起伏现象,更进一步的原因可认为是由同一光源发出的通过略微不同路径的光线之间的随机干涉所造成。
经典理论认为:光闪烁由尺寸比光束直径小的大气湍流引起,它与湍流的内尺度、外尺度、结构常数及传输距离等因素有关,其幅度特性由接受平面上光强的对数强度方差σI2来表征:σI2=I2−I2I2(4.1)光束在湍流大气中传输时,对数振幅满足正态分布,振幅对数满足χ定义为:χ≡ln(A/A0),其中,A为在湍流中传播时实际的光波振幅,A0为未经过湍流扰动的振幅。
设一对数正态分布为高斯随机变量(对数正态分布密度函数具有三个相对读了的参数:χ、σx、I0),其中对数振幅χ的均值为χ,标准偏差为σx,则其概率密度分布函数为:pχΧ=2πσ −χ−χ2σχ(4.2)其振幅A=A0 expχ。
引入概率变换:p A A=pχΧ=ln A dχdA ,dχdA=1A(4.3)则振幅的概率密度函数为:p A A=2πσA exp −12σχ2ln AA0−χ2,A≥0(4.4)闪烁起伏概率分布满足对数正态分布的物理意义是:光场u=u0expχ+jsδ中χ是大量独立前向散射元的和,由中心极限定理可知χ服从正态分布。
4.2 光强闪烁的日变化大气的湍流运动导致信道上折射率的不均匀起伏,引起光强起伏,表征光强起伏强弱程度的主要特征量是对数光强起伏方差。
它的定义:σln I2=ln I I0−ln I I02(4.5)其中ln I为瞬时光强的对数值:ln I为平均光强的对数值。
在较好的天气下,光强起伏值从太阳出来后开始上升,到中午达到最强,视观察距离的不同起伏值也不同,如果距离很长,起伏值趋于一条直线,达到“饱和”。
大气光学;海洋大气;光学湍流1.引言1.1 概述概述:大气光学、海洋大气和光学湍流是自然界中与光传播和光学观测相关的重要现象。
大气光学研究的目的在于了解大气对光的传播和传感器观测的影响,从而提高光学设备的性能和准确度。
海洋大气研究的目标是揭示海洋和大气界面上光的传输过程,从而促进海洋环境监测和海洋资源开发利用。
而光学湍流研究则关注光在大气中传播时因空气湍流引起的波前畸变问题,其研究对于激光通信、天文观测等领域具有重要意义。
本文将深入探讨大气光学、海洋大气和光学湍流这三个领域的基本概念、影响因素以及与观测和通信的关系。
首先,我们将介绍大气光学的基本概念,包括大气中的散射、吸收和辐射等现象,以及大气光学的主要影响因素,如大气湍流、气溶胶和云等。
接着,我们将探讨海洋大气的特点和影响因素,包括海洋表面对光的反射、折射和散射等过程,以及海洋中的气泡、藻类和悬浮颗粒等因素对海洋光学的影响。
最后,我们将重点讨论光学湍流的定义、特征以及对观测和通信的影响,包括湍流引起的波前畸变和相位失真等问题。
通过对大气光学、海洋大气和光学湍流的综合研究,我们可以更好地理解和模拟光在自然界中的传播和退化过程,为光学设备的设计和应用提供理论支持和技术指导。
同时,这些研究也有助于提高大气环境和海洋生态的监测能力,推动相关领域的发展和应用创新。
在结论部分,我们将对大气光学、海洋大气和光学湍流的关联性进行总结,并展望大气光学和海洋光学研究的意义和未来发展方向。
希望通过本文的介绍和分析,读者能够更全面地了解和认识这些重要的光学现象,为相关领域的科研和应用提供有益的参考和启示。
1.2文章结构1.2 文章结构本文共分为三个主要部分:大气光学、海洋大气和光学湍流。
每个部分将重点介绍相关的基本概念、特征和影响因素,并探讨它们对观测和通信的影响。
在第二部分,我们将深入研究大气光学。
首先,我们将介绍大气光学的基本概念,包括大气层的组成和结构,以及大气中的光传播机制。
长曝光与短曝光11S011037 邬佳杰摘要:本文主要研究光在湍流大气的传播问题,采用傅里叶变换法求出了在此情况下的长曝光传递函数,给出了大气湍流在谱假设下成像系统长曝光传递函数的理论值,同时还给出了短曝光的光传递函数,基于空间目标为点目标的假设,提出了一种湍流大气成像系统长曝光和短曝光传递函数的测量方法。
关键词:长曝光、短曝光、OTF函数、大气湍流。
流体的运动主要分为层流和湍流,层流属于规则运动,湍流则属于不规则运动。
大气湍流是大气中一种不规则的随机运动,湍流每一点上的压强、速度、温度等物理特性等随机涨落。
大气湍流最常发生的3个区域是:大气底层的边界层内,对流云的云体内部,大气对流层上部的西风急流区内。
大气湍流运动中伴随着能量、动量、物质的传递和交换,传递速度远远大于层流,因此湍流中的扩散、剪切应力和能量传递也大得多。
大气湍流的发生需具备一定的动力学和热力学条件:其动力学条件是空气层中具有明显的风速切变;热力学条件是空气层必须具有一定的不稳定度,其中最有利的条件是上层空气温度低于下层的对流条件,在风速切变较强时,上层气温略高于下层,仍可能存在较弱的大气湍流。
理论研究认为,大气湍流运动是由各种尺度的涡旋连续分布叠加而成。
光学传递函数(OTF)一直是评价成像器件或系统成像质量的主要手段,下面会对两种曝光过程的传递函数进行论述。
一、长曝光1基本概念所谓长曝光,就是在天文成像中,往往需要几秒、几分,甚至几小时对相应的物体进行成像,长时间曝光对大气涨落效应起平均的作用。
长曝光成象的光学传递函数(OTF)频带较窄,是窄带平滑函数,有利于微光照相记录。
长曝光大气光学传递函数是在一些非常严格的假设条件下进行的:即,忽略了光束的几何弯曲和衍射效应,仅仅考虑最小的湍流旋涡引起折射率涨落而使通过它的光束产生一个延迟。
更全面地讨论非均匀媒质对在其中传播的波的影响。
惊讶的发现一般理论的结果与前面用简单分析方法所得结果相同。
大气湍流对光束传播的影响嘿,朋友们,咱们今天来聊聊一个可能听起来有点复杂,但其实特别有趣的话题,那就是大气湍流对光束传播的影响。
想象一下,咱们在晚上仰望星空,看到的那些闪烁的星星,有时亮,有时又暗,那可不是它们在调皮,而是大气在捣乱。
大气就像一条翻腾的河流,时不时地给光线加点“特效”,让光束在空中打了个旋儿。
是不是很有意思?大气湍流就像是一锅炖得正好的汤,表面上看起来平静无波,但底下可是一阵阵的翻滚。
风在吹,温度在变,这些都能影响光的传播。
咱们说的光,指的可不只是阳光哦,还有激光、灯光等等。
想想激光笔,那小小的点点,有时候打在墙上明晃晃的,有时候却像藏了起来,真让人郁闷。
实际上,这全都是因为大气的捣蛋。
想象一下,一束光从一个地方发出来,像一条小船在湍急的水流中行驶。
水流的波动,让这艘小船有时候稳稳当当,有时候却东倒西歪。
这种情况不仅在日常生活中能见到,在科学实验、通讯技术、甚至卫星信号传输中都能找到身影。
光线在大气中穿梭,受到的干扰可不少,真是让人心烦。
科学家们对此可是绞尽脑汁,希望能找到对策。
我们平常用的光纤通讯,虽然看起来很高大上,但实际上也受到了大气湍流的影响。
想象一下,光信号像一颗颗小小的水滴,顺着光纤快速流淌,却在大气中遇到了风浪,结果就像小孩子在海边捡贝壳,一波又一波,来不及反应,光线就散了,信息传递的速度一下子慢了下来。
真是让人心急如焚啊。
还有激光通信呢,原本想快速高效,结果被大气湍流搞得像慢动作重播。
这时候,科学家们得想出点新招儿,比如动态调节技术。
这就像打游戏,随时调整你的策略,才能不被对手牵着鼻子走。
光线在大气中的曲折传播,真是一场“斗智斗勇”的较量,谁也不想输,特别是那些研究人员。
咱们身边也有很多受大气影响的例子。
你们有没有注意到,晚上看星星的时候,那些星星有时候闪得厉害,有时候又稳定得像灯泡。
这就是大气湍流的“杰作”。
空气的不同层次、温度的变化,都会让星光在我们眼前翩翩起舞,真是美丽而又有些小调皮的现象。