《材料物理性能》考前笔记 第四章 材料的光学性质
- 格式:pdf
- 大小:198.62 KB
- 文档页数:3
第四章材料光学性能当光通过固体材料时,会发生透射、折射、反射、吸收、散射等现象,不同的材料具有不同的光学性能同时,在电、声、磁、热、压力等外场作用下,材料的光学性能会发生变化,或者在光的作用下其结构和性能会发生变化,如发光材料、激光材料、光导材料、磁光材料、非线性光学材料等1人们对光学性能以及在材料中发生的光学现象的研究和应用,已经有很长的历史了。
人类很早就认识到用光可以传递信息,2000多年前我国就有了用光传递远距离信息烽火台的设施—2等传递信息的方法后来出现了用灯光闪烁、旗语3以发明电话而著称的发明家贝尔(A. G. Bell,1847∼1922)也在光通信方面作过贡献,1880年,他利用太阳光作光源,用硒晶体作为光接收器件,成功地进行了光电米。
话的实验,通话距离最远达到了2134用大气作为传输介质,损耗很大,而且无法避免自然气象条件的影响和各种外界的干扰,最多只能传几百米远。
人们不得不寻求可以在封闭状态下传送光信号的办法低损耗石英光纤的出现,实现了大容量、高速、长距离、低成本的光信息传输现在不少发达国家又把光缆铺设到住宅前,实现了光纤到办公室、光纤到家庭56城市的绚丽灯光7地球夜景的卫星照片激光光束89短波发光与激光材料在许多领域有着广泛而重要的应用价值,例如高密度的数据存储、海底通信、大屏幕显示(需要蓝绿光构造全色显示)、检测及激光医疗等蓝色LED 和LD 的出现大大促进了高密度光学存储以及高分辨显示器、图象扫描仪、彩色打印机、生物医学诊断仪、遥感探测仪等的发展。
下图所示为蓝色发光二极管在紧凑、便携式发光显示器件中的应用10安装在美国时代广场的GaN 蓝光LED显示屏玻璃制品可以显示出各种各样的颜色1113第一节基本概论第二节折射和色散第三节反射和散射第四节吸收与颜色第五节其它光学现象、光学材料及其应用本章主要内容讨论与电磁辐射及其与固态材料相互作用相关的一些基本概念与原理 从光折射、反射、吸收、透射、辐射等性质来探讨金属和非金属材料的光学性能,并从导体、半导体和绝缘体的电子能带结构出发,揭示它们在光的作用下表现出不同光学特性的本质对固体的发光、激光、非线性光学、光电转换等各种光学材料及其应用作一简要介绍第一节基本概念一、电磁辐射光的本质是什么?历史上有过很多争论。
第四章材料的光学性能_材料物理第四章主要介绍材料的光学性能,包括传统光学性能和现代光学性能。
在本章中,我们将探讨材料的折射率、透过率、吸收率、反射率、透射率和散射率等光学性能,并深入了解这些性能对材料的应用和性能起到的影响。
首先,折射率是一个物质对光的折射能力的度量。
它表示光在通过一种介质时,光线的传播速度相对于真空中的传播速度的比值。
折射率越大,光线在介质中的传播速度越慢,同时也会使光线的传播方向发生变化。
折射率在光学器件的设计和制造中起着至关重要的作用,例如在光纤通信和光学透镜等领域。
透过率是指光线从一个介质传播到另一个介质时的透明程度。
透过率越高,介质光学效果越好。
材料的透过率取决于折射率和吸收率等因素。
在光学器件中,透过率是一个重要的性能指标,它决定了器件的光学传输效率和亮度。
吸收率是材料吸收光的能力。
当光线穿过材料时,一部分能量被材料所吸收,而另一部分则被材料所反射或透射。
吸收率对于材料的应用非常重要,特别是在光电子器件和光热器件中。
高吸收率的材料可以有效地将光能转化为电能或热能,以实现各种功能。
反射率是指光线从介质中的表面反射回来的能力。
反射率取决于入射角度和材料的折射率。
反射率高的材料适用于光学镜面和反射镜等应用,可以将光线有效地反射出去,而不是被吸收或透射。
透射率是指光线通过材料时传输的能力。
透射率在光学器件和材料中起着重要作用,尤其是在光纤传输和光学滤波器等应用中。
高透射率的材料可以有效地传输光线,减少能量损失。
散射率是指光线在碰撞或与材料表面相互作用时发生方向改变的能力。
散射率对于材料的外观和质量也有很大影响,尤其是在透明材料和杂质掺杂材料中。
控制散射率可以改善材料的光学性能,使其更适用于各种应用。
总之,材料的光学性能对于很多应用至关重要。
通过理解和控制材料的折射率、透过率、吸收率、反射率、透射率和散射率等光学性能,我们可以设计和制造出更好的光学器件和材料,满足不同领域的需求。
材料光学性能unit4-浙江大学材料物理性能笔记4.1.基本概论1)光介质材料能使光产生折射、反射或透射效应,以改变光线的方向、强度和位相,使光线按预定要求在材料中传播,简之,光介质材料就是传输光线的材料光功能材料:在电、声、磁、热、压力等外场作用下,材料的光学性能会发生变化,或者在光的作用下其结构和性能会发生变化,如发光材料、激光材料、光导材料、磁光材料、非线性光学材料等光波是一种波长很短的电磁波,由电场分量和磁场分量组成,两个分量彼此互相垂直并都垂直于波的传播方向波动学说:c=1/00με 0ε=8.85x1012-F/m 0μ=4πx107-H/m微粒学说:E=hv2)光和固体的相互作用0 =?T +? A +? R 光辐射能流率(单位为W/m2):表示单位时间内通过单位面积的能量τ+ α+ρ = 1 τ为透射率(?T/ ?0);α为吸收率(?A/ ?0);ρ为反射率(?R/ ?0)3)光和原子、电子的相互作用固体材料中出现的光学现象是电磁辐射与固体材料中原子、离子或电子之间相互作用的结果。
其中最重要的两种作用是电子极化和电子跃迁电子极化:随着电场分量方向的改变,诱导电子云和原子核的电荷中心发生相对位移电子跃迁:电磁波的吸收和发射包含电子从一种能态跃迁到另一种能态的过程4)金属对可见光是不透明的:肉眼看到的金属颜色不是由吸收光的波长决定的,而是由反射光的波长决定的。
非金属材料对于可见光可能是透明的,也可能不透明。
折射:n= c/υ v=1/με n=1/00με大多数材料是非磁性的或磁性很弱r μ=1 n= r ε 透明介质的折射率是和材料的相对介电常数有关。
光和介质的相互作用主要就是介质中的电子在光波电场作用下作强迫振动。
绝缘体:σ->0 n->ε2/1r α->0 材料是透明的。
半导体:α=(1/ε2/1r )[σ/2w 0ε] 存在吸收,不透明。
金属材料:α= [σ/2w 0ε],对光有强烈的吸收,不透明,反射比接近1,,光主要被表面反射,产生金属光泽。
第四章 无机材料的光学性能光的基本性质:1、波粒二象性 2、光的电磁性 3、光波是横波 4、光的偏振性从宏观上讲,当光从一种介质进入另一种介质时,会发生光的透过、吸收和反射。
从微观上看,光与固体的相互作用,实际上是光子与固体材料中的原子、离子、电子之间的相互作用。
光与固体相互作用的本质有两种方式:1电子极化a 电磁波的分量之一是迅速变化的电场分量;b 在可见光范围内,电场分量与传播过程中遇到的每一个原子都发生相互作用引起电子极化,即造成电子云与原子核的电荷中心发生相对位移;c 所以,当光通过介质时,一部分能量被吸收,同时光速减小,后者导致折射。
2电子能态转变电磁波的吸收和发射包含电子从一种能态转变到另一种能态的过程4.1光透过介质的现象一、折 射当光从真空进入较致密的材料时,其速度降低。
折射本质上是由于光的速度的变化而引起的光弯曲的结果。
材料的折射率反映了光在该材料中传播速度的快慢。
光密介质:在折射率大的介质中,光的传播速度慢;光疏介质:在折射率小的介质中,光的传播速度快麦克斯韦电磁理论:其中:ε为介电常数;μ为导磁率 无机材料: μ =1, ε ≠ 1 影响折射率的因素1、离子半径:介电常数随着离子半径的增大而增大,因而折射率n 随着离子半径的增大而增大。
◆ 用大离子得到高折射率的材料;◆ 用小离子得到低折射率的材料。
2、材料的组成和结构:3、非晶态各向同性;玻璃的折射率和离子半径呈线性关系。
4、内应力垂直于受拉主应力方向的n 大,平行于受拉主应力方向的n 小。
5、同质异构体高温时晶型的折射率较低,低温时晶型的折射率较高,即结构敞广的高温态比结构紧密的低温态折射率小。
二、色 散光在介质中的传播速度或折射率随波长改变的现象称为色散现象。
注意: 色散是光学玻璃的重要参数;色散造成单片透镜成像不清晰——色差;若选择不同的光学玻璃,组成复合镜头,可以消除色差,称为消色差镜头;光学材料要求色散系数高γ,折射率 n 高。
第四章材料的光学性质
1.光吸收的本质
光作为一种能量流,在穿过介质时,引起介质的价电子跃迁,或使原子振动而消耗能量。
此外,介质中的价电子吸收光子能量而激发,当尚未退激时,在运动中与其他分子碰撞,电子的能量转变成分子的动能亦即热能,从而构成光能的衰减。
即是在对光不发生散射的透明介质,如玻璃、水溶液中,光也会有能量的损失,这就是产生光吸收的原因。
2.图4.19金属、半导体和电介质的吸收率随波长的变化。
3.光的色散材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质,称为折射率的色散。
4.光的散射
光通过气体、液体、固体等介质时,遇到烟尘、微粒、悬浮液滴或者结构成分不均匀的微小区域,都会有一部分能量偏离原来的传播方向而向四面八方弥散开来,这种现象称为光的散射。
光的散射导致原来传播方向上光强的减弱。
5.弹性散射散射前后,光的波长(或光子能量)不发生变化的散射称为弹性散射。
σλ1
∝s I (I s 表示散射光强度,参量σ与散射中心尺度大小a 0有关)
a.Tyndall 散射当a 0>>λ时,0→σ,即当散射中心的尺度远大于光波的波长,散射光强与入射光波长无关。
B.Mie 散射当a 0λ≈时,即散射中心尺度与入射光波长可以比拟时,σ在0~4之间,具体数值与散射中心尺度有关。
C.Rayleidl 散射当a 0<<λ时,4=σ。
换言之,当散射中心线度远小于入射光的波长时,散射强度与波长的4次方成反比(4
/1λ=s I )。
这一关系称为瑞利散射定律。
6.非弹性散射当光束通过介质时,从侧向接收到的散射光主要是波长(或频率)不发生变化的瑞利散射光,属于弹性散射。
除此之外,使用高灵敏度和高分辨率的光谱仪器,可以发现散射光中还有其他光谱成分,它们在频率坐标上对称地分布在弹性散射光的低频和高频侧,强度一般比弹性散射微弱得多,这些频率发生改变的光散射是入射光子与介质发生非弹性碰撞的结果,称为“非弹性散射”。
从波动观点来看,光的非弹性散射机制乃是光波电磁场与介质内微观粒子固有振动之间的耦合,可激
发介质微观结构的振动或导致振动的淬灭,以至散射光波频率相应出现“红移”(频率降低)或“蓝移”(频率升高)。
通常能产生拉曼散射的介质多由相互束缚的正负离子所组成。
正负离子的周期性振动导致偶极矩与光波电磁场的相互作用引起能量交换,发生光波的非弹性散射。
布里渊散射是点阵振动引起的密度起伏或超声波对光波的非弹性散射,也可以说是点阵振动的声学声子(声学摸)与光波之间能量交换的结果。
ωs R AS
从量子观点看,拉曼散射过程可以用简单的能级跃迁图来说明。
(a )瑞利散射过程(b )拉曼散射的斯托克斯过程(c )拉曼散射的反斯托克斯过程图中画出了介质的两个能级E 1和E 2。
当介质分子处于低能级E 1(或高能级E 2)并受到频率为V 0的入射光子作用时,介质分子可以吸收这个光子,跃迁到某个虚能级(?解释“虚能级”),随后这个虚能级上的分子便向下跃迁回到原来的能级,伴随着发射出一个与入射光频率相同的光子(方向可能改变),这是瑞利散射过程。
图b 表示拉曼散射的斯托克斯过程。
他与瑞利散射的唯一区别,分子从虚能级向下跃迁时回到了较高的能级E 2,并伴随着一个光子发射。
这个光子的频率v s 与入射光子相比红移了△v ,其数值相当于两个能级的能量差,即12E E v h −=∆。
图c 是拉曼散射的反斯托克斯过程。
其特点是,如果介绍原来处于较高的能级E 2,那么在吸收频率为v 0的光子跃迁到一个较高的虚能级后,分子向下跃迁回到了低能级E 1,同时发射一个频率蓝移了的散射光子,频移量△v 仍旧符合“12E E v h −=∆”的能量守恒关系。
“虚能级”——电磁场和介质的共同的状态,也就是相互作用过程中形成的复合态。
但是量子力学图像里只画介质状态,所以把共同状态称为虚态或虚能级。
7.材料的光发射
物体发光可分为平衡辐射和非平衡辐射两大类。
平衡辐射的性质只与辐射体的温度和发射本领有关,如白炽灯就属于平衡或准平衡辐射;非平衡辐射是在外界激发下物体偏离了原来的热平衡态,继而发出的辐射。
固体发光的微观过程可以分为两个步骤:第一步,对材料进行激励,即以各种方式输入能量,将固体中的电子的能量提高到一个非平衡态,称为“激发态”;第二步,处于激发态的电子自发地向低能态跃迁,同时发射光子。
8.激发光谱——是指材料发射某一特定谱线(或谱带)的发光强度随激发光的波长而变化的曲线。
9.发光的物理机制
固体材料发光可以有两种微观的物理过程:一种是分立中心发光,另一种是复合发光。
A.分立中心发光
这类材料的发光中心通常是掺杂在透明基质材料中的离子,有时也可以是基质材料自身结构的某一基团。
选择不同的发光中心和不同的基质组合,可以改变发光体的发光波长,调节其光色。
不同的组合当然也会影响到发光效率和余辉长短。
发光中心分布在晶体点阵中或多或少会受到点阵上离子的影响,使其能量状态发生变化,进而影响材料的发光性能。
B.复合发光
复合发光与分立中心发光最根本的差别在于,复合发光时电子的跃迁涉及固体的能带。
由于电子被激发到导带时在价带上留下一个空穴,因此当导带的电子回到价带与空穴复合时,便以光的形式放出能量。
(这种发光过程就叫复合发光。
)复合发光所发射的光子能量等于禁带的宽度。
v △v
(v 0-△v )0V 0
10.受激辐射——除材料的光吸收和光发射之外,光与物质相互作用的第三个基本过程。
(三个过程同时存在)。