土力学第六章 土压力计算
- 格式:doc
- 大小:862.50 KB
- 文档页数:23
土力学教程(同济大学土木工程学院编制)目录土压力计算学习指导工程背景土压力的分类与相互关系静止土压力计算朗肯土压力理论库仑土压力理论粘性土土坡的整体稳定分析粘性土土坡稳定分析的条分法本章小结学习指导学习目标掌握土压力的基本概念与常用计算方法,初步具备将土压力理论应用于一般工程问题的能力。
学习要求1.掌握静止土压力、主动土压力、被动土压力的形成条件;2.掌握朗肯土压力理论;3. 掌握库仑土压力理论;4.了解有超载、成层土、有地下水情况的土压力计算;5. 了解土压力计算在实际工程中存在的问题。
主要基础知识地基土的自重应力计算、土的强度理论一、工程背景土建工程中许多构筑物如挡土墙、隧道和基坑围护结构等挡土结构起着支撑土体,保持土体稳定,使之不致坍塌的作用,而另一些构筑物如桥台等则受到土体的支撑,土体起着提供反力的作用,如图6-1所示。
在这些构筑物与土体的接触面处均存在侧向压力的作用,这种侧向压力就是土压力。
(a)边坡挡土墙(b)隧道(c)基坑围护结构(d)桥台图6-1 工程中的挡土墙查看更多工程资料二、土压力的分类与相互关系1. 土压力的分类作用在挡土结构上的土压力,按挡土结构的位移方向、大小及土体所处的三种极限平衡状态,可分为三种:静止土压力、主动土压力和被动土压力。
(1)静止土压力如果挡土结构在土压力的作用下,其本身不发生变形和任何位移(移动或转动),土体处于弹性平衡状态,则这时作用在挡土结构上的土压力称为静止土压力,如图6-2(a)所示。
(2)主动土压力挡土结构在土压力作用下向离开土体的方向位移,随着这种位移的增大,作用在挡土结构上的土压力将从静止土压力逐渐减小。
当土体达到主动极限平衡状态时,作用在挡土结构上的土压力称为主动土压力,如图6-2(b)所示。
(3)被动土压力挡土结构在荷载作用下向土体方向位移,使土体达到被动极限平衡状态时的土压力称为被动土压力,如图6-2(c)所示。
2.三种土压力的相互关系在实际工程中,大部分情况下的土压力值均介于上述三种极限状态下的土压力值之间。
第六章挡土结构物上的土压力第一节概述第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。
一、挡土结构类型对土压力分布的影响定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。
常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。
挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。
1.刚性挡土墙指用砖、石或混凝土所筑成的断面较大的挡土墙。
由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。
墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。
2.柔性挡土墙当墙身受土压力作用时发生挠曲变形。
3.临时支撑边施工边支撑的临时性。
二、墙体位移与土压力类型墙体位移是影响土压力诸多因素中最主要的。
墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。
1.静止土压力(E0)墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力E0。
2.主动土压力(E a )挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。
3.被动土压力(E p )挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。
此时的土压力称为被动土压力E p 。
同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系:E> E0 > E ap在工程中需定量地确定这些土压力值。
Terzaghi(1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。
第六章 挡土结构物上的土压力第一节 概述第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。
一、挡土结构类型对土压力分布的影响定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。
常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。
挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。
1.刚性挡土墙指用砖、石或混凝土所筑成的断面较大的挡土墙。
由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。
墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。
2.柔性挡土墙当墙身受土压力作用时发生挠曲变形。
3.临时支撑边施工边支撑的临时性。
二、墙体位移与土压力类型墙体位移是影响土压力诸多因素中最主要的。
墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。
1.静止土压力(0E )墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。
2.主动土压力(a E )挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。
3.被动土压力(p E )挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。
此时的土压力称为被动土压力p E 。
同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系:p E >0E > a E在工程中需定量地确定这些土压力值。
Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。
《土力学》教程 6 土压力计算
在土力学中,土压力是指土壤对结构或者潜孔壁的压力。
它的计算在工程设计和施工过程中非常重要。
下面是关于土压力计算的几个重要方面:
1. 土压力类型:
根据土体排列方向,土压力可分为垂直于墙面的压力(横向土压力)和平行于墙面的压力(竖向土压力)。
2. 土体受力情况:
土壤对墙面的压力主要是由于土壤重力和土壤内部摩擦力等因素引起的。
如果土壤是干燥的,那么对墙面的压力就主要受到土重力作用。
如果土壤是湿润的,则需要考虑土壤内部摩擦力对墙面的影响。
3. 土体参数的确定:
在计算土压力时需要先确定土壤的内部摩擦角和土壤的内摩擦系数。
这些参数通常可以通过计算土壤试验或者实验室试验来确定。
4. 土压力的计算公式:
在计算垂直于墙面的压力(横向土压力)时,可以使用库伦(Coulomb)公式:
P = KaγH^2/2
其中,“P”表示土压力,“Ka”表示土体活动系数,“γ”表示土体单位重量,“H”表示土体高度。
在计算平行于墙面的压力(竖向土压力)时,可以使用排土曲线法或者排土公式来计算。
排土公式中主要包括:卡苏戈(Katsugo)公式,里米曼(Remmingan)公式等。
以上就是土压力计算的一些重要方面,通过正确使用公式和参数可以实现更准确的土压力计算,在土木工程中确保结构和基础的稳定性和可靠性。
第六章土压力Chapter 6 Earth Pressure什么叫土压力?第一节概述Introduction土体作用在挡土结构物上的压力称为土压力第一节概述Introduction主动土压力Active earth pressure 被动土压力Passive earth pressure 静止土压力Earth pressure at rest三种典型土压力ActivepressureAt-rest pressure Passive pressure第一节概述Introduction主动土压力如果挡土墙背离填土方向转动或移动时,随着位移量的逐渐增加,墙后土体受到的土压力逐渐减小,当墙后填土达到极限平衡状态时土压力降为最小值,这时作用在挡土墙上的土压力称为主动土压力Ea. The soil is in active state.被动土压力若墙体向着填土方向转动或移动时,随着位移量的逐渐增加,墙后土体受到挤压而引起土压力逐渐增加,当墙后填土达到极限平衡状态时增大到最大值时,作用在挡土墙上的土压力称为被动土压力Ep. The soil is in passive state.静止土压力当挡土墙为刚性不动时,土体处于静止状态不产生位移和变形,此时作用在挡土墙上的土压力称为静止土压力E0. The soil is in at-rest state.主动极限平衡状态: Active state:被动极限平衡状态:Passive state:静止平衡状态: At-rest state:第二节静止土压力墙静止不动,土体无侧向位移,因此可按第二章介绍的水平向自重应力的计算公式来确定,即单位面积上的静止土压力为K0为静止侧压力系数At-rest earth pressurev hK σσ′=′002021K H E γ=静止土压力的大小沿深度为线性变化,每延米总的静止土压力合力大小等于vK e σ′=00zK e γ00=22021021002121H K H H K H K E γγγ′++=有地下水位时静止土压力计算第二节静止土压力At-rest earth pressure2221H P w w γ=大小、分布,量纲合力、作用方向第三节朗肯土压力理论Rankine’s theory基本原理和基本假定z主动被动墙背竖直、光滑填土面水平σzσx朗肯理论假设土体是具有水平表面的半无限体,墙背竖直光滑朗肯理论认为当墙后填土达到极限平衡状态时,任一土单元体都达到极限平衡状态,然后根据土单元体处于极限平衡状态时应力所满足的条件来建立土压力的计算公式.第三节朗肯土压力理论Rankine’s theory基本原理和基本假定σzσx =K 0σzσx max =p pσx min =p aστA被动状态θf =45°-ϕ/2θfθf θf θfτf =c +σtg ϕ主动状态θf =45°+ϕ/2 z主动被动墙背竖直σzσxRankine’s theory无粘性土主动土压力计算H/3Hp a =rHK aP a =rH 2K a /2P azγσ=13σaa zK ztg p γϕγσ=−°==)245(23填土面水平,墙背竖直光滑墙离开填土, 竖向应力为大主应力Soil in state of plastic equilibriumHrHK aP a =rH 2K a /2+qHK aP aqz +=γσ13σSurchargeqKaaa K q z tg q z p )()245()(23+=−°+==γϕγσ第三节朗肯土压力理论Rankine’s theoryPressure distribution有超载情况无粘性土主动土压力计算第三节朗肯土压力理论Rankine’s theory无粘性土主动土压力计算墙向填土方向移动,水平向应力为大主应力第三节朗肯土压力理论Rankine’s theoryK p无粘性土被动土压力计算-竖向应力为小主应力HrHK pP p =rH 2K p /2+qHK pP pqz +=γσ31σSurchargeqK p第三节朗肯土压力理论Rankine’s theorypp K q z tg q z p )()245()(21+=+°+==γϕγσK p 被动土压力系数总合力大小与作用点?无粘性土被动土压力计算有超载情况?第三节朗肯土压力理论Rankine’s theoryaa a K C zK Ctg ztg p 2)245(2)245(23−=−°−−°==γϕϕγσ1σ3σ02=−=a a a K C zK p γaK C z γ20=张裂缝深度确定:aa K z H P 20)(21−=γ总土压力大小粘性土主动土压力计算第三节朗肯土压力理论Rankine’s theoryaa a K C K q z Ctg tg q z p 2)()245(2)245()(23−+=−°−−°+==γϕϕγσγγqK C z a −=20(c)(d)If Z0<0, 情况(d); If Z0>0, 情况(c);粘性土主动土压力计算有超载情况?张裂缝深度确定:第三节朗肯土压力理论Rankine’s theoryγγqK C z a −=20(c)(d)Z 0>0, 情况(c);Z0<0, 情况(d);aa K z H P 20)(21−=γaa a a K CH qHK K H P 2212−+=γPaPa粘性土主动土压力计算总合力大小与作用点?第三节朗肯土压力理论Rankine’s theorypp p K C K q z Ctg tg q z p 2)()245(2)245()(21++=+°++°+==γϕϕγσpp p K C zK Ctg ztg p 2)245(2)245(21+=+°++°==γϕϕγσHrHK pP p3σ1σSurcharge粘性土被动土压力计算第三节朗肯土压力理论Rankine’s theorypp p K CH K H P 2212+=γpp p p K CH qHK K H P 2212++=γ粘性土被动土压力计算总合力大小与作用点?有地下水情况下的主动土压力第三节朗肯土压力理论Rankine’s theoryaB a KH p 1)(γ=aa C a K H K H p 21)(γγ′+=aa a a K H K H H K H P 2221212121γγγ′++=2221H P w w γ=wa P P P +=总合力:第三节朗肯土压力理论Rankine’s theory成层土情况下的主动土压力12111)(a a K H p γ=212)(a a K H p γ=Layer 1Layer 2第三节 朗肯土压力理论Rankine’s theory小结1、基本假定 2、基本原理 3、无粘性土与粘性土 4、有超载情况 5、有地下水情况 6、不同土层情况第四节 库伦土压力理论 Culoum’s theory引 言4.1 基本原理与基本假定第四节 库伦土压力理论 Culoum’s theory库伦土压力理论是以整个滑动土体上力的平衡条件来确 定土压力。
第六章挡土结构物上的土压力第一节概述第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。
一、挡土结构类型对土压力分布的影响定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。
常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。
挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。
1.刚性挡土墙指用砖、石或混凝土所筑成的断面较大的挡土墙。
由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。
墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。
2.柔性挡土墙当墙身受土压力作用时发生挠曲变形。
3.临时支撑边施工边支撑的临时性。
二、墙体位移与土压力类型墙体位移是影响土压力诸多因素中最主要的。
墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。
1.静止土压力(0E )墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。
2.主动土压力(a E )挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。
3.被动土压力(p E )挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。
此时的土压力称为被动土压力p E 。
同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系:p E >0E > a E在工程中需定量地确定这些土压力值。
Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。
第六章挡土结构物上的土压力1、静止土压力:墙在墙后填土的推力作用下,不产生任何移动或转动时,墙体背后的土压力称为静止土压力。
(1)静止土压力计算:(2)静止侧压力系数:对于无粘性土或正常固结黏土:(经验公式);对于超固结黏土:;式中:为超固结黏土的,为正常固结黏土的;为超固结比;为经验系数,一般取值为0.4~0.5,塑性指数小的取大值;存在问题:超固结黏土的上式如何推导的?超固结土具体是如何影响土体的侧压力的和值的、?2、主动土压力:墙体在土压力的作用下向远离填土方向移动,墙后土体所受约束放松有下滑的趋势,为阻止其下滑,潜在滑动面上剪应力增加。
当剪应力增大至抗剪强度时,墙后土体达到极限平衡状态,此时作用在墙上的土压力达到最小值,称为主动土压力。
3、被动土压力:墙体在外力的作用下向着填土方向移动,墙后土体所受挤压有向上滑动趋势,为阻止其上滑,潜在滑动面上剪应力增加(与主动土压力为反方向),使得墙体背后的土压力逐渐增加。
当剪应力增大至抗剪强度时,墙后土体达到极限平衡状态,此时作用在墙上的土压力达到最大值,称为被动土压力。
4、朗肯土压力:--核心为假设墙背为光滑的,认为墙背与土之间无剪应力(1)朗肯主动土压力:假定墙背与土之间无剪应力,作用任意Z深度处土单元上的竖向应力应是最大主应力,而作用在墙背的水平土压力应是最小主应力。
因此,此时的主应力满足极限平衡条件:由上式可得:①无粘性土:此时:②粘性土:即;令:得:;③上式说明粘性土的主动土压力由两部分组成:一部分为土重产生的土压力;是正值;第二部分为粘聚力产生的抗力,表现为负土压力,起减小土压力的作用,其值为常量不随深度变化。
若,此时;因为土体不能受拉,此时的,此时的;③粘性土:滑动面与水平面夹角为;为有效内摩擦角;(2)朗肯被动土压力:当墙推土,使墙后土体达到被动极限状态时,水平压力比竖向大,此时竖向应力应是最小主应力,而作用在墙背的水平土压力应是最大主应力。
土力学6土压力《土力学》第六章 土压力第一节 挡土墙的土压力一、概念:1、挡土墙:为支挡土体,保证其稳定而修筑的建筑物2、土压力:指墙后填土由于它的自重或作用在填土表面上的荷载对墙背所产生的侧向压力二、挡土墙的位移与土体状态据挡土墙位移方向,填土所处状态,土压力可分为:1、静止土压力:(earth pressure at rest )挡土墙与填土保持相对静止状态强度:P 0 KPa土压力:E 0 KN/m2、主动土压力:(active earth pressure)挡土墙在墙后土体的作用下,向前移动或转动,填土应力状态处于极限平衡状态,土压力减小到最小值强度: Pa KPa土压力:Ea KN/m3、被动土压力:(passive earth pressure)当挡土墙由于外部荷载作用,产生向填土方向的位移,填土达到极限平衡状态土压力增大到最大值强度: Pp KPa土压力:Ep KN/m三、静止土压力计算1、压强 z k k p z γσ000==分布:均质土层三角形分布填土中有地下水存在——浮重度成层土ii z z k k p ∑==γσ000 荷载作用()q h k k p ii z +==∑γσ000 2、土压力E 0大小:E0 =(三角锥体体积)===三角面积=1/2γh 2K 0方向:水平 指向墙背作用点:通过压力图形的行心———离墙底H/3 m 处。
第二节 郎肯土压力理论一、基本原理1857年,郎肯提出的1、假定: (1)墙体是刚体(2)墙背光滑,直立(铅直)(3)填土表面水平延伸2、分析半无限空间土体的应力状态Z z γσσ==1Z k cy cx γσσσ03===(1) 当挡土墙离开土体向左移动时,墙后土体移动后趋势,减小到最小--------主动土压力(2) 当挡土墙在外力作用下向右移动时,3σ增大到1σ到最大(极限平衡)--------被动土压力。
一、朗肯主动土压力计算1、计算公式压强:a a a k c zk p 2-=γ其中:)245(tan 2ϕ-=︒a k分布:无粘性土:三角形粘性土:a a k c p 21-= 不承受拉力a a a k c k p 2-=σ 三角形分布土压力:无粘性土 大小 :Ea ===三角面积=1/2γh 2Ka作用点:H/3方向:水平粘性土 大小 :Ea ===三角面积=1/2γh 2Ka作用点:(H-Z 0)/3方向:水平二、郎肯被动土压力1、压强:分布:无粘性土:C=0,三角形分布粘性土:梯形分布2、土压力:大小:压力图形面积作用点:压力图形行心方向:水平第三节 库仑土压力理论 一、基本理论:1、墙后填土为无粘性土2、破坏面为通过墙踵的平面3、滑动土楔为刚体二、库仑主动土压力a a k H E 221γ= 其中:222)cos()cos()sin()sin(1)cos(cos )(cos ⎥⎦⎤⎢⎣⎡-+-+++-=βεεδβϕϕδεδεϕεa kε:墙背倾角β:墙后填土表面与水平面夹角α:滑动面与水平面夹角δ:外摩擦角φ:内摩擦角特例:若:ε=0 δ=0 β=0 时——朗肯土压力库仑主动土压力 大小:a a k H E 221γ= 方向:在墙背法线上方,与法线成δ角,与水平面夹角δ+ε作用点思考:1、主动状态的土压力是主动土压力,被动状态的土压力就是被动土压力的说法是否正确?2、朗肯理论忽略了墙与土之间的摩擦,对土压力计算结果有何影响?第二节 朗肯土压力理论二、几种常见发问下的主动土压力计算1、成层填土情况:无连续荷载作用:成层土:自重应力计算:∑=ii z h γσ ∑-=a a i i a k c k h p 2γ(1)C 1=0、C 2=0(2)C 1、C 2≠02、填土表面有连续的均布荷载作用(1)无粘性土,C=01)压强分布为梯形a a a qk K q z p =+=)(1γa a a k q H K q z p )()(2+=+=γγ2)合力: 大小: H k q H qk E a a a ])([21++=γ矩形:距墙底H/2作用点:压力图形三角形:距墙底H/3方向:水平(2)粘性土:C≠0强度分布(3)若填土表面局部有均布荷载作用:3、墙后填土中有地下水的情况第四节土压力计算的影响因素及减小土压力的措施一、影响土压力的因素(一)墙背影响:形状粗糙程度倾斜程度:(二)填土条件填土表面填土性质二、减小主动土压力的措施(一)选择合适的填料(二)改变墙体结构和墙背形状(三减小地面堆载(四)挡土墙上设置排水孔,墙后设置排水盲沟来加强排水。
第六章 挡土结构物上的土压力第一节 概述第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。
一、挡土结构类型对土压力分布的影响定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。
常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。
挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。
1.刚性挡土墙指用砖、石或混凝土所筑成的断面较大的挡土墙。
由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。
墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。
2.柔性挡土墙当墙身受土压力作用时发生挠曲变形。
3.临时支撑边施工边支撑的临时性。
二、墙体位移与土压力类型墙体位移是影响土压力诸多因素中最主要的。
墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。
1.静止土压力(0E )墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。
2.主动土压力(a E )挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。
3.被动土压力(p E )挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。
此时的土压力称为被动土压力p E 。
同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系:p E >0E > a E在工程中需定量地确定这些土压力值。
Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。
第六章挡土结构物上的土压力第一节概述第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。
一、挡土结构类型对土压力分布的影响定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。
常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。
挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。
1.刚性挡土墙指用砖、石或混凝土所筑成的断面较大的挡土墙。
由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。
墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。
2.柔性挡土墙当墙身受土压力作用时发生挠曲变形。
3.临时支撑边施工边支撑的临时性。
二、墙体位移与土压力类型墙体位移是影响土压力诸多因素中最主要的。
墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。
E)1.静止土压力(墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没E。
有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力E)2.主动土压力(a挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。
3.被动土压力(p E )挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。
此时的土压力称为被动土压力p E 。
同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系:p E >0E > a E在工程中需定量地确定这些土压力值。
Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。
实验表明:当墙体离开填土移动时,位移量很小,即发生主动土压力。
该位移量对砂土约,(h 为墙高),对粘性土约。
当墙体从静止位置被外力推向土体时,只有当位移量大到相当值后,才达到稳定的被动土压力值p E ,该位移量对砂土约需,粘性土填土约需,而这样大小的位移量实际上对工程常是不容许的。
本章主要介绍曲线上的三个特定点的土压力计算,即0E 、a E 和p E 。
图6-1三、研究土压力的目的研究土压力的目的主要用于:1.设计挡土构筑物,如挡土墙,地下室侧墙,桥台和贮仓等; 2.地下构筑物和基础的施工、地基处理方面; 3.地基承载力的计算,岩石力学和埋管工程等领域。
第二节 静止土压力的计算计算静止土压力时,墙后填土处于弹性平衡状态,由于墙静止不动,土体无侧向移动,可假定墙后填土内的应力状态为半无限弹性体的应力状态。
这时,土体表面下任意深度Z 处,作用在水平面上的主应力为:z z ⋅=γσ (6-1)在竖直面的主应力为: z k x ⋅⋅=γσ0 (6-2) 式中:0K ——土的静止侧压力系数。
γ——土的容重x σ即为作用在竖直墙背上的静止土压力,即:与深度Z 呈线性直线分布。
可见:静止土压力与Z 成正比,沿墙高呈三角形分布。
单位长度的挡土墙上的静压力合力0E 为:02021K H E ⋅⋅=γ (6-3)图6-2可见:总的静止土压力为三角形分布图的面积。
式中,H ------ 挡土墙的高度。
0E ------ 的作用点位于墙底面以上H/3处。
静止侧压力系数K 0的数值可通过室内的或原位的静止侧压力试验测定。
其物理意义:在不允许有侧向变形的情况下,土样受到轴向压力增量△σ1将会引起侧向压力的相应增量△σ3,比值△σ3/△σ1称为土的侧压力系数§或静止土压力系数k 0。
ννσσξ-=∆∆==1130K (6-4) 室内测定方法:(1)、压缩仪法:在有侧限压缩仪中装有测量侧向压力的传感器。
(2)、三轴压缩仪法:在施加轴向压力时,同时增加侧向压力,使试样不产生侧向变形。
上述两种方法都可得出轴向压力与侧向压力的关系曲线,其平均斜率即为土的侧压力系数。
对于无粘性土及正常固结粘土也可用下式近似的计算:'sin 10ϕ-=K (6-5)式中:'ϕ——为填土的有效摩擦角。
对于超固结粘性土:mC N c o OCR K K )()()(00+=••式中:c o K •)(0——超固结土的0K 值C N K •)(0——正常固结土的0K 值OCR ——超固结比m ——经验系数,一般可用m =。
第三节 朗金土压力理论一、基本原理朗金研究自重应力作用下,半无限土体内各点的应力从弹性平衡状态发展为极限平很状态的条件,提出计算挡土墙土压力的理论。
(一)假设条件 1.挡土墙背垂直 2.墙后填土表面水平3.挡墙背面光滑即不考虑墙与土之间的摩擦力。
(二)分析方法由图6-3可知:图6-31.当土体静止不动时,深度Z 处土单元体的应力为rz z =σ,rz k x 0=σ;2.当代表土墙墙背的竖直光滑面AB 面向外平移时,右侧土体制的水平应力x σ逐渐减小,而z σ保持不变。
当AB 位移至''B A 时,应力园与土体的抗剪强度包线相交——土体达到主动极限平衡状态。
此时,作用在墙上的土压力z σ达到最小值,即为主动土压力a P ; 3.当代表土墙墙背的竖直光滑面AB 面在外力作用下向填土方向移动,挤压土时,x σ将逐渐增大,直至剪应力增加到土的抗剪强度时,应力园又与强度包线相切,达到被动极限平衡状态。
此时作用在''B A 面上的土压力达到最大值,即为被动土压力p P 。
二、水平填土面的朗金土压力计算 (一)主动土压力当墙后填土达主动极限平衡状态时,作用于任意Z 处土单元上的1σγσ==z z ,3σσ==Pa x ,即x z σσ>。
图6-41、 无粘性土对于无粘性土,粘结力0=c ,则有:将rz z ==σσ1,a P =3σ代入无粘性土极限平衡条件:a zK γϕσσ=-=)245(tan 213(6-6) 式中:)245(tan 2ϕ-=a K ——朗金主动土压力系数a P 的作用方向垂直于墙背,沿墙高呈三角形分布,当墙高为H (Z=H ),则作用于单位墙高度上的总土压力a a K H E 22γ=,a E 垂直于墙背,作用点在距墙底3H处,如图6-4(b ) 2、粘性土将a r P z ===31,σγσσ,代入粘性土极限平衡条件:)245tan(2)245(tan 213ϕϕσσ---= c 得a a a K c zK c P 2)245tan(2)245(tan 21-=---=γϕϕσ (6-7)说明:粘性土得主动土压力由两部分组成,第一项:a zK γ为土重产生的,是正值,随深度呈三角形分布;第二项为粘结力c 引起的土压力a K c 2,是负值,起减少土压力的作用,其值是常量。
如图6-4(c )所示。
总主动土压力a E 应为图6-4(c )所示三角形面积,即:r c K cH K H K r c H K c HK E a a a a a a 2222212)(2(21+-=⎥⎥⎦⎤⎢⎢⎣⎡--=γγ (6-8) a E 作用点则位于墙底以上)(310h H -处。
(二)被动土压力如图6-5(a )当墙后土体达到被动极限平衡状态时,z x σσ>,则p x P ==σσ1,z z γσσ==3。
1、无粘性土将p P =1σ,z γσ=3代入无粘性土极限平衡条件式中)245(tan 231ϕσσ+=可得:p p zK z P γϕγ=+=)245(tan 2(6-9)式中:)245(tan 2ϕ+=p K ——称为朗金被动土压力系数p P 沿墙高底分布及单位长度墙体上土压力合力p E 作用点的位置均与主动土压力相同。
如图6-5(b )pp K H E 22γ=(6-10)墙后土体破坏,滑动面与小主应力作用面之间的夹角245ϕα-=,两组破裂面之间的夹角则为ϕ+o90。
2、粘性土将31,σγσ==z P p 代入粘性土极限平衡条件)245tan(2)245(tan 231ϕϕσσ+++=c 可得:p p p K c zK c z P 2)245tan(2)245(tan 2+=+++=γφφγ(6-11) 粘性填土的被动压力也由两部分组成,都是正值,墙背与填土之间不出现裂缝;叠加后,其压力强度p P 沿墙高呈梯形分布;总被动土压力为:p p p K cH K H E 2212+=γ (6-12)p E 的作用方向垂直于墙背,作用点位于梯形面积重心上,如图6-5(c )。
图6-5例6-1 已知某混凝土挡土墙,墙高为H =6.0m ,墙背竖直,墙后填土表面水平,填土的重度γ=m 3,φ=200,c =19kPa 。
试计算作用在此挡土墙上的静止土压力,主动土压力和被动土压力,并绘出土压力分布图。
解:(1)静止土压力,取K 0=,00zK P γ=m kn K H E /5.1665.065.1821212020=⨯⨯⨯==γE 0作用点位于下m H0.22=处,如图a 所示。
(2)主动土压力根据朗肯主压力公式:a a a K c zK P 2-=γ,)245tan(φ-=a Kγγ222221c K cH K H E a a a +-==××62×tg 2(45º-20º/2)-2×19×6×tg(45º-20º/2)+2×192/ =m临界深度:m tg K cZ a93.2)22045(5.1819220=-⨯⨯==γEa 作用点距墙底:m Z H 02.1)93.20.6(31)(310=-=-处,见图b 所示。
(3)被动土压力:mKN tg tg K cH K H E p p p /1005)22045(6192)22045(65.1821221222=+⨯⨯++⨯⨯⨯=+=γ 墙顶处土压力:KPa K c P p a 345421⋅==墙底处土压力为:KPa K c HK P p p b 78.2802=+=γ总被动土压力作用点位于梯形底重心,距墙底2.32m 处,见图c 所示。
a 1.02mm 2m 2m 2(a) (b) (c)图6-6讨论:1、由此例可知,挡土墙底形成、尺寸和填土性质完全相同,但0E = KN/m ,a E = KN/m ,即:0E ≈4a E ,或041E E a =。
因此,在挡土墙设计时,尽可能使填土产生主动土压力,以节省挡土墙的尺寸、材料、工程量与投资。