上海市各市县2017届中考数学试题分类汇编-初三一模25题(学生版)
- 格式:doc
- 大小:829.50 KB
- 文档页数:16
2017年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣13.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.8.计算:(﹣3)﹣(+2)= .9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1y2.(填“>”、“=”或“<”)14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为米.(结果保留根号)17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为.三、解答题:(本大题共7题,满分78分)19.计算:.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.2017年上海市松江区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出cotA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∴cotA=,∵BC=2,∠A=α,∴AC=2cotα,故选D.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=,cotA=.2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣1【考点】二次函数图象上点的坐标特征.【分析】分别求出x=0时y的值,即可判断是否过原点.【解答】解:A、y=x2﹣1中,当x=0时,y=﹣1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2﹣x﹣1中,当x=0时,y=﹣1,不过原点;故选:C.【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键.3.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米【考点】相似三角形的应用.【专题】应用题.【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度.【解答】解:∵在相同时刻,物高与影长组成的直角三角形相似,∴1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米.故选A.【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同.4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =【考点】*平面向量.【分析】根据向量的定义对各选项分析判断后利用排除法求解.【解答】解:A、∥,∥,则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、=,说明两个向量方向相反,互相平行,故本选项错误;D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;故选:B.【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题.5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴=,故A正确;∵CD∥BE,AB=CD,∴△CDF∽△EBC∴=,故B正确;∵AD∥BC,∴△AEF∽△EBC∴=,故D正确.∴C错误.故选C.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9【考点】相似三角形的判定与性质.【分析】由△AEF∽△ABC,可知△AEF与△ABC的周长比=AE:AB,根据cosA==,即可解决问题.【解答】解:∵BE、CF分别是AC、AB边上的高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的周长比=AE:AB,∵cosA==,∴∴△AEF与△ABC的周长比=AE:AB=1:3,故选B.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.【考点】比例的性质.【分析】用a表示出b,然后代入比例式进行计算即可得解.【解答】解:∵ =,∴b=a,∴==.故答案为:.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.计算:(﹣3)﹣(+2)= .【考点】*平面向量.【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算.【解答】解::(﹣3)﹣(+2)=﹣3﹣﹣×2)=.故答案是:.【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型.9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是k<1 .【考点】二次函数的性质.【分析】由开口向下可得到关于k的不等式,可求得k的取值范围.【解答】解:∵y=(k﹣1)x2+3x的开口向下,∴k﹣1<0,解得k<1,故答案为:k<1.【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为y=(x﹣4)2.【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x ﹣4)2.故答案为:y=(x﹣4)2.【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是8 .【考点】解直角三角形.【专题】计算题;等腰三角形与直角三角形.【分析】利用锐角三角函数定义求出所求即可.【解答】解:∵在△ABC中,∠C=90°,sinA=,BC=6,∴sinA=,即=,解得:AB=8,故答案为:8【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC:CE=3:5,∴AC:AE=3:8,∵AB∥CD∥EF,∴,∴BD=,∴DF=,故答案为:.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1>y2.(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可.【解答】解:当x=2时,y1=﹣x2+1=﹣3;当x=5时,y2=﹣x2+1=﹣24;∵﹣3>﹣24,∴y1>y2.故答案为:>【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线x=2 .【考点】二次函数的性质.【分析】根据函数值相等的点到对称轴的距离相等可求得答案.【解答】解:∵抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,∴对称轴为x==2,故答案为:x=2.【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为 2 .【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,∴AD==3,∵中线BE与高AD相交于点G,∴点G为△ABC的重心,∴AG=3×=2,故答案为:2【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为5+5米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】CF⊥AB于点F,构成两个直角三角形.运用三角函数定义分别求出AF和BF,即可解答.【解答】解:作CF⊥AB于点F.根据题意可得:在△FBC中,有BF=CE=5米.在△AFC中,有AF=FC×tan30°=5米.则AB=AF+BF=5+5米故答案为:5+5.【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形.17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.【考点】线段垂直平分线的性质.【专题】探究型.【分析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度.【解答】解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为4.【考点】旋转的性质;解直角三角形.【分析】先解直角△ABC,得出BC=AB•cosB=9×=6,AC==3.再根据旋转的性质得出BC=DC=6,AC=EC=3,∠BCD=∠ACE,利用等边对等角以及三角形内角和定理得出∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∠BCM=∠ACN.解直角△ANC求出AN=AC•cos∠CAN=3×=2,根据等腰三角形三线合一的性质得出AE=2AN=4.【解答】解:∵在△ABC中,∠ACB=90°,AB=9,cosB=,∴BC=AB•cosB=9×=6,AC==3.∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,∴△ABC≌△EDC,BC=DC=6,AC=EC=3,∠BCD=∠ACE,∴∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∴∠BCM=∠ACN.∵在△ANC中,∠ANC=90°,AC=3,cos∠CAN=cosB=,∴AN=AC•cos∠CAN=3×=2,∴AE=2AN=4.故答案为4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了解直角三角形以及等腰三角形的性质.三、解答题:(本大题共7题,满分78分)19.计算:.【考点】实数的运算;特殊角的三角函数值.【分析】直接将特殊角的三角函数值代入求出答案.【解答】解:原式====.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】(1)在△ABD中,利用平面向量的三角形加法则进行计算;(2)根据向量加法的平行四边形法则,过向量的起点作BC的平行线,即可得出向量向量在、方向上的分向量.【解答】解:(1)∵,∴∵,∴∵,且∴;(2)解:如图,所以,向量、即为所求的分向量.【点评】本题考查平面向量,需要掌握一向量在另一向量方向上的分量的定义,以及向量加法的平行四边形法则.21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.【考点】相似三角形的判定与性质.【分析】(1)先根据S△BEF:S△EFC=2:3得出CF:BF的值,再由平行线分线段成比例定理即可得出结论;(2)先根据AC∥BD,EF∥BD得出EF∥AC,故△BEF∽△ABC,再由相似三角形的性质即可得出结论.【解答】解:(1)∵AC∥BD,∴∵AC=6,BD=4,∴∵△BEF和△CEF同高,且S△BEF:S△CEF=2:3,∴,∴.∴EF∥BD,∴,∴,∴(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴.∵,∴.∵S△BEF=4,∴,∴S△ABC=25.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)连接AB,作BG⊥AB交AC于点G,在Rt△ABG中,利用已知条件求出AB的长即可;(2)设直线EF交AD于点P,作CQ⊥EF于点Q,设AP=x,则PE=2x,PD=8﹣x,在Rt△ACD中利用已知数据可求出CD的长,进而可求出台EF的长度.【解答】解:(1)连接AB,作BG⊥AB交AC于点G,则∠ABG=90°∵AB∥CD,∴∠BAG=∠ACD=20°,在Rt△ABG中,,∵BG=2.26,tan20°≈0.36,∴,∴AB≈6.3,答:A、B之间的距离至少要6.3米.(2)设直线EF交AD于点P,作CQ⊥EF于点Q,∵AE和FC的坡度为1:2,∴,设AP=x,则PE=2x,PD=8﹣x,∵EF∥DC,∴CQ=PD=8﹣x,∴FQ=2(8﹣x)=16﹣2x,在Rt△ACD中,,∵AD=8,∠ACD=20°,∴CD≈22.22∵PE+EF+FQ=CD,∴2x+EF+16﹣2x=22.22,∴EF=6.22≈6.2答:平台EF的长度约为6.2米.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度角,关键是根据题意做出辅助线,构造直角三角形.23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.【考点】相似三角形的判定与性质.【分析】(1)先根据题意得出△ACB∽△ECA,再由直角三角形的性质得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,进而可得出∠AFC=90°;(2)根据AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由点E是BC的中点可知CE=BE,故,根据∠BEF=∠AEB得出△BEF∽△AEB,进而可得出结论.【解答】证明:(1)∵AC2=CE•CB,∴.又∵∠ACB=∠ECA=90°∴△ACB∽△ECA,∴∠ABC=∠EAC.∵点D是AB的中点,∴CD=AD,∴∠ACD=∠CAD∵∠CAD+∠ABC=90°,∴∠ACD+∠EAC=90°∴∠AFC=90°,∴AE⊥CD(2)∵AE⊥CD,∴∠EFC=90°,∴∠ACE=∠EFC又∵∠AEC=∠CEF,∴△ECF∽△EAC∴∵点E是BC的中点,∴CE=BE,∴∵∠BEF=∠AEB,∴△BEF∽△AEB∴∠EBF=∠EAB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出二次函数的解析式,根据二次函数的性质解答即可;(2)过点E作EH⊥BC于点H,根据轴对称的性质求出点E的坐标,根据三角形的面积公式求出EH、BH,根据正切的定义计算即可;(3)分和两种情况,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(3,0)和点C(0,3)∴,解得,∴抛物线解析式为y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),(2)由(1)可知抛物线对称轴为直线x=1,∵点E与点C(0,3)关于直线x=1对称,∴点E(2,3),过点E作EH⊥BC于点H,∵OC=OB=3,∴BC=,∵,CE=2,∴,解得EH=,∵∠ECH=∠CBO=45°,∴CH=EH=,∴BH=2,∴在Rt△BEH中,;(3)当点M在点D的下方时设M(1,m),对称轴交x轴于点P,则P(1,0),∴BP=2,DP=4,∴,∵,∠CBE、∠BDP均为锐角,∴∠CBE=∠BDP,∵△DMB与△BEC相似,∴或,①,∵DM=4﹣m,,,∴,解得,,∴点M(1,)②,则,解得m=﹣2,∴点M(1,﹣2),当点M在点D的上方时,根据题意知点M不存在.综上所述,点M的坐标为(1,)或(1,﹣2).【点评】本题考查的是二次函数知识的综合运用、相似三角形的判定和性质,掌握待定系数法求二次函数解析式的一般步骤、熟记相似三角形的判定定理和性质定理、掌握二次函数的性质、灵活运用数形结合思想是解题的关键.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.【考点】四边形综合题.【分析】(1)由矩形的性质和三角函数定义求出AD,由勾股定理求出BD即可;(2)证明△EDF∽△BDE,得出,求出CE=|x﹣12|,由勾股定理求出DE,即可得出结果;(3)当△DEF是等腰三角形时,△BDE也是等腰三角形,分情况讨论:①当BE=BD时;②当DE=DB时;③当EB=ED时;分别求出BE即可.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,在Rt△BAD中,,AB=16,∴AD=12∴;(2)∵AD∥BC,∴∠ADB=∠DBC,∵∠DEF=∠ADB,∴∠DEF=∠DBC,∵∠EDF=∠BDE,∴△EDF∽△BDE,∴,∵BC=AD=12,BE=x,∴CE=|x﹣12|,∵CD=AB=16∴在Rt△CDE中,,∵,∴,∴,定义域为0<x≤24(3)∵△EDF∽△BDE,∴当△DEF是等腰三角形时,△BDE也是等腰三角形,①当BE=BD时∵BD=20,∴BE=20②当DE=DB时,∵DC⊥BE,∴BC=CE=12,∴BE=24;③当EB=ED时,作EH⊥BD于H,则BH=,cos∠HBE=cos∠ADB,即∴,解得:BE=;综上所述,当△DEF时等腰三角形时,线段BE的长为20或24或.【点评】本题是四边形综合题目,考查了矩形的性质、三角函数定义、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x23.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥二、填空题(每题2分)7.如果x:y=4:3,那么=.8.计算:3﹣4(+)=.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=4x2﹣3x与y轴的交点坐标是.11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于厘米.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是.15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ :S△CPE的值是.三、解答题19.计算:cos245°+﹣•tan30°.20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,那么试用,表示向量,(请直接写出结论)22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A.2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误;B、y=2x(x+1)是二次函数,故B正确;C、y=不是二次函数,故C错误;D、y=(x﹣2)2﹣x2是一次函数,故D错误;故选:B.3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误;B、当k>0且≠时,那么k的方向与的方向相同,故本选项正确;C、如果k=0或=,那么k=,故本选项错误;D、如果=,=,其中是非零向量,那么向量a与向量b共线,即∥,故本选项错误;故选:B.二、填空题(每题2分)7.如果x:y=4:3,那么=.【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x=y,∴==,故答案为:.8.计算:3﹣4(+)=﹣﹣4.【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3﹣4(+)=3﹣4﹣4=﹣﹣4.故答案是:﹣﹣4.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为12.【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x﹣3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x﹣3的图象上,∴A(3,n)满足二次函数y=x2+2x﹣3,∴n=9+6﹣3=12,即n=12,故答案是:12.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于5﹣5厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,。
上海市各市县2017届中考数学试题分类汇编初三一模二次函数的性质与应用汇编题型一:二次函数的概念和图像【2017年宝山一模3】二次函数223y x x =++的定义域为( )A 、0x >;B 、x 为一切实数;C 、2y >;D 、y 为一切实数。
【参考答案】B【2017年嘉定一模4】抛物线22(1)4y x =+-与y 轴的交点坐标为( ) A 、(0,4)- B.(1,4)-- C 、(0,2)- D 、(2,0)- 【参考答案】 C【2017年浦东一模1】在下列y 关于x 的函数中,一定是二次函数的是( ) (A )22y x =; (B )22y x =-; (C )2y ax =; (D )2ay x =. 【参考答案】A【2017年杨浦一模4】在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【参考答案】 C【2017年宝山一模6】二次函数2()y a x m n =++的图像如图,则一次函数y mx n =+的图像经过( )A 、第一、二、三象限;B 、第一、二、四象限;C 、第二、三、四象限;D 、第一、三、四象限第2题【参考答案】 C【2017年普陀一模2】下列函数中,y 关于x 的二次函数是( )(A )21y x =+; (B )2(1)y x x =+; (C )22y x=; (D )22(2)y x x =-- 【参考答案】B【2017年普陀一模4】抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表所示:x… -2 -1 0 1 2 … y…4664…从上表可知,下列说法中,错误的是( )(A )抛物线与x 轴的一个交点坐标为(20)-,;(B )抛物线与y 轴的交点坐标为(06),; (C )抛物线的对称轴是直线0x =; (D )抛物线在对称轴左侧部分是上升的. 【参考答案】 C【2017年青浦一模4】抛物线y =2x 2+4与y 轴的交点坐标是( )(A )(0,2); (B )(0,-2); (C )(0,4); (D )(0,-4) 【参考答案】C【2017年松江一模2】下列抛物线中,过原点的抛物线是( )(A )21y x =- ;; (B )()21y x =+; (C )2y x x =+; (D )21y x x =-- .【参考答案】C【2017年长宁、金山一模9】已知抛物线23y x x c =++与y 轴的交点坐标是(0,-3),那么c =__________. 【参考答案】-3【2017年长宁、金山一模10】已知抛物线2132y x x =--经过点(-2,m ),那么m =___________. 【参考答案】4【2017年杨浦一模17】用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:x… 1 2 3 4 … 2y ax bx c =++…0 1-0 3…那么该二次函数在0x =时,y = 【参考答案】3【2017年浦东一模12】在一个边长为2的正方形中挖去一个边长为(02)x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式是__________. 【参考答案】 y=4-x 2【2017年浦东一模13】如果抛物线221y ax ax =-+经过点(1,7)A -、(,7)B x ,那么x = 。
2016学年上海市杨浦区初三一模数学试卷一。
选择题(本大题共6题,每题4分,共24分) 1。
如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C 。
3:1 D 。
3:22。
在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( ) A 。
100tan α B 。
100cot α C. 100sin α D. 100cos α 3。
将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B 。
22(1)1y x =-+ C. 22(1)3y x =++ D 。
22(3)3y x =-+4。
在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A 。
第一象限B 。
第二象限 C. 第三象限 D 。
第四象限 5. 下列命题不一定成立的是( )A 。
斜边与一条直角边对应成比例的两个直角三角形相似 B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒ C 。
80︒ D. 100︒二。
填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm 14。
上海市各市县2017届中考数学试题分类汇编初三一模重心【2017年宝山一模12】如图,G 为ABC △重心,如果13AB AC ==,=10BC ,那么AG 的长为 ;【答案】8【2017年奉贤一模16】边长为2的等边三角形的重心到边的距离是 ; 【答案】33 【2017年静安一模14】在ABC ∆中,如果10==AC AB ,54cos =B ,那么ABC ∆的重心到底边的距 离为________.【答案】2【2017年浦东一模5】如图,ABC ∆的两条中线AD CE 、交于点G ,且AD CE ⊥.联结BG 并延长与AC 交于点F ,如果912AD CE ==,,那么下列结论不正确的是( )(A ) 10AC =; (B )15AB =; (C )10BG =; (D )15BF =【答案】4【2017年松江一模15】在△ABC 中,AB=AC =5,BC =8,AD ⊥BC ,垂足为D ,BE 是△ABC 的中线,AD 与BE 相交于点G ,那么AG 的长为___________.【答案】2【2017年虹口一模17】如图,在ABC ∆中,如果AB AC = ,边BC 、AC 上的中线AD 、BE 相交于点G ,如果41cot 3DG C ==, ,那么___ABC S ∆=【答案】12【2017年黄浦一模12】已知G 是等腰直角△ABC 的重心,若2AC BC ==,则线段CG 的长为 【答案】223【2017年青浦一模14】点G 是ABC ∆的重心,AB CD //,交边BC 与点D ,如果BC =6,那么CD 的长是【答案】4【2017年长宁、金山一模14】如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交 BC 与E ,若6AB =,那么GE =___________.【答案】2。
上海市各市县2017届中考数学试题分类汇编初三一模平面向量【2017年一模奉贤4】 对于非零向量a 、b 、c ,下列条件中,不能判定a 与b 是平行向量的是( )A. a ∥b ,c ∥bB. 30a c +=,3b c =C. 3a b =-D.3a b =.【答案】:D【2017年一模长宁、金山5】 已知非零向量a 与b ,那么下列说法正确的是( ) A. 如果a b =,那么a b =; B. 如果a b =-,那么a b ∥C. 如果a b ∥,那么a b =;D. 如果a b =-,那么a b =【答案】:D【2017年一模宝山4】 已知非零向量a 、b 之间满足3a b =-,下列判断正确的是( ) A. a 的模为3 B. a 与b 的模之比为3:1- C. a 与b 平行且方向相同 D. a 与b 平行且方向相反【答案】:D【2017年一模普陀6】下列说法中,错误的是( )A. 长度为1的向量叫做单位向量B. 如果0k ≠,且0a ≠,那么ka 的方向与a 的方向相同C. 如果0k =或0a =,那么0ka =D. 如果52a c =,12b c =-,其中c 是非零向量,那么a ∥b【答案】:2a b +【2017年一模松江4】已知非零向量a ,b ,c ,下列条件中不能判定a ∥b 的是( )(A )a ∥c ,b ∥c ; (B )2a b =; (C )a =2b - ; (D )a = 2c ,b =c .【答案】:B【2017年一浦东新区2】如果向量a b x 、、满足32()23x a a b +=-,那么x 用a b 、表示正确的( ) (A )2a b -; (B )52a b -; (C )23a b -; (D )12a b - 【答案】:D【2017年一模虹口3】计算 23()a a b --的结果是( ).3A a b -- .3B a b -+ .C a b - .D a b -+【答案】:B【2017年一模黄浦4】已知向量a 和b 都是单位向量,则下列等式成立的是( )A. a b =B. 2a b +=C. 0a b -=D. ||||0a b -=【答案】:D【2017年一模闵行4】已知2b a =-,那么下列判断错误的是( )A. ||2||b a =B. 20a b +=C. b ∥aD. b a ≠【答案】:B【2017年一模虹口8】如果向量a 与单位向量e 方向相反,且长度为2,那么用向量 e 表示_____a =【答案】:2e -【2017年一模虹口16】如图,已知点O 为ABC ∆内一点,点D 、E 分别在边AB 和AC 上,且12AD BD =,设,OB b OC c ==,用b 、c 向量表示=____DE【答案】:c b 3131-+ 【2017年一模崇明7】如果)b -a 2(3b a =+,用a 表示b ,那么b =【答案】:53a【2017年一浦东新区9】已知24a b ==,,且b 和a 反向,用向量a 表示b = ; 【答案】:a 2-【2017年一模松江8】计算:1+=2m n m n (-3)-(2)____________.【答案】:12m n -4【2017年一模普陀8】计算:34()a a b -+=【答案】:4a b --【2017年一模宝山11】计算:2(3)5a b b +-=【答案】:2a b +【2017年一模奉贤8】计算:()12632a b a +-=_______; 【答案】:2+3a b -【2017年一模嘉定7】计算:2a a -= .【答案】:a -【2017年一模徐汇8】点C 是线段AB 延长线上的点,已知AB a =,CB b =,那么AC =____________【答案】:a b -【2017年一模青浦14】已知在ABC ∆中,点D 在边AC 上,且1:2:=DC AD ,设→→=a BA ,→→=b BC ,那么 →BD = (用向量→→b a ,表示) 【答案】:→→+b a 3231【2017年一模黄浦8】计算:2(2)3()a b a b --+=【答案】:7a b --【2017年一模静安15】已知在平行四边形ABCD 中,点E 是边BC 的中点,DE 与AC 相交于点F ,设−→−−→−=a AB ,−→−−→−=b BC ,那么._______=−→−FD 【答案】:1233b a -【2017年一模闵行8】计算:17()(2)22a b a b +--=【答案】:33a b -+【2017年一模杨浦14】如果3a b c +=,2a b c -=,那么a = (用b 表示)【答案】:45b【2017年一模奉贤21】已知:如图4,在△ABC 中,AB=AC ,过点A 作AD ⊥BC ,垂足为点D ,延长AD至点E ,使DE=12AD ,过点A 作AF ∥BC ,交EC 的延长线于点F . (1)设AB a =,BC b =,用a 、b 的线性组合表示AE ;(2)求DECAFC SS 的值。
2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理廖老师宝山区一模压轴题18(宝山)如图,为直角的斜边上一点,交于,如果沿着翻折,D ABC D AB DE AB ^AC E AED D DE 恰好与重合,联结交于,如果,,那么A B CD BEF 8AC =1tan 2A =:___________.CF DF =图18图A24(宝山)如图,二次函数的图像与轴交于两点,与轴交于点已知点232(0)2y ax x a =-+¹x A B 、y ,C .(4,0)A -(1)求抛物线与直线的函数解析式;AC (2)若点是抛物线在第二象限的部分上的一动点,四边形的面积为,求关于的函数关(,)D m n OCDA S S m 系;(3)若点为抛物线上任意一点,点为轴上任意一点,当以为顶点的四边形是平行四边形时,E F x A C E F 、、、请直接写出满足条件的所有点的坐标.E 图24图25(宝山)如图(1)所示,为矩形的边上一点,动点同时从点出发,点以的E ABCD AD P Q 、B P 1/cm s 速度沿着折线运动到点时停止,点以的速度沿着运动到点时停止。
设BE ED DC --C Q 2/cm s BC C 同时出发秒时,的面积为,已知与的函数关系图像如图(2)(其中曲线为抛物线P Q 、t BPQ D 2ycm y t OG 的一部分,其余各部分均为线段).(1)试根据图(2)求时,的面积关于的函数解析式;05t <£BPQ D y t (2)求出线段的长度;BC BE ED 、、(3)当为多少秒时,以为顶点的三角形和相似;t B P Q 、、ABE D (4)如图(3)过点作于,绕点按顺时针方向旋转一定角度,如果中的E EF BC ^F BEF D B BEF D E F 、对应点恰好和射线的交点在一条直线,求此时两点之间的距离. H I 、BE CD 、G C I 、图3图图2图图1图图25图崇明县一模压轴题18(崇明)如图,已知 中,,于点,点在上,且,联结,ABC ∆45ABC ∠=o AH BC ⊥H D AH DH CH =BD 将绕点旋转,得到(点、分别与点、对应),联结,当点落在上时,(不BHD V H EHF ∆B D E F AE F AC F 与重合)如果,,那么的长为;C 4BC =tan 3C =AE24(崇明)在平面直角坐标系中,抛物线与轴交于点 ,与轴的正半轴交于点235y x bx c =-++y (0,3)A x (5,0)B ,点在线段上,且 ,联结、将线段绕着点顺时针旋转,得到线段,过点作直D OB 1OD =AD AD D 90︒DE E 线轴,垂足为,交抛物线于点. l x ⊥H F (1)求这条抛物线的解析式;(2)联结,求的值;DF cot EDF ∠(3)点在直线上,且,求点的坐标.G l 45EDG ︒∠=G25(崇明)在中,,,,以为斜边向右侧作等腰直角,是ABC ∆90ACB ︒∠=3cot 2A =BC EBC ∆P 延长线上一点,联结,以为直角边向下方作等腰直角,交线段于点,联结. BE PC PC PCD ∆CD BE F BD (1)求证:;PC CECD BC=(2)若,的面积为,求关于的函数解析式,并写出定义域;PE x =BDP ∆y y x (3)当为等腰三角形时,求的长.BDF ∆PE奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是______.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线与x 轴相交于点A (-1,0)和点B ,与y 轴相2y x bx c =-++交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。
2017年初三数学一模25题汇编25题常考题型解析:题型一、等腰三角形的分类讨论思路点拨:出现概率较高题型,重点。
解决此类问题主要通过两个方面解决:1.一方面从边方面入手,将此三角形的三边用x y或的表达式表示,根据腰相等建立方程求出线段长度(优点:方法简单,易理解;缺点:计算量偏大,易出错);2.另一方面从角方面入手,利用等腰产生的底角相等转化出其他的角度关系或边长关系进而建立方程求出线段的长度(优点:计算量偏小,易计算,缺点:此方法对于孩子的分析能力要求较高,适合一部分程度较好的学生)。
题型二、动点产生的相似综合思路点拨:1.首先寻找题目中特殊的条件和不变的量,并找出由条件引发的一些相等角、相等线段等特殊条件;(挖掘题目中的隐藏条件)2.然后注意分类讨论,先找到对应相等的角,再决定分类讨论情况:3.相似三角形的边如果能直接求出列等式最好,如果不能求出,注意转化相似(是否产生新的相似、等腰、平行四边形等更特殊的条件).题型三、动点产生的直角三角形问题思路点拨:当判断一个动三角形为直角三角形时,首先注意分类讨论。
其次就是利用这个直角来求解线段长度或角度问题,可以考虑用一下两种方法:1.直角三角形的基本性质,包括锐角互余关系,三边勾股关系,斜中定理关系,以及30°角性质等;2.利用产生的直角,利用锐角三角比或构造一线三直角利用相似关系来解题。
题型四、圆的综合思路点拨:圆的综合在一模试卷中出现的不多,二模中是重点题型。
与圆有关的问题主要分两类:1.一是圆中函数关系式的建立,主要要利用垂径定理和勾股定理,有时还会结合三角形的相似关系来建立关系式;2.二是考察圆中的位置关系,包括点与圆、直线与圆和圆与圆的位置关系,其中圆与圆的相切关系考察频率较高,需重点掌握。
解题方法主要是抓住代数上的等量关系再结合一下图形即可求出,切忌和学生强调不要纠结在一定要画出图形才能解题。
题型一、等腰三角形的分类讨论【2017年一模奉贤25】已知:如图8,Rt ABC △中,=90ACB ∠︒,=8BC ,3cot 4BAC ∠=,点D 在边BC 上(不与点B 、C 重合),点E 在边BC 的延长线上,DAE BAC ∠=∠,点F 在线段AE 上,ACF B ∠=∠,设BD x =。
25. (12分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE - ED - DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,ABPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线0G为抛物线的部分,其余各部分均为线段)(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF丄BC于F,ABEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线, 求此时C、I两点之间的距离.25.已知,如图,Rt^ABC 中,/ ACB=90 , BC=8, cot/BAC=-,点D 在边BC上(不与点B、C重合),点E在边BC的延长线上,/ DAE= / BAC,点F 在线段AE 上,/ ACF= / B .设BD=x .(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=—,求y关于x的函数关系式,并写出它的定义域;(3)当AADE是以AD为腰的等腰三角形时,求线段BD的长.25. (14分)如图,△ABC边AB上点D、E (不与点A、B重合),满足/ DCE= / ABC,/ ACB=90 , AC=3 , BC=4;(1)当CD丄AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.25. (14分)如图,在梯形ABCD中,AD // BC , AC与BD相交于点O, AC=BC, 点E 在DC 的延长线上,/ BEC=Z ACB,已知BC=9, cos/ ABC二一.(1)求证:BC2=CD?BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBCDEB,求CE 的长.25.( 14 分)如图,已知在梯形ABCD 中,AD // BC,AB=AD=5 ,an/ DBC=-•点E为线段BD上任意一点(点E与点B, D不重合),过点E作EF// CD,与BC(1)求BD的长;(2)如果BC=BD,当ADCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量25. x的取值范围.(14分)如图,矩形ABCD中,AB=3 , BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF丄AE,射线EF与对角线BD交于点G,与射线AD交于点M ;(1)当点E在线段BC上时,求证:△AEFABD ;(2)在(1)的条件下,联结AG,设BE=x,ta n/ MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.25. (14 分)如图,在直角三角形ABC 中,/ ACB=90 , AB=10 , sinB=-,点O 是AB的中点,/ DOE=Z A,当/ DOE以点O为旋转中心旋转时,OD交AC 的延长线于点D,交边CB于点M,OE交线段BM于点N .(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果AOMN是以OM为腰的等腰三角形,请直接写出线段CM的长.冒用图25. (14 分)已知:女口图,在菱形ABCD 中,AB=5 ,联结BD, sin/ ABD= —•点P是射线BC上的一个动点(点P不与点B重合),联结AP,与对角线BD相交于点E,联结EC.(1)求证:AE=CE ;(2)当点P在线段BC上时,设BP=x, APEC的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)当点P在线段BC的延长线上时,若APEC是直角三角形,求线段BP的长.25. (14分)如图,已知四边形ABCD是矩形,cot/ADB二-,AB=16 •点E在射线BC 上,点F在线段BD上,且/ DEF= / ADB .(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.25. (14分)如图,已知△ABC中,AB=AC=3 , BC=2,点D是边AB上的动点,过点D 作DE // BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y .(1)求y关于x的函数解析式及定义域;(2)当△^QE是等腰三角形时,求BD的长;(3)连接CQ,当/ CQB和/CBD互补时,求x的值.。
上海市各市县2017届中考数学试题分类汇编.初三一模相似形、比例和线段【2017年一模普陀1】“相似的图形”是( )(A )形状相同的图形; (B )大小不相同的图形;(C )能够重合的图形; (D )大小相同的图形.【答案】A【2017年一模宝山7】已知23a b =,那么a b= ; 【答案】23 【2017年一模宝山9】如图,D 为ABC △的边AB 上一点,如果=ACD ABC ∠∠,那么图中 是AD 和AB 的比例中项;【答案】 AC【2017年一模奉贤7】如果线段a 、b 、c 、d 满足13a c b d ==,那么+a c b d =+ ; 【答案】31 【2017年一模奉贤9】已知线段3a =,6b =,那么线段a ,b 的比例中项等于 ; 【答案】23【2017年一模嘉定1】已知线段a ,b ,c ,d ,如果dc b a =,那么下列式子中不一定正确的是( ) A 、bc ad =; B 、c a =,d b = C 、d c c b a a +=+ D 、b a d b c a =++ 【答案】B【2017年一模闵行7】已知:32a b =,那么2323a b a b +=- 【答案】135-【2017年一模闵行9】如果地图上A 、B 两处的图距是4cm ,表示这两地实际的距离是20km ,那么实际距离是500km 的两地在地图上的图距是 cm【答案】100【2017年一模普陀7】如果:4:3x y =,那么x y y-= ; 【答案】13【2017年一模松江7】已知34a b =,则2a a b +的值为____________. 【答案】67【2017年一模徐汇1】如果2x=3y ,那么下列各式中正确的是( )A 、23x y =B 、3x x y =-C 、53x y y +=D 、25x x y =+ 【答案】B【2017年一模徐汇7】已知线段a=9,c=4,如果线段b 是a 、c 的比例中项,那么b=___________【答案】6【2017年一模长宁、金山7】如果()340x y x =≠,那么x y=__________. 【答案】43【2017年一模崇明1】如果)均不为,(0y x 3y 5x =,那么y x :的值是( );35.A ;53.B 83.C 85.D【答案】B【2017年一模虹口7】已知线段4a cm = ,1c cm = ,则线段 a 和c 的比例中项_____b cm =【答案】2【2017年一模黄浦7】已知线段a 是线段b 、c 的比例中项,如果3a =,2b =,那么c = 【答案】92【2017年一模浦东新区7】已知线段34a cm b cm ==,,那么线段a b 、的比例中项等于 cm ;【答案】 23【2017年一模杨浦1】如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:2【答案】【2017年一模杨浦7】线段3cm和4cm的比例中项是cm 【答案】23。
上海市各市县2017届中考数学试题分类汇编初三一模相似三角形的判定【2017年奉贤一模5】在ABC △和DEF △中,AB AC =,DE DF =,根据下列条件,能判断ABC △ 和DEF △相似的是( )(A )AB AC DE DF =;(B )AB BC DE EF=;(C )A E ∠=∠;(D )B D ∠=∠;【答案】B【2017年嘉定一模5】在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上(如图1),下列四个选项中, 能判定DE ∥BC 的是( )A 、BD CE AB AC = B 、AB AE AD AC = C 、AB BC AD DE = D 、AB AE AC AD = 图1A EDBC【答案】A【2017年闵行一模6】如图,已知D 是△ABC 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线 交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A. △BDF ∽△BECB. △BFA ∽△BECC. △BAC ∽△BDA【答案】A【2017年闵行一模16】如图,△OPQ 在边长为1个单位的方格纸中,它们的顶点在小正方形顶点位置, 点A 、B 、C 、D 、E 也是小正方形的顶点,从点A 、B 、C 、D 、E 中选取三个点所构成的 三角形与△OPQ 相似,那么这个三角形是【答案】 △BCD【2017年普陀一模1】“相似的图形”是( )(A )形状相同的图形;(B )大小不相同的图形;(C )能够重合的图形; (D )大小相同的图形.【答案】A【2017年普陀一模5】如图2,在四边形ABCD 中,如果ADC BAC ∠=∠,那么下列条件中不能..判定 ADC △和BAC △相似的是( )(A )DAC ABC ∠=∠; (B )AC 是BCD ∠的平分线;(C )2AC BC CD =; (D )AD DC AB AC =【答案】C【2017年徐汇一模4】在△ABC 中,点D 、E 分别在边AB 、AC 上,联结DE ,那么下列条件中不能判断 △ADE 和△ABC 相似的是( )A 、DE ∥BCB 、∠AED=∠BC 、AE AB AD AC = D 、AE AC DE BC= 【答案】D【2017年杨浦一模5】下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似【答案】 C【2017年黄浦一模17】如图,在△ABC 中,90C ︒∠=,8AC =,6BC =,D 是边AB 的中点,现有 一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为【答案】4或254【2017年崇明一模5】如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BC AB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( )①.A ②.B ③.C ④.D 【答案】C图2B C A D。
上海市各市县2017届中考数学试题分类汇编2017年初三数学一模25题汇编25题常考题型解析:题型一、等腰三角形的分类讨论思路点拨:出现概率较高题型,重点。
解决此类问题主要通过两个方面解决:1.一方面从边方面入手,将此三角形的三边用x y或的表达式表示,根据腰相等建立方程求出线段长度(优点:方法简单,易理解;缺点:计算量偏大,易出错);2.另一方面从角方面入手,利用等腰产生的底角相等转化出其他的角度关系或边长关系进而建立方程求出线段的长度(优点:计算量偏小,易计算,缺点:此方法对于孩子的分析能力要求较高,适合一部分程度较好的学生)。
题型二、动点产生的相似综合思路点拨:1.首先寻找题目中特殊的条件和不变的量,并找出由条件引发的一些相等角、相等线段等特殊条件;(挖掘题目中的隐藏条件)2.然后注意分类讨论,先找到对应相等的角,再决定分类讨论情况:3.相似三角形的边如果能直接求出列等式最好,如果不能求出,注意转化相似(是否产生新的相似、等腰、平行四边形等更特殊的条件).题型三、动点产生的直角三角形问题思路点拨:当判断一个动三角形为直角三角形时,首先注意分类讨论。
其次就是利用这个直角来求解线段长度或角度问题,可以考虑用一下两种方法:1.直角三角形的基本性质,包括锐角互余关系,三边勾股关系,斜中定理关系,以及30°角性质等;2.利用产生的直角,利用锐角三角比或构造一线三直角利用相似关系来解题。
题型四、圆的综合思路点拨:圆的综合在一模试卷中出现的不多,二模中是重点题型。
与圆有关的问题主要分两类:1.一是圆中函数关系式的建立,主要要利用垂径定理和勾股定理,有时还会结合三角形的相似关系来建立关系式;2.二是考察圆中的位置关系,包括点与圆、直线与圆和圆与圆的位置关系,其中圆与圆的相切关系考察频率较高,需重点掌握。
解题方法主要是抓住代数上的等量关系再结合一下图形即可求出,切忌和学生强调不要纠结在一定要画出图形才能解题。
题型一、等腰三角形的分类讨论【2017年一模奉贤25】已知:如图8,Rt ABC △中,=90ACB ∠︒,=8BC ,3cot 4BAC ∠=,点D 在边BC 上(不与点B 、C 重合),点E 在边BC 的延长线上,DAE BAC ∠=∠,点F 在线段AE 上,ACF B ∠=∠,设BD x =。
(1)若点F 恰好是AE 的中点,求线段BD 的长;(2)若AFy EF=,求y 关于x 的函数关系式,并写出它的定义域;(3)当ADE △是以AD 为腰的等腰三角形时,求线段BD 的长。
【2017年一模普陀25】如图9,在直角三角形ABC 中,°=90ACB ∠,10AB =,3sin 5B =,点O 是AB 的中点,DOE A ∠=∠,当DOE ∠以点O 为旋转中心旋转时,OD 交AC 的延长线于点D ,交边CB 于点M ,OE 交线段BM 于点N 。
(1)当2CM =时,求线段CD 的长;(2)设CM x =,=BN y ,试求y 与x 之间的函数解析式,并写出定义域; (3)如果OMN △是以OM 为腰的等腰三角形,请直接写出线段CM 的长。
E备用图图9CNMDOCABBA【2017年一模长宁、金山25】已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =. (1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域; (3)当AOF ∆是等腰三角形时,求BE 的长.D ACB第25题备用图OQPD FE第25题图B C A【2017年一模徐汇25】如图8,已知ABC ∆中,AB=AC=3,BC=2,点D 是边AB 上的动点,过点D 作DE ∥BC ,交边AC 于点E ,点Q 是线段DE 上的点,QE=2DQ ,联结BQ 并延长,交边AC 于点P ,设BD=x ,AP=y. (1)求y 关于x 的函数解析式及定义域; (2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.CBA【2017年一模崇明25】在△ABC 中,90=∠ACB ,23cot =A ,26=AC ,以BC 为斜边向有侧作等腰直角△EBC ,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角△PCD ,CD 交线段BE 于点F ,联结BD .(1)求证:BCCECD PC =; (2)若x PE =,△BDP 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BDF 为等腰三角形时,求PE 的长。
QDFC BAE【2017年一模闵行25】如图,已知在梯形ABCD 中,AD ∥BC ,5AB AD ==,3tan 4DBC ∠=,点E 为 线段BD 上任意一点(点E 与点B 、D 不重合),过点E 作EF ∥CD ,与BC 相交于点F ,联结CE ,设BF x =,ECF BCDSy S ∆∆=;(1)求BD 的长;(2)如果BC BD =,当△DCE 是等腰三角形时,求x 的值;(3)如果10BC =,求y 关于x 的函数解析式,并写出自变量x 的取值范围;【2017年一模松江25】如图,已知四边形ABCD 是矩形,3cot 4ADB ∠=,16AB =,点E 在射线BC 上,点F 在线段BD 上,且DEF ADB ∠=∠. (1)求线段BD 的长;(2)设BE x =,DEF ∆的面积为y ,求y 关于x 的函数解析式,并写出函数定义域; (3)当DEF ∆为等腰三角形时,求线段BE 的长.F EDC BA【2017年一模松江25】如图17,△ABC 边AB 上点E D 、(不与点B A 、重合),满足ABC DCE ∠=∠,已知90=∠ACB ,3=AC ,4=BC .(1)当AB CD ⊥时,求线段BE 的长;(2)当△CDE 是等腰三角形时,求线段AD 的长;(3)设x AD =,y BE =,求y 关于x 的函数关系式,并写出定义域。
题型二、动点产生的相似综合【2017年一模宝山25】如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 以1/cm s 的速度沿折线BE ED DC --运动到点C 是停止,点Q 以2/cm s 的速度沿BC 运动到点C 时停止。
设P 、Q 同时出发t 秒时,BPQ △的面积为2ycm ,已知y 与t 的函数关系图像如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段)。
(1) 试根据图(2)求0t <≤5时,BPQ △的面积y 关于t 的函数解析式;(2) 求出线段BC 、BE 、ED 的长度;(3) 当t 为多少秒时,以B P Q 、、为顶点的三角形和ABE △相似;(4) 如图(3),过E 作EF BC ⊥于F ,BEF △绕点B 按顺时针方向旋转一定角度,如果BEF △中E 、F 的对应点H 、I 恰好和射线BE 、CD 的交点G 在一条直线,求此时C 、I 两点之间的距离。
【2017年一模杨浦25】在ABC Rt △中,90=∠ACB ,2==BC AC ,点P 为边BC 上的一动点(不与点C B 、重合),点P 关于直线AB AC 、的对称点分别为N M 、,联结MN 交边AB 于点F ,交边AC 于点E 。
(1)如图1,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设x CP =,y S MPF =△,求y 与x 的函数关系式,并写出定义域;(3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请证明;若不是,请求出当△AEF 与△ABM 相似时CP 的长。
【2017年一模虹口25】如图,在ABC Rt △中, 90=∠ACB ,4=AC ,3=BC ,点D 是边BC 上一动点(不与点C B 、重合),联结AD ,过点C 作AD CF ⊥,分别交AD AB 、于点F E 、,设x DC =,y BEAE =。
(1)当1=x 时,求BCE ∠tan 的值;(2)求y 关于x 的函数关系式,并写出x 的取值范围; (3)当1=x 时,在边AC 上取点G ,联结BG ,分别交AD CE 、于点N M 、,当A B C MN F ∽△△时,请直接写出AG 的长。
【2017年一模静安25】 如图,在梯形ABCD 中,//AD BC ,AC 与BD 相交于点O ,AC BC =,点E 在DC 的延长线上,BEC ACB ∠=∠. 已知19,cos 3BC ABC =∠=. (1)求证:2BC CD BE =⋅;(2)设,AD x CE y ==,求y 与x 之间的函数解析式,并写出定义域;(3)如果DEB DBC ∽△△,求CE 的长.【2017年一模浦东25】如图所示,矩形ABCD 中,4,3==BC AB ,点E 是射线CB 上的动点,点F 是射线CD 上一点,且AE AF ⊥,射线EF 与对角线BD 交于点G ,与射线AD 交于点M .(1)当点E 在线段CB 上时,求证:△AEF ∽△ABD ;(2)在(1)的条件下,联结AG ,设y MAG x BE =∠=tan ,,求y 关于x 的函数解析式,并写出x 的取值范围;(3)当△AGM 与△ADF 相似时,求BE 的长.题型三、直角三角形综合【2017年一模青浦25】已知,如图9,在菱形ABCD 中,5=AB ,联结BD ,55sin =∠ABD ,点P 是射线BC 上的一个动点(点P 不与第B 重合),联结AP ,与对角线BD 相交于点E ,联结EC .(1)求证:CE AE =;(2)当点P 在线段BC 上时,设x BP =,y S EPC =△,求y 与x 的函数解析式,并写出定义域;(3)当点P 在线段BC 延长线上时,若△PEC 是直角三角形,求线段BP 的长。
题型四、圆的综合【2017年一模嘉定25】已知点P不在⊙O上,点Q是⊙O上任意一点,将线段PQ的长度中的最小的值定义为点P到⊙O的“最近距离”;将线段P Q的长度中的最大的值定义为点P到⊙O的“最远距离”;(1)(尝试)已知点P到⊙O的“最近距离”为2,点P到⊙O的“最远距离”为6,求⊙O的半径长(不需要解题过程,直接写出答案).(2)(证明)如图10,已知点P在⊙O外,试在⊙O上确定一点Q,使得PQ最短,并简要说明PQ最短的理由.(3)(应用)已知⊙O的半径长为5,点P到⊙O的“最近距离”为1,以点P为圆心,以线段PQ为半径画圆,⊙P 交⊙O 于点A 、B ,联结OA 、PA ,求OAP 的余弦值.图10P O备用图1O 备用图2O。