第六章无多普勒展宽光谱技术
- 格式:ppt
- 大小:622.50 KB
- 文档页数:72
光谱线展宽的物理机制 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN光谱线展宽的物理机制摘要本文首先介绍了原子光谱的形成和原子谱线的轮廓,以及用来定量描述谱线轮廓的三个物理量——谱线强度、中心频率和谱线半高宽。
接下来对光谱线展宽的各种物理机制作了定性或定量地分析。
详细地推导了谱线的自然展宽、多普勒展宽(高斯展宽)和洛伦兹展宽的半高宽公式。
并推导出了佛克脱半高宽、多普勒半高宽和洛伦兹半高宽之间的关系式。
给出了赫鲁兹马克展宽(共振展宽)的半高宽公式。
定性地分析了谱线的自吸展宽。
以类氢离子为例说明了同位素效应引起的同位素展宽。
定性地分析了原子的核自旋对谱线宽度的影响。
说明了在有外电场或内部不均匀强电场存在的情况下谱线会产生斯塔克变宽,在有外磁场存在的情况下谱线会产生塞曼变宽。
最后对光谱线展宽的各种物理机制做了一个简单的总结,指出光谱线展宽的实质是光的频率发生了变化,各种新频率光的叠加导致了光谱线的展宽。
并说明了对光谱线展宽的物理机制的研究,在提高光的单色性和物理量测量等方面具有重要的意义。
关键词:谱线展宽;物理机制;谱线轮廓;半高宽THE PHYSICAL MECHANISM OF SPECTRAL LINEBROADENINGABSTRACTFirstly, we introduce the formation of atomic spectrum and the outline of atomic spectral line in this paper, as well as three physical quantities—intensity of spectral line, center frequency and half width of spectral line profile which are used to describe spectral line profile quantitatively.Next we analyze various physical mechanism of spectral line broadening qualitatively or quantitatively. The natural half width of spectral line, half width of Doppler spectral line profil e (Gaussian spectral line profile) and half width of Lorentz spectral line profile are derived detailedly. And the relationship of half width of Voigt spectral line profile, half width of Doppler spectral line profile and half width of Lorentz spectral line profile is also derived detailedly. We introduce Holtsmark broadening (resonance broadening) and give half width of Holtsmark spectral line profile. It is introduced qualitatively how the Self-absorption broadening affects spectral line profile. Taking Hydrogenic ions for an example, we explain isotope broadening caused by Isotope effect. Spectral line broadening caused by nuclear spin is analyzed qualitatively. Stark effect can cause Stark broadening when there is external electric field or internal non-uniform strong electric field, and Zeeman effect can cause Zeeman broadening when there is external magnetic field.Finally, we make a summary on the physilcal mechanism of spectral line broadening, pointing out spectral line broadening is essentially a change in the frequency of spectral lines, and superposition of various spectral lines having a new frequency component leads to spectral linebroadening. The study on the physilcal mechanism of spectral line broadening has very important significance in many aspects, for example, the improving of spectral line's monochromaticity,the measurement of physical quantities and so on.KEY WORDS: spectral line broadening; physical mechanism; spectral Line profile; half width前言 (1)第一章原子谱线的轮廓 (2)§1.1 原子发光机理和光谱线的形成 (2)§1.2 原子谱线的轮廓 (2)第二章光谱线展宽的各种物理机制 (4)§2.1 自然宽度 (4)§2.2 多普勒展宽 (5)§2.3 洛伦兹展宽 (7)§2.4 赫鲁兹马克展宽 (9)§2.5 自吸展宽 (9)§2.6 佛克脱谱线宽度 (10)§2.7 谱线的超精细结构 (12)§2.7.1 同位素效应 (12)§2.7.2 原子的核自旋 (13)§2.8 场致变宽 (14)§2.8.1 斯塔克变宽 (14)§2.8.2 塞曼变宽 (15)总结 (17)参考文献 (18)致谢 (20)无论是原子的发射线轮廓或是吸收线轮廓,都是由各种展宽因素共同作用而成的。
2. 多普勒谱线展宽谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽;多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇Lippich 在1870年提出,瑞利经过多年研究得到定量公式;下面就导出多普勒谱线型函数;假设发出激光的原子静止时其发光频率为0υ,当原子以x v 的速度沿x 轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为:⎪⎭⎫ ⎝⎛+≈-=c cx x υυυυυ1100 14 由于不同原子的x v 不同,所以“接受器”收到的是不同频率的光,使得激光谱线以0υ为中心被展宽;由麦克斯韦速度分量分布律可以得到,速度x 分量在x v —x x dv v +的分子数比率为:()x kT mv x x M dv e kT m dv v f x 22122-⎪⎭⎫ ⎝⎛=π 15 令()υg 代表其辐射频率落在υ附近单位频率间隔内的发光原子数比率,则有()()x x M dv v f d g =υυ()υg 与辐射强度()υI 成正比;将c v x 00υυυ-=和υυd c dv x 0=代入15式,可得 ()()()υπυυυυυυd e kT m cd g kT mc 2020222--= 式中()υg 就是多普勒展宽的线型函数;下面看一个例子;例1:试由来自星体的光谱线或多普勒宽度确定星体的温度;解: 静止原子由激发态回到基态发出的光波的频率0ν决定于两个态的能级差:E h ∆=0ν,h 为普朗克常数;由于原子在运动,因而发射出来的光的频率不再是0ν而是一个分布,也就是谱线增宽了;一个以速度v 运动的原子,沿x 轴发射的光的频率ν与0ν及x v 的关系为)1(0cv x -=νν, x v c =-)(00ννν 式中c 为光速;横向产生的多普勒效应比纵向小得多而可以忽略;由于在νννd +→之间的光强ννd I 与速度分量在x x x dv v v +→之间的原子数目X dN 成正比,即x v CdN dv I =由麦氏分布律x kT mv dv e kT m d x 2/2/12)2(-⋅=πN N 因而dv e I dv I kT mc v 2002)(20ννν--=上式表示原子发光的强度,由于多普勒效应引起的谱线强度按频率的分布,分布函数随频率变化的曲线如图1所示,图1 原子光谱中0υ谱线的多普勒加宽它是对0v 的一个对称分布曲线;物理上定义与谱线极大值I 0的一半相对应的两个频率2v 与1v 之差v ∆称为谱线的宽度这里也称为多普勒线宽;由21)(20002==--νννkT mc v e I I 解得 2/1202ln 21⎥⎦⎤⎢⎣⎡±=mc kT νν 所以2/12012)2ln 2(2kT mcνννν=-=∆ 由上式可知,多普勒宽度ν∆与原子的质量m 及原子所处系统的温度T 有关;若由实验测得了来自星体原子光谱的多普勒宽度ν∆及原子的质量m 就可知道星体的温度T :k n mc 2022281)(νν⋅∆=T。
2. 多普勒谱线展宽谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。
多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich )在1870年提出,瑞利经过多年研究得到定量公式。
下面就导出多普勒谱线型函数。
假设发出激光的原子静止时其发光频率为0υ,当原子以x v 的速度沿x 轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为:⎪⎭⎫ ⎝⎛+≈-=c cx x υυυυυ1100 (14) 由于不同原子的x v 不同,所以“接受器”收到的是不同频率的光,使得激光谱线以0υ为中心被展宽。
由麦克斯韦速度分量分布律可以得到,速度x 分量在x v —x x dv v +的分子数比率为:()x kT mv x x M dv e kT m dv v f x 22122-⎪⎭⎫ ⎝⎛=π (15) 令()υg 代表其辐射频率落在υ附近单位频率间隔内的发光原子数比率,则有()()x x M dv v f d g =υυ()υg 与辐射强度()υI 成正比。
将c v x 00υυυ-=和υυd c dv x 0=代入(15)式,可得 ()()()υπυυυυυυd e kT m cd g kT mc 2020222--= 式中()υg 就是多普勒展宽的线型函数。
下面看一个例子。
例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。
解: 静止原子由激发态回到基态发出的光波的频率0ν决定于两个态的能级差:E h ∆=0ν,h 为普朗克常数。
由于原子在运动,因而发射出来的光的频率不再是0ν而是一个分布,也就是谱线增宽了。
一个以速度v 运动的原子,沿x 轴发射的光的频率ν与0ν及x v 的关系为)1(0cv x -=νν, x v c =-)(00ννν 式中c 为光速。
横向产生的多普勒效应比纵向小得多而可以忽略。
由于在νννd +→之间的光强ννd I 与速度分量在x x x dv v v +→之间的原子数目X dN 成正比,即x v CdN dv I =由麦氏分布律x kT mv dv e kT m d x 2/2/12)2(-⋅=πN N 因而dv e I dv I kT mc v 2002)(20ννν--=上式表示原子发光的强度,由于多普勒效应引起的谱线强度按频率的分布,分布函数随频率变化的曲线如图1所示,图1 原子光谱中0υ谱线的多普勒加宽它是对0v 的一个对称分布曲线。
原子光谱的展宽机制和描述方法作者:廖腊梅曹虹来源:《新校园·上旬刊》2017年第09期摘要:本文分析了原子谱线的展宽机制和描述方法,分别对自然展宽、多普勒展宽、赫鲁兹马克展宽和自吸展宽进行了研究。
这一研究对原子光谱法在实际应用中具有一定的参考价值。
关键词:原子光谱;谱线轮廓;展宽一、引言原子光谱是原子中的核外电子跃迁并辐射出光子而形成的光谱,根据光谱产生过程,可分为原子吸收光谱和原子发射光谱,通称为原子光谱。
原子吸收光谱法,英文为Atomic Absorption Spectroscopy(AAS),是根据某种元素的原子蒸气只能由符合条件的光子进行吸收的原理对原子进行检验的方法,被称为原子吸收分光光度法。
原子吸收现象在19世纪初才被注意到,原子吸收光谱法的基础测量到1955年才渐渐形成,该方法主要应用在对金属成分及含量的分析。
这种方法在19世纪60年代后得到进一步重视并迅速发展,逐渐成熟起来。
目前该方法可对钠、锂等70多种元素进行直接检测,主要应用于测量含有微量或少量元素的物质。
测量仪器简单实用,抗电磁干扰能力强,灵敏度高,精密度高,使用方便。
根据原子结构理论可知,当原子从一个能级跃迁到另一个能级时,会以光子的形式被辐射或吸收。
由于光源有不同能量状态的原子,在相同的时间内,相同的光源可以发出很多不同波长的谱线。
光谱就是描述这些不同谱线的波长和强度分布。
原子光谱线并非一条严格的几何曲线。
无论是辐射线或光子吸收线形成的谱线都有一定的外形,即谱线轮廓。
本文即对谱线轮廓产生的物理机制和描述方法进行分析讨论。
二、原子谱线的展宽谱线轮廓是指谱线强度根据频率的变化形成的几何曲线。
使用一定强度的光束照射等离子体原子蒸汽,通过测量穿过蒸气的光判断光的吸收强度。
人们总结出光吸收定律,即投射光强和入射光强满足指数衰减规律,衰减快慢与原子蒸汽厚度和吸收系数有关。
从光吸收定律可以看出,原子蒸汽对不同频率的光吸收不同,对中心频率吸收最大,而对两侧频率吸收逐渐减小,因此吸收光谱呈现倒钟形,称为吸收谱线的展宽。
光谱线的碰撞展宽和多普勒展宽的产生
光谱线的碰撞展宽是指由于原子或分子与其他粒子的碰撞而导致的线宽增加。
当光通过原子或分子气体时,会和气体中的原子或分子发生碰撞。
碰撞会导致原子或分子的能级发生变化,从而使得光谱线的频率发生变化。
碰撞引起的能级变化会导致光谱线的展宽增加,即波长范围增大。
多普勒展宽是指由于源或接收者的运动而导致的光谱线的展宽。
当光源或接收者相对于观测者运动时,光谱线的频率会相对于静止时产生变化。
这是由于多普勒效应的影响引起的。
多普勒效应是指当发光源与观察者之间存在相对运动时,观察者所观测到的光谱线频率会发生变化。
源或接收者向观察者靠近时,光谱线的频率会增加,即波长变短,导致光谱线展宽增加。
总而言之,光谱线的碰撞展宽是由于碰撞引起的能级变化而导致的,光谱线的多普勒展宽是由于源或接收者的运动而引起的。
这两种展宽机制都会使得光谱线的展宽增加,波长范围变大。
光谱线展宽的物理机制摘要本文首先介绍了原子光谱的形成和原子谱线的轮廓,以及用来定量描述谱线轮廓的三个物理量——谱线强度、中心频率和谱线半高宽。
接下来对光谱线展宽的各种物理机制作了定性或定量地分析。
详细地推导了谱线的自然展宽、多普勒展宽(高斯展宽)和洛伦兹展宽的半高宽公式。
并推导出了佛克脱半高宽、多普勒半高宽和洛伦兹半高宽之间的关系式。
给出了赫鲁兹马克展宽(共振展宽)的半高宽公式。
定性地分析了谱线的自吸展宽。
以类氢离子为例说明了同位素效应引起的同位素展宽。
定性地分析了原子的核自旋对谱线宽度的影响。
说明了在有外电场或内部不均匀强电场存在的情况下谱线会产生斯塔克变宽,在有外磁场存在的情况下谱线会产生塞曼变宽。
最后对光谱线展宽的各种物理机制做了一个简单的总结,指出光谱线展宽的实质是光的频率发生了变化,各种新频率光的叠加导致了光谱线的展宽。
并说明了对光谱线展宽的物理机制的研究,在提高光的单色性和物理量测量等方面具有重要的意义。
关键词:谱线展宽;物理机制;谱线轮廓;半高宽THE PHYSICAL MECHANISM OF SPECTRAL LINEBROADENINGABSTRACTFirstly, we introduce the formation of atomic spectrum and the outline of atomic spectral line in this paper, as well as three physical quantities—intensity of spectral line, center frequency and half width of spectral line profile which are used to describe spectral line profile quantitatively.Next we analyze various physical mechanism of spectral line broadening qualitatively or quantitatively. The natural half width of spectral line, half width of Doppler spectral line profile (Gaussian spectral line profile) and half width of Lorentz spectral line profile are derived detailedly. And the relationship of half width of Voigt spectral line profile, half width of Doppler spectral line profile and half width of Lorentz spectral line profile is also derived detailedly. We introduce Holtsmark broadening (resonance broadening) and give half width of Holtsmark spectral line profile. It is introduced qualitatively how the Self-absorption broadening affects spectral line profile. Taking Hydrogenic ions for an example, we explain isotope broadening caused by Isotope effect. Spectral line broadening caused by nuclear spin is analyzed qualitatively. Stark effect can cause Stark broadening when there is external electric field or internal non-uniform strong electric field, and Zeeman effect can cause Zeeman broadening when there is external magnetic field.Finally, we make a summary on the physilcal mechanism of spectral line broadening, pointing out spectral line broadening is essentially a change in the frequency of spectral lines, and superposition of various spectral lines having a new frequency component leads to spectral line broadening. The study on the physilcal mechanism of spectral line broadening has very important significance in many aspects, for example, the improving of spectral line's monochromaticity,the measurement of physical quantities and so on.KEY WORDS: spectral line broadening; physical mechanism; spectral Line profile; half width前言 (1)第一章原子谱线的轮廓 (2)§1.1 原子发光机理和光谱线的形成 (2)§1.2 原子谱线的轮廓 (2)第二章光谱线展宽的各种物理机制 (4)§2.1 自然宽度 (4)§2.2 多普勒展宽 (5)§2.3 洛伦兹展宽 (7)§2.4 赫鲁兹马克展宽 (9)§2.5 自吸展宽 (9)§2.6 佛克脱谱线宽度 (10)§2.7 谱线的超精细结构 (12)§2.7.1 同位素效应 (12)§2.7.2 原子的核自旋 (13)§2.8 场致变宽 (14)§2.8.1 斯塔克变宽 (14)§2.8.2 塞曼变宽 (15)总结 (17)参考文献 (18)致谢 (20)无论是原子的发射线轮廓或是吸收线轮廓,都是由各种展宽因素共同作用而成的。
光谱线展宽的物理机制光谱线的展宽是指原本应该是尖锐的光谱线,由于一系列的非理想因素而变宽的现象。
光谱线的展宽的物理机制主要包括自然展宽、多普勒展宽和压力展宽。
自然展宽是由于量子力学中的不确定性原理导致的。
根据不确定性原理,粒子的位置和动量无法同时被确定,而只能有限度地确定。
在原子和分子的能级之间进行能量传递和吸收/发射光谱线的过程中,能级的宽度不确定会导致光谱线的展宽。
这种展宽可以通过薛定谔方程来描述,计算得到在给定能量范围内可能存在的概率分布。
自然展宽是对于一个孤立的原子或分子而言,在真空中不受其它效应影响时的展宽。
多普勒展宽是由于原子或分子的热运动引起的。
根据多普勒效应,当原子或分子向观察者靠近或远离时,其发出/吸收的光的频率会发生变化。
对于朝向观察者运动的原子或分子,其发出的光会具有比静止状态频率更高的频率,从而导致光谱线向蓝色偏移,即蓝移。
而远离观察者运动的原子或分子则会产生红移。
因此,原子或分子在热运动中存在不同速度的分布,导致光谱线在频率方向上展宽。
多普勒展宽可以通过麦克斯韦-玻尔兹曼分布来描述原子或分子的速度分布,并计算光谱线的展宽。
压力展宽是由于原子或分子与周围环境分子碰撞而引起的。
在气体中,原子或分子会相互碰撞并相互作用。
这些碰撞会导致能级的变化、碰撞能量的重新分布,从而影响光谱线的形状。
压力展宽通常是对于高压和高密度的气体而言,在这种情况下,碰撞事件非常频繁,光谱线的展宽明显增大。
压力展宽可以通过气体的状态方程、能级密度分布和碰撞截面等参数来描述。
除了以上的物理机制之外,还有一些其他因素可以影响光谱线的展宽,例如光源的发散角度、仪器分辨率等。
这些因素通常被称为仪器展宽,是由于测量仪器或实验设备的一些特性导致的光谱线展宽。
总之,光谱线的展宽是由于一系列物理机制的影响造成的。
自然展宽是由不确定性原理导致的,多普勒展宽是由原子或分子的热运动引起的,压力展宽是由原子或分子与周围环境碰撞造成的。