遥感概论知识点汇总
- 格式:docx
- 大小:26.89 KB
- 文档页数:6
遥感专业必会知识点总结遥感技术的基本原理是通过感测器(如光电传感器、微波传感器等)对地球表面或大气进行监测,收集返回的电磁辐射信号,然后利用数字图像处理方法将其转化为数字图像,通过图像处理技术分析、解译和提取目标地物的信息。
由于遥感技术具有成本低、周期短、覆盖面广等特点,因此其在资源调查、环境监测等领域有着独特的优势。
以下将从遥感技术的基础原理、遥感图像的获取、遥感图像的处理和分析方法等方面,对遥感专业必会的知识点进行总结。
一、遥感技术的基础原理1. 电磁辐射与地球观测地球表面和大气等物体都会产生电磁辐射,包括可见光、红外线、微波等各种波段的辐射。
遥感技术利用的核心是通过感测器捕获和记录这些辐射信号,然后将其转化为数字图像。
2. 传感器的工作原理传感器是遥感技术的核心设备,其工作原理是通过接收地面或大气发射的电磁波,然后将其转化为电信号,并记录下来供后续处理分析。
3. 遥感平台的选择及参数设置选择合适的遥感平台和传感器对于获取高质量的遥感图像至关重要,需要考虑到分辨率、光谱范围、观测角度等参数,以保证获取到的图像能够满足实际需求。
4. 遥感图像的地理坐标系统遥感图像需要具有地理坐标系统以便进行地理信息系统(GIS)中的空间分析和地图制作,常用的地理坐标系统包括经纬度坐标系统、投影坐标系统等。
二、遥感图像的获取1. 遥感图像的获取方式遥感图像的获取方式主要包括航拍和卫星遥感两种,航拍是通过飞机或者无人机等载具进行空中摄影,而卫星遥感则是通过卫星搭载的传感器以及遥感平台对地面进行拍摄。
2. 遥感图像的光谱特性遥感图像的光谱范围可以通过调整传感器的波段来获取不同波段的图像,其中可见光、红外光、紫外光等不同波段的图像可以提供丰富的地物信息。
3. 遥感图像的分辨率遥感图像的分辨率是指图像中能够识别的最小物体大小,分辨率越高则图像的细节信息越丰富。
一般来说,遥感图像的分辨率可以分为空间分辨率、光谱分辨率、时间分辨率、辐射分辨率等。
遥感导论复习重点第一章遥感概述§1-1遥感的基本概念及其特点一、遥感概念遥感(RemoteSening)是20世纪60年代发展起来对地观测综合性技术。
有广义和狭义之分。
1、广义遥感:泛指一切无接触的远距离探测(对电磁场、力场、机械波等)2、狭义遥感:即是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合测控技术。
遥测:对目标的某些运动参数和性质进行远距离册测量的技术。
分接触和非接触测量。
遥控:远距离控制目标的运动状态和过程的技术。
二、遥感的特点1.大面积同步观测:探测范围大,具有综合、宏观的特点,受地面条件限制少。
2.时效性:获取信息速度快,更新周期短,具有动态监测特点。
3.数据综合性先进性:信息量大,具有手段多,技术先进的特点。
4.经济性:用途广,效益高的特点。
5.局限性:利用的电磁波段有限。
§1-2遥感过程及系统一、遥感过程的实现光谱特性:一切物体固有的对电磁波反射、透射、吸收的能力。
由于环境不同,物体的反射、辐射电磁波是不同的。
数据获取→数据处理分析→数据应用遥感是一个接收、传送、处理和分析遥感信息,并最后识别目标的复杂技术过程。
二、遥感的技术系统依据遥感过程遥感系统分为:1.信息源2.信息的获取和接收传感器遥感平台地面站:是为了接收和记录遥感平台传送来得图像胶片或数字磁带数据而建立的。
由地面数据接收和记录系统(TRRS)和图像数据处理系统(IDPS)两部分组成。
3.信息的处理4.信息的应用-1-§1-3遥感的类型遥感的分类方法多种多样,主要有以下几种分类方法:1.按照遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感2.按照传感器的探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感 3.按工作方式分:主动遥感、被动遥感;成像遥感、非成像遥感4.按信息获取方式分:5.按照波段宽度及波谱的连续性分:6.按应用领域分:较多§1-4遥感的发展简史一、遥感发展概况(一)遥感的萌芽及其初期发展时期(二)现代遥感发展时期从以下四个阶段了解遥感发展过程无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1839-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)二、我国遥感发展概况及其特点三、当前遥感发展主要特点与展望新一代传感器的研制,获得分辨率更高,质量更好的图象和数据;遥感应用不断深化;地理信息系统的发展与支持是遥感发展的又一新动向;复习题1.试述遥感的探测系统及其实现过程。
遥感原理知识点梳理第一章绪论1.遥感于1960年由美国地理学家pruitt普鲁伊特提出2.广义遥感(梅安新教授提出):一切无接触远距离探测(实际工作中,只有电磁波探测属于遥感范畴)(电磁波是遥感技术的基础)3.狭义遥感(电磁波遥感):从不同高度平台,使用各种传感器接收来自地球表层的电磁波信息(数据采集)并进行加工处理(数据处理分析),从而对不同地物进行远距离探测与识别(处理结果应用)的技术。
4.遥感平台:地面,航空,航天5.传感器:接收、记录物体反射或发射的电磁波特征的仪器。
6.遥感技术系统:从地面到空中乃至空间,从信息采集、存储、处理到判读分析与运用的完整技术体系。
可以分为:(1)空间信息采集系统-采集遥感信息(2)地面接收与预处理系统-接收、处理(必要的辐射与几何校正)与分发遥感数据(针对星载传感器建立地面接收系统)(3)地面实况调查系统(遥感技术系统的基础):获取遥感信息之前:通过测定地物反射光谱确定所需传感器类型与波段获取遥感信息的同时:采集地表,大气等有关参数(遥感信息处理运用的辅助)遥感数据处理结果的检验(4)信息分析与运用系统,主要包括:遥感信息的选择技术、遥感信息的处理技术、专题信息提取技术、参数量算与反演技术、制图技术7.遥感分类:按工作平台:地面,航空,航天、(航宇)按探测电磁波工作波段:紫外,可见光,近红外,热红外,微波,多波段等按应用目的(探测目标):大气,极地,海洋,陆地,外层空间等按资料的记录方式:成像,非成像按传感器工作方式:主动(主动发射与接收电磁波),被动(被动接收电磁波(可见光,近红外,热红外))8.遥感的特点:(1)宏观性与同步性(2)时效性与动态性(3)多波段性(4)综合性与可比性(5)经济性(6)局限性(误差,用途等)9.传感器:扫描仪,摄影机,摄像仪,雷达,高度计,微波辐射计,扫描仪等10.1957年苏联成功发射第一颗人造卫星(斯普特尼克一号)1970年我国发射东方红一号第二章电磁辐射与地物波谱特征2.1电磁波与电磁波谱1.电磁波(横波):由变化的电场和变化的磁场交替产生,以有限的速度由近及远在空间中传播。
第一章绪论1遥感(侠义):运用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术2遥感系统包括:被测目标的信息特征,信息的获取,信息的传输与记录,信息的处理,信息的应用3遥感的特点①大面积的同步观测②时效性③数据的综合性和可比性④经济性⑤局限性第二章电磁辐射与地物光谱特征1电磁波共性:①在真空中都以光速传播,传播速度都是相同的②遵守同一反射,折射,干涉,衍射及偏振定律③电磁波铺区段的界限是渐变的5电磁波性质:①是横波②在真空以光速传播③满足频率×波长=光速,能量=普朗克常数×频率④电磁波具有波粒二相性(16)2电磁波:由振源发出的电磁振荡在空中的传播,是电磁振荡在空间传播,3电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列就构成了~。
(P15)4可见光波段对遥感有重要意义5辐射通量:单位时间内通过某一面积的辐射能量。
辐射通量是波长的函数。
总辐射通量是各普段辐射通量之和或辐射辐射通量的积分值6辐射通量密度:单位时间内通过单位面积的辐射能量7辐照度:被辐射的物体表面单位面积上的辐射通量8辐射出射度:辐射源物体表面单位面积上的辐射通量9绝对黑体(朗伯源):如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。
10绝对黑体不仅有最大的吸收率,也具有最大的发射率,却丝毫不存在反射11黑体辐射规律:①辐射通量密度随波长变化连续,每条曲线只有一个最大值②温度越高,辐射通量密度也越大,不同温度曲线不相交③随着温度增加,辐射最大值所对应的波长移向短波方向第二节太阳辐射及大气对太阳辐射的影响1太阳常数:指不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量。
太阳常数的变化不会超过1%2太阳光谱的特征①太阳辐射的光谱是连续光谱,但是有许多费吸收线②辐射特性与绝对黑体的辐射特性基本相同③太阳辐射从近紫外到中红外这一波段区间能量最集中而且相对来说最稳定,太阳强度变化最小3太阳光谱特征对遥感的启示:(1)被动遥感主要利用可见光,红外等稳定辐射,使太阳活动对遥感的影响降到最小(2)由于大气的影响,需要对遥感影像进行矫正4散射:辐射在传播过程中遇到小微粒而使传播方向发生改变,并向各个方向散开,5散射使原来传播方向上的辐射强度减弱,而增加其他方向上的辐射,但通过二次影响增加了信号中的噪声成分,造成遥感图像的质量下降6散射现象的实质:电磁波在传输过程中遇到大气微粒而产生的一种衍射现象7常见的大气散射及其特点(1)瑞丽散射:大气中粒子的直径比波长小得多时发生的散射。
遥感概论复习整理第一章绪论1.遥感概念狭义遥感:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术2.遥感技术系统组成信息源、信息的获取、信息的记录和传输、信息的处理、信息的应用。
3.信息源,传感器概念信息源:任何地物都可以发射、反射和吸收电磁波信号,都是遥感信息源;目标物与电磁波发生相互作用,会形成目标物的电磁波特性,这为遥感探测提供了获取信息的依据。
传感器:接收、记录地物电磁波特征的仪器,主要有:扫描仪、雷达、摄影机、光谱辐射计等4.遥感类型(区分不同波段属于那种类型)按遥感平台分类:航天、航空、地面遥感按工作波段分类:紫外遥感:收集和记录目标物在紫外波段辐射能量可见光遥感:收集和记录目标物反射的可见光辐射能量,传感器有:摄影机、扫描仪、摄像仪等红外遥感μm):收集与记录目标物反射与发射的红外能量,传感器有:摄影机、扫描仪等微波遥感(1mm-1m):收集和记录在微波波段的反射能量,传感器有:扫描仪、微波辐射计、雷达、高度计等按传感器工作原理分类:被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量主动遥感:传感器主动发射一定电磁波能量,并接收目标的后向散射信号按资料获取方式分类:成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像非成像遥感:传感器接收的目标电磁辐射信号不能形成图像波段宽度与波谱的连续性分类:按应用领域分类:土地遥感(Domanial)环境遥感(Environmental)大气遥感(Atmospheric)海洋遥感(Oceanographic)农业遥感(Agricultural)林业遥感(Forestry)水利遥感(Hydrographic)地质遥感(Geological )5.遥感特点(一帧遥感图像代表地面多大位置)宏观性动态性技术手段多,信息海量应用领域广泛,经济效益高100nmile x 100nmile(185km x 185km)=34225km26.气象卫星有哪些1957年10月4日,前苏联成功发射了人类第一颗人造地球卫星1960年,美国发射了TIROS-1和NOAA-1太阳同步卫星1972年,美国发射ERTS-1(后改名为Landsat-1),装有MSS传感器,分辨率79米1982年,Landsat-4发射,装有TM传感器,分辨率提高到30米1986年,法国发射SPOT-1,装有PAN和XS传感器,分辨率提高到10米1988年9月7日,中国发射第一颗“风云1号”气象卫星1999年,美国发射IKNOS,空间分辨率提高到1米1999年,美国发射QUICKBIRD-2,空间分辨率提高到0.6米7.遥感发展历史无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1838-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)8.对遥感进行处理的软件PCI ERDAS ENVI ER-MAPPER9.SAR是什么是合成孔径雷达Synthetic Aperture Radar 的缩写10.遥感发展现状高分遥感发展迅速,多种传感器并存遥感从定性到定量分析遥感信息提取逐步自动化遥感商业化第二章电磁辐射与地物光谱特征1什么是电磁波谱(应用较多的波段)按照电磁波在真空中传播的波长或频率,递增或递减排列,形成的一个连续谱带。
遥感导论重点知识梳理【7月7日3:00PM考前必背】第一章绪论1、遥感的基本概念:v广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
v 狭义:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
也是一门科学。
2、遥感系统的组成部分:1)被测目标的信息特征目标物电磁波特性,既是遥感的信息源,也是遥感探测的依据。
2)信息的获取信息获取主要由遥感平台、遥感器等协同完成。
3)信息的传输与接收空间数据传输与接收是空间信息获取和空间数据应用中必不可少的中间环节。
4)信息的处理首先地面站进行一系列的预处理,如信息的恢复、辐射校正、几何纠正、卫星姿态校正、投影变换等;地面站和用户再根据需要进行精校正处理和专题信息的处理和分类。
5)遥感信息的应用遥感获取信息的目的就是应用。
3、遥感的类型:按遥感平台分地面遥感、航空遥感、航天遥感航宇遥感按传感器的探测波段分紫外遥感:探测波段在0.05~0.38µm之间;可见光遥感:探测波段在0.38~0.76µm之间;红外遥感:探测波段在0.76~1000µm之间;微波遥感:探测波段在1mm~10m之间;多波段遥感:指探测波段在可见光波段和红外波段范围内,再分成若干窄波段来探测目标。
按工作方式分(1)主动遥感和被动遥感:主动遥感由探测器主动发射一定的电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。
(2)成像遥感与非成像遥感:前者传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像;后者传感器接收的目标电磁辐射信号不能形成图像。
按遥感的应用领域(1)从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感和海洋遥感等。
(2)从具体应用领域可分为资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感及灾害遥感、军事遥感等。
遥感重点知识点总结初中一、遥感基本概念遥感是通过人工或自然传感器对地球表面地物进行探测、记录、存储、处理和解译的科学技术。
遥感技术可以分为主动遥感和被动遥感两种类型。
主动遥感是指传感器主动向地面发射能量,并接收反射或散射回来的能量信号,如雷达遥感;被动遥感是指传感器接收来自地面目标发射的电磁波能量,并对其进行分析和处理,如光学遥感。
二、遥感技术基本原理1. 电磁波辐射原理:地球表面物体对太阳辐射的反射、辐射和吸收是遥感技术的基础。
2. 光学遥感:通过接收太阳光照射地表后反射、散射的电磁波,在不同波长的电磁波成像可获取地表物体的信息。
3. 热红外遥感:地表物体受太阳辐射后,有自身温度辐射,通过接收地面物体的红外辐射信息,可以获取地表物体的温度等信息。
4. 雷达遥感:通过合成孔径雷达(SAR)等探测手段获取地表地形、地貌等信息。
三、遥感数据获取遥感数据获取的主要手段包括卫星、飞机、无人机等,这些载具可以携带各种类型的传感器,如摄影机、雷达、红外线传感器等,获取不同波段的地表信息。
四、遥感数据处理1. 资料编目和建库:将获取的遥感数据进行整理、编目及存储,形成遥感数据库。
2. 影像地图生成:将遥感数据进行图像处理,生成数字影像地图。
3. 遥感数据融合:将多种遥感数据进行融合,形成多源数据,以获取更为全面的地表信息。
4. 遥感数据解译:通过图像处理技术对遥感数据进行解译,提取地表对象的信息。
五、遥感应用遥感技术在农业、林业、城市规划、环境保护、气象、国土资源调查、地质勘探等领域有着广泛的应用。
例如,在农业方面,可以通过遥感技术对农作物生长情况进行监测和预测,提高农业生产效率;在环境保护方面,可以通过遥感技术监测空气、水质等环境指标,及时发现环境问题,采取相应措施。
六、遥感发展趋势随着科技的不断发展,遥感技术也在不断创新和进步。
未来,遥感技术发展趋势包括高分辨率遥感技术、超分光遥感技术、高性能遥感卫星技术、人工智能与遥感技术相结合等。
遥感概论名词解释梳理1.遥感:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.波的概念:波是振动在空间的传播.3。
电磁波:由振源发出的电磁振荡在空气中传播.4。
电磁波谱:按电磁波在真空中的传播波长或频率,递增或递减排列,构成电磁波谱。
5.地物的光谱特性:任何地物都有自身的电磁辐射规律,如反射、发射、吸收电磁波的特性;少数还有透射电磁波的特性。
6.地物的反射率:地物对某一波段的反射能量与入射能量之比。
反射率随入射波长而变化.7.地物的反射光谱:地物的反射率随入射波长变化的规律。
8.黑体:在任何温度下,对各种波长的电磁辐射全部吸收。
9.黑体辐射:黑体的热辐射称为黑体辐射。
10.发射率:地物的辐射出射度W与同温下的黑体辐射出射度W黑的比值。
11.散射:我们把辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开的物理现象。
12:大气窗口:将电磁波通过大气层时较少被反射、吸收或散射的、透过率较高的波段称为大气窗口。
大气窗口的光谱段主要有13.近极轨卫星:Φ约等于90°,对地球覆盖范围广(如陆地资源卫星。
)14.赤道卫星:Φ=0°或180°,卫星轨道面与地球赤道面重合,卫星在赤道上空运行15.太阳同步卫星:卫星与太阳同步,光照角保持不变化;卫星轨道上每一点的平均太阳时保持不变。
(相同的纬度,所有点具有相同的太阳时)16.地球同步卫星:卫星绕地球运行的速度等于地球自转的速度;始终覆盖着地球表面的同一地区。
17.垂直投影:物体影像是通过相互平行的光线投影到与光线垂直的平面上。
18.中心投影:物体通过物镜中心投射到承影面上。
位于物镜两侧19.像片的比例尺:像片上两点之间的距离与地面上相应两点实际距离之比。
20.像点位移:在中心投影的像片上,由于地形起伏,引起平面上的点位在像片位置上的移动。
21.扫描成像:依靠探测元件和扫描镜对目标物以瞬间视场为单位进行的逐点、逐行取样,以得到目标地物电磁辐射特性信息,形成一定谱段的图像。
遥感领域知识点总结一、遥感技术简介遥感技术是利用各种感知设备(如卫星、飞机、无人机等)获取地球表面信息的一种技术手段。
遥感技术的主要特点是不需要直接接触被观测对象,能够实现全天候、全天时、全地域的地表信息获取。
在遥感技术的发展过程中,主要包括了光学遥感、微波遥感、红外遥感、激光雷达遥感等多种技术手段。
光学遥感是利用可见光、红外线、紫外线等电磁辐射进行地表信息获取的一种遥感手段。
光学遥感技术可以分为近景遥感和遥驾遥感两种,近景遥感通常使用相机、摄像机等设备,适用于地面观测;遥感遥感则是通过卫星、飞机等平台获取远距离地表信息的一种手段。
微波遥感利用微波波段的电磁辐射进行地表信息获取,主要适用于云雾天气下的地表观测。
微波遥感技术可以提供地表土壤湿度、植被覆盖、冰雪覆盖等信息,对于农业、水资源、气象等领域具有重要意义。
红外遥感是利用红外线波段进行地表信息获取的一种遥感手段。
红外遥感技术可以提供地表温度、火灾监测、环境变化等信息,对于环境保护、自然灾害监测等领域具有重要意义。
激光雷达遥感利用激光雷达进行地表信息获取,具有高精度、高分辨率的优势,主要适用于地形测量、建筑测绘、城市规划等领域。
二、遥感数据解译遥感数据解译是指利用遥感图像对地表信息进行识别、提取、分析的过程。
遥感数据解译的主要步骤包括数据准备、预处理、信息提取、信息分析等。
数据准备包括获取遥感数据、进行数据格式转换、数据配准等工作。
预处理是指对遥感图像进行大气校正、辐射校正、几何校正等处理,以保证图像质量。
信息提取是指根据遥感图像特征,对地表信息进行分类、识别等工作。
信息分析是指对提取的地表信息进行统计分析、空间分析等工作,从而获取有用的地表信息。
遥感数据解译主要涉及的技术包括像元分类、遥感图像分析、遥感信息系统等。
像元分类是指将遥感图像像元按其特征进行分类,常用的分类方法包括最大似然法、支持向量机、人工神经网络等。
遥感图像分析是指对遥感图像进行特征提取、目标识别等工作,主要涉及的技术包括纹理分析、形状分析、光谱分析等。
遥感概论1、遥感:广义:泛指一切无法接触的远距离探测,包括对电磁场、力场、机械波等的探测。
狭义:指在高空和外层空间的各种平台上,运用各种传感器获取反映地表特征的各种参数,通过传输、变换、处理、提取有用的信息,实现研究地物形状、位置、性质、变化及与环境的相互关系的一门现代应用技术。
2、主动遥感:遥感仪器主动向目标物体发射一定波长的电磁波,然后接受目标物体反射回来的电磁波能量信息的方式。
3、被动遥感:不依靠人工辐射源,直接由遥感仪器接收目标物体自身发射或反射自然辐射源的电磁波能量信息的方式。
4、绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。
绝对黑体的吸收率等于1,反射率等于0,与物体的温度和电磁波波长无关。
5、太阳常数:地球处于日地平均距离处,单位时间内,垂直于太阳射线的单位面积上,所接收到的全部太阳辐射能,其平均值为1.36×10³w/m²。
6、摄影成像:使用光学镜头成像,用感光胶片记录物体影像。
根据使用波长细分为可见光摄影、近红外摄影、多光谱摄影。
7、扫描成像:依靠探测元件和扫描镜,对目标地物以瞬时视场为单位进行逐点、逐行取样,以得到目标地物电磁辐射特征信息,形成一定谱段的图像。
8、直方图匹配:又叫直方图规定化,是指使一幅图像的直方图变成规定形状的直方图而进行的图像增强方法。
9、瞬时视场角:扫描镜在某一瞬时时间可以视为静止状态,此时接收到的目标地物的电磁波辐射限制在一个很小的角度之内,这个角度称为瞬时视场角,即扫描仪的空间分辨率。
10、雷达:是由发射机通过天线在很短时间内,向目标地物发射一束很窄的大功率电磁波脉冲,然后用一天线接收目标地物反射的回波信号而进行显示的一种传感器。
11、斯忒藩-波尔兹曼定律:绝对黑体的总辐射度与温度的4次方成正比。
定律的数学式为:M(T)=σT 4,式中σ为斯忒藩-波尔兹曼常数,σ=5.67×10-8(w·m—2·K—4),该定律说明,当绝对黑体的温度增加1倍时,其总辐射度将增加为原来的16倍。
遥感导论知识点整理1、遥感概念广义:泛指一切无接触的远距离探测,包括对地磁场、力场、机械波(声波、地震波)等的探测。
遥感定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标底物的电磁波信息,经过对信息的处理,判别出目标地物的属性。
2、遥感系统组成包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。
3、传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。
4、传感器是收集、量测和记录遥远目标的信息仪器,是遥感技术系统的核心。
5、遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性。
6、遥感的数据类型:按平台分为地面遥感、航空遥感、航天遥感数据;按电磁波段分可见光遥感、红外遥感、微波遥感、紫外遥感数据;按传感器的工作方式分主动遥感、被动遥感数据。
7、电磁波谱:按照电磁波在真空中传播的波长或频率进行递增/递减排列形成的一个连续谱带。
8、遥感机理:遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标地物的目的。
9、大气发生的散射主要有三种:瑞利散射(d<<λ)、米氏散射(d≈λ)、非选择性散射(d>>λ)。
10、自然辐射源是被动遥感的辐射源包括太阳辐射、地球辐射。
11、地球辐射:地球表面和大气电磁辐射的总称。
12、地球辐射是被动遥感中传递地物信息的载体。
13、人工辐射源是主动式遥感的辐射源。
14、地物波谱:地物的电磁波响应特性随电磁波长改变而变化的规律,称为地表物体波谱,简称地物波谱。
15、大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口。
16、反射率:地物的反射能量与入射总能量的比,即ρ=(Pρ/p0)×100%。
表征物体对电磁波谱的反射能力。
17、地物反射类型根据地表目标物体表面性质的不同分为镜面反射、漫反射、实际物体的反射三种类型。
《遥感概论》课程笔记第一章:绪论1.1 遥感及其技术系统遥感(Remote Sensing)是指不直接接触对象物体,通过分析从远处感知到的电磁波信息来识别和探测地表及其上方环境的技术。
遥感技术系统是由多个组成部分构成的复杂体系,主要包括以下几部分:- 传感器(Sensor):用于探测和记录目标物体发射或反射的电磁波的设备。
- 遥感平台(Remote Sensing Platform):携带传感器的载体,如卫星、飞机、无人机等。
- 数据传输系统(Data Transmission System):将传感器收集的数据传回地面的设备。
- 数据处理与分析系统(Data Processing and Analysis System):对遥感数据进行处理、分析和解释的软件和硬件。
1.2 遥感门类及技术特点遥感技术根据不同的分类标准可以分为以下几类:- 按照电磁波波长:可见光遥感、红外遥感、微波遥感等。
- 按照传感器工作方式:主动遥感(如激光雷达)和被动遥感(如摄影相机)。
- 按照平台类型:卫星遥感、航空遥感、地面遥感等。
遥感技术的主要特点包括:- 大范围覆盖:遥感技术可以覆盖广阔的地表区域,对于大规模的地理现象监测具有优势。
- 高效快速:遥感平台可以快速穿越监测区域,获取数据的时间周期短。
- 多维信息:遥感可以提供关于地表及其上方环境的多种信息,如形状、纹理、温度等。
- 非侵入性:遥感技术不需要直接接触目标物体,因此对环境的影响较小。
1.3 遥感行业应用概况遥感技术在多个行业中有着广泛的应用,以下是一些主要的应用领域:- 农业领域:通过遥感技术监测作物生长状况、评估产量、监测病虫害、进行土地资源调查等。
- 环境保护:监测森林覆盖变化、湿地保护、沙漠化趋势、大气污染等环境问题。
- 灾害管理:利用遥感技术进行地震、洪水、飓风、火灾等自然灾害的预警、监测和评估。
- 城市规划:通过遥感图像分析城市扩张、交通布局、土地利用效率等,为城市规划提供依据。
遥感概论阐释RS特点及其应用也许性第一节●遥感:碧空慧眼应用:遥感天地,看相识气●遥感分类:1、探测对象:宇宙遥感(所有波段)地球遥感(除γ、x射线、无线电波)2、平台:航天遥感、航空遥感(飞机气球)、地面遥感3、获取数据形式:成像方式遥感,非成像方式遥感4、传感器工作方式:被动遥感,积极遥感5、探测电磁波:可见光(白天)、红外(夜晚)、微波(雨雪天)、紫外6、遥感应用●遥感特性:时空特性,广;波段特性,多;时相特性,长;资料收集特性,便;经济特性,钱●电磁波四个特性:反射、吸取、透射、发射●发展状况:中华人民共和国:50年代60年代70—80年代90年代世界:初级阶段1839-1937 发展阶段1937-1960奔腾阶段1960-1980 实用阶段1990----第二节●遥感技术系统:遥感平台、传感器、遥感信息接受及解决、遥感图像判读和应用●遥感平台:遥感中搭载传感器运载工具1、地面遥感:<100m 三脚架、遥感车、遥感塔、遥感轮船特点1)可测光谱信息2)配合航空航天遥感3)不能反映环境综合性2、航空遥感:<12km 飞机、气球特点1)信息辨别率高2)不受地面条件控制3)收集资料以便4)用于局部资料分析3、航天遥感:>150km 人造地球卫星、宇宙飞船、空间轨道站、航天飞机特点:1)对地球进行宏观综合迅速动态观测2)开展资源环境监测3)辨别率比较低(大多数是民用)4)五大优越性(广、多、长、便、钱)●传感器:遥感系统核心某些1、照相方式传感器----无损波长0.3---1.3微米2、扫描方式传感器-------有损波段比较宽重要是光电转换3、雷达(水NO)全天候全天时0.8----30cm●遥感信息接受及解决:遥感信息只要是指由航空遥感和航天遥感所获取胶片和磁带1)直接回收方式:航摄结束后回收保密性强,时效性差2)视频传播:接受地物电磁波光电转换无线电给接受站保密性差,时效性好3)实时传播:及时给接受站4)非实时传播:回到地面给接受站Ps:辐射校正:恢复自身光谱特性,提高辨别精度几何校正:满足遥感制图和多波段套合(飞机颠簸)遥感地面实验场提高应用精度吉林长春●遥感图像判读和应用:图像判读分类:目视判读(定性)、计算机分类(定量)计算机分类:监督分类、非监督分类、模糊分类、神经元网络分类、模式辨认●总结:从地面到高空,从室内到室外多层次、多视野、多角度立体交叉作业系统。
学习好资料 欢迎下载 遥感概论----知识点 1.
(名词)遥感:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.
(填空)遥感系统组成:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。 3.
(简答)遥感的特点:1>大面积的同步观测 2>时效性 3>数据的综合性和可比性4>经济性 5>局限性(信息的提取方法、数据挖掘技术、思维方式) 4.
(名词)电磁波谱:将各种电磁波在真空中的波长或频率按其长短,依次排列制成的图表。黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则该物体为绝对黑体。太阳常数:指不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间所接收的太阳辐射能量。 5.
(名词)大气窗口:把电磁波通过大气层时较少被反射、吸收或散射,透过率较高的波段。紫外、可见光、近红外波段(0.3-1.3微米);近、中红外波段(1.5-1.8微米和2.0-3.5微光);中红外波段(3.5-5.5微米);远红外波段(8-14微米);微波波段(0.8-2.5厘米) 6.
(填空)在可见光和近红外波段,大气最主要的散射作用是瑞利散射。 7.
(简答)微波具有极强的穿透云层的作用:微波波长比粒子的直径大得多,则又属于瑞利散射的类型,散射强度与波长的四次方成反比,波长越长散射强度越小,所以微波才可能有最小散射、最大透射。 8.
(简答)无云的晴空呈现蓝色:蓝光波长短,散射强度较大,因此蓝光向四面八方散射,使整个天空蔚蓝。朝霞和夕阳偏橘红色:日出和日落时,太阳高度角小,通过的大气层比阳光直射时要厚得多,传播过程中,蓝光几乎被散射殆尽,波长次短的绿光也大部分被散射掉了,只剩下红光,再加上少量绿光,即合成橘红色。 9.
(简答)叙述沙土、植物、水和岩石的光谱反射率随波长变化的一般规律:1>自然状态下土壤表面的光谱反射率没有明显的峰值和谷值,一般而言,土质越细反射率越高,有机质含量越高和含水量越高反射率越低,此外,土类和肥力也会对反射率产生影响。2>植物的光谱反射曲线规律性明显,可分为三段:可见光波段有一个小的反射峰和两个吸收带。这一特征是叶绿素的影响,其对蓝光和红光吸收作用强,对绿光反射作用强。在近红外波段有一反射的“陡坡”,至1.1微米附近有一峰值,这是由于植被叶细胞结构的影响;在中红外波段受到绿色植物含水量的影响,吸收率大增,反射率下降。3>水体的反射主要在蓝绿光波段,其他波段吸收很强,因而在遥感影像上,水体呈黑色;但水中含有其他物质,反射光谱曲线又发生变化。4>岩石的反射波谱曲线无统一的特征。 10. 学习好资料 欢迎下载
遥感测量知识点梳理总结一、遥感概念及发展历史1.1 遥感概念遥感是指利用卫星、航空器、船只等自然物体之外的传感器和设备,对地球表面的物体和环境进行观测、测量、探测和监测。
遥感技术是一种无需与被观测物体接触的测量技术,因此被广泛应用于地球科学领域。
1.2 遥感发展历史遥感技术最早可以追溯到19世纪,当时的军事领域开始利用气球、飞艇和飞机拍摄地面敌军的照片。
到了20世纪,随着航空和航天技术的发展,遥感技术开始得到更广泛的应用。
1972年美国NASA发射了第一颗陆地观测卫星LANDSAT-1,标志着陆地遥感观测进入了卫星时代。
此后,遥感技术不断发展,成为地球科学领域不可或缺的工具之一。
二、遥感测量基础知识2.1 电磁波谱电磁波谱是指电磁波的频率范围,包括广泛的无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
在遥感技术中,不同波段的电磁波具有不同的特性和应用,因此了解电磁波谱是遥感测量的基础知识。
2.2 传感器遥感传感器是指用于探测、记录和测量地球表面各种信息的设备,可分为主动传感器和被动传感器两种。
主动传感器是指主动发射电磁波,然后接收返回的信号,如雷达;被动传感器是指接收地面物体自然发射出的电磁波,如光学传感器。
传感器的选择和使用对遥感数据的质量和应用具有重要影响。
2.3 遥感平台遥感平台是指用于携带、部署遥感传感器的航空器或卫星。
航空平台主要包括飞艇、飞机、直升机和无人机等;卫星平台主要包括低轨道卫星、地球同步卫星和地球静止卫星等。
不同的平台具有不同的观测能力和适用范围,可以根据具体任务和需求进行选择。
2.4 遥感数据遥感数据是指由遥感平台获取的地球表面信息,包括图像、光谱数据和雷达数据等。
根据观测波段和分辨率的不同,遥感数据可以提供地表特征、土地覆盖、地形地貌、气候变化等各种信息。
遥感数据的获取和处理是遥感测量的核心内容之一。
三、遥感测量方法3.1 遥感图像处理遥感图像处理是指对遥感数据进行预处理、增强、分类和解译等操作,以提取和分析地表信息。
遥感基本知识超强汇总⼀. 遥感的基本概念1.遥感的基本知识“遥感”⼀词来⾃英语Remote Sensing,从字⾯上理解就是“遥远的感知”之意。
顾名思义,遥感就是不直接接触物体,从远处通过探测仪器接受来⾃⽬标物体的电磁波信息,经过对信息的处理,判别出⽬标物体的属性。
实际⼯作中,重⼒、磁⼒、声波、机械波等的探测被划为物理探测(物探)的范畴,因此,只有电磁波探测属于遥感的范畴。
根据遥感的定义,遥感系统包括:被测⽬标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应⽤这五⼤部分。
1.⽬标物的电磁波特性任何⽬标物体都具有发射、反射和吸收电磁波的性质,这是遥感探测的依据。
2.信息的获取接受、记录⽬标物体电磁波特征的仪器,称为“传感器”或者“遥感器”。
如:雷达、扫描仪、摄影机、辐射计等。
3.信息的接收传感器接受⽬标地物的电磁波信息,记录在数字磁介质或者胶⽚上。
胶⽚由⼈或回收舱送⾄地⾯回收,⽽数字介质上记录的信息则可通过卫星上的微波天线输送到地⾯的卫星接收站。
4.信息的处理地⾯站接收到遥感卫星发送来的数字信息,记录在⾼密度的磁介质上,并进⾏⼀系列的处理,如信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换为⽤户可以使⽤的通⽤数据格式,或者转换为模拟信号记录在胶⽚上,才能被⽤户使⽤。
5.信息的应⽤遥感技术是⼀个综合性的系统,它涉及到航空、航天、光电、物理、计算机和信息科学以及诸多应⽤领域,它的发展与这些科学紧密相关。
2.遥感的分类1)按遥感平台分地⾯遥感:传感器设置在地⾯上,如:车载、⼿提、固定或活动⾼架平台。
航空遥感:传感器设置在航空器上,如:飞机、⽓球等。
航天遥感:传感器设置在航天器上,如:⼈造地球卫星、航天飞机等。
2)按传感器的探测波段分紫外遥感:探测波段在0.05~0.38µm之间。
可见光遥感:探测波段在0.38~0.76µm之间。
红外遥感:探测波段在0.76~1000µm之间。
大二遥感导论知识点总结五六章大二遥感导论知识点总结五六章遥感技术是一种通过航天卫星、航空器或地面传感器获取地球表面信息的技术手段。
在大二遥感导论课程的学习中,我们学习了遥感的基本原理、遥感图像的解译和应用,以及遥感在各个领域中的应用案例。
本文将对第五章和第六章的知识点进行总结,希望能够帮助大家更好地理解和掌握这两章的内容。
第五章:遥感平台和传感器1. 遥感平台分类:根据不同的平台和载荷,遥感平台可以分为航天平台、航空平台和地面平台。
航天平台主要包括卫星和航天飞机,航空平台主要包括飞机和无人机,地面平台主要包括传感器和观测站。
2. 遥感传感器分类:遥感传感器主要分为光学传感器、辐射传感器和微波传感器。
光学传感器包括摄影机、相机和光谱仪等,辐射传感器包括辐射计和辐射计扫描仪,微波传感器主要包括合成孔径雷达和微波辐射计。
3. 遥感传感器选择原则:选择遥感传感器时,需考虑地表目标的性质、被测量物理量、地表覆盖范围和分辨率等因素,并综合考虑成本、时间和工作要求等。
4. 遥感图像的分辨率:分辨率是指遥感图像对地表细节的显示能力。
可见光和红外波段的分辨率一般为1-100米,雷达波段的分辨率一般为5-100米,微波波段的分辨率一般为100-1000米。
第六章:遥感图像和遥感信息提取1. 遥感图像的特点:遥感图像具有全方位、全天候、多光谱、多尺度和重复观测等特点。
这些特点使得遥感图像能够提供丰富的地表信息,并帮助我们了解地球表面的变化和演化。
2. 遥感信息提取方法:遥感图像的信息提取方法主要包括目视解译、数字图像处理和机器学习等。
目视解译是通过直接观察遥感图像提取地物信息,数字图像处理是利用计算机对遥感图像进行处理和分析,机器学习是通过训练数据集和算法来自动提取遥感图像中的地物信息。
3. 遥感信息提取的应用:遥感信息提取在土地利用/土地覆盖分类、植被监测、城市扩张分析和环境监测等方面具有广泛的应用。
通过遥感图像的解译和分析,可以了解和监测地表的变化情况,为资源管理和环境保护提供科学依据。
遥感重点知识点总结遥感技术主要包括遥感数据的获取、处理和应用。
遥感数据的获取基于航天器、飞机、无人机等载具。
这些载具利用传感器采集地面反射或发射的电磁波,然后将数据传输到地面站进行处理。
遥感数据处理包括数据预处理、数据处理和数据分析。
数据预处理主要是对原始数据进行校正和增强,以消除噪声和提高数据质量。
数据处理包括特征提取、分类和变化检测等工作。
数据分析则是根据具体应用需要进行图像解译和信息提取。
遥感数据的应用包括环境监测、资源勘探、城市规划和农业生产等方面。
遥感数据的处理和分析是遥感技术中的重要环节。
遥感数据分析主要包括图像解译和信息提取两个方面。
图像解译是指根据遥感图像的光谱、形状和纹理特征,对地物进行分类和识别。
信息提取则是从遥感图像中提取各种地物信息,如土地利用、植被覆盖、地表温度等。
遥感数据的处理和分析需要借助于遥感图像的光谱信息、空间信息和时间信息,以及相关的数字图像处理和遥感技术的方法和算法。
遥感技术的应用领域非常广泛,包括环境监测、资源开发、城市规划、农业生产等方面。
在环境监测方面,遥感技术可以用来监测大气污染、水体污染、土壤侵蚀等环境问题,为环境保护和管理提供数据支持。
在资源开发方面,遥感技术可以用来勘察矿产资源、水资源、土地资源等,为资源开发和利用提供信息支持。
在城市规划方面,遥感技术可以用来监测建设用地、交通道路、绿地覆盖等城市空间信息,为城市规划和管理提供数据支持。
在农业生产方面,遥感技术可以用来监测农田作物生长状况、土壤湿度、水资源利用情况等,为农业生产和管理提供数据支持。
遥感数据的获取是遥感技术中的重要环节。
遥感数据的获取主要是通过航天器、飞机、无人机等载具,采用不同的传感器对地面进行观测。
遥感数据的获取是遥感技术的基础,对于遥感数据的质量和稳定性具有重要影响。
随着遥感技术的发展,遥感数据的获取方式也在不断地发生变化和创新,传统的航天器、飞机观测方法已经不能满足当前遥感数据获取的需求,无人机、高分卫星等新兴数据获取方式正逐渐引起人们的关注和研究。
1、摇感的概念:不接触目标的,通过接受目标的电磁波信号,进行分析,得出待测目标的特性和运动情况的一门综合性探测技术。
主动、被动。
2、遥感数据的特点大面积、实时、同步、存在局限:可以到达人到不了的地方,但是需要应证。
3、遥感平台的分类:a)工作平台:地面遥感、航空遥感(气球、飞机)、航天遥感(人造卫星、飞船、空间站、火箭);b)根据记录方式层面区分:成像遥感、非成像遥感;c)根据应用领域区分:环境遥感、大气遥感、资源遥感、海洋遥感、地质遥感、农业遥感、林业遥感等;d)按传感器的探测范围波段分为:紫外遥感(探测波段在0.05~0.38微米)、可见光遥感(探测波段在0.38~0.76微米)、红外遥感(0.76~1000微米)、微波遥感(1毫米~1米)、多波段遥感;e)按工作方式分为:主动遥感、被动遥感。
1、辐照度(I):被辐射物体表面单位面积上的辐射能量。
2、辐射出射度(M):辐射源表面单位面积上的辐射能量。
3、辐射亮度(L):沿辐射方向上单位投影面积上、单位立体角内的辐射通量。
4、朗伯源、面:辐射亮度和角度无关的物体、面。
5、黑体:没有反射的物体。
6、灰体:没有显著的选择吸收,吸收系数介于1-2。
7、选择辐射体:吸收系数会随着波长变化的物体。
8、太阳常数:不受大气影响,在一个天文单位内,垂直于太阳辐射方向上,单位面积单位时间黑体吸收的太阳辐射能量。
9、夫琅和费吸收线:用高分辨率的光谱仪观察到太阳连续光谱上许多离散的暗谱线。
10、光学厚度:吸收系数沿路径的积分。
11、大气窗口:通过大气,透射率较高的波段。
12、双向反射分布函数:反射亮度随入射方向变化产生的函数(BRFD)。
13、双向发射比因子:反射亮度和朗伯面辐射亮度之比。
14、大气的结构:随着距地面的高度不同,大气层的物理和化学性质有很大的变化。
按气温的垂直变化特点,可将大气层自下而上分为对流层、平流层、中间层(上界为85km左右)、热成层(上界为800km左右)和散逸层(没有明显的上界)a)平流层:位于对流层之上,其上界伸展至约55km处。
在平流层的上层,即30~35km以上,温度随高度升高而升高。
在30~35km以下,温度随高度的增加而变化不大,气温趋于稳定,故该亚层又称为同温层。
平流层的特点是空气气流以水平运动为主。
在高约15~35km处有厚约20km的臭氧层,其分布有季节性变动。
臭氧层能吸收太阳的短波紫外线和宇宙射线,使地球上的生物免受这些射线的危害,能够生存繁衍。
b)中间层:从平流层顶至85km处的范围称为中间层。
该层的气温随高度的增加而迅速降低。
因此,该层也存在明显的空气垂直对流运动。
c)热成层:位于85~800km的高度之间。
该层的气体在宇宙射线作用下处于电离状态。
电离后的氧能强烈吸收太阳的短波辐射,使空气迅速升温,因而该层的气温随高度的增加而增加。
该层能反射无线电波,对于无线电通讯有重要意义。
d)逸散层:800km以上的区域统称为逸散层,也称为外层大气。
该层大气稀薄,气温高,分子运动速度快,地球对气体分子的吸引力小,因此气体及微粒可飞出地球引力场进入太空.15、大气散射:a):瑞利散射:粒子直径比波长小得多时发生的散射。
主要是大气中的原子、分子,如氮气、二氧化碳、氧气和臭氧。
b)米氏散射:粒子直径与波长相当时得散射。
主要有大气中的微粒,如烟、尘埃、小水滴及气溶胶。
c)无选择性:粒子直径比波长大得多时发生的散射。
散射强度与波长无关。
16、电磁波性质并按频率排列电磁波谱:电磁转化,和光的性质类似。
频率由高到底低排列:r射线、X射线、紫外线、可见光、红外线、无线电。
17、基尔霍夫定律:热平衡状态下物体吸收和辐射能量相同。
18、黑体辐射定律:黑体总辐射量和温度四次方成正比,温度越高最强辐射波长向波长短的方向移动。
19、微波可以穿透云层的原因:微波波长较长,大气对其散射强度很弱,可视为几乎不受影响,故微波可以穿透云层并保持其原有的特性。
20、太阳辐射传播到地球表面被传感器接受的整个过程:太阳辐射经过大气时被大气吸收,散射、折射到达地表后,受地表反射、吸收再次进入大气之后又受大气的吸收散射、折射进入传感器。
I.遥感平台及其特点:航天平台(高度在150km之上)、航空平台(低中高飞机,飞艇气球在百米和十几千米)、地面平台(车船塔搭载,在0-50米之间)II.卫星轨道:A.赤道轨道:轨道平面和赤道平面相重合;B.地球同步轨道:赤道轨道方向、周期和地球相对静止。
最近发射的“胖五“。
C.极地轨道:可观察到地球上人任意一点,每天经过同一点地方时不变,一天经过两次极点。
如风云四号D.太阳同步轨道:轨道平面和太阳保持固定的取向。
在同一时刻经过同一点。
长征系列。
III. 1.气象卫星:(风云系列)A.短周期重复,约0.5h/d。
极地约0.5-1次/d。
B.成像面积大,有利于获取宏观同步信息C.资料来源连续、实时性强、成本低。
2.陆地卫星:(东方红系列)A.工作波谱宽,紫外到红外都有应用,各波段数据容易配准。
B.具有较高时空分辨率,分辨率可达0.61m。
C.成像宏观综合概括性强,信息丰富,动态监测。
3.海洋卫星:(海洋系列)A.需要高空空间的平台以实现大面积同步覆盖的观测B.微波不易受天气因素影响,且可以较好地获得海水温度、盐度和海洋表面粗糙度等信息。
C.海洋卫星全天候全天时探测,卫星地面覆盖周期短。
D.对半球乃至全球的探测能力强;不受地理位置、天气和人为条件的限制。
IV.中心投影和非中心投影的区别:垂直投影图像大小与投影距离无关,并有统一的比例尺。
中心投影则受投影距离影响,像片比例尺与平台高度H和焦距f有关;当投影面倾斜时,垂直投影的影像像点相对位置保持不变。
中心投影的像片上,像点相对位置和形状不再保持原来的样子;垂直投影时,随地面起伏变化,相对位置不变。
中心投影时,地面起伏越大,像上投影点水平位置的位移量就越大,产生投影误差。
V.反差系数,反差:胶片的明部和暗部的密度差;负面影像和景色亮度反差之比。
VI.摄影成像和扫描成像区别:VII.微波遥感的特点:全天候、全天时,有天特殊地物波谱,有一定的穿透能力。
VIII.雷达:无线电测距和定位。
测距不成像。
IX.侧视雷达:天线和遥感平台成一定角度安装。
成像,高距离分辨率,方位分辨率不高。
X.合成孔径雷达:用多个小孔径雷达代替大孔径进行观察。
成像,距离、方位空间分辨率都高。
XI.侧视雷达的距离分辨率:脉冲宽度的一半。
方向分辨率:波长与孔径的比值乘以距离。
XII.合成孔径:孔径越小,基线越长的空间分辨率越高。
XIII.参数A.空间分辨率:是指遥感图像上能够详细区分的最小单元的尺寸或大小,是用来表征影像分辨地面目标细节的指标。
B.波谱分辨率:是指传感器在接收目标辐射的波谱时能分辨的最小波长间隔。
C.辐射分辨率:是指传感器区分地物辐射能量细微变化的能力,即传感器的灵敏度。
D.时间分辨率:是指在同一区域进行的相邻两次遥感观测的最小时间间隔。
XIV.1.明度:光强,灰度值。
2.色调:色彩彼此分开的特性;3.饱和度:彩色的纯洁程度。
4.互补色:混合得到白色。
5.三原色:任意两个混合不能得到另一个,但是三个混合可以得到其他所有颜色。
6.三补色:三原色的补色,黄品红青。
7.辐射畸变:辐射强度受到其他因素的影响改变的量。
原因有两个:传感器本身,大气对辐射的影响。
8.辐射校正:A.大气粗矫正:1.直方图最小值去除法:2.回归分析法:已知一个波段存在大气程辐射,需要找到其他波段的程辐射,通过回归分析的方法找到截距。
9.几何校正:像元大小和位置与实际不符时,就是需要几何校正。
10.K-L变化:将多维的信号通过协方差矩阵降维进行正交化处理A.去相关性,能量集中,计算简单,最佳特性。
11.K-T变换:主成分分析。
A.应用:农作物种类分析,水稻种植面积提取。
12.信息复合:将多种遥感平台,多时相遥感数据之间以及遥感数据和非遥感数据的信息组合匹配技术。
遥感数据和非遥感数据的复合。
多源信息复合实现了数据的优势互补,也实现了遥感数据和地理数据的有机结合。
不仅提高了目视解译的效果,更重要的是在定量分析中提高了精度,扩大了遥感数据的应用面。
13.图像直方图:图像不同灰度值的像元百分比。
14.简述常用的颜色立体:HLS代表色调,明度和饱和度。
中心轴线是亮度值由下往上增,垂直于轴线的水平线表示饱和度,围绕轴线的圈表示不同的颜色。
15.引起遥感图像的几何畸变的原因:遥感平台位置和运动状态,地表起伏的影响,地表曲率的影响,大气折射的影响。
16.遥感图像几何校正的主要思路和步骤:将矫正前行列整齐的等间距但对地不相等的像元点,矫正为像元行列和对应地面大小也相等。
A.找到变换前和变换后图像坐标的关系——计算每一点的亮度值——建立两图像像元的对应关系17.地面控制点:参考点。
如何选取:以配准对象为依据,选取图像上易分辨且较精细的特征点,特征变化大的地区应多一些,边缘部分要选取,满幅均匀选取。
数目越多越好至少是未知数的四倍。
18.图像增强:将图像按视觉需要进行调整;对比度变化,空间滤波,均值滤波,中值滤波。
I.遥感图像解译:是从遥感图像上获取目标地物信息的过程。
目视解译和计算机解译。
II.遥感图像识别的目标地物特征:电磁辐射在遥感图像的典型反应,包括色,形,位。
A.色:目标在遥感图像上的颜色,包括色调、颜色和阴影。
B.形:目标地物在遥感图像上的形状,包括形状纹理大小图形。
C.位:目标在遥感图像上的空间位置,包括地物分布的空间位置和相关布局。
III.目视解译的主要方法和基本步骤:A.直接判读法、对比分析法、信息复合法、综合推理法、地理相关分析法。
B.目视解译准备阶段、初步解译和判读区野外考察、室内详细判读、野外验证和补判、目视解译成果的转绘与制图。
1.像素的空间特征(地理位置)和属性特征(亮度特征):2.遥感图像格式:a)BSQ:按波段顺序依次排列的数据格式。
b)BIP:按像素按波段排列的数据格式。
c)BIL:逐行按波段次序排列的格式。
3.监督分类:有训练样本的分类方法。
4.非监督分类:无训练样本的分类方法。
5.动态聚类:根据初始的粗糙图像分类,根据一定的原则在类别间从新组合直到分类比较合理。
6.ISODATA:迭代自组织数据分析技术:有一个阈值,大于阈值分裂,小于阈值合并到其他类。
7.专家系统:把某一特定领域的专家知识和经验形式转化后输入到计算机中,由计算机模仿专家思考问题和解决问题,代替专家解决专业问题的技术系统。
8.监督、非监督分类的步骤:选取特定区域的遥感图像、根据研究区域、收集和分析地面参考信息和有关数据、选取合适的分类方法、找出代表类别的特征、选取代表性的训练样本采样并测定其特征、对遥感图像中的各像素进行分类、分类精度检查、对分析结果的统计检验。