2020年江苏省南通市、泰州市高考数学一模试卷答案解析
- 格式:docx
- 大小:364.54 KB
- 文档页数:21
2019-2020南通、泰州高三第一次调研试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡...相应位置上...... 1.已知集合{1,0,2}A =-,{1,1,2}B =-,则A B =_____. 答案:{1,2}-解:因为{1,0,2}A =-,{1,1,2}B =-,所以{1,2}A B =-2.已知复数z 满足(1)2i z i +=,其中i 是虚数单位,则z 的模为_______.解:22(1)11(1)(1)i i i z i i i i -===+++-,则||z 3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为______. 答案:40 解:3535413851405++++=4.根据如图所示的伪代码,输出的a 的值为______. 答案:11 解:模拟演示:1,1a i == 2,2a i == 4,3a i == 7,4a i ==11,5a i ==此时输出11a =5.已知等差数列{}n a 的公差d 不为0,且1a ,2a ,4a 成等比数列,则1a d的值为____. 答案:1解:由题意得:2214a a a =⋅,则2111()(3)a d a a d +=⋅+,整理得1a d =,所以11a d=6.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为___. 答案:38解:223113()()228P C =⋅⋅=7.在正三棱柱111ABC A B C -中,12AA AB ==,则三棱锥111A BB C -的体积为____.解:112232V =⨯⨯⨯=8.已知函数()sin()3f x x πω=-(0)ω>,若当6x π=时,函数()f x 取得最大值,则ω的最小值为_____. 答案:5 解:由题意得:2632k ωππππ-=+,k z ∈,则512k ω=+,k z ∈,因为0ω>,所以当0k =时ω取得最小值,即5ω=9.已知函数2()(2)(8)f x m x m x =-+-()m R ∈是奇函数,若对于任意的x R ∈,关于x 的不等式2(+1)()f x f a <恒成立,则实数a 的取值范围是____. 答案:1a <10.在平面直角坐标系xOy 中,已知点,A B 分别在双曲线22:1C x y -=的两条渐近线上,且双曲线C 经过线段AB 的中点,若点A 的横坐标为2,则点B 的横坐标为_____. 答案:1211.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如.地震时释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的____倍. 答案:100012.已知ABC ∆的面积为3,且AB AC =,若2CD DA =,则BD 的最小值为_____.13.在平面直角坐标系xOy 中,已知圆221:8C x y +=与圆222:20C x y x y a +++-=相交于,A B 两点,若圆1C 上存在点P ,使得ABP ∆为等腰直角三角形,则实数a 的值组成的集合为____.14.已知函数||1|1|,0(),01x x f x xx x --≥⎧⎪=⎨<⎪-⎩,若关于x 的方程22()2()10f x af x a ++-=有五个不相等的实数根,则实数a 的取值范围是_____.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤15.(本小题满分14分)如图,在三棱锥P ABCBC AC的中⊥,,D E分别为,-中,PA⊥平面ABC,PC AB点.求证:(1)AB∥平面PDE;(2)平面PAB⊥平面PAC.16.(本小题满分14分)在ABC∆中,已知4AC=,3BC=,1 cos4B=-.(1)求sin A的值. (2)求BA BC⋅的值.17.(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆2222:1x yEa b+=(0)a b>>的焦距为4,两条准线间的距离为8,A,B分别为椭圆E的左、右顶点。
2020年江苏省南通市、泰州市高考数学一模试卷题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.已知集合A={-1,0,2},B={-1,1,2},则A∩B=______.2.已知复数z满足(1+i)z=2i,其中i是虚数单位,则z的模为______.3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为______.4.根据如图所示的伪代码,输出的a的值为______.5.已知等差数列{a n}的公差d不为0,且a1,a2,a4成等比数列,则的值为______.6.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为______.7.在正三棱柱ABC-A1B1C1中,AA1=AB=2,则三棱锥A1-BB1C1的体积为______.8.已知函数(ω>0),若当时,函数f(x)取得最大值,则ω的最小值为______.9.已知函数f(x)=(m-2)x2+(m-8)x(m∈R)是奇函数,若对于任意的x∈R,关于x的不等式f(x2+1)<f(a)恒成立,则实数a的取值范围是______.10.在平面直角坐标系xOy中,已知点A,B分别在双曲线C:x2-y2=1的两条渐近线上,且双曲线C经过线段AB的中点.若点A的横坐标为2,则点B的横坐标为______.11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如.地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lg E=4.8+1.5M.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的______倍.12.已知△ABC的面积为3,且AB=AC,若,则BD的最小值为______.13.在平面直角坐标系xOy中,已知圆C1:x2+y2=8与圆C2:x2+y2+2x+y-a=0相交于A、B两点.若圆C1上存在点P,使得△ABP为等腰直角三角形,则实数a的值组成的集合为______.14.已知函数f(x)=,若关于x的方程f2(x)+2af(x)+1-a2=0有五个不相等的实数根,则实数a的取值范围是______.二、解答题(本大题共11小题,共142.0分)15.如图,在三棱锥P-ABC中,PA⊥平面ABC,PC⊥AB,D,E分别为BC,AC的中点.求证:(1)AB∥平面PDE;(2)平面PAB⊥平面PAC.16.在△ABC中,已知AC=4,BC=3,cos B=-.(1)求sin A的值.(2)求的值.17.如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的焦距为4,两条准线间的距离为8,A,B分别为椭圆E的左、右顶点.(1)求椭圆E的标准方程:(2)已知图中四边形ABCD是矩形,且BC=4,点M,N分别在边BC,CD上,AM与BN相交于第一象限内的点P.①若M,N分别是BC,CD的中点,证明:点P在椭圆E上;②若点P在椭圆E上,证明:为定值,并求出该定值.18.在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫作图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a的正三角形ABC绕其中心O逆时针旋转θ到三角形A1B1C1,且顺次连结A,A1,B,B1,C,C1,A,得到六边形徽标AA1BB1CC1.(1)当θ=时,求六边形徽标的面积;(2)求六边形微标的周长的最大值.19.已知数列{a n}满足:a1=1,且当n≥2时,a n=λa n-1+(λ∈R).(1)若λ=1,证明:数列{a2n-1}是等差数列;(2)若λ=2.①设b n=a2n+,求数列{b n}的通项公式;②设C n=,证明:对于任意的p,m∈N*,当p>m,都有C p≥C m.20.设函数(a∈R),其中e为自然对数的底数.(1)当a=0时,求函数f(x)的单调减区间;(2)已知函数f(x)的导函数f'(x)有三个零点x1,x2,x3(x1<x2<x3).①求a的取值范围;②若m1,m2(m1<m2)是函数f(x)的两个零点,证明:x1<m1<x1+1.21.已知a,b∈R,向量是矩阵A=的属于特征值3的一个特征向量.(1)求矩阵A;(2)若点P在矩阵A对应的变换作用下得到点P'(2,2),求点P的坐标.22.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),椭圆C的参数方程为(θ为参数),求椭圆C上的点P到直线l的距离的最大值.23.已知a,b,c都是正实数,且=1.证明:(1)abc≥27;(2)≥1.24.如图,在直四棱柱ABCD-A1B1C1D1中,AD∥BC,AB⊥AD,AB=AD=AA1=2BC=2.(1)求二面角C1-B1C-D1的余弦值;(2)若点P为棱AD的中点,点Q在棱AB上,且直线B1C与平面B1PQ所成角的正弦值为,求AQ的长.25 一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球2n次(n∈N*),且每次取1只球.(1)当n=3时,求恰好取到3次红球的概率;(2)随机变量X表示2n次取球中取到红球的次数,随机变量,求Y的数学期望(用n表示).2020年江苏省南通市、泰州市高考数学一模试卷答案和解析【答案】1. {-1,2}2.3. 404. 115. 16.7.8. 59. (-∞,1)10.11. 100012.13. {7,8,9}14.15. 证明:(1)∵D,E分别为BC,AC的中点,∴DE是三角形ABC的一条中位线,∴DE∥AB,∵AB不在平面PDE内,DE在平面PDE内,∴AB∥平面PDE;(2)∵PA⊥平面ABC,AB在平面ABC内,∴PA⊥AB,又PC⊥AB,PA∩PC=P,且PA,PC都在平面PAC内,∴AB⊥平面PAC,∵AB在平面PAB内,∴平面PAB⊥平面PAC.16. 解:(1)如图,∵,∴,又AC=4,BC=3,∴根据正弦定理得,,解得;(2)∵,∴,∴cos C=cos[π-(A+B)]=-cos(A+B)=sin A sin B-cos A cos B=,∴===.17. 解:(1)设椭圆的E的焦距为2c,则由题意,得,解得,所以b2=a2-c2=4,所以椭圆E的标准方程为;(2)①证明:由已知,得M(2,2),N(0,4),B(2,0),直线AM的方程为,直线BN的方程为,联立,解得,即P(,),因为,所以点P在椭圆上;②解法一:设P(x0,y0),(x0>0,y0>0),则,,直线AP的方程为,令,得,直线BP的方程,令y=4,得,所以=====.解法二:设直线AP的方程为(k1>0),令,得,设直线BP的方程为(k2<0),令y=4,得,所以==|k1k2|,设P(x0,y0),(x0>0,y0>0),则,所以k1k2=•===,所以=.18. 解:(1)因为正三角形ABC的边长为a,所以∠AOB=120°,且OA=OA1=OB=OB1=OC=OC1=,由旋转图形的性质可知,△A1AC1≌△AA1B≌△B1BA1≌△BB1C≌△C1CB1≌△CC1A,所以∠AA1B=∠A1BB1=∠BB1C=∠B1CC1=∠CC1A=∠C1AA1=120°,在等腰△AOA1中,因为∠AOA1=θ=,所以∠AA1O=,所以∠BA1O=,因此∠A1OB=,依此类推可得,∠BOB1=∠COC1=,∠B1OC=∠C1OA=,所以六边形徽标的面积S=+=3()=3•=,故六边形徽标的面积为.(2)由(1)可知,A1A=B1B=C1C,A1B=B1C=C1A,不妨设A1A=x,A1B=y,则六边形徽标的周长L=3(x+y).在△AA1B中,由余弦定理得,cos∠AA1B=cos120°=所以xx2+y2+xy=a2,变形得(x+y)2-xy=a2①由基本不等式可知,②由①②解得,x+y≤,当且仅当x=y=时取等号所以六边形徽标的周长L=3(x+y)≤3×=故六边形徽标的周长的最大值为.19. 解:(1)当λ=1时,则根据a1=1,a n=a n-1+(n≥2),得,所以a2n+1=a2n-1+1,即a2n+1-a2n-1=1为常数,即数列{a2n-1}是首项为1,公差为1的等差数列;(2)λ=2时,a1=1,且当n≥2时,a n=2a n-1+,①当n≥2时,,所以a2n=4a2n-2+2,则a2n+=4(a2n-2+),又因为b n=a2n+,即有b n=a2n+=4(a2n-2+),而b1=a2+=2a1+=≠0,所以=4是常数,所以数列{b n}时首项为,公比为4的等比数列,则b n的通项公式为b n=•4n-1=•4n(n∈N+);②由①知,a2n=b n-=(4n-1),a2n-1=a2n=(4n-1),则===()-n=,所以C n==[](n∈N+),则C n+1-C n=-=,当n=1时,C2-C1=0,则C2=C1;当n=2时,C3-C2=0,则C3=C2;当n≥3时,C n+1-C n>0,则C n+1>C n,故对于任意的p,m∈N*,当p>m,都有C p≥C m.20. 解:(1)当a=0时,,其定义域为(-∞,0)∪(0,+∞),.令f'(x)<0,则x>1,∴f(x)的单调递减区间为(1,+∞).(2)①由,得,设g(x)=ax3-x+1,则导函数f'(x)有三个零点,即函数g(x)有三个非零的零点.又g′(x)=3ax2-1,若a≤0,则g′(x)=3ax2-1<0,∴g(x)在(-∞,+∞)上是减函数,g(x)至多有1个零点,不符合题意,∴a>0.令g′(x)=0,,则当x∈∪时,g'(x)>0;当x∈,g'(x)<0,∴g(x)在上单调递减,在和上单调递增,∴,即,∴.又g(0)=1>0,∴g(x)在上有且只有1个非零的零点.∵当时,,,且,又函数g(x)的图象是连续不间断的,∴g(x)在和上各有且只有1个非零的零点,∴实数a的取值范围是.②由f(m1)=f(m2)=0,得,设p(x)=ax2-ax-1(a>0),且p(m1)=p(m2)=0,∴.又∵m1<m2,∴m1<0<m2.∴x<m1或x>m2时,p(x)>0;m1<x<m2时,p(x)<0.由①知a>0,x1<0<x2<x3.∵,∴,,∴,,∴x1<m1<x1+1成立.21. 解:(1)由矩阵特征值和特征向量的关系可知:Aα=3α,带入可知:=3,即,解得a=2,b=-1,故矩阵A=.(2)设P为(x,y),因为点P在矩阵A对应的变换作用下得到点P'(2,2),所以,解得x=1,y=0,故P(1,0).22. 解:已知直线l的参数方程(t为参数),转换为直角坐标方程为x+2y+3=0,椭圆C的参数方程为(θ为参数),设椭圆上的点P(2cosθ,sinθ)到直线l 的距离d==,当sin()=1时,.23. 证明:(1)∵a,b,c都是正实数,∴,又∵=1,∴,即abc≥27,得证;(2)∵a,b,c都是正实数,∴,,,由①+②+③得,,∴,得证.24. 解:(1)在直四棱柱ABCD-A1B1C1D1中,∵AA1⊥平面ABCD,AB,AD⊂平面ABCD,∴AB⊥AA1,AD⊥AA1,∵AB⊥AD,∴以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,∵AB=AD=AA1=2BC=2.∴A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),A1(0,0,2),B1(2,0,2),C1(2,1,2),D1(0,2,2),=(-2,2,0),=(0,1,-2),设平面B1CD1的一个法向量=(x,y,z),则,取x=2,则=(2,2,1),∵AB⊥平面B1C1C,∴平面B1CC1的一个法向量=(2,0,0),设二面角C1-B1C-D1的的平面角为α,由图形得锐角,∴二面角C1-B1C-D1的余弦值为:cosα==.(2)设AQ=λ(0≤λ≤2),则Q(λ,0,0),∵点P是AD中点,则P(0,1,0),=(λ,-1,0),=(λ-2,0,-2),设平面B1PQ的法向量=(x,y,z),则,取x=2,得=(2,2λ,λ-2),设直线B1C与平面B1PQ所成角大小为β,∵直线B1C与平面B1PQ所成角的正弦值为,∴sinβ===,解得λ=1或.∴AQ=1.25. 解:(1)当n=3时,从装有5只小球的口袋中有放回地取球6次,共有n=56个基本事件,记“恰好取到3次红球”为事件A,则事件A包含的基本事件个数为m=,∴当n=3时,恰好取到3次红球的概率P(A)==.(2)由题意知随机变量Y的所在可能取值为0,1,3,5,…,2n-1,(n∈N*),则P(Y=2t+1)=•(2i+1)==.(0≤i≤n-1,i∈N),∴E(Y)=0•P(Y=0)+3P(Y=3)+5P(Y=5)+…+(2n-1)P(Y=2n-1)=(+++…+),令x n=+++…+,y n=++,则,x n-y n=(4-1)2n-1=32n-1.∴.∴E(Y)===.【解析】1. 解:∵集合A={-1,0,2},B={-1,1,2},∴A∩B={-1,2}.故答案为:{-1,2}.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2. 解:由(1+i)z=2i,得.则复数z的模为:.故答案为:.把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3. 解:根据题意,5名党员教师的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值=(35+35+41+38+51)=40,故答案为:40根据题意,由平均数的计算公式计算可得答案.本题考查平均数的计算,注意平均数的计算公式即可,属于基础题.4. 解:模拟程序语言的运行过程知,该程序的功能是计算并输出a=1+1+2+3+4=11.故答案为:11.模拟程序语言的运行过程知,该程序的功能是计算并输出a的值.本题考查了利用程序计算并几个连续自然数和的应用问题,是基础题.5. 解:由题意,可知=a1a4,∴(a1+d)2=a1(a1+3d),即+2a1d+d2=+3a1d.化简,得a1=d.∴=1.故答案为:1.本题根据等比中项有=a1a4,然后根据等差数列通项公式代入化简,可得a1与d的关系式,即可得到的值.本题主要考查等差数列和等比数列的基础知识,考查了方程思想的应用和数学运算能力.本题属中档题.6. 解:将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为:P==.故答案为:.将一枚质地均匀的硬币先后抛掷3次,利用n次独立试验中事件A恰好发生k次的概率计算公式能求出恰好出现2次正面向上的概率.本题考查概率的求法,考查n次独立试验中事件A恰好发生k次的概率计算公式等基础知识,考查运算求解能力,是基础题.7. 解:如图所示,由正三棱柱ABC-A1B1C1中,AA1=AB=2,则三棱锥A1-BB1C1的体积==••B1B==.故答案为:.由正三棱柱ABC-A1B1C1中,AA1=AB=2,可得:棱锥A1-BB1C1的体积==••B1B,代入即可得出.本题考查了正三棱柱的性质、三棱锥的体积计算公式、等边三角形的面积计算公式、等积变形,考查了推理能力与计算能力,属于中档题.8. 解:当x=时,f(x)取得最大值,即f()=sin(ω-)=1,即ω-=+2kπ,k∈Z,即ω=12k+5,k∈Z,由于ω>0,所以当k=0时,ω的最小值为5.故答案为:5.由已知可得sin(ω-)=1,利用正弦函数的性质可得ω-=+2kπ,k∈Z,结合ω>0,可求ω的最小值.本题主要考查三角函数的图象和性质,考查了数形结合思想,属于基础题.9. 解:由奇函数的性质可得,f(-x)=-f(x)恒成立,即(m-2)x2-(m-8)x=-(m-2)x2-(m-8)x,故m-2=0即m=2,此时f(x)=-6x单调递减的奇函数,由不等式f(x2+1)<f(a)恒成立,可得x2+1>a恒成立,结合二次函数的性质可知,x2+1≥1,所以a<1.故答案为:(-∞,1)由已知结合奇函数的定义可求m,然后结合不等式的恒成立与最值的相互关系及二次函数的性质可求.本题主要考查了奇函数的定义及单调性奇偶性在不等式恒成立问题中的应用,属于基础试题.10. 解:设点B的横坐标为m,因为双曲线C:x2-y2=1,所以双曲线的渐近线方程为y=±x,不妨设点A在直线y=x上,点B在直线y=-x上.则点A坐标为(2,2),点B坐标为(m,-m),所以线段AB的中点坐标为,因为双曲线C经过线段AB的中点,所以,解得,故答案为:.写出双曲线的渐近线方程,从而得到A和B两点的坐标,再利用中点坐标中式求得线段AB的中点,将其代入双曲线的标准方程,即可得解.本题主要考查了双曲线的渐近线方程和中点坐标公式,属于简单题.11. 解:地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lg E=4.8+1.5M.2008年5月汶川发生里氏8.0级地震,它释放出来的能量满足:lg E1=4.8+1.5×8.0,2019年6月四川长宁发生里氏6.0级地震释放出来能量满足:lg E2=4.8+1.5×6.0.∴lg E1-lg E2=3,解得:=103=1000.故答案为:1000.根据地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lg E=4.8+1.5M.分别计算出:2008年5月汶川发生里氏8.0级地震,它释放出来的能量E1,2019年6月四川长宁发生里氏6.0级地震释放出来能量E2,利用对数运算性质即可得出.本题考查了对数运算性质、转化方法,考查了推理能力与计算能力,属于基础题.12. 解:如图,设AB=AC=x,由,得AD=,设∠BAC=θ(0<θ<π),由余弦定理可得:cosθ=,得,①由△ABC的面积为3,得,即,②联立①②,得,∴,令y=,则y sinθ=5-3cosθ,∴y sinθ+3cosθ=5,即(θ+φ)=5,得sin(θ+φ)=,由,解得y≥4或y≤-4(舍).即,得BD,∴BD的最小值为.故答案为:.由题意画出图形,设AB=AC=x,由,得AD=,设∠BAC=θ(0<θ<π),由余弦定理及△ABC的面积为3得,则,令y=,再由三角函数求最值,即可求得BD的最小值.本题考查平面向量的数量积运算,考查三角形的解法,训练了利用三角函数求最值,是中档题.13. 解:已知圆C1:x2+y2=8与圆C2:x2+y2+2x+y-a=0相交于A、B两点,则AB所在直线的方程为2x+y-a+8=0,若圆C1上存在点P,使得△ABP为等腰直角三角形,分2种情况讨论:①,P为直角顶点,则AB为圆C1的直径,即直线2x+y-a+8=0经过圆C1的圆心C1,必有-a+8=0,解可得a=8;②,A或B为直角顶点,则点C1到直线AB的距离d=r=,则有d==,解可得a=7或9,综合可得:a的取值的集合为{7,8,9};故答案为:{7,8,9}.根据题意,求出AB所在直线的方程,按直角顶点的位置分情况讨论,求出a的值,综合即可得答案.本题考查圆与圆的位置关系,涉及圆的基本性质,属于中档题.14. 解:令f(x)=t,则g(t)=t2+2at+1-a2,作f(x)的图象如下,设g(t)的零点为t1,t2,由图可知,要满足题意,则需,故,解得.故答案为:.令f(x)=t,则g(t)=t2+2at+1-a2,作f(x)的图象,观察图象可知,函数g(t)在(0,1)及(1,+∞)各有一根,由二次函数的根的分布列出不等式组得解.本题考查函数与方程的综合运用,考查数形结合思想,属于中档题.15. (1)由中位线的性质可知DE∥AB,由此即可得证;(2)先由PA⊥平面ABC,可证PA⊥AB,再结合已知PC⊥AB,即可证得AB⊥平面PAC,进而得证.本题考查线面平行及面面垂直的判定,掌握基本的判定定理是解题的关键,属于基础题.16. (1)根据条件可求出,然后根据正弦定理即可求出;(2)可以求出,然后根据cos C=cos[π-(A+B)]即可求出cos C=,从而由进行数量积的运算即可求出答案.本题考查了正弦定理,sin2x+cos2x=1,三角函数的诱导公式,以及向量数量积的运算及计算公式,考查了计算能力,属于中档题.17. (1)根据椭圆的性质列方程组即可求得a和b的值,求得椭圆方程;(2)①求得直线AM和BN的方程,联立,求得P点坐标,由P满足椭圆方程,即可判断P在椭圆E上;②解法一:根据直线的斜率公式及直线的斜率公式分别求得直线AP和BP的方程,求得M和N点坐标,表示出,利用P在椭圆上,即可证明为定值;解法二:设直线AP和BP的方程,同理求得M和N点坐标,根据直线斜率公式即可证明为定值.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的方程及斜率公式的应用,考查定点的证明,考查计算能力,属于中档题.18. (1)由旋转图形的性质可知,图中存在全等三角形,再结合边长和角度的计算以及三角形的正弦面积公式,即可求出六边形徽标的面积;(2)由全等三角形的性质,可知六边形徽标的周长等于3(AA1+BA1),再结合余弦定理和基本不等式的性质,即可得最大值.本题考查了解三角形中的正弦定理和余弦定理的应用,以及利用基本不等式求最值,突破口是找出图形在旋转过程中存在的规律,考查了学生的观察能力和直观想象能力,属于中档题.19. (1)将λ=1代入,则可得到,故a2n+1-a2n-1=1为常数,进而判断为等差数列;(2)λ=2时,a1=1,且当n≥2时,a n=2a n-1+,①有b n=a2n+=4(a2n-2+),所以=4是常数,所以数列{b n}时首项为,公比为4的等比数列,即可求出其通项公式;②C n==[](n∈N+),当n=1时,C2-C1=0,则C2=C1;当n=2时,C3-C2=0,则C3=C2;当n≥3时,C n+1-C n>0,则C n+1>C n,故对于任意的p,m∈N*,当p>m,都有C p≥C m.本题考查等差等比数列的证明,考查数列通项公式的求法,属于难题.20. (1)将a=0代入f(x)中,然后求导,再由f'(x)<0得到f(x)的单调递减区间;(2)①对f'(x)求导,然后构造函数g(x)=ax3-x+1,再根据f'(x)有三个零点x1,x2,x3(x1<x2<x3),得到函数g(x)有三个非零的零点,进一步求出a的范围;②根据m1,m2(m1<m2)是函数f(x)的两个零点,得到f(m1)=f(m2)=0,然后p (x)=ax2-ax-1(a>0),进一步证明x1<m1<x1+1.本题考查了利用导数研究函数的单调性和最值,不等式的证明,考查了转化思想和函数思想,属难题.21. (1)由矩阵特征向量,特征值得关系,可以得到满足的等式,代入可得.(2)直接由矩阵变换,代入等式可求.本题考察矩阵与特征值,特征向量的关系,以及点的变换,属于基础题.22. 首先把参数方程极坐标方程和直角坐标方程之间进行转换,进一步利用点到直线的距离公式的应用和三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23. (1)利用,即可得证;(2)利用基本不等式直接证明即可.本题考查利用基本不等式证明不等式,考查推理论证能力,属于基础题.24. (1)推导出AB⊥AA1,AD⊥AA1,AB⊥AD,以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出二面角C1-B1C-D1的余弦值.(2)设AQ=λ(0≤λ≤2),则Q(λ,0,0),求出平面B1PQ的法向量,利用向向量能求出AQ.本题考查二面角的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.25. (1)当n=3时,从装有5只小球的口袋中有放回地取球6次,共有n=56个基本事件,记“恰好取到3次红球”为事件A,则事件A包含的基本事件个数为m=,由此能求出当n=3时,恰好取到3次红球的概率.(2)由题意知随机变量Y的所在可能取值为0,1,3,5,…,2n-1,(n∈N*),则P (Y=2t+1)=•(2i+1)=.(0≤i≤n-1,i∈N),E(Y)=(+++…+),令x n=+++…+,y n=++,由此求出.从而能求出E(Y).本题考查概率、离散型随机变量的数学期望的求法,考查排列组合、古典概型、二项式定理等基础知识,考查运算求解能力,是中档题.。
2019-2020南通、泰州高三第一次调研试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡...相应位置上...... 1.已知集合{1,0,2}A =-,{1,1,2}B =-,则A B =I _____.2.已知复数z 满足(1)2i z i +=,其中i 是虚数单位,则z 的模为_______.3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为______.4.根据如图所示的伪代码,输出的a 的值为______.5.已知等差数列{}n a 的公差d 不为0,且1a ,2a ,4a 成等比数列,则1a d的值为____.6.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为___.7.在正三棱柱111ABC A B C -中,12AA AB ==,则三棱锥111A BB C -的体积为____.8.已知函数()sin()3f x x πω=-(0)ω>,若当6x π=时,函数()f x 取得最大值,则ω的最小值为_____.9.已知函数2()(2)(8)f x m x m x =-+-()m R ∈是奇函数,若对于任意的x R ∈,关于x 的不等式2(+1)()f x f a <恒成立,则实数a 的取值范围是____.10.在平面直角坐标系xOy 中,已知点,A B 分别在双曲线22:1C x y -=的两条渐近线上,且双曲线C 经过线段AB 的中点,若点A 的横坐标为2,则点B 的横坐标为_____.11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如.地震时释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的____倍.12.已知ABC ∆的面积为3,且AB AC =,若2CD DA =u u u ru u u r,则BD 的最小值为_____.13.在平面直角坐标系xOy 中,已知圆221:8C x y +=与圆222:20C x y x y a +++-=相交于,A B 两点,若圆1C 上存在点P ,使得ABP ∆为等腰直角三角形,则实数a 的值组成的集合为____.14.已知函数||1|1|,0(),01x x f x xx x --≥⎧⎪=⎨<⎪-⎩,若关于x 的方程22()2()10f x af x a ++-=有五个不相等的实数根,则实数a 的取值范围是_____.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)如图,在三棱锥P ABC -中,PA ⊥平面ABC ,PC AB ⊥,,D E 分别为,BC AC 的中点.求证:(1)AB ∥平面PDE ;(2)平面PAB ⊥平面PAC .。
2020年江苏省南通市、泰州市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合{1A =-,0,2},{1B =-,1,2},则A B =I . 2.(5分)已知复数z 满足(1)2i z i +=,其中i 是虚数单位,则z 的模为 .3.(5分)某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为 . 4.(5分)根据如图所示的伪代码,输出的a 的值为 .5.(5分)已知等差数列{}n a 的公差d 不为0,且1a ,2a ,4a 成等比数列,则1a d的值为 . 6.(5分)将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为 . 7.(5分)在正三棱柱111ABC A B C -中,12AA AB ==,则三棱锥111A BB C -的体积为 .8.(5分)已知函数()sin()(0)3f x x πωω=->,若当6x π=时,函数()f x 取得最大值,则ω的最小值为 .9.(5分)已知函数2()(2)(8)()f x m x m x m R =-+-∈是奇函数,若对于任意的x R ∈,关于x 的不等式2(1)f x f +<(a )恒成立,则实数a 的取值范围是 .10.(5分)在平面直角坐标系xOy 中,已知点A ,B 分别在双曲线22:1C x y -=的两条渐近线上,且双曲线C 经过线段AB 的中点.若点A 的横坐标为2,则点B 的横坐标为 . 11.(5分)尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如.地震时释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为4.8 1.5.2008lgE M =+年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的 倍.12.(5分)已知ABC ∆的面积为3,且AB AC =,若2CD DA =u u u r u u u r,则BD 的最小值为 .13.(5分)在平面直角坐标系xOy 中,已知圆221:8C x y +=与圆222:20C x y x y a +++-=相交于A 、B 两点.若圆1C 上存在点P ,使得ABP ∆为等腰直角三角形,则实数a 的值组成的集合为.14.(5分)已知函数||1|1|,0(),01x x f x x x x --⎧⎪=⎨<⎪-⎩…,若关于x 的方程22()2()10f x af x a ++-=有五个不相等的实数根,则实数a 的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤15.(14分)如图,在三棱锥P ABC -中,PA ⊥平面ABC ,PC AB ⊥,D ,E 分别为BC ,AC 的中点.求证:(1)//AB 平面PDE ; (2)平面PAB ⊥平面PAC .16.(14分)在ABC ∆中,已知4AC =,3BC =,1cos 4B =-.(1)求sin A 的值. (2)求BA BC u u u r u u u rg 的值.17.(14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的焦距为4,两条准线间的距离为8,A ,B 分别为椭圆E 的左、右顶点. (1)求椭圆E 的标准方程:(2)已知图中四边形ABCD 是矩形,且4BC =,点M ,N 分别在边BC ,CD 上,AM 与BN 相交于第一象限内的点P .①若M ,N 分别是BC ,CD 的中点,证明:点P 在椭圆E 上; ②若点P 在椭圆E 上,证明:BMCN为定值,并求出该定值.18.(16分)在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫作图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a 的正三角形ABC 绕其中心O 逆时针旋转θ到三角形111A B C ,且2(0,)3πθ∈顺次连结A ,1A ,B ,1B ,C ,1C ,A ,得到六边形徽标111AA BB CC .(1)当6πθ=时,求六边形徽标的面积;(2)求六边形微标的周长的最大值.19.(16分)已知数列{}n a 满足:11a =,且当2n …时,11(1)()2nn n a a R λλ---=+∈.(1)若1λ=,证明:数列21{}n a -是等差数列; (2)若2λ=. ①设223n n b a =+,求数列{}n b 的通项公式; ②设2113nn ini C a n -=∑g ,证明:对于任意的p ,*m N ∈,当p m >,都有p mC C….20.(16分)设函数1()()()x f x ax a e a R x=--∈,其中e 为自然对数的底数. (1)当0a =时,求函数()f x 的单调减区间;(2)已知函数()f x 的导函数()f x '有三个零点1x ,2x ,3123()x x x x <<. ①求a 的取值范围;②若1m ,212()m m m <是函数()f x 的两个零点,证明:1111x m x <<+.【选做题】本题包含21、22、23小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分,解答应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知a ,b R ∈,向量21α⎡⎤=⎢⎥⎣⎦r 是矩阵22a A b ⎡⎤=⎢⎥⎣⎦的属于特征值3的一个特征向量.(1)求矩阵A ;(2)若点P 在矩阵A 对应的变换作用下得到点(2,2)P ',求点P 的坐标. [选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在平面直角坐标系xOy 中,已知直线l的参数方程(2x tt ty ⎧=-⎪⎨=-⎪⎩为参数),椭圆C 的参数方程为2cos (sin x y θθθ=⎧⎨=⎩为参数),求椭圆C 上的点P 到直线l 的距离的最大值.[选修4-5:不等式选讲](本小题满分0分) 23.已知a ,b ,c 都是正实数,且1111a b c++=.证明: (1)27abc …; (2)2221b c a a b c++…. 第24题、第25题,每题10分,共计20分,请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤.24.(10分)如图,在直四棱柱1111ABCD A B C D -中,//AD BC ,AB AD ⊥,122AB AD AA BC ====.(1)求二面角111C B C D --的余弦值;(2)若点P 为棱AD 的中点,点Q 在棱AB 上,且直线1B C 与平面1B PQ所成角的正弦值为,求AQ 的长.25.(10分)一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球2n次(*)n N∈,且每次取1只球.(1)当3n=时,求恰好取到3次红球的概率;(2)随机变量X表示2n次取球中取到红球的次数,随机变量,0,X XYX⎧=⎨⎩为奇数为偶数,求Y的数学期望(用n表示).2020年江苏省南通市、泰州市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合{1A=-,0,2},{1B=-,1,2},则A B=I{1-,2}.【解答】解:Q集合{1A=-,0,2},{1B=-,1,2},{1A B∴=-I,2}.故答案为:{1-,2}.2.(5分)已知复数z满足(1)2i z i+=,其中i是虚数单位,则z的模为2.【解答】解:由(1)2i z i+=,得22(1)11(1)(1)i i iz ii i i-===+++-.则复数z的模为:2.故答案为:2.3.(5分)某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为40.【解答】解:根据题意,5名党员教师的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值1(3535413851)405x=++++=,故答案为:404.(5分)根据如图所示的伪代码,输出的a的值为11.【解答】解:模拟程序语言的运行过程知,该程序的功能是计算并输出1123411a=++++=.故答案为:11.。
南通市2020届高三第一次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,,则▲.【答案】2.已知复数满足,其中是虚数单位,则的模为▲.【答案】3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为,则这5名党员教师学习积分的平均值为▲.【答案】40 a←1 i←14.根据如图所示的伪代码,输出的a的值为▲.While i≤4【答案】11a←a+i i←i+1 End While5.已知等差数列的公差不为0,且成等比数列,Print a 则的值为▲.(第4题)【答案】16.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为▲.【答案】7.在正三棱柱中,,则三棱锥的体积为▲.【答案】8.已知函数.若当时,函数取得最大值,则的最小值为▲.【答案】59.已知函数是奇函数.若对于任意的,关于的不等式恒成立,则实数的取值范围是▲.【答案】10.在平面直角坐标系中,已知点A,B分别在双曲线的两条渐近线上,且双曲线经过线段AB的中点.若点的横坐标为2,则点的横坐标为▲.【答案】11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的▲倍.【答案】100012.已知△ABC的面积为3,且.若,则的最小值为▲.【答案】13.在平面直角坐标系中,已知圆与圆相交于A,B两点.若圆上存在点,使得△ABP为等腰直角三角形,则实数的值组成的集合为▲.【答案】14.已知函数若关于的方程有五个不相等的实数根,则实数的取值范围是▲.【答案】二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)如图,在三棱锥中,平面,,分别为的中点.求证:(1)AB∥平面;(2)平面平面.【证】(1)在中,因为分别为的中点,所以AB∥DE.……3分又因为平面,平面,所以AB∥平面.……6分(2)因为平面,平面,所以.……8分又因为,平面,,所以平面.……11分因为平面,所以平面平面.……14分16.(本小题满分14分)在△ABC中,已知,,.(1)求的值;(2)求的值.【解】(1)在△ABC中,因为,,由,得.……2分又,,由正弦定理,得,……4分所以.……6分(2)(方法一)由余弦定理,得,……8分即,解得或(舍去).……11分所以.……14分(方法二)在△ABC中,由条件得,所以,所以.所以.……8分所以.……10分由正弦定理,得,所以.……12分所以.……14分17.(本小题满分14分)如图,在平面直角坐标系中,椭圆的焦距为,两条准线间的距离为,分别为椭圆的左、右顶点.(1)求椭圆的标准方程;(2)已知图中四边形是矩形,且,点分别在边上,与相交于第一象限内的点.①若分别是的中点,证明:点在椭圆上;②若点在椭圆上,证明:为定值,并求出该定值.【解】(1)设椭圆的焦距为,则由题意,得解得所以.所以椭圆的标准方程为.……3分(2)①由已知,得,,,.直线的方程为,直线的方程为.联立解得即.……6分因为,所以点在椭圆上.……8分②(解法一)设,,则,.直线的方程为,令,得.……10分直线的方程为,令,得.……12分所以.……14分(解法二)设直线的方程为,令,得.设直线的方程为,令,得.……10分而.……12分设,,则,所以,所以.……14分18.(本小题满分16分)在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为的正三角形绕其中心逆时针旋转到三角形,且.顺次连结,得到O 六边形徽标.(1)当时,求六边形徽标的面积;(第18题)(2)求六边形徽标的周长的最大值.【解】连结.在正三角形中,,,,.……2分当正三角形绕中心逆时针旋转到正三角形位置时,有,,,所以≌≌,≌≌,所以,.……4分(1)当时,设六边形徽标的面积为,则……6分.答:当时,六边形徽标的面积为.……9分(2)设六边形徽标的周长为,则……11分,.……13分所以当,即时,取最大值.答:六边形徽标的周长的最大值为.……16分19.(本小题满分16分)已知数列满足:,且当时,.(1)若,证明:数列是等差数列;(2)若.①设,求数列的通项公式;②设,证明:对于任意的,当时,都有.【解】(1)时,由,得……2分所以,即(常数),所以数列是首项为1,公差为1的等差数列.……4分(2)时,,时,.①时,所以.……6分所以.又,所以.……8分又,所以(常数).所以数列是首项为,公比为的等比数列,所以数列的通项公式为.……10分②由①知,,.所以,所以.……12分所以.……14分当时,,所以;当时,,所以;当时,,所以.所以若,则.……16分20.(本小题满分16分)设函数,其中为自然对数的底数.(1)当时,求函数的单调减区间;(2)已知函数的导函数有三个零点,,.①求的取值范围;②若,是函数的两个零点,证明:.【解】(1)时,,其定义域为,.令,得,所以函数的单调减区间为.……3分(2)①,设,则导函数有三个零点,即函数有三个非零的零点.又,若,则,所以在上是减函数,至多有1个零点,不符合题意,所以.……5分令,.列表如下:极大值极小值所以即解得.……8分又,所以在上有且只有1个非零的零点.因为当时,,,,且,又函数的图象是连续不间断的,所以在和上各有且只有1个非零的零点.所以实数的取值范围是.……10分②(证法一)由,得设,且,所以.又因为,所以.所以或时,;时,.由①知,.因为,所以,,所以,.……14分所以成立.……16分(证法二)依题设知:,由①知,设,由①知,所以,在上单调递减.……12分又由,得:,即,所以,又,故,.于是(Ⅰ),即,又,,所以;……14分(Ⅱ),即,又,,故,又,所以,即.所以,得证.……16分21.【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知,向量是矩阵的属于特征值3的一个特征向量.(1)求矩阵;(2)若点在矩阵对应的变换作用下得到点,求点的坐标.【解】(1)因为向量是矩阵的属于特征值3的一个特征向量,所以,即,所以解得所以.……5分(2)设,则,所以解得所以点的坐标为.……10分B.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系中,已知直线的参数方程(t为参数),椭圆C的参数方程为(为参数).求椭圆C上的点到直线的距离的最大值.【解】(方法一)直线的普通方程为.……2分设,则点到直线的距离.……8分当,即()时,.……10分(方法二)直线的普通方程为.椭圆C的普通方程为.……4分设与直线平行的直线方程为,由消,得.令,得.……8分所以直线与椭圆相切.当时,点到直线的距离最大,.……10分C.[选修4-5:不等式选讲](本小题满分10分)已知都是正实数,且.证明:(1);(2).【证】(1)因为都是正实数,所以.又因为,所以,即,得证.……4分(2)因为都是正实数,所以,①,②.③……6分由①+②+③,得,所以,又因为,所以,得证.……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直四棱柱中,,,.(1)求二面角的余弦值;(2)若点为棱的中点,点在棱上,且直线与平面所成角的正弦值为,求的长.【解】在直四棱柱中,(第22题)因为平面,,平面,所以,.又,以为正交基底,建立如图所示的空间直角坐标系.由,得,.……2分(1),,设平面的一个法向量,则即不妨取,则,,所以.……4分因为平面,所以平面的一个法向量为.设二面角的平面角的大小为,根据图形可知,.所以二面角的余弦值为.……6分(2)设,则.又为的中点,则,,.设平面的一个法向量,由得取,则,,所以.……8分设直线与平面所成角的大小为,则,所以或(舍去).所以.……10分23.(本小题满分10分)一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球次,且每次取1只球.(1)当时,求恰好取到3次红球的概率;(2)随机变量表示次取球中取到红球的次数,随机变量求的数学期望(用表示).【解】(1)当时,从装有5只小球的口袋中有放回的取球6次,共有个基本事件.记“恰好取到3次红球”为事件,事件包含基本事件有个.因为上述个基本事件发生的可能性相同,故.答:当时,恰好取到3次红球的概率为.……3分(2)由题意知,随机变量的所有可能取值为.则...……5分所以.……7分令,,则,.,所以.所以.答:的数学期望为.……10分。
江苏省泰州市2019-2020学年第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln f x x =,()()23g x m x n =++,若对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1eC .21eD 【答案】C 【解析】 【分析】对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,因为ln (23)x m x n ≤++,对()0,x ∈+∞恒成立,可得230m +>,令ln (23)y x m x n =-+-,可得1(23)y m x'=-+,结合已知,即可求得答案. 【详解】Q 对任意的()0,x ∈+∞总有()()f x g x ≤恒成立∴ln (23)x m x n ≤++,对()0,x ∈+∞恒成立, ∴230m +>令ln (23)y x m x n =-+-,可得1(23)y m x'=-+ 令0y '=,得123x m =+ 当123x m >+,0y '<当1023x m <<+0y '> ∴123x m =+,max 1ln1023y n m =--≤+,123n m e --+≥ 故1(23)(,)n nm n f m n e ++≥=Q 11(,)n nf m n e+-'=令110n ne+-=,得 1n = ∴当1n >时,(,)0f m n '<当1n <,(,)0f m n '>∴当1n =时,max 21(,)f m n e=故选:C. 【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.2.设等差数列{}n a 的前n 项和为n S ,若31425a a a =+=,,则6S =( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】 根据题意3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,得到答案.【详解】3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,故616159S a d =+=.故选:B . 【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.3.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】化简得到34z i =--,得到答案. 【详解】()117i z i +=-,故()()()()1711768341112i i i iz i i i i -----====--++-,对应点在第三象限. 故选:C . 【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.4.已知向量(1,2),(3,1)a b =-=-r r,则( )A .a r∥b rB .a r⊥b rC .a r∥(a b -rr)D .a r⊥( a b -rr)【答案】D【解析】 【分析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论. 【详解】∵向量a =r(1,﹣2),b =r(3,﹣1),∴a r和b r的坐标对应不成比例,故a r、b r不平行,故排除A ; 显然,a r •b =r3+2≠0,故a r、b r不垂直,故排除B ;∴a b -=rr(﹣2,﹣1),显然,a r和a b -rr的坐标对应不成比例,故a r和a b -rr不平行,故排除C ;∴a r •(a b -r r )=﹣2+2=0,故 a r ⊥(a b -r r ),故D 正确,故选:D. 【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.5.已知向量a r 与a b +r r的夹角为60︒,1a =r ,b =r ,则a b ⋅=r r ( )A .B .0C .0或32-D .32-【答案】B 【解析】 【分析】由数量积的定义表示出向量a r 与a b +r r的夹角为60︒,再由22a a =r r ,22b b =r r 代入表达式中即可求出a b ⋅r r .【详解】由向量a r 与a b +r r的夹角为60︒,得()2cos 60a a b a a b a a b ⋅+=+⋅=+︒r r r r r r r r r,所以21122a ab +⋅==r r r r又1a =r ,b =r ,22a a =r r ,22b b =r r ,所以1112a b +⋅=⨯r r 0a b ⋅=r r .故选:B 【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题. 6.函数sin ln ||2y x x π⎛⎫=-⋅ ⎪⎝⎭图像可能是( )A .B .C .D .【答案】D 【解析】 【分析】先判断函数的奇偶性可排除选项A,C ,当0x +→时,可分析函数值为正,即可判断选项. 【详解】sin ln ||cos ln ||2y x x x x π⎛⎫=-⋅=- ⎪⎝⎭Q ,cos()ln ||cos ln ||x x x x ∴---=-,即函数为偶函数, 故排除选项A,C ,当正数x 越来越小,趋近于0时,cos 0,ln ||0x x -<<,所以函数sin ln ||02y x x π⎛⎫=-⋅> ⎪⎝⎭,故排除选项B,故选:D 【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题. 7.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( ) A .2 B .2iC .4D .4i【答案】A 【解析】 【分析】对复数z 进行乘法运算,并计算得到42z i =+,从而得到虚部为2. 【详解】因为(1)(3)42z i i i =+-=+,所以z 的虚部为2. 【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意21i =-.8.二项式22)nx+的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180 B .90C .45D .360【答案】A 【解析】试题分析:因为22)nx+的展开式中只有第六项的二项式系数最大,所以10n =,551021101022•?()2r r rr r rr T C C x x--+==,令5502r -=,则2r =,23104180T C ==.考点:1.二项式定理;2.组合数的计算.9.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r,120BAC ∠=︒,则||EB =u u u r( )A B .C D 【答案】A 【解析】 【分析】根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可. 【详解】因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r u u u r ,所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u ur u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||EB =u u u r ,故选:A 【点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题. 10.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .1112B .6C .112D .223【答案】D 【解析】 【分析】用列举法,通过循环过程直接得出S 与n 的值,得到8n =时退出循环,即可求得. 【详解】执行程序框图,可得0S =,2n =,满足条件,12S =,4n =,满足条件,113244S =+=,6n =,满足条件,1111124612S =++=,8n =,由题意,此时应该不满足条件,退出循环,输出S 的值为11228123⨯=. 故选D . 【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的S 与n 的值是解题的关键,难度较易.11.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .【答案】D 【解析】 【分析】 根据为奇函数,得到函数关于中心对称,排除,计算排除,得到答案.为奇函数,即,函数关于中心对称,排除.,排除.故选:. 【点睛】本题考查了函数图像的识别,确定函数关于中心对称是解题的关键.12.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力. 二、填空题:本题共4小题,每小题5分,共20分。
2020年江苏省南通市、泰州市高考数学一模试卷一、填空题(共14题,共70分)1.已知集合A={﹣1,0,2},B={﹣1,1,2},则A∩B={﹣1,2}.2.已知复数z满足(1+i)z=2i,其中i是虚数单位,则z的模为.3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为40.4.根据如图所示的伪代码,输出的a的值为11.5.已知等差数列{a n}的公差d不为0,且a1,a2,a4成等比数列,则的值为1.6.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为.7.在正三棱柱ABC﹣A1B1C1中,AA1=AB=2,则三棱锥A1﹣BB1C1的体积为.8.已知函数(ω>0),若当时,函数f(x)取得最大值,则ω的最小值为5.9.已知函数f(x)=(m﹣2)x2+(m﹣8)x(m∈R)是奇函数,若对于任意的x∈R,关于x的不等式f(x2+1)<f(a)恒成立,则实数a的取值范围是(﹣∞,1).10.在平面直角坐标系xOy中,已知点A,B分别在双曲线C:x2﹣y2=1的两条渐近线上,且双曲线C经过线段AB的中点.若点A的横坐标为2,则点B的横坐标为.x x11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如.地震时释放出的能量 E (单位:焦耳)与地震里氏震级 M 之间的关系为 lgE =4.8+1.5M .2008年 5 月汶川发生里氏 8.0 级地震,它释放出来的能量是 2019 年 6 月四川长宁发生里氏 6.0级地震释放出来能量的 1000 倍.△12.已知 ABC 的面积为 3,且 AB =AC ,若,则 BD 的最小值为 .13.在平面直角坐标系 xOy 中,已知圆 C 1: 2+y 2=8 与圆 C 2: 2+y 2+2x +y ﹣a =0 相交于 A 、B 两点.若圆C 1 上存在点 P ,使得△ABP 为等腰直角三角形,则实数 a 的值组成的集合为 {8,8﹣2,8+2 } .14.已知函数 f (x )=,若关于 x 的方程 f 2(x )+2af (x )+1﹣a 2=0有五个不相等的实数根,则实数 a 的取值范围是 .二、解答题(共 6 题,共 90 分)15.如图,在三棱锥 P ﹣ABC 中,P A ⊥平面 ABC ,PC ⊥AB ,D ,E 分别为 BC ,AC 的中点.求证:(1)AB ∥平面 PDE ;(2)平面 P AB ⊥平面 P AC .△16.在 ABC 中,已知 AC =4,BC =3,cos B =﹣ .(1)求 sin A 的值.(2)求的值.17.如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的焦距为4,两条准线间的距离为8,A,B分别为椭圆E的左、右顶点.(1)求椭圆E的标准方程:(2)已知图中四边形ABCD是矩形,且BC=4,点M,N分别在边BC,CD上,AM与BN相交于第一象限内的点P.①若M,N分别是BC,CD的中点,证明:点P在椭圆E上;②若点P在椭圆E上,证明:为定值,并求出该定值.18.在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫作图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a的正三角形ABC绕其中心O逆时针旋转θ到三角形A1B1C1,且C1,A,得到六边形徽标AA1BB1CC1.(1)当θ=时,求六边形徽标的面积;(2)求六边形微标的周长的最大值.顺次连结A,A1,B,B1,C,+(λ∈R).19.已知数列{a n}满足:a1=1,且当n≥2时,a n=λa n﹣1(1)若λ=1,证明:数列{a2n}是等差数列;﹣1(2)若λ=2.①设b n=a2n+,求数列{b n}的通项公式;②设∁n=,证明:对于任意的p,m∈N*,当p>m,都有∁p≥∁m.20.设函数(a∈R),其中e为自然对数的底数.(1)当a=0时,求函数f(x)的单调减区间;(2)已知函数f(x)的导函数f'(x)有三个零点x1,x2,x3(x1<x2<x3).①求a的取值范围;②若m1,m2(m1<m2)是函数f(x)的两个零点,证明:x1<m1<x1+1.【选做题】(3选2,每题10分)21.已知a,b∈R,向量是矩阵A=的属于特征值3的一个特征向量.(1)求矩阵A;(2)若点P在矩阵A对应的变换作用下得到点P'(2,2),求点P的坐标.22.在平面直角坐标系x Oy中,已知直线l的参数方程(t为参数),椭圆C的参数方程为(θ为参数),求椭圆C上的点P到直线l的距离的最大值.23.已知a,b,c都是正实数,且=1.证明:(1)abc≥27;(2)≥1.【必做题】(每题10分)24.如图,在直四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AB⊥AD,AB=AD=AA1=2BC=2.(1)求二面角C1﹣B1C﹣D1的余弦值;(2)若点P为棱AD的中点,点Q在棱AB上,且直线B1C与平面B1PQ所成角的正弦值为,求AQ的长.25.一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球2n次(n∈N*),且每次取1只球.(1)当n=3时,求恰好取到3次红球的概率;(2)随机变量X表示2n次取球中取到红球的次数,随机变量的数学期望(用n表示).,求Y。
2020年江苏省南通市、泰州市高考数学一模试卷答案解析一、填空题(共14题,共70分)1.已知集合A={﹣1,0,2},B={﹣1,1,2},则A∩B={﹣1,2} .【解答】解:∵集合A={﹣1,0,2},B={﹣1,1,2},∴A∩B={﹣1,2}.故答案为:{﹣1,2}.2.已知复数z满足(1+i)z=2i,其中i是虚数单位,则z的模为.【解答】解:由(1+i)z=2i,&得.则复数z的模为:.故答案为:.3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为40 .【解答】解:根据题意,5名党员教师的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值=(35+35+41+38+51)=40,故答案为:404.根据如图所示的伪代码,输出的a的值为11 .—【解答】解:模拟程序语言的运行过程知,该程序的功能是计算并输出a=1+1+2+3+4=11.故答案为:11.5.已知等差数列{a n}的公差d不为0,且a1,a2,a4成等比数列,则的值为 1 .【解答】解:由题意,可知=a1a4,∴(a1+d)2=a1(a1+3d),即+2a1d+d2=+3a1d.$化简,得a1=d.∴=1.故答案为:1.6.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为.【解答】解:将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为:P==.故答案为:.:7.在正三棱柱ABC﹣A1B1C1中,AA1=AB=2,则三棱锥A1﹣BB1C1的体积为.【解答】解:如图所示,由正三棱柱ABC﹣A1B1C1中,AA1=AB=2,则三棱锥A 1﹣BB1C1的体积==••B1B==.故答案为:.8.已知函数(ω>0),若当时,函数f(x)取得最大值,则ω的最小值为5.【解答】解:当x=时,f(x)取得最大值,~即f()=sin(ω﹣)=1,即ω﹣=+2kπ,k∈Z,即ω=12k+5,k∈Z,由于ω>0,所以当k=0时,ω的最小值为5.故答案为:5.9.已知函数f(x)=(m﹣2)x2+(m﹣8)x(m∈R)是奇函数,若对于任意的x∈R,关于x的不等式f(x2+1)<f(a)恒成立,则实数a的取值范围是(﹣∞,1).【解答】解:由奇函数的性质可得,f(﹣x)=﹣f(x)恒成立,[即(m﹣2)x2﹣(m﹣8)x=﹣(m﹣2)x2﹣(m﹣8)x,故m﹣2=0即m=2,此时f(x)=﹣6x单调递减的奇函数,由不等式f(x2+1)<f(a)恒成立,可得x2+1>a恒成立,结合二次函数的性质可知,x2+1≥1,所以a<1.故答案为:(﹣∞,1)10.在平面直角坐标系xOy中,已知点A,B分别在双曲线C:x2﹣y2=1的两条渐近线上,且双曲线C经过线段AB的中点.若点A的横坐标为2,则点B的横坐标为.【解答】解:设点B的横坐标为m,;因为双曲线C:x2﹣y2=1,所以双曲线的渐近线方程为y=±x,不妨设点A在直线y=x上,点B在直线y=﹣x上.则点A坐标为(2,2),点B坐标为(m,﹣m),所以线段AB的中点坐标为,因为双曲线C经过线段AB的中点,所以,解得,故答案为:.11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如.地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的1000倍.【解答】解:地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE =4.8+1.5M.、2008年5月汶川发生里氏8.0级地震,它释放出来的能量满足:lgE1=4.8+1.5×8.0,2019年6月四川长宁发生里氏6.0级地震释放出来能量满足:lgE2=4.8+1.5×6.0.∴lgE1﹣lgE2=3,解得:=103=1000.故答案为:1000.12.已知△ABC的面积为3,且AB=AC,若,则BD的最小值为.【解答】解:如图,设AB=AC=x,由,得AD=,【设∠BAC=θ(0<θ<π),由余弦定理可得:cosθ=,得,①由△ABC的面积为3,得,即,②联立①②,得,∴,令y=,则y sinθ=5﹣3cosθ,∴y sinθ+3cosθ=5,即(θ+φ)=5,得sin(θ+φ)=,由,解得y≥4或y≤﹣4(舍).]即,得BD,∴BD的最小值为.故答案为:.13.在平面直角坐标系xOy中,已知圆C1:x2+y2=8与圆C2:x2+y2+2x+y﹣a=0相交于A、B两点.若圆C1上存在点P,使得△ABP为等腰直角三角形,则实数a的值组成的集合为{8,8﹣2,8+2}.【解答】解:已知圆C1:x2+y2=8与圆C2:x2+y2+2x+y﹣a=0相交于A、B两点,则AB所在直线的方程为2x+y﹣a+8=0,若圆C1上存在点P,使得△ABP为等腰直角三角形,分2种情况讨论:①,P为直角顶点,则AB为圆C1的直径,|即直线2x+y﹣a+8=0经过圆C1的圆心C1,必有﹣a+8=0,解可得a=8;②,A或B为直角顶点,则点C1到直线AB的距离d=r=×2=2,则有d==2,解可得a=8﹣2或8+2,综合可得:a的取值的集合为{8,8﹣2,8+2};故答案为:{8,8﹣2,8+2}.14.已知函数f(x)=,若关于x的方程f2(x)+2af(x)+1﹣a2=0有五个不相等的实数根,则实数a的取值范围是.【解答】解:令f(x)=t,则g(t)=t2+2at+1﹣a2,作f(x)的图象如下,>设g(t)的零点为t1,t2,由图可知,要满足题意,则需,故,解得.故答案为:.二、解答题(共6题,共90分)15.如图,在三棱锥P﹣ABC中,P A⊥平面ABC,PC⊥AB,D,E分别为BC,AC的中点.求证:(1)AB∥平面PDE;(2)平面P AB⊥平面P AC.~【解答】证明:(1)∵D,E分别为BC,AC的中点,∴DE是三角形ABC的一条中位线,∴DE∥AB,∵AB不在平面PDE内,DE在平面PDE内,∴AB∥平面PDE;(2)∵P A⊥平面ABC,AB在平面ABC内,∴P A⊥AB,又PC⊥AB,P A∩PC=P,且P A,PC都在平面P AC内,%∴AB⊥平面P AC,∵AB在平面P AB内,∴平面P AB⊥平面P AC.16.在△ABC中,已知AC=4,BC=3,cos B=﹣.(1)求sin A的值.(2)求的值.【解答】解:(1)如图,∵,∴,!又AC=4,BC=3,∴根据正弦定理得,,解得;(2)∵,∴,∴cos C=cos[π﹣(A+B)]=﹣cos(A+B)=sin A sin B﹣cos A cos B=,∴==^=.17.如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的焦距为4,两条准线间的距离为8,A,B分别为椭圆E的左、右顶点.(1)求椭圆E的标准方程:(2)已知图中四边形ABCD是矩形,且BC=4,点M,N分别在边BC,CD上,AM与BN相交于第一象限内的点P.①若M,N分别是BC,CD的中点,证明:点P在椭圆E上;②若点P在椭圆E上,证明:为定值,并求出该定值.}【解答】解:(1)设椭圆的E的焦距为2c,则由题意,得,解得,所以b2=a2﹣c2=4,所以椭圆E的标准方程为;(2)①证明:由已知,得M(2,2),N(0,4),B(2,0),直线AM的方程为,直线BN的方程为,联立,解得,即P(,),因为,,所以点P在椭圆上;②解法一:设P(x0,y0),(x0>0,y0>0),则,,直线AP的方程为,令,得,直线BP的方程,令y=4,得,所以=====.<解法二:设直线AP的方程为(k 1>0),令,得,设直线BP的方程为(k 2<0),令y=4,得,所以==|k1k2|,设P(x0,y0),(x0>0,y0>0),则,所以k1k2=•===,所以=.(18.在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫作图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a的正三角形ABC绕其中心O逆时针旋转θ到三角形A1B1C1,且顺次连结A,A1,B,B1,C,C1,A,得到六边形徽标AA1BB1CC1.(1)当θ=时,求六边形徽标的面积;(2)求六边形微标的周长的最大值.【解答】解:(1)因为正三角形ABC的边长为a,所以∠AOB=120°,且OA=OA1=OB=OB1=OC=OC1=,由旋转图形的性质可知,△A1AC1≌△AA1B≌△B1BA1≌△BB1C≌△C1CB1≌△CC1A,所以∠AA1B=∠A1BB1=∠BB1C=∠B1CC1=∠CC1A=∠C1AA1=120°,在等腰△AOA1中,因为∠AOA1=θ=,所以∠AA1O=,…所以∠BA1O=,因此∠A1OB=,依此类推可得,∠BOB1=∠COC1=,∠B1OC=∠C1OA=,所以六边形徽标的面积S=+=3()=3•=,故六边形徽标的面积为.(2)由(1)可知,A1A=B1B=C1C,A1B=B1C=C1A,不妨设A1A=x,A1B=y,则六边形徽标的周长L=3(x+y).在△AA1B中,由余弦定理得,cos∠AA1B=cos120°=\所以xx2+y2+xy=a2,变形得(x+y)2﹣xy=a2①由基本不等式可知,②由①②解得,x+y≤,当且仅当x=y=时取等号所以六边形徽标的周长L=3(x+y)≤3×=故六边形徽标的周长的最大值为.19.已知数列{a n}满足:a1=1,且当n≥2时,a n=λa n﹣1+(λ∈R).(1)若λ=1,证明:数列{a2n﹣1}是等差数列;(2)若λ=2.)①设b n=a2n+,求数列{b n}的通项公式;②设∁n=,证明:对于任意的p,m∈N*,当p>m,都有∁p≥∁m.【解答】解:(1)当λ=1时,则根据a1=1,a n=a n﹣1+(n≥2),得,所以a2n+1=a2n﹣1+1,即a2n+1﹣a2n﹣1=1为常数,即数列{a2n﹣1}是首项为1,公差为1的等差数列;(2)λ=2时,a1=1,且当n≥2时,a n=2a n﹣1+,①当n≥2时,,所以a2n=4a2n﹣2+2,则a2n+=4(a2n﹣2+),又因为b n=a2n+,即有b n=a2n+=4(a2n﹣2+),%而b1=a2+=2a1+=≠0,所以=4是常数,所以数列{b n}时首项为,公比为4的等比数列,则b n的通项公式为b n=•4n﹣1=•4n (n∈N+);②由①知,a2n=b n﹣=(4n﹣1),a2n﹣1=a2n=(4n﹣1),则===()﹣n=,所以∁n==[](n∈N+),则C n+1﹣∁n=﹣=,当n=1时,C2﹣C1=0,则C2=C1;当n=2时,C3﹣C2=0,则C3=C2;@当n≥3时,C n+1﹣∁n>0,则C n+1>∁n,故对于任意的p,m∈N*,当p>m,都有∁p≥∁m.20.设函数(a∈R),其中e为自然对数的底数.(1)当a=0时,求函数f(x)的单调减区间;(2)已知函数f(x)的导函数f'(x)有三个零点x1,x2,x3(x1<x2<x3).①求a的取值范围;②若m1,m2(m1<m2)是函数f(x)的两个零点,证明:x1<m1<x1+1.【解答】解:(1)当a=0时,,其定义域为(﹣∞,0)∪(0,+∞),.—令f'(x)<0,则x>1,∴f(x)的单调递减区间为(1,+∞).(2)①由,得,设g(x)=ax3﹣x+1,则导函数f'(x)有三个零点,即函数g(x)有三个非零的零点.又g′(x)=3ax2﹣1,若a≤0,则g′(x)=3ax2﹣1<0,∴g(x)在(﹣∞,+∞)上是减函数,g(x)至多有1个零点,不符合题意,∴a>0.令g′(x)=0,,则当x∈∪时,g'(x)>0;当x∈,g'(x)<0,∴g(x)在上单调递减,在和上单调递增,·∴,即,∴.又g(0)=1>0,∴g(x)在上有且只有1个非零的零点.∵当时,,,且,又函数g(x)的图象是连续不间断的,∴g(x)在和上各有且只有1个非零的零点,∴实数a的取值范围是.②由f(m1)=f(m2)=0,得,^设p(x)=ax2﹣ax﹣1(a>0),且p(m1)=p(m2)=0,∴.又∵m1<m2,∴m1<0<m2.∴x<m1或x>m2时,p(x)>0;m1<x<m2时,p(x)<0.由①知a>0,x1<0<x2<x3.∵,∴,,∴,,∴x1<m1<x1+1成立.$【选做题】(3选2,每题10分)21.已知a,b∈R,向量是矩阵A=的属于特征值3的一个特征向量.(1)求矩阵A;(2)若点P在矩阵A对应的变换作用下得到点P'(2,2),求点P的坐标.【解答】解:(1)由矩阵特征值和特征向量的关系可知:Aα=3α,带入可知:=3,即,解得a=2,b=﹣1,故矩阵A=..(2)设P为(x,y),因为点P在矩阵A对应的变换作用下得到点P'(2,2),所以,解得x=1,y=0,故P(1,0).22.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),椭圆C的参数方程为(θ为参数),求椭圆C上的点P到直线l的距离的最大值.【解答】解:已知直线l的参数方程(t为参数),转换为直角坐标方程为x+2y+3=0,椭圆C的参数方程为(θ为参数),设椭圆上的点P(2cosθ,sinθ)到直线l 的距离d==,?当sin()=1时,.23.已知a,b,c都是正实数,且=1.证明:(1)abc≥27;(2)≥1.【解答】证明:(1)∵a,b,c都是正实数,∴,又∵=1,∴,即abc≥27,得证;}(2)∵a,b,c都是正实数,∴,,,由①+②+③得,,∴,得证.【必做题】(每题10分)24.如图,在直四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AB⊥AD,AB=AD=AA1=2BC=2.(1)求二面角C1﹣B1C﹣D1的余弦值;(2)若点P为棱AD的中点,点Q在棱AB上,且直线B1C与平面B1PQ所成角的正弦值为,求AQ的长.&【解答】解:(1)在直四棱柱ABCD﹣A1B1C1D1中,∵AA1⊥平面ABCD,AB,AD⊂平面ABCD,∴AB⊥AA1,AD⊥AA1,∵AB⊥AD,∴以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,∵AB=AD=AA1=2BC=2.∴A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),A1(0,0,2),B1(2,0,2),C1(2,1,2),D1(0,2,2),=(﹣2,2,0),=(0,1,﹣2),设平面B1CD1的一个法向量=(x,y,z),则,取x=2,则=(2,2,1),∵AB⊥平面B1C1C,∴平面B1CC1的一个法向量=(2,0,0),设二面角C1﹣B1C﹣D1的的平面角为α,由图形得锐角,∴二面角C1﹣B1C﹣D1的余弦值为:cosα==.(2)设AQ=λ(0≤λ≤2),则Q(λ,0,0),∵点P是AD中点,则P(0,1,0),=(λ,﹣1,0),=(λ﹣2,0,﹣2),设平面B1PQ的法向量=(x,y,z),则,取x=2,得=(2,2λ,λ﹣2),设直线B1C与平面B1PQ所成角大小为β,∵直线B1C与平面B1PQ所成角的正弦值为,∴sinβ===,解得λ=1或.∴AQ=1.25.一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球2n次(n∈N*),且每次取1只球.(1)当n=3时,求恰好取到3次红球的概率;(2)随机变量X表示2n次取球中取到红球的次数,随机变量,求Y 的数学期望(用n表示).【解答】解:(1)当n=3时,从装有5只小球的口袋中有放回地取球6次,共有n=56个基本事件,记“恰好取到3次红球”为事件A,则事件A包含的基本事件个数为m=,∴当n=3时,恰好取到3次红球的概率P(A)==.(2)由题意知随机变量Y的所在可能取值为0,1,3,5,…,2n﹣1,(n∈N*),则P(Y=2t+1)=•(2i+1)==.(0≤i≤n﹣1,i∈N),∴E(Y)=0•P(Y=0)+3P(Y=3)+5P(Y=5)+…+(2n﹣1)P(Y=2n﹣1)=(+++…+),令x n=+++…+,y n=++,则,x n﹣y n=(4﹣1)2n﹣1=32n﹣1.∴.∴E(Y)===.。
2020年江苏省南通市高考一模数学一、填空题:本大题共14小题,每小题5分,共计70分.1.函数y=2sin(3x-3π)的最小正周期为 . 解析:根据函数y=Asin(ωx+φ)的周期等于2πω,得出结论.函数y=2sin(3x-3π)的最小正周期为23π.答案:23π.2.设集合A={1,3},B={a+2,5},A ∩B={3},则A ∪B= .解析:由交集的定义,可得a+2=3,解得a ,再由并集的定义,注意集合中元素的互异性,即可得到所求.集合A={1,3},B={a+2,5},A ∩B={3}, 可得a+2=3,解得a=1, 即B={3,5},则A ∪B={1,3,5}. 答案:{1,3,5}.3.复数z=(1+2i)2,其中i 为虚数单位,则z 的实部为 . 解析:直接利用复数代数形式的乘法运算化简得答案.∵z=(1+2i)2=1+4i+(2i)2=-3+4i , ∴z 的实部为-3. 答案:-3.4.口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为 . 解析:利用对立事件的概率公式,可得结论.∵摸出红球的概率为0.48,摸出黄球的概率为0.35, ∴摸出蓝球的概率为1-0.48-0.35=0.17. 答案:0.17.5.如图是一个算法的流程图,则输出的n 的值为 .解析:由已知的程序框图可知,该程序的功能是利用循环计算a 值,并输出满足a <16的最大n 值,模拟程序的运行过程可得答案.当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3. 满足进行循环的条件,执行循环后,a=17,n=5. 满足进行循环的条件,退出循环. 故输出n 值为5. 答案:5.6.若实数x ,y 满足243700x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则z=3x+2y 的最大值为 .解析:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+2y 得3122y x z +-=, 平移直线3122y x z +-=,31312222y x z A y x z =+=+--由图象可知当直线经过点时,直线的截距最大,此时z 最大. 由2437x y x y +=⎧⎨+=⎩,解得A(1,2),代入目标函数z=3x+2y 得z=3×1+2×2=7. 即目标函数z=3x+2y 的最大值为7. 答案:7.7.抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为 . 解析:根据题意,对于甲,其平均数6580708575755x ++++==甲,其方差S甲2=15[(65-75)2+(80-75)2+(70-75)2+(85-75)2+(75-75)2]=50. 对于乙,其平均数8070758070755x ++++==乙,其方差S乙2=15[(80-75)2+(70-75)2+(75-75)2+(80-75)2+(70-75)2]=20.比较可得:S 甲2>S 乙2,则乙的成绩较为稳定. 答案:20.8.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AB=3cm ,AA 1=1cm ,则三棱锥D 1-A 1BD 的体积为 cm 3.解析:∵在正四棱柱ABCD-A 1B 1C 1D 1中,AB=3cm ,AA 1=1cm , ∴三棱锥D 1-A 1BD 的体积:1111111111311133326213D A BD B A D D A D D V V SAB A D DD AB --==⨯⨯=⨯⨯⨯⨯=⨯⨯⨯=(cm 3). 答案:32.9.在平面直角坐标系xOy 中,直线2x+y=0为双曲线22221x y a b-=(a >0,b >0)的一条渐近线,则该双曲线的离心率为 .解析:利用双曲线的渐近线方程得到a ,b 关系,然后求解双曲线的离心率即可.直线2x+y=0为双曲线22221x y a b-=(a >0,b >0)的一条渐近线,可得b=2a ,即c 2-a 2=4a 2,可得ca=10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为 升. 解析:设最上面一节的容积为a 1,利用等差数列的通项公式、前n 项和公式列出方程组:111()43432986596()422a d a d a d ⨯⎧+=⎪⎪⎨⨯⨯⎪+-+=⎪⎩, 解得11322a =. 答案:1322.11.在△ABC 中,若2BC BA AC AB CA CB +=,则sin sin AC的值为 . 解析:根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出sin sin AC的值. 在△ABC 中,设三条边分别为a 、b ,c ,三角分别为A 、B 、C , 由2BC BA AC AB CA CB +=, 得ac ·cosB+2bc ·cosA=ba ·cosC , 由余弦定理得:()()()2222222221122a c b b c a b a c +-++-=+-,化简得222a ac c==,则,由正弦定理得sin sin A aC c==.12.已知两曲线f(x)=2sinx ,g(x)=acosx ,x ∈(0,2π)相交于点P.若两曲线在点P 处的切线互相垂直,则实数a 的值为 . 解析:联立两曲线方程,可得sin tan cos 2x ax x ==,a >0,设交点P(m ,n),分别求出f(x),g(x)的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为-1,再由同角基本关系式,化弦为切,解方程即可得到a 的值. 由f(x)=g(x),即2sinx=acosx , 即有sin tan cos 2x ax x ==,a >0, 设交点P(m ,n),f(x)=2sinx 的导数为f ′(x)=2cosx , g(x)=acosx 的导数为g ′(x)=-asinx , 由两曲线在点P 处的切线互相垂直, 可得2cosm ·(-asinm)=-1,且tan 2a m =, 则222sin cos 1sin cos a m m m m=+, 分子分母同除以cos2m , 即有22tan 11tan a mm=+,2214a a a =+=即为,解得.13.已知函数f(x)=|x|+|x-4|,则不等式f(x 2+2)>f(x)的解集用区间表示为 .解析:令g(x)=f(x 2+2)-f(x)=x 2+2+|x 2-2|-|x|-|x-4|,通过讨论x 的范围,求出各个区间上的不等式的解集,取并集即可.令g(x)=f(x 2+2)-f(x)=x 2+2+|x 2-2|-|x|-|x-4|,x ≥4时,g(x)=2x 2-2x+4>0,解得:x ≥4.≤x <4时,g(x)=2x 2-4>0,解得: 4x x x -<<.0≤x 时,g(x)=0>0,不合题意.≤x <0时,g(x)=2x >0,不合题意.x <时,g(x)=2x 2+2x-4>0,解得:x >1或x <-2,故x <-2,即不等式的解集用区间表示为(-∞,-2)∪,+∞).答案:(-∞,-2)∪,+∞).14.在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A(1,1),且AB ⊥AC ,则线段BC 的长的取值范围为 .解析:在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A(1,1),且AB ⊥AC ,如图所示:当BC ⊥OA 时,|BC|取得最小值或最大值.由2214y x y =⎧⎨+=⎩,可得B ()),由2211x x y =⎧⎨+=⎩,可得C ((1或, 解得:min max BC BC ===故线段BC 的长的取值范围为.答案:+.二、解答题:本大题共6小题,共计90分.15.如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA 为始边作锐角β,其终边与单位圆交于点B ,AB=5.(1)求cosβ的值.解析:(1)由条件利用余弦定理,求得cosβ的值.答案:(1)在△AOB中,由余弦定理得,AB2=OA2+OB2-2OA·OBcos∠AOB,∴222222113 cos22115OA OB ABAOBOA OB+-+-∠===⨯⨯⎝⎭,即cosβ=35.(2)若点A的横坐标为513,求点B的坐标.解析:(2)利用任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式,求得点B的坐标.答案:(2)∵30 52cosπββ⎛⎫=∈ ⎪⎝⎭,,,∴4sin5β===.55cos1313Aα=点的横坐标为,由三角函数定义可得,,∵α为锐角,∴12sin13α===.∴5312433 cos cos cos sin si()n13513565αβαβαβ+=-=⨯-⨯=-,1235456sin sin cos cos sin135165 ()35αβαβαβ+=+=⨯+⨯=,即点B33566565⎛⎫⎪⎝-⎭,.16.如图,在四棱锥P-ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP=OC ,PA ⊥PD.求证:(1)直线PA ∥平面BDE.解析:(1)连结OE ,说明OE ∥PA.然后证明PA ∥平面BDE. 答案:(1)证明:连结OE ,∵O 为平行四边形ABCD 对角线的交点, ∴O 为AC 中点. ∵E 为PC 的中点, ∴OE ∥PA.∵OE ⊂平面BDE ,PA ⊄平面BDE , ∴直线PA ∥平面BDE.(2)平面BDE ⊥平面PCD.解析:(2)证明OE ⊥PD.OE ⊥PC.推出OE ⊥平面PCD.然后证明平面BDE ⊥平面PCD. 答案:(2)证明:∵OE ∥PA ,PA ⊥PD , ∴OE ⊥PD.∵OP=OC ,E 为PC 的中点, ∴OE ⊥PC.∵PD ⊂平面PCD ,PC ⊂平面PCD ,PC ∩PD=P , ∴OE ⊥平面PCD. ∵OE ⊂平面BDE ,∴平面BDE ⊥平面PCD.17.如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0)的离心率为2,焦点到相应准线的距离为1.(1)求椭圆的标准方程.解析:(1)由已知条件可得21c a c a c =-=,然后求解椭圆的方程. 答案:(1)由题意得,221c a c a c=-=, 解得a=2,c=1,b=1.所以椭圆的方程为2212x y +=.(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线于点Q ,求2211OP OQ+的值. 解析:(2)由题意知OP 的斜率存在.当OP 的斜率为0时,求解结果.当OP 的斜率不为0时,设直线OP 方程为y=kx.联立方程组,推出OP 2=222221k k ++.OQ 2=2k 2+2.然后求解即可. 答案:(2)由题意知OP 的斜率存在. 当OP 的斜率为0时,22111OP OQ OP OQ ==+=. 当OP 的斜率不为0时,设直线OP 方程为y=kx.()22222222222121222121x k y k x x y k k y kx⎧+=⎪+===⎨++⎪=⎩由得,解得,所以, 所以OP 2=222221k k ++. 因为OP ⊥OQ ,所以直线OQ 的方程为1y kx =-.由1k y y x-⎧=⎪⎨=⎪⎩得x =,所以OQ 2=2k 2+2. 所以222221*********k OP OQ k k ++=+=++. 综上,可知22111OP OQ+=.18.如图,某机械厂要将长6m ,宽2m 的长方形铁皮ABCD 进行裁剪.已知点F 为AD 的中点,点E 在边BC 上,裁剪时先将四边形CDFE 沿直线EF 翻折到MNFE 处(点C ,D 分别落在直线BC 下方点M ,N 处,FN 交边BC 于点P),再沿直线PE 裁剪.(1)当∠EFP=4π时,试判断四边形MNPE 的形状,并求其面积. 解析:(1)当∠EFP=4π时,由条件得∠EFP=∠EFD=∠FEP=4π.可得FN ⊥BC ,四边形MNPE 为矩形.即可得出. 答案:(1)当∠EFP=4π时,由条件得∠EFP=∠EFD=∠FEP=4π. 所以∠FPE=2π.所以FN ⊥BC , 四边形MNPE 为矩形.所以四边形MNPE 的面积S=PN ·MN=2m 2.(2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由. 解析:(2)解法一:设∠EFD=θ(0<θ<2π),由条件,知∠EFP=∠EFD=∠FEP=θ.可得()222233sin 2sin 2sin 2tan PF NP NF PF ME πθθθθ===-=-=--,,.四边形MNPE 面积为:()22223326sin 2tan tan si 112n 22S NP ME MN θθθθ⎡⎤⎛⎫⎛⎫=+=-+- ⎪⨯=-- ⎪⎢⎥⎝⎭⎝⎭⎣⎦,化简利用基本不等式的性质即可得出.解法二:设BE=tm ,3<t <6,则ME=6-t ,可得PE=PFt BP =-,()()22131332323t t BP NP t t t --==-+--,,四边形MNPE面积为()()()()213231132226263233t S NP ME MN t t t t t ⎡⎤⎛⎫⎡⎤⎢⎥ ⎪⎢⎥ ⎪⎣⎦⎢⎥⎝-⎭⎣=+=-++-⨯=--+--⎦,利用基本不等式的性质即可得出. 答案:(2)解法一: 设∠EFD=θ(0<θ<2π),由条件,知∠EFP=∠EFD=∠FEP=θ. 所以()222233sin 2sin 2sin 2tan PF NP NF PF ME πθθθθ===-=-=--,,.2230sin 232ta 2sin 32ta n 000232n θθθθππθθ⎧-⎪⎪-⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩>>由>得><<<< (*)所以四边形MNPE 面积为()221122sin tan tan si 22223326222n (sin cos )tan tan sin cos tan 2366662S NP ME MN θθθθθθθθθθθ⎛⎫=+=-+-⨯=-- ⎪⎝⎭+⎛⎫=-⎡⎤⎛⎫ ⎪⎢-=-+≤-=- ⎪⎝⎭⎣⎭⎥⎝⎦当且仅当tan tan tan 33πθθθθ===,即时取“=”. 此时,(*)成立. 答:当∠EFD=3π时,沿直线PE 裁剪,四边形MNPE面积最大, 最大值为2.解法二:设BE=tm ,3<t <6,则ME=6-t. 因为∠EFP=∠EFD=∠FEP ,所以PE=PFt BP =-.所以()()()22131333332323t t BP NP PF PE t BP t t t --==-=-=--=-+--,. ()()22236361302312310133023t t tt t t t t t t ⎧⎪⎪⎧⎪⎪-⎪⎨⎨-⎪⎪-+⎩⎪-⎪-+-⎪⎩<<<<由>得<>(*).所以四边形MNPE 面积为()()()()2133612232636312232t S NP ME MN t t t t t ⎡⎤⎛-=+=-++-⨯-=--⎫⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎡+≤⎢⎥⎣⎦--⎤()3232333t t t -==+=+-当且仅当,即“=”. 此时,(*)成立.答:当点E 距B 点3+233m 时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为2.19.已知函数f(x)=ax 2-x-lnx ,a ∈R.(1)当a=38时,求函数f(x)的最小值. 解析:(1)当a=38时,f(x)=38x 2-x-lnx.求出函数的导数,得到极值点,然后判断单调性求解函数的最值. 答案:(1)当a=38时,f(x)=38x 2-x-lnx. 所以()()()32113424x x f x x x x+-'=--=(x >0). 令f'(x)=0,得x=2,当x ∈(0,2)时,f'(x)<0.当x ∈(2,+∞)时,f'(x)>0, 所以函数f(x)在(0,2)上单调递减,在(2,+∞)上单调递增. 所以当x=2时,f(x)有最小值()122ln 2f =--.(2)若-1≤a ≤0,证明:函数f(x)有且只有一个零点.解析:(2)由f(x)=ax 2-x-lnx ,得()212121ax x f x ax x x--'=--=,x >0.当a ≤0时,函数f(x)在(0,+∞)上最多有一个零点,当-1≤a ≤0时,f(1)=a-1<0,2210e e af e e -⎛⎫ ⎪⎝⎭+=>,推出结果.答案:(2)由f(x)=ax 2-x-lnx ,得()212121ax x f x ax x x--'=--=(x >0).所以当a ≤0时,()2210ax x f x x--'=<,函数f(x)在(0,+∞)上单调递减,所以当a ≤0时,函数f(x)在(0,+∞)上最多有一个零点.因为当-1≤a ≤0时,f(1)=a-1<0,2210e e af e e -⎛⎫ ⎪⎝⎭+=>, 所以当-1≤a ≤0时,函数f(x)在(0,+∞)上有零点.综上,当-1≤a ≤0时,函数f(x)有且只有一个零点.(3)若函数f(x)有两个零点,求实数a 的取值范围.解析:(3)由(2)知,当a ≤0时,函数f(x)在(0,+∞)上最多有一个零点.说明a >0,由f(x)=ax 2-x-lnx ,得()221ax x f x x--'=(x >0),说明函数f(x)在(0,x 0)上单调递减.在(x 0,+∞)上单调递增.要使得函数f(x)在(0,+∞)上有两个零点,只需要ax 02-x 0-lnx 0<0.通过函数h(x)=2lnx+x-1在(0,+∞)上是增函数,推出0<a <1.验证当0<a <1时,函数f(x)有两个零点.证明:lnx ≤x-1.设t(x)=x-1-lnx ,利用导数求解函数的最值即可.答案:(3)由(2)知,当a ≤0时,函数f(x)在(0,+∞)上最多有一个零点. 因为函数f(x)有两个零点,所以a >0.由f(x)=ax2-x-lnx ,得()221ax x f x x--'=(x >0),令g(x)=2ax 2-x-1.因为g(0)=-1<0,2a >0,所以函数g(x)在(0,+∞)上只有一个零点,设为x 0.当x ∈(0,x 0)时,g(x)<0,f'(x)<0.当x ∈(x 0,+∞)时,g(x)>0,f'(x)>0. 所以函数f(x)在(0,x 0)上单调递减.在(x 0,+∞)上单调递增. 要使得函数f(x)在(0,+∞)上有两个零点,只需要函数f(x)的极小值f(x 0)<0,即ax 02-x 0-lnx 0<0<0.又因为g(x 0)=2ax 02-x 0-1=0,所以2lnx 0+x 0-1>0,又因为函数h(x)=2lnx+x-1在(0,+∞)上是增函数,且h(1)=0,所以x 0>1,得0<1x <1. 又由2ax 02-x 0-1=0,得2200011241112a x x x =+=⎛⎫⎛⎫ ⎪ ⎪⎭⎝⎭-⎝+,所以0<a <1.以下验证当0<a <1时,函数f(x)有两个零点. 当0<a <1时,2121110a a g a aa a ⎛⎫ -==⎝--⎪⎭>, 所以1<x 0<1a. 因为2221110a e e a f e e e e ⎛⎫ ⎪⎝-+=-+=⎭>,且f(x 0)<0. 所以函数f(x)在(1e,x 0)上有一个零点. 又因为224222ln 2110a f a a a a a a =-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝≥⎭---=>(因为lnx ≤x-1),且f(x 0)<0. 所以函数f(x)在(x 0,2a)上有一个零点. 所以当0<a <1时,函数f(x)在12ea ⎛⎫⎪⎝⎭,内有两个零点. 综上,实数a 的取值范围为(0,1).下面证明:lnx ≤x-1.设t(x)=x-1-lnx ,所以()111x t x x x-'=-=(x >0). 令t'(x)=0,得x=1.当x ∈(0,1)时,t'(x)<0.当x ∈(1,+∞)时,t'(x)>0. 所以函数t(x)在(0,1)上单调递减,在(1,+∞)上单调递增. 所以当x=1时,t(x)有最小值t(1)=0. 所以t(x)=x-1-lnx ≥0,得lnx ≤x-1成立.20.已知等差数列{a n }的公差d 不为0,且1k a ,2k a ,…,kn a ,…(k 1<k 2<…<k n <…)成等比数列,公比为q.(1)若k 1=1,k 2=3,k 3=8,求1a d的值. 解析:(1)由已知得:a 1,a 3,a 8成等比数列,从而4d 2=3a 1d ,由此能求出1a d的值.答案:(1)由已知可得:a 1,a 3,a 8成等比数列,所以(a 1+2d)2=a 1(a 1+7d),整理可得:4d 2=3a 1d. 因为d ≠0,所以143a d =. (2)当1a d为何值时,数列{k n }为等比数列. 解析:(2)设数列{k n }为等比数列,则k 22=k 1k 3,推导出11a d=,从而n k n a k d =,进而k n =k 1q n-1.由此得到当11a d=时,数列{k n }为等比数列. 答案:(2)设数列{k n }为等比数列,则k 22=k 1k 3. 又因为ak 1,ak 2,ak 3成等比数列,所以[a 1+(k 1-1)d][a 1+(k 3-1)d]=[a 1+(k 2-1)d]2.整理,得a 1(2k 2-k 1-k 3)=d(k 1k 3-k 22-k 1-k 3+2k 2).因为k 22=k 1k 3,所以a 1(2k 2-k 1-k 3)=d(2k 2-k 1-k 3). 因为2k 2≠k 1+k 3,所以a 1=d ,即11a d=. 当11a d=时,a n =a 1+(n-1)d=nd ,所以n k n a k d =. 又因为1111n n n k k a a qk dq --==,所以k n =k 1q n-1.所以1111nn n n k k q q k k q+-==,数列{k n }为等比数列. 综上,当11a d=时,数列{k n }为等比数列.(3)若数列{k n }为等比数列,且对于任意n ∈N*,不等式2n n k n a a k +>恒成立,求a 1的取值范围.解析:(3)由数列{k n }为等比数列,a 1=d ,k n =k 1q n-1(q >1).得到111112n n k q a n k q --+>,111111121022n n nn k q q na k q k q--+=+<<恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n 1,使得11n n q <ε. 要证11n n q<ε,即证lnn 1<n 1lnq+ln ε.由此能求出a1的取值范围.答案:(3)因为数列{k n }为等比数列,由(2)知a 1=d ,k n =k 1q n-1(q >1).1111111n n n n k k a a q k dq k a q ---===,a n =a 1+(n-1)d=na 1.因为对于任意n ∈N*,不等式2n n k n a a k +>恒成立.所以不等式1111112n n na k a q k q --+>,即111111111112101222n n n n nk q n k q q na n k q a k q k q----+=++>,<<恒成立. 下面证明:对于任意的正实数ε(0<ε<1),总存在正整数n 1,使得11n n q ε<. 要证11n n qε<,即证lnn 1<n 1lnq+ln ε. 因为1ln 21x x x e ≤<,则1ln n=1ln ln n q ε+,即2ln 0q ln ε>,21n⎝⎭>. 不妨取201n ⎡⎤⎢⎥=+⎢⎥⎝⎭⎣⎦,则当n 1>n 0时,原式得证. 所以10211a ≤<,所以a 1≥2,即得a1的取值范围是[2,+∞).附加题:选做题本题包括四小题,请选2题作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]21.已知圆O 的直径AB=4,C 为AO 的中点,弦DE 过点C 且满足CE=2CD ,求△OCE 的面积.解析:由相交弦定理,得CD ,DE 中点H ,则OH ⊥DE ,利用勾股定理求出OH ,即可求出△OCE 的面积.答案:设CD=x ,则CE=2x. 因为CA=1,CB=3,由相交弦定理,得CA ·CB=CD ·CE ,所以1×3=x ·2x=2x 2,所以取DE 中点H ,则OH ⊥DE.因为222235284OH OE EH x =-=-⎫ ⎪⎭=⎛⎝,所以.又因为,所以△OCE 的面积1122S OH CE ==⨯=.[选修4-2:矩阵与变换]22.已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P(1,1)在矩阵A 对应的变换作用下变为P'(3,3),求矩阵A. 解析:设A=a b c d ⎡⎤⎢⎥⎣⎦,根据矩阵变换,列方程组,即可求得a 、b 、c 和d 的值,求得A. 答案:设A=a b c d ⎡⎤⎢⎥⎣⎦, ∵向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值-1的一个特征向量, ∴()1111111a b c d -⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎡⎤⎢⎢⎥--⎣⎥⎣⎦⎦⎣⎦⎣⎦. ∴11a b c d -=-⎧⎨-=⎩∵点P(1,1)在矩阵A 对应的变换作用下变为P'(3,3),∴1313a b c d ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎤⎢⎥⎣⎦⎦⎡. ∴33a b c d +=⎧⎨+=⎩解得a=1,b=2,c=2,d=1,所以A=1221⎡⎤⎢⎥⎣⎦.[选修4-4:坐标系与参数方程]23.在极坐标系中,求直线θ=4π(ρ∈R)被曲线ρ=4sin θ所截得的弦长. 解析:极坐标方程化为直角坐标方程,联立,求出A ,B 的坐标,即可求直线θ=4π(ρ∈R)被曲线ρ=4sin θ所截得的弦长.答案:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线θ=4πρ∈R)的直角坐标方程为y=x ①, 曲线ρ=4sin θ的直角坐标方程为x 2+y 2-4y=0②. 由①②得0202x x y y ==⎧⎧⎨⎨==⎩⎩或 所以A(0,0),B(2,2), 所以直线θ=4π(ρ∈R)被曲线ρ=4sin θ所截得的弦长.[选修4-5:不等式选讲]24.求函数3sin y x =+.解析:利用二倍角公式化简函数的解析式,利用柯西不等式求解函数的最值即可.答案:3sin 3sin y x x =+=+,由柯西不等式得(()()222222334sin sincos 25y x x x =+≤++=,所以y max =5,此时sinx=35.所以函数3sin y x =+ 5.[必做题]共2小题,满分20分25.如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,P 为棱C 1D 1的中点,Q 为棱BB 1上的点,且BQ=λBB 1(λ≠0).(1)若λ=12,求AP 与AQ 所成角的余弦值. 解析:(1)以{}1AB AD AA ,,为正交基底,建立如图所示空间直角坐标系A-xyz.求出()20)2(121AP AQ ==,,,,,,利用数量积求解AP 与AQ 所成角的余弦值.答案:(1)以{}1AB AD AA ,,为正交基底,建立如图所示空间直角坐标系A-xyz.∵()20)2(121AP AQ ==,,,,,,∴1cosAP AQ AP AQ AP AQ⨯===<,>∴AP 与AQ 所成角的余弦值为15.(2)若直线AA 1与平面APQ 所成的角为45°,求实数λ的值.解析:(2)1()00)2(022AA AQ λ==,,,,,.求出平面APQ 的法向量,利用空间向量的数量积求解即可.答案:(2)由题意可知,1()00)2(022AA AQ λ==,,,,,. 设平面APQ 的法向量为n =(x ,y ,z),2202200n AP x y z x z n AQ λ⎧=++=⎧⎪⎨⎨+=⎩=⎪⎩则,即 令z=-2,则x=2λ,y=2-λ. ∴n =(2λ,2-λ,-2).∵直线AA 1与平面APQ 所成角为45°,∴111cos 22(n AA n AA n AA ===<,>, 可得5λ2-4λ=0,又因为λ≠0,所以λ=45.26.在平面直角坐标系xOy 中,已知抛物线x 2=2py(p >0)上的点M(m ,1)到焦点F 的距离为2.(1)求抛物线的方程.解析:(1)求出抛物线x 2=2py(p >0)的准线方程为2py =-,由抛物线定义,得到p=2,即可求解抛物线的方程.答案:(1)抛物线x 2=2py(p >0)的准线方程为2p y=-, 因为M(m ,1),由抛物线定义,知MF=1+2p , 所以1+2p=2,即p=2, 所以抛物线的方程为x 2=4y.(2)如图,点E 是抛物线上异于原点的点,抛物线在点E 处的切线与x 轴相交于点P ,直线PF 与抛物线相交于A ,B 两点,求△EAB 面积的最小值.解析:(2)求出函数的y ′=12x.设点E(t ,24t ),t ≠0,得到抛物线在点E 处的切线方程为()2124t y t x t -=-.求出P(2t,0).推出直线PF 的方程,点E(t ,24t )到直线PF 的距离,联立2420x y x ty t ⎧=⎪⎨⎪+-=⎩求出AB ,表示出△EAB 的面积,构造函数,通过函数的导数利用单调性求解最值即可. 答案:(2)21142y x y x ='=因为,所以. 设点E(t ,24t ),t ≠0,则抛物线在点E 处的切线方程为()2124t y t x t -=-.令y=0,则x=2t ,即点P(2t, 0). 因为P(2t,0),F(0,1),所以直线PF 的方程为22t y x t ⎛=--⎫ ⎪⎝⎭,即2x+ty-t=0.则点E(t ,24t )到直线PF的距离为d ==.联立方程2420x y x ty t ⎧=⎪⎨⎪+-=⎩消元,得t 2y 2-(2t 2+16)y+t 2=0. 因为△=(2t 2+16)2-4t 4=64(t 2+4)>0, 所以12y y ==,所以()22121222442161122t t AB y y y y t t ++=+++=++=+=. 所以△EAB 的面积为()()322221122444t t S tt++=⨯=⨯.不妨设()()()()()22122223()44024x x g x x g x xxx++='=->,则.因为x ∈(0,2)时,g ′(x)<0,所以g(x)在(0,2)上单调递减.x ∈(2,+∞)上,g'(x)>0,所以g(x)在(2, +∞)上单调递增.())3224min x g x +===所以当所以△EAB 的面积的最小值为。
2019-2020南通、泰州高三第一次调研试卷数学理科一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{1,0,2}A =-,{1,1,2}B =-,则A B =I _____. 答案:{1,2}-2.已知复数z 满足(1)2i z i +=,其中i 是虚数单位,则z 的模为_______. 答案:23.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为______. 答案:404.根据如图所示的伪代码,输出的a 的值为______. 答案:115.已知等差数列{}n a 的公差d 不为0,且1a ,2a ,4a 成等比数列,则1a d的值为____. 答案:16.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为___. 答案:387.在正三棱柱111ABC A B C -中,12AA AB ==,则三棱锥111A BB C -的体积为____. 答案:238.已知函数()sin()3f x x πω=-(0)ω>,若当6x π=时,函数()f x 取得最大值,则ω的最小值为_____. 答案:59.已知函数2()(2)(8)f x m x m x =-+-()m R ∈是奇函数,若对于任意的x R ∈,关于x 的不等式2(+1)()f x f a<恒成立,则实数a的取值范围是____.答案:1a<10.在平面直角坐标系xOy中,已知点,A B分别在双曲线22:1C x y-=的两条渐近线上,且双曲线C经过线段AB的中点,若点A的横坐标为2,则点B的横坐标为_____.答案:1211.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如.地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lg 4.8 1.5E M=+.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的____倍.答案:100012.已知ABC∆的面积为3,且AB AC=,若2CD DA=u u u r u u u r,则BD的最小值为_____.13.在平面直角坐标系xOy中,已知圆221:8C x y+=与圆222:20C x y x y a+++-=相交于,A B两点,若圆1C上存在点P,使得ABP∆为等腰直角三角形,则实数a的值组成的集合为____.14.已知函数||1|1|,0(),01x xf x xxx--≥⎧⎪=⎨<⎪-⎩,若关于x的方程22()2()10f x af x a++-=有五个不相等的实数根,则实数a的取值范围是_____.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤15.(本小题满分14分)如图,在三棱锥P ABC-中,PA⊥平面ABC,PC AB⊥,,D E分别为,BC AC的中点. 求证:(1)AB∥平面PDE;(2)平面PAB⊥平面PAC.16.(本小题满分14分)在ABC∆中,已知4AC=,3BC=,1 cos4B=-.(1)求sin A的值.(2)求BA BC ⋅u u u r u u u r的值.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆2222:1x y E a b+=(0)a b >>的焦距为4,两条准线间的距离为8,A ,B 分别为椭圆E 的左、右顶点。
2020年江苏省南通市、泰州市高考数学一模试卷答案解析一、填空题(共14题,共70分)1.已知集合A={﹣1,0,2},B={﹣1,1,2},则A∩B={﹣1,2}.【解答】解:∵集合A={﹣1,0,2},B={﹣1,1,2},∴A∩B={﹣1,2}.故答案为:{﹣1,2}.2.已知复数z满足(1+i)z=2i,其中i是虚数单位,则z的模为.【解答】解:由(1+i)z=2i,得.则复数z的模为:.故答案为:.3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值为40.【解答】解:根据题意,5名党员教师的学习积分依次为35,35,41,38,51,则这5名党员教师学习积分的平均值=(35+35+41+38+51)=40,故答案为:404.根据如图所示的伪代码,输出的a的值为11.【解答】解:模拟程序语言的运行过程知,该程序的功能是计算并输出a=1+1+2+3+4=11.故答案为:11.5.已知等差数列{a n}的公差d不为0,且a1,a2,a4成等比数列,则的值为1.【解答】解:由题意,可知=a1a4,∴(a1+d)2=a1(a1+3d),即+2a1d+d2=+3a1d.化简,得a1=d.∴=1.故答案为:1.6.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为.【解答】解:将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为:P==.故答案为:.7.在正三棱柱ABC﹣A1B1C1中,AA1=AB=2,则三棱锥A1﹣BB1C1的体积为.【解答】解:如图所示,由正三棱柱ABC﹣A1B1C1中,AA1=AB=2,则三棱锥A 1﹣BB1C1的体积==••B1B==.故答案为:.8.已知函数(ω>0),若当时,函数f(x)取得最大值,则ω的最小值为5.【解答】解:当x=时,f(x)取得最大值,即f()=sin(ω﹣)=1,即ω﹣=+2kπ,k∈Z,即ω=12k+5,k∈Z,由于ω>0,所以当k=0时,ω的最小值为5.故答案为:5.9.已知函数f(x)=(m﹣2)x2+(m﹣8)x(m∈R)是奇函数,若对于任意的x∈R,关于x的不等式f(x2+1)<f(a)恒成立,则实数a的取值范围是(﹣∞,1).【解答】解:由奇函数的性质可得,f(﹣x)=﹣f(x)恒成立,即(m﹣2)x2﹣(m﹣8)x=﹣(m﹣2)x2﹣(m﹣8)x,故m﹣2=0即m=2,此时f(x)=﹣6x单调递减的奇函数,由不等式f(x2+1)<f(a)恒成立,可得x2+1>a恒成立,结合二次函数的性质可知,x2+1≥1,所以a<1.故答案为:(﹣∞,1)10.在平面直角坐标系xOy中,已知点A,B分别在双曲线C:x2﹣y2=1的两条渐近线上,且双曲线C经过线段AB的中点.若点A的横坐标为2,则点B的横坐标为.【解答】解:设点B的横坐标为m,因为双曲线C:x2﹣y2=1,所以双曲线的渐近线方程为y=±x,不妨设点A在直线y=x上,点B在直线y=﹣x上.则点A坐标为(2,2),点B坐标为(m,﹣m),所以线段AB的中点坐标为,因为双曲线C经过线段AB的中点,所以,解得,故答案为:.11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如.地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的1000倍.【解答】解:地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE =4.8+1.5M.2008年5月汶川发生里氏8.0级地震,它释放出来的能量满足:lgE1=4.8+1.5×8.0,2019年6月四川长宁发生里氏6.0级地震释放出来能量满足:lgE2=4.8+1.5×6.0.∴lgE1﹣lgE2=3,解得:=103=1000.故答案为:1000.12.已知△ABC的面积为3,且AB=AC,若,则BD的最小值为.【解答】解:如图,设AB=AC=x,由,得AD=,设∠BAC=θ(0<θ<π),由余弦定理可得:cosθ=,得,①由△ABC的面积为3,得,即,②联立①②,得,∴,令y=,则y sinθ=5﹣3cosθ,∴y sinθ+3cosθ=5,即(θ+φ)=5,得sin(θ+φ)=,由,解得y≥4或y≤﹣4(舍).即,得BD,∴BD的最小值为.故答案为:.13.在平面直角坐标系xOy中,已知圆C1:x2+y2=8与圆C2:x2+y2+2x+y﹣a=0相交于A、B两点.若圆C1上存在点P,使得△ABP为等腰直角三角形,则实数a的值组成的集合为{8,8﹣2,8+2}.【解答】解:已知圆C1:x2+y2=8与圆C2:x2+y2+2x+y﹣a=0相交于A、B两点,则AB所在直线的方程为2x+y﹣a+8=0,若圆C1上存在点P,使得△ABP为等腰直角三角形,分2种情况讨论:①,P为直角顶点,则AB为圆C1的直径,即直线2x+y﹣a+8=0经过圆C1的圆心C1,必有﹣a+8=0,解可得a=8;②,A或B为直角顶点,则点C1到直线AB的距离d=r=×2=2,则有d==2,解可得a=8﹣2或8+2,综合可得:a的取值的集合为{8,8﹣2,8+2};故答案为:{8,8﹣2,8+2}.14.已知函数f(x)=,若关于x的方程f2(x)+2af(x)+1﹣a2=0有五个不相等的实数根,则实数a的取值范围是.【解答】解:令f(x)=t,则g(t)=t2+2at+1﹣a2,作f(x)的图象如下,设g(t)的零点为t1,t2,由图可知,要满足题意,则需,故,解得.故答案为:.二、解答题(共6题,共90分)15.如图,在三棱锥P﹣ABC中,P A⊥平面ABC,PC⊥AB,D,E分别为BC,AC的中点.求证:(1)AB∥平面PDE;(2)平面P AB⊥平面P AC.【解答】证明:(1)∵D,E分别为BC,AC的中点,∴DE是三角形ABC的一条中位线,∴DE∥AB,∵AB不在平面PDE内,DE在平面PDE内,∴AB∥平面PDE;(2)∵P A⊥平面ABC,AB在平面ABC内,∴P A⊥AB,又PC⊥AB,P A∩PC=P,且P A,PC都在平面P AC内,∴AB⊥平面P AC,∵AB在平面P AB内,∴平面P AB⊥平面P AC.16.在△ABC中,已知AC=4,BC=3,cos B=﹣.(1)求sin A的值.(2)求的值.【解答】解:(1)如图,∵,∴,又AC=4,BC=3,∴根据正弦定理得,,解得;(2)∵,∴,∴cos C=cos[π﹣(A+B)]=﹣cos(A+B)=sin A sin B﹣cos A cos B=,∴===.17.如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的焦距为4,两条准线间的距离为8,A,B分别为椭圆E的左、右顶点.(1)求椭圆E的标准方程:(2)已知图中四边形ABCD是矩形,且BC=4,点M,N分别在边BC,CD上,AM与BN相交于第一象限内的点P.①若M,N分别是BC,CD的中点,证明:点P在椭圆E上;②若点P在椭圆E上,证明:为定值,并求出该定值.【解答】解:(1)设椭圆的E的焦距为2c,则由题意,得,解得,所以b2=a2﹣c2=4,所以椭圆E的标准方程为;(2)①证明:由已知,得M(2,2),N(0,4),B(2,0),直线AM的方程为,直线BN的方程为,联立,解得,即P(,),因为,所以点P在椭圆上;②解法一:设P(x0,y0),(x0>0,y0>0),则,,直线AP的方程为,令,得,直线BP的方程,令y=4,得,所以=====.解法二:设直线AP的方程为(k 1>0),令,得,设直线BP的方程为(k 2<0),令y=4,得,所以==|k1k2|,设P(x0,y0),(x0>0,y0>0),则,所以k1k2=•===,所以=.18.在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫作图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a的正三角形ABC绕其中心O逆时针旋转θ到三角形A1B1C1,且顺次连结A,A1,B,B1,C,C1,A,得到六边形徽标AA1BB1CC1.(1)当θ=时,求六边形徽标的面积;(2)求六边形微标的周长的最大值.【解答】解:(1)因为正三角形ABC的边长为a,所以∠AOB=120°,且OA=OA1=OB=OB1=OC=OC1=,由旋转图形的性质可知,△A1AC1≌△AA1B≌△B1BA1≌△BB1C≌△C1CB1≌△CC1A,所以∠AA1B=∠A1BB1=∠BB1C=∠B1CC1=∠CC1A=∠C1AA1=120°,在等腰△AOA1中,因为∠AOA1=θ=,所以∠AA1O=,所以∠BA1O=,因此∠A1OB=,依此类推可得,∠BOB1=∠COC1=,∠B1OC=∠C1OA=,所以六边形徽标的面积S=+=3()=3•=,故六边形徽标的面积为.(2)由(1)可知,A1A=B1B=C1C,A1B=B1C=C1A,不妨设A1A=x,A1B=y,则六边形徽标的周长L=3(x+y).在△AA1B中,由余弦定理得,cos∠AA1B=cos120°=所以xx2+y2+xy=a2,变形得(x+y)2﹣xy=a2①由基本不等式可知,②由①②解得,x+y≤,当且仅当x=y=时取等号所以六边形徽标的周长L=3(x+y)≤3×=故六边形徽标的周长的最大值为.19.已知数列{a n}满足:a1=1,且当n≥2时,a n=λa n﹣1+(λ∈R).(1)若λ=1,证明:数列{a2n﹣1}是等差数列;(2)若λ=2.①设b n=a2n+,求数列{b n}的通项公式;②设∁n=,证明:对于任意的p,m∈N*,当p>m,都有∁p≥∁m.【解答】解:(1)当λ=1时,则根据a1=1,a n=a n﹣1+(n≥2),得,所以a2n+1=a2n﹣1+1,即a2n+1﹣a2n﹣1=1为常数,即数列{a2n﹣1}是首项为1,公差为1的等差数列;(2)λ=2时,a1=1,且当n≥2时,a n=2a n﹣1+,①当n≥2时,,所以a2n=4a2n﹣2+2,则a2n+=4(a2n﹣2+),又因为b n=a2n+,即有b n=a2n+=4(a2n﹣2+),而b1=a2+=2a1+=≠0,所以=4是常数,所以数列{b n}时首项为,公比为4的等比数列,则b n的通项公式为b n=•4n﹣1=•4n (n∈N+);②由①知,a2n=b n﹣=(4n﹣1),a2n﹣1=a2n=(4n﹣1),则===()﹣n=,所以∁n==[](n∈N+),则C n+1﹣∁n=﹣=,当n=1时,C2﹣C1=0,则C2=C1;当n=2时,C3﹣C2=0,则C3=C2;当n≥3时,C n+1﹣∁n>0,则C n+1>∁n,故对于任意的p,m∈N*,当p>m,都有∁p≥∁m.20.设函数(a∈R),其中e为自然对数的底数.(1)当a=0时,求函数f(x)的单调减区间;(2)已知函数f(x)的导函数f'(x)有三个零点x1,x2,x3(x1<x2<x3).①求a的取值范围;②若m1,m2(m1<m2)是函数f(x)的两个零点,证明:x1<m1<x1+1.【解答】解:(1)当a=0时,,其定义域为(﹣∞,0)∪(0,+∞),.令f'(x)<0,则x>1,∴f(x)的单调递减区间为(1,+∞).(2)①由,得,设g(x)=ax3﹣x+1,则导函数f'(x)有三个零点,即函数g(x)有三个非零的零点.又g′(x)=3ax2﹣1,若a≤0,则g′(x)=3ax2﹣1<0,∴g(x)在(﹣∞,+∞)上是减函数,g(x)至多有1个零点,不符合题意,∴a>0.令g′(x)=0,,则当x∈∪时,g'(x)>0;当x∈,g'(x)<0,∴g(x)在上单调递减,在和上单调递增,∴,即,∴.又g(0)=1>0,∴g(x)在上有且只有1个非零的零点.∵当时,,,且,又函数g(x)的图象是连续不间断的,∴g(x)在和上各有且只有1个非零的零点,∴实数a的取值范围是.②由f(m1)=f(m2)=0,得,设p(x)=ax2﹣ax﹣1(a>0),且p(m1)=p(m2)=0,∴.又∵m1<m2,∴m1<0<m2.∴x<m1或x>m2时,p(x)>0;m1<x<m2时,p(x)<0.由①知a>0,x1<0<x2<x3.∵,∴,,∴,,∴x1<m1<x1+1成立.【选做题】(3选2,每题10分)21.已知a,b∈R,向量是矩阵A=的属于特征值3的一个特征向量.(1)求矩阵A;(2)若点P在矩阵A对应的变换作用下得到点P'(2,2),求点P的坐标.【解答】解:(1)由矩阵特征值和特征向量的关系可知:Aα=3α,带入可知:=3,即,解得a=2,b=﹣1,故矩阵A=.(2)设P为(x,y),因为点P在矩阵A对应的变换作用下得到点P'(2,2),所以,解得x=1,y=0,故P(1,0).22.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),椭圆C的参数方程为(θ为参数),求椭圆C上的点P到直线l的距离的最大值.【解答】解:已知直线l的参数方程(t为参数),转换为直角坐标方程为x+2y+3=0,椭圆C的参数方程为(θ为参数),设椭圆上的点P(2cosθ,sinθ)到直线l的距离d==,当sin()=1时,.23.已知a,b,c都是正实数,且=1.证明:(1)abc≥27;(2)≥1.【解答】证明:(1)∵a,b,c都是正实数,∴,又∵=1,∴,即abc≥27,得证;(2)∵a,b,c都是正实数,∴,,,由①+②+③得,,∴,得证.【必做题】(每题10分)24.如图,在直四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AB⊥AD,AB=AD=AA1=2BC=2.(1)求二面角C1﹣B1C﹣D1的余弦值;(2)若点P为棱AD的中点,点Q在棱AB上,且直线B1C与平面B1PQ所成角的正弦值为,求AQ的长.【解答】解:(1)在直四棱柱ABCD﹣A1B1C1D1中,∵AA1⊥平面ABCD,AB,AD⊂平面ABCD,∴AB⊥AA1,AD⊥AA1,∵AB⊥AD,∴以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,∵AB=AD=AA1=2BC=2.∴A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),A1(0,0,2),B1(2,0,2),C1(2,1,2),D1(0,2,2),=(﹣2,2,0),=(0,1,﹣2),设平面B1CD1的一个法向量=(x,y,z),则,取x=2,则=(2,2,1),∵AB⊥平面B1C1C,∴平面B1CC1的一个法向量=(2,0,0),设二面角C1﹣B1C﹣D1的的平面角为α,由图形得锐角,∴二面角C1﹣B1C﹣D1的余弦值为:cosα==.(2)设AQ=λ(0≤λ≤2),则Q(λ,0,0),∵点P是AD中点,则P(0,1,0),=(λ,﹣1,0),=(λ﹣2,0,﹣2),设平面B1PQ的法向量=(x,y,z),则,取x=2,得=(2,2λ,λ﹣2),设直线B1C与平面B1PQ所成角大小为β,∵直线B1C与平面B1PQ所成角的正弦值为,∴sinβ===,解得λ=1或.∴AQ=1.25.一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球2n次(n∈N*),且每次取1只球.(1)当n=3时,求恰好取到3次红球的概率;(2)随机变量X表示2n次取球中取到红球的次数,随机变量,求Y 的数学期望(用n表示).2020年江苏省南通市、泰州市高考数学一模试卷答案解析【解答】解:(1)当n=3时,从装有5只小球的口袋中有放回地取球6次,共有n=56个基本事件,记“恰好取到3次红球”为事件A,则事件A包含的基本事件个数为m=,∴当n=3时,恰好取到3次红球的概率P(A)==.(2)由题意知随机变量Y的所在可能取值为0,1,3,5,…,2n﹣1,(n∈N*),则P(Y=2t+1)=•(2i+1)==.(0≤i≤n﹣1,i∈N),∴E(Y)=0•P(Y=0)+3P(Y=3)+5P(Y=5)+…+(2n﹣1)P(Y=2n﹣1)=(+++…+),令x n=+++…+,y n=++,则,x n﹣y n=(4﹣1)2n﹣1=32n﹣1.∴.∴E(Y)===.21/ 21。