高数第五版答案(同济)12-7
- 格式:doc
- 大小:194.00 KB
- 文档页数:15
习题7-11. 设u =a −b +2c , v =−a +3b −c . 试用a 、b 、c 表示2u −3v .解 2u −3v =2(a −b +2c )−3(−a +3b −c )=2a −2b +4c +3a −9b +3c =5a −11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证明 ; ,而, ,所以.这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把ΔABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以、表示向量、、A3、A 4.解 ,,,.4. 已知两点M 1(0, 1, 2)和M 2(1, −1, 0). 试用坐标表示式表示向量及.解 , .5. 求平行于向量a =(6, 7, −6)的单位向量.解,平行于向量a =(6, 7, −6)的单位向量为 或 . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限? A (1, −2, 3); B (2, 3, −4); C (2, −3, −4); D (−2, −3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, −1, 0).解 在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a , b , c ); 点(a , b , c )关于zOx 面的对称点为(a , −b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , −b , −c ); 点(a , b , c )关于y 轴的对称点为(−a , b , −c ); 点(a , b , c )关于z 轴的对称点为(−a , −b , c ).(3)点(a , b , c )关于坐标原点的对称点为(−a , −b , −c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上,点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标. 解 因为底面的对角线的长为 , 所以立方体各顶点的坐标分别为,,,,, , , . 12. 求点M (4, −3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, −3, 5)与点(4, 0, 0)之间的距离, 即.点M 到y 轴的距离就是点(4, −3, 5)与点(0, −3, 0)之间的距离, 即.点M 到z 轴的距离就是点(4, −3, 5)与点(0, 0, 5)之间的距离, 即.13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, −2, −2)和C (0, 5, 1)等距离的点. 解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则,,.由题意,有,即解之得y=1, z=−2, 故所求点为(0, 1, −2).14. 试证明以三点A(4, 1, 9)、B(10, −1, 6)、C(2, 4, 3)为顶点的三角形是等腰三角直角三角形.解因为,,,所以, .因此ΔABC是等腰直角三角形.15. 设已知两点和M(3, 0, 2). 计算向量的模、方向余弦和方向角.2解;;, , ;, , .16. 设向量的方向余弦分别满足(1)cosα=0; (2)cosβ=1; (3)cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?解(1)当cosα=0时,向量垂直于x轴,或者说是平行于yOz面.(2)当cosβ=1时,向量的方向与y轴的正向一致,垂直于zOx面.(3)当cosα=cosβ=0时,向量垂直于x轴和y轴,平行于z轴,垂直于xOy面.17. 设向量r的模是4, 它与轴u的夹角是60°, 求r在轴u上的投影.解.18. 一向量的终点在点B(2, −1, 7), 它在x轴、y轴和z轴上的投影依次为4, −4, 7. 求这向量的起点A的坐标.解设点A的坐标为(x, y, z). 由已知得,解得x =−2, y =3, z =0. 点A 的坐标为A (−2, 3, 0).19. 设m =3i +5j +8k , n =2i −4j −7k 和p =5i +j −4k . 求向量a =4m +3n −p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n −p =4(3i +5j +8k )+3(2i −4j −7k )−(5i +j −4k )=13i +7j +15k , 所以a =4m +3n −p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题7−21. 设a =3i −j −2k , b =i +2j −k , 求(1)a ⋅b 及a ×b ; (2)(−2a )⋅3b 及a ×2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3×1+(−1)×2+(−2)×(−1)=3,. (2)(−2a )⋅3b =−6a ⋅b = −6×3=−18, a ×2b =2(a ×b )=2(5i +j +7k )=10i +2j +14k .(3) .2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a . 解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是.3. 已知M 1(1, −1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与、同时垂直的单位向量.解 , .,,为所求向量.4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, −100×9. 8)=(0, 0, −980), .W =F ⋅S =(0, 0, −980)⋅(−2, 3, −6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ1的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为 x 1|F 1|⋅sin θ1−x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影.解 . 7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ), λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0, 即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直. 8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则, .因为,所以, ∠C =90°.9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c ); (3)(a ×b )⋅c . 解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k . (2)a +b =3i −4j +4k , b +c =2i −3j +3k ,.(3) , (a ×b )⋅c =−8×1+(−5)×(−2)+1×0=2.10. 已知, , 求ΔOAB 的面积.解 根据向量积的几何意义, 表示以和为邻边的平行四边形的面积, 于是ΔOAB 的面积为因为, ,所以三角形ΔOAB 的面积为. 12. 试用向量证明不等式:,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有,于是,其中当=1时, 即a 与b 平行是等号成立.习题7−31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程. 解 设动点为M (x , y , z ), 依题意有(x −2)2+(y −3)2+(z −1)2=(x −4)2+(y −5)2+(z −6)2, 即 4x +4y +10z −63=0.2. 建立以点(1, 3, −2)为球心, 且通过坐标原点的球面方程. 解 球的半径 ,球面方程为(x −1)2+(y −3)2+(z +2)2=14, 即 x 2+y 2+z 2−2x −6y +4z =0.3. 方程x 2+y 2+z 2−2x +4y +2z =0表示什么曲面? 解 由已知方程得(x 2−2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即,所以此方程表示以(1, −2, −1)为球心, 以 为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有,化简整理得,它表示以为球心, 以为半径的球面.5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2−9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为 4x 2−9y 2−9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为 4x 2+4z 2−9y 2=36.8. 画出下列方程所表示的曲面: (1) ;(2) ;(3) ;(4)y 2−z =0;(1)x =2; 解在平面解张平行于yOz 面的平面. (2)y =x +1; 解 在平面解间解析几何中,y =x +1表示一张平行于z 轴的平面. (3)x 2+y 2=4; 解 在平面解析x 2+y 2=4表示母线平行于z 轴, 准线为x 2+y 2=4的圆柱面. (4)x 2−y 2=1. 解 在平面解析于z 轴的双曲面. 10. 说明下列 (1)1222=++zyx ;19422=+zx 绕x 轴旋转一周而形122=+−zy ;解线142=+−zy 绕y 轴旋转一周而形 z 1 面上的双曲线x 2−y 2=1x 2−z 2=1绕x 轴旋转一周(4)(z −a )2=x 2+y 2. 解 这是zOx 面上的曲线(z − (z −a )2=y 2绕z 轴旋转一周 11. 画出下列方程所表示的曲面: (1)4x 2+y 2−z 2=4;习题7−41. 画出下列曲线在第一卦限内的图形:(1)⎧+=15xy ; ⎩⎧22yx22x2x解 由x +z =1得z =1−x 代入x 2+y 2+z 2=9得方程2x 2−2x +y 2=8, 这是母线平球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎧=+−82222yxx .5. 将下解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即 .令 , 则z =3sin t . 故所求参数方程为,, z =3sin t .(2).解 将z =0代入(x −1)2+y 2+(z +1)2=4得(x −1)2+y 2=3. 令 , 则于是所求参数方程为,, z =0.6. 求螺旋线在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为.由第三个方程得代入第一个方程得, 即 ,于是螺旋线在zOx 面上的投影曲线的直角坐标方程为.由第三个方程得代入第二个方程得即 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为.7. 求上半球 与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax .为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax −x 2, 代入半球面方程 , 得(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4.令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题7−51. 求过点(3, 0, −1)且与平面3x −7y +5z −12=0平行的平面方程. 解 所求平面的法线向量为n =(3, −7, 5), 所求平面的方程为 3(x −3)−7(y −0)+5(z +1)=0, 即3x −7y +5z −4=0.2. 求过点M 0(2, 9, −6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解 所求平面的法线向量为n =(2, 9, −6), 所求平面的方程为 2(x −2)+9(y −9)−6(z −6)=0, 即2x +9y −6z −121=0.3. 求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解 n 1=(1, −1, 2)−(1, 1, −1)=(0, −2, 3), n 1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为, 所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点 . (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2. (4);解 是通过z 轴的平面, 它在xOy 面上的投影的斜率为 . (5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x −2z =0;解 x −2z =0是通过y 轴的平面. (7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.5. 求平面2x −2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, −2, 1). 此平面与yOz 面的夹角的余弦为;此平面与zOx面的夹角的余弦为;此平面与xOy面的夹角的余弦为.6. 一平面过点(1, 0, −1)且平行于向量a=(2, 1, 1)和b=(1, −1, 0), 试求这平面方程.解所求平面的法线向量可取为,所求平面的方程为(x−1)+(y−0)−3(z+1)=0, 即x+y−3z−4=0.7. 求三平面x+3y+z=1, 2x−y−z=0, −x+2y+2z=3的交点.解解线性方程组得x=1, y=−1, z=3. 三个平面的交点的坐标为(1, −1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx面且经过点(2, −5, 3);解所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为0⋅(x−2)−5(y+5)+0⋅(z−3)=0, 即y=−5.(2)通过z轴和点(−3, 1, −2);解所求平面可设为Ax+By=0.因为点(−3, 1, −2)在此平面上,所以−3A+B=0,将B=3A代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于x轴且经过两点(4, 0, −2)和(5, 1, 7).解所求平面的法线向量可设为n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,所以向量n1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的,即b+9c=0, b=−9c ,于是n=(0, −9c, c)=−c(0, 9, −1).所求平面的方程为9(y−0)−(z+2)=0, 即9y−z−2=0.9. 求点(1, 2, 1)到平面x+2y+2z−10=0的距离.解点(1, 2, 1)到平面x+2y+2z−10=0的距离为.习题7−61. 求过点(4, −1, 3)且平行于直线 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为.2. 求过两点M 1(3, −2, 1)和M 2(−1, 0, 2)的直线方程.解 所求直线的方向向量为s =(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为.3. 用对称式方程及参数方程表示直线.解 平面x −y +z =1和2x +y +z =4的法线向量为n 1=(1, −1, 1), n 2=(2, 1, 1), 所求直线的方向向量为.在方程组中, 令y =0, 得, 解得x =3, z =−2. 于是点(3, 0, −2)为所求直线上的点.所求直线的对称式方程为; 参数方程为x =3−2t , y =t , z =−2+3t .4. 求过点(2, 0, −3)且与直线垂直的平面方程.解 所求平面的法线向量n 可取为直线的方向向量, 即. 所平面的方程为−16(x −2)+14(y −0)+11(z +3)=0, 即16x −14y −11z −65=0.5. 求直线与直线的夹角的余弦.解 直线与的方向向量分别为, .两直线之间的夹角的余弦为.6. 证明直线与直线平行.解 直线与的方向向量分别为,.因为s 2=−3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y −3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, −3)不平行, 所以两平面相交于一直线,此直线的方向向量可作为所求直线的方向向量s , 即.所求直线的方程为.8. 求过点(3, 1, −2)且通过直线 的平面方程.解 所求平面的法线向量与直线的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1,−2)和(4, −3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, −3, 0)−(3, 1, −2)=(1, −4, 2)也是垂直的. 因此所求平面的法线向量可取为. 所求平面的方程为8(x −3)−9(y −1)−22(z +2)=0, 即8x −9y −22z −59=0.9. 求直线与平面x −y −z +1=0的夹角.解直线的方向向量为,平面x−y−z+1=0的法线向量为n=(1, −1, −1).因为s⋅n=2×1+4×(−1)+(−2)×(−1)=0,所以s⊥n, 从而直线与平面x−y−z+1=0的夹角为0.10. 试确定下列各组中的直线和平面间的关系:(1)和4x−2y−2z=3;解所给直线的方向向量为s=(−2, −7, 3), 所给平面的法线向量为n=(4, −2, −2).因为s⋅n=(−2)×4+(−7)×(−2)+3×(−2)=0, 所以s⊥n, 从而所给直线与所给平面平行.又因为直线上的点(−3, −4, 0)不满足平面方程4x−2y−2z=3, 所以所给直线不在所给平面上.(2)和3x−2y+7z=8;解所给直线的方向向量为s=(3, −2, 7), 所给平面的法线向量为n=(3, −2, 7).因为s=n, 所以所给直线与所给平面是垂直的.(3)和x+y+z=3.解所给直线的方向向量为s=(3, 1, −4), 所给平面的法线向量为n=(1, 1, 1).因为s⋅n=3×1+1×1+(−4)×1=0, 所以s⊥n, 从而所给直线与所给平面平行.又因为直线上的点(2, −2, 3)满足平面方程x+y+z=3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线和平行的平面的方程.解直线的方向向量为,直线的方向向量为.所求平面的法线向量可取为, 所求平面的方程为−(x −1)+(y −2)−(z −1)=0, 即x −y +z =0.12. 求点(−1, 2, 0)在平面x +2y −z +1=0上的投影.解 平面的法线向量为n =(1, 2, −1). 过点(−1, 2, 0)并且垂直于已知平面的直线方程为.将此方程化为参数方程x =−1+t , y =2+2t , z =−t , 代入平面方程x +2y −z +1=0中, 得 (−1+t )+2(2+2t )−(−t )+1=0,解得. 再将代入直线的参数方程, 得,,. 于是点(−1, 2, 0)在平面x +2y −z +1=0上的投影为点.13. 求点P (3, −1, 2)到直线的距离.解 直线的方向向量为. 过点P 且与已知直线垂直的平面的方程为 −3(y +1)−3(z −2)=0, 即y +z −1=0. 解线性方程组,得x =1,,.点P (3, −1, 2)到直线的距离就是点P (3, −1, 2)与点 间的距离, 即.14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离.解 设点M 0到直线L 的距离为d , L 的方向向量, 根据向量积的几何意义, 以和为邻边的平行四边形的面积为,又以和为邻边的平行四边形的面积为.因此, .15. 求直线在平面4x−y+z=1上的投影直线的方程.解过直线的平面束方程为(2+3λ)x+(−4−λ)y+(1−2λ)z−9λ=0.为在平面束中找出与已知平面垂直的平面,令(4 −1, 1)⋅(2+3λ, −4−λ, 1−2λ)=0, 即4⋅(2+3λ)+(−1)⋅(−4−λ)+1⋅(1−2λ)=0.解之得 .将代入平面束方程中,得17x+31y−37z−117=0.故投影直线的方程为.16. 画出下列各曲面所围成的立体图形:(1)x=0, y=0, z=0, x=2, y=1, 3x+4y+2z−12=0;总习题七 1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ]坐标系中, 点M 的坐标为___________, 向量的坐标为___________.解 M (x −x 0, y −y 0, z −z 0), .提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变. (2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的.解 共面.(3)设a =(2, 1, 2), b =(4, −1, 10), c =b −λa , 且a ⊥c , 则λ=____________. 解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b −λa ⋅a =2×4+1×(−1)+2×10−λ(22+12+22)=27−9λ, 所以λ=3. (4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________.解 .提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ×b +b ×c +c ×a |=____________. 解36.提示: c =−(a +b ), a ×b +b ×c +c ×a =a ×b −b ×(a +b )−(a +b )×a =a ×b −b ×a −b ×a =3a ×b , |a ×b +b ×c +c ×a |=3|a ×b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, −3, 7)和点B (5, 7, −5)等距离的点. 解 设所求点为M (0, y , 0), 则有 12+(y +3)2+72=52+(y −7)2+(−5)2,即 (y +3)2=(y −7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知ΔABC 的顶点为A (3,2,−1)、B (5,−4,7)和C (−1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为 . 所求中线的长度为.4. 设ΔABC 的三边、、, 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示、、, 并证明.解 ,,.5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有,所以从而DE //BC , 且 .6. 设|a +b |=|a −b |, a =(3, −5, 8), b =(−1, 1, z ), 求z .解a +b =(2, −4, 8+z ), a −b =(4, −6, 8−z ). 因为|a +b |=|a −b |, 所以,解得z =1.7. 设, |b |=1,, 求向量a +b 与a −b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^b ) ,|a −b |2=(a −b )⋅(a −b )=|a |2+|b |2−2a ⋅b =|a |2+|b |2−2|a |⋅|b |cos(a ,^b ) .设向量a +b 与a −b 的夹角为θ, 则,.8. 设a +3b ⊥7a −5b , a −4b ⊥7a −2b , 求 . 解 因为a +3b ⊥7a −5b , a −4b ⊥7a −2b , 所以 (a +3b )⋅(7a −5b )=0, (a −4b )⋅(7a −2b )=0, 即 7|a |2+16a ⋅b −15|b |2=0, 7|a |2−30a ⋅b +8|b |2=0, 又以上两式可得,于是,.9. 设a =(2, −1, −2), b =(1, 1, z ), 问z 为何值时最小?并求出此最小值.解 .因为当 时, 为单调减函数. 求的最小值也就是求的最大值. 令 , 得z =−4.当z =−4时, , 所以.10. 设|a |=4, |b |=3, , 求以a +2b 和a −3b 为边的平行四边形的面积. 解 (a +2b )×(a −3b )=−3a ×b +2b ×a =5b ×a . 以a +2b 和a −3b 为边的平行四边形的面积为.11. 设a =(2, −3, 1), b =(1, −2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj cr =14, 求r .解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即 2x −3y +z =0, x −2y +3z =0. 又因为Prj cr =14, 所以 , 即2x +y +2z =42. 解线性方程组,得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与 平行, 故可设r =λ(7, 5, 1).又因为Prj cr =14, 所以, r ⋅c =42, 即λ(7×2+5×1+1×2)=42, λ=2, 所以r =(14, 10, 2).12. 设a =(−1, 3, 2), b =(2, −3, −4), c =(−3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c . 证明 向量a 、b 、c 共面的充要条件是(a ×b )⋅c =0. 因为, (a ×b )⋅c =(−6)×(−3)+0×12+(−3)×6=0, 所以向量a 、b 、c 共面. 设c =λa +μb , 则有(−λ+2μ, 3λ−3μ, 2λ−4μ)=(−3, 12, 6), 即有方程组,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, −1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有,或 z 2=(x −1)2+(y +1)2+(z −2)2, 化简得(x −1)2+(y +1)2=4(z −1), 这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴: (1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴. (2);解 旋转曲面的一条母线为xOy 面上的曲线, 旋转轴为y 轴.(3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线 , 旋转轴为z 轴.(4).解 旋转曲面的一条母线为xOy 面上的曲线 , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成 角的平面的方程.解 设所求平面的法线向量为n =(a , b , c )., xOy 面的法线向量为k =(0, 0, 1).按要求有,,即 ,解之得c =3a , . 于是所求的平面的方程为,即 , 或 .16. 设一平面垂直于平面z =0, 并通过从点(1, −1, 1)到直线的垂线, 求此平面方程.解 直线的方向向量为s =(0, 1, −1)×(1, 0, 0)=(0, −1, −1).设点(1, −1, 1)到直线的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(−1, y 0+1, y 0).显然有s ⋅s 1=0, 即−y 0−1−y 0=0,.从而 . 所求平面的法线向量可取为,所求平面的方程为, 即x+2y+1=017. 求过点(−1, 0, 4), 且平行于平面3x−4y+z−10=0, 又与直线相交的直线的方程.解过点(−1, 0, 4), 且平行于平面3x−4y+z−10=0的平面的方程为3(x+1)−4(y−0)+(z−4)=0, 即3x−4y+z−1=0.将直线化为参数方程x=−1+t, y=3+t, z=2t, 代入平面方程3x−4y+z−1=0, 得3(−1+t)−4(3+t)+2t−1=0,解得t=16. 于是平面3x−4y+z−1=0与直线的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s=(15, 19, 32)−(−1, 0, 4)=(16, 19, 28),所求直线的方程为.18. 已知点A(1, 0, 0)及点B(0, 2, 1), 试在z轴上求一点C, 使ΔABC的面积最小.解设所求的点为C(0, 0, z), 则, .因为,所以ΔABC的面积为.令 ,得 ,所求点为 .19. 求曲线在三个坐标面上的投影曲线的方程.解在xOy面上的投影曲线方程为, 即.在zOx面上的投影曲线方程为, 即.在yOz面上的投影曲线方程为, 即.20. 求锥面 与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为, 即,所以, 立体在xOy 面上的投影为.锥面与柱面交线在yOz 面上的投影为, 即 ,所以, 立体在yOz 面上的投影为 .锥面与柱面z 2=2x 与平面y =0的交线为和 , 所以, 立体在zOx 面上的投影为.21. 画出下列各曲面所围立体的图形:(2)抛物柱面x 2=1−z , 平面y =0, z =(3)圆锥yx +=2−x −y。
习题12-41. 求下列微分方程的通解:(1)x e y dxdy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+⎰⋅⎰=-----⎰⎰. (2)xy '+y =x 2+3x +2;解 原方程变为x x y x y 231++=+'. ])23([11C dx e xx e y dx x dx x +⎰⋅++⎰=⎰- ])23([1])23([12C dx x x x C xdx x x x +++=+++=⎰⎰ xC x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ;解 )(cos sin cos C dx e e e y xdx x dx +⎰⋅⎰=⎰-- )()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=---⎰. (4)y '+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰- )2sin (cos ln cos ln C dx e x e x x +⋅=⎰- ⎰+⋅=)cos 1cos sin 2(cos C dx xx x x =cos x (-2cos x +C )=C cos x -2cos 2x .(5)(x 2-1)y '+2xy -cos x =0;解 原方程变形为1cos 1222-=-+'x x y x x y . )1cos (12212C dx e x x e y dx x xdx x x +⎰⋅-⎰=⎰--- )(sin 11])1(1cos [112222C x x C dx x x x x +-=+-⋅--=⎰. (6)23=+ρθρd d ; 解 )2(33C d e e d d +⎰⋅⎰=⎰-θρθθ)2(33C d e e +=⎰-θθθ θθθ33332)32(--+=+=Ce C e e .(7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +⎰⋅⎰=⎰- )4(22C dx e x e x x +⋅=⎰- 2222)2(x x x Ce C e e --+=+=.(8)y ln ydx +(x -ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e ye x dy y y dy y y +⎰⋅⎰=⎰- )ln 1(ln 1C ydy yy +⋅=⎰ y C y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(-+=-x y dxdy x ; 解 原方程变形为2)2(221-=--x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +⎰⋅-⎰=⎰--- ⎰+-⋅--=]21)2(2)[2(2C dx x x x =(x -2)[(x -2)2+C ]=(x -2)3+C (x -2).(10)02)6(2=+-y dxdy x y . 解 原方程变形为y x y dy dx 213-=-. ])21([33C dy e y e x dy dy +⎰⋅-⎰=⎰- )121(33C dy y y y +⋅-=⎰ 32321)21(Cy y C y y +=+=.2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =-, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰- )(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=⎰. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x dx x +⎰⋅⎰=⎰- )cos (1)sin (1C x xC xdx x x x +-=+⋅=⎰. 由y |x =π=1, 得C =π-1, 故所求特解为)cos 1(1x x y --=π. (3)x e x y dx dy cos 5cot =+, 4|-==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +⎰⋅⎰=⎰- )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +-=+⋅=⎰. 由4|-==πx y , 得C =1, 故所求特解为)15(sin 1cos +-=x e x y . (4)83=+y dxdy , y |x =0=2; 解 )8(33C dx e e y dx dx +⎰⋅⎰=⎰- x x x x x Ce C e e C dx e e 3333338)38()8(---+=+=+=⎰. 由y |x =0=2, 得32-=C , 故所求特解为)4(323x e y --=.(5)13232=-+y x x dx dy , y |x =1=0. 解 )1(32323232C dx e e y dx x x dx x x +⎰⋅⎰=⎰---)21()1(1131313C e e x C dx e x e x x x x x +=+=--⎰.由y |x =1=0, 得e C 21-=, 故所求特解为)1(211132--=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y '=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+⎰⎰=⎰⎰-- =e x (-2xe -x -2e -x +C )=Ce x -2x -2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x -x -1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dt dv m21-=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m kdt m k +⋅=+⎰⋅⎰=⎰⎰-- )(22222121C e k m k te k k e t m kt m k t m k +-=-. 由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(212121222k m k e k m k te k k e v t m k t m k t m k +-=- 即 )1(222121t m k e k m k t k k v ---=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知01025sin 20=--i dt di t , 即t i dt di 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(--+-=+⎰⋅⎰=⎰. 因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π-+=+-=--t e e t t i t t (A).6. 设曲dy x x xf dx x yf L ])(2[)(2-+⎰在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).解 因为当x >0时, 所给积分与路径无关, 所以])(2[)]([2x x xf xx yf y -∂∂=∂∂, 即 f (x )=2f (x )+2xf '(x )-2x ,或 1)(21)(=+'x f xx f . 因此 xC x C dx x x C dx e e x f dx x dx x +=+=+⎰⋅⎰=⎰⎰-32)(1)1()(2121. 由f (1)=1可得31=C , 故x x x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy -=+; 解 原方程可变形为x x ydx dy y sin cos 112-=+, 即x x y dx y d cos sin )(11-=---. ])cos sin ([1C dx e x x e y dx dx +⎰⋅-⎰=--⎰x Ce C dx e x x e x x x sin ])sin (cos [-=+-=⎰-, 原方程的通解为x Ce y x sin 1-=. (2)23xy xy dxdy =-; 解 原方程可变形为x y x dxdy y =-1312, 即x xy dx y d -=+--113)(. ])([331C dx e x e y xdx xdx +⎰⋅-⎰=⎰--)(222323C dx xe e x x +-=⎰- 31)31(222232323-=+-=--x x x Ce C e e ,原方程的通解为311223-=-x Ce y . (3)4)21(3131y x y dx dy -=+; 解 原方程可变形为)21(31131134x y dx dy y -=+, 即12)(33-=---x y dx y d . ])12([3C dx e x e y dx dx +⎰⋅-⎰=--⎰x x x Ce x C dx e x e +--=+-=⎰-12])12([, 原方程的通解为1213--=x Ce y x . (4)5xy y dxdy =-; 解 原方程可变形为x ydx dy y =-4511, 即x y dx y d 44)(44-=+--. ])4([444C dx e x e y dx dx +⎰⋅-⎰=⎰-- )4(44C dx xe e x +-=⎰- x Ce x 441-++-=, 原方程的通解为x Ce x y 44411-++-=.(5)xdy -[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x y x dx dy y +=⋅-⋅, 即)ln 1(22)(22x y x dx y d +-=+--. ])ln 1(2[222C dx e x e y dx x dx x +⎰⋅+-⎰=⎰-- ])ln 1(2[12C dx x x x ++-=⎰x x x x C 94ln 322--=,原方程的通解为x x x x C y 94ln 32122--=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy -=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x -=-, 即 dx xdu v f v g v v g 1)]()([)(=-, 积分得 C x du v f v g v v g +=-⎰ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =-, 即1u du dx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =-x +tan(x -C ).(2)11+-=yx dx dy ; 解 令u =x -y , 则原方程化为111+=-udx du , 即dx =-udu . 两边积分得 1221C u x +-=.将u =x +y 代入上式得原方程的通解12)(21C y x x +--=, 即(x -y )2=-2x +C (C =2C 1).(3)xy '+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+-, 即du u u dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e x y 1=.(4)y '=y 2+2(sin x -1)y +sin 2x -2sin x -cos x +1; 解 原方程变形为y '=(y +sin x -1)2-cos x .令u =y +sin x -1, 则原方程化为x u x dx du cos cos 2-=-, 即dx du u =21. 两边积分得 C x u +=-1.将u =y +sin x -1代入上式得原方程的通解C x x y +=-+-1sin 1, 即C x x y +--=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 .解 原方程变形为)1()1(22y x xy x xy y dx dy +++-=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++-=-, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+--=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+--=+, 即 2x 2y 2ln y -2xy -1=Cx 2y 2(C =2C 1).。
GAGGAGAGGAFFFFAFAF习题1271下列函数组在其定义区间内哪些是线性无关的?(1)x x2解 因为x xx =2不恒为常数 所以xx 2是线性无关的(2)x2x解 因为22=xx 所以x 2x 是线性相关的(3)e2x3e2x解 因为332=xxee 所以e 2x3e 2x是线性相关的(4)exex解 因为x x x e ee 2=-不恒为常数 所以exe x是线性无关的(5)cos2x sin2x解 因为x xx 2tan 2cos 2sin =不恒为常数所以cos2xsin2x是线性无关的GAGGAGAGGAFFFFAFAF(6) 2xe 22xxe解 因为x exe x x 2222=不恒为常数 所以2xe 22x xe 是线性无关的(7)sin2x cos x ×sin x解 因为2sin cos 2sin =xx x 所以sin2xcos x ×sin x 是线性相关的(8)e xcos2x e xsin2x解 因为x xe x e x x 2tan 2cos 2sin =不恒为常数所以e xcos2xe x sin2x 是线性无关的(9)ln xx ln x解 因为x xx x =ln ln 不恒为常数 所以ln xx ln x 是线性无关的(10)eaxe bx(ab )GAGGAGAGGAFFFFAFAF解 因为x a b ax bx e ee )(-=不恒为常数 所以eaxe bx是线性无关的2验证y 1cos x 及y 2sin x 都是方程y 2y 0的解 并写GAGGAGAGGAFFFFAFAF出该方程的通解解 因为 y 12y 12cos x 2cos x 0 y 22y 22sinx2sinx 0并且x y y ωcot 21=不恒为常数 所以y 1cos x 与y 2sin x是方程的线性无关解从而方程的通解为y C 1cos x C 2sin x提示 y 1 sin x y 12cos xy 2cos x y 12sin x3验证21xe y =及22xxe y =都是方程y 4xy (4x22)y 0的解并写出该方程的通解GAGGAGAGGAFFFFAFAF解 因为)24(2442)24(42222221211=⋅-+⋅-+=-+'-''x x x xe x xe x e x e y x y x y)24()2(446)24(4222222232222=⋅-++⋅-+=-+'-''x x x x x xe x e x e x e x xe y x y x y并且x y y =12不恒为常数所以21x e y =与222x xe y =是方程的线性无关解从而方程的通解为22221x x xe C e C y +=提示221xxe y =' 222142xxe x e y +=''22222xx e x e y +=' 223246xx e x xe y +=''4 验证(1)x x x e e C e C y 5221121++=(C 1、C 2是任意常数)是方程 y 3y2ye 5x的通解GAGGAGAGGAFFFFAFAF解 令y 1e x y 2e 2x xe y 5121*= 因为y 13y 12y 1e x 3e x 2e x 0y 23y 22y 24e2x3(2e2x2e2x且xe y y =12不恒为常数 所以y 1与y 2是齐次方程y 3y2y 0的线性无关解从而YC 1e x C 2e 2x 是齐次方程的通解又因为xx x x e e e e y y y 5555121212531225*2*3*=⋅+⋅-=+'-''所以y *是方程y3y 2y e 5x 的特解因此x x x e e C e C y 5221121++=是方程y 3y2ye 5x 的通解(2))sin cos 4(3213sin 3cos 21x x x x C x C y +++=(C 1、C 2是任意常 数)是方程y 9y x cos x 的通解解 令y 1cos3xy 2sin3x)sin cos 4(321*x x x y +=因GAGGAGAGGAFFFFAFAF为y 19y 19cos3x 9cos3x 0y 29y 29sin3x9sin3x且x y y 3tan 12=不恒为常数 所以y 1与y 2是齐次方程y 9y0的线 性无关解从而YC 1e x C 2e 2x 是齐次方程的通解又因为 x x x x x x x x y y cos )sin cos 4(3219)cos 4sin 9(321*9*=+⋅+--=+''所以y *是方程y 9y x cos x 的特解因此)sin cos 4(3213sin 3cos 21x x x x C x C y +++=是方程y9y x cos x的通解(3)y C 1x 2C 2x 2ln x (C 1、C 2是任意常数)是方程x2y3xy4y0GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF的通解解 令y 1x 2 y 2x 2ln x 因为x 2y 13xy 14y 1x 2×23x ×2x 4×x 20x 2y 23xy 24y 2x 2×(2lnx 3)3x ×(2x ln x x )4×x 2ln x 0且x y y ln 12=不恒为常数 所以y 1与y 2是方程x 2y3xy4y0的线性无关解从而yC 1x 2C 2x 2ln x 是方程的通解(4)x x x C x C y ln 92251-+=(C 1、C 2是任意常数)是方程x 2y 3xy 5y x 2ln x的通解解 令y 1x5x y 12= x x y ln 9*2-= 因为GAGGAGAGGAFFFFAFAFx 2y 13xy 15y 1x 2×20x 33x ×5x 45×x 50015)1(32532322222=⋅--⋅-⋅=-'-''xxx xx y y x y x且621x y y =不恒为常数 所以y 1与y 2是齐次方程x 2y3xy5y0的线性无关解 从而xC x C Y 251+=是齐次方程的通解又因为*5*3*2y xy y x -'-''x x x x x x x x x x ln )ln 9(5)9ln 92(3)31ln 92(222=-⋅---⋅---⋅=所以y *是方程x 2y3xy 5y x 2ln x 的特解因此x x x C x C y ln 92251-+=是方程x 2y3xy5yx 2lnx 的通解(5)2)(121xx x e e C e C x y ++=-(C 1、C 2是任意常数)是方程xy2yxy e x的通解GAGGAGAGGAFFFFAFAF解 令xe xy 11= xe xy -=12 2*x e y = 因为GAGGAGAGGAFFFFAFAF0)(2)22(2223111=⋅-+-⋅++-⋅=-'+''x e x x e xe x e x e x e x xy y y x x x x x x x)(2)22(2223222=⋅---⋅+++⋅=-'+''------x e x x e xe x e x e x e x xy y y x xx x x x x且xe y y 221=不恒为常数 所以y 1与y 2是齐次方程xy 2yxy 0的线性无关解 从而)(121x x e C e C xY -+=是齐次方程的通解又因为x x x x e e x e e x xy y xy =⋅-⋅+⋅=-'+''2222**2*所以y *是方程xy 2y xy e x 的特解因此2)(121xx x e e C e C x y ++=-是方程xy 2yxy e x 的通解(6)y C 1e x C 2exC 3cos x C 4sin x x 2(C 1、C 2、C 3、C 4是任意常数)是方程y(4)y x 2的通解 解 令y 1e x y 2exy 3cos x y 4sin xGAGGAGAGGAFFFFAFAFy *x 2 因为y 1(4)y 1e x e x 0 y 2(4)y 2exexy 3(4)y 3cos x cos x 0 y 4(4)y 4sin x sin x 0并且04cos sin sin cos cos sin sin cos ≠=---------xx e e x x e e x x e exx e e x x x x x xx x所以y 1e x y 2e xy 3cos x y 4sin x 是方程y (4)y 0的线性无关解从而YC 1e x C 2exC 3cos x C 4sin x 是方程的通解又因为y *(4)y *0(x 2)x 2所以y *x 2是方程y (4)y x 2的特解因此y C 1e x C 2exC 3cos x C 4sin x x 2是方程y (4)y x2的通解提示GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF令k 1e xk 2e xk 3cos x k 4sin x 0 则 k 1ex k 2exk 3sin x k 4cos x 0 k 1e x k 2e xk 3cos x k 4sin x 0k 1e x k 2exk 3sin x k 4cos x 0上术等式构成的齐次线性方程组的系数行列式为04cos sin sin cos cos sin sin cos ≠=---------xxe e x x e e x x e e xx e e xxx x x x x x所以方程组只有零解 即y 1e x y 2exy 3cos xy 4sin x 线性无关如有侵权请联系告知删除,感谢你们的配合!26829 68CD 棍40863 9F9F 龟39162 98FA 飺40501 9E35 鸵31656 7BA8 箨25851 64FB 擻30763 782B 砫O36482 8E82 躂a22364 575C 坜36929 9041 遁20408 4FB8 侸22279 5707 圇$。