2009届高三数学第二轮复习课件:集合与简易逻辑
- 格式:ppt
- 大小:283.00 KB
- 文档页数:33
高三数学第二轮专题复习系列(1)--集合与简易逻辑一、【重点知识结构】二、【高考要求】1.理解集合、子集、交集、并集、补集的概念.了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的述语和符号,能正确地表示一些较简单的集合.2.理解|ax+b|<c,|ax+b|>c(c>0)型不等式的概念,并掌握它们的解法.了解二次函数、一元二次不等式及一元二次方程三者之间的关系,掌握一元二次不等式及简单分式不等式的解法.3.理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义和判定.4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合问题,形成良好的思维品质;学会判断和推理,解决简易逻辑问题,培养逻辑思维能力.三、【高考热点分析】集合与简易逻辑是高中数学的重要基础知识,是高考的必考内容.本章知识的高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用、判断命题的真假、四种命题的关系、充要条件的判定等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.四、【高考复习建议】概念多是本章内容的一大特点,一是要抓好基本概念的过关,一些重点知识(如子、交、并、补集及充要条件等)要深刻理解和掌握;二是各种数学思想和数学方法在本章题型中都有较好体现,特别是数形结合思想,要善于运用韦氏图、数轴、函数图象帮助分析和理解集合问题.五、【例 题】【例1】 设}13|{},13|{,,22++==+-==∈y y b b B x x a a A R y x ,求集合A 与B 之间的关系。
解:由4545)23(1322-≥--=+-=x x x a ,得A=}45|{-≥x x 45)23(1322-+=++=y y y b 45-≥∴A=B【例2】 已知集合A=}0103|{2≤--x x x ,集合B=}121|{-≤≤+p x p x ,若B ⊆A ,求实数p 的取值范围。
0卜)二轮复习数学第01讲_集合与简易逻辑多」艙凡事比别人多一点点!多一点努力,多一点自律,多一点实践,多一点疯狂。
多一点点就能创造奇迹!:、例题剖析例1、设向量集合W ={ala = (1,2) + 2(3,4),2 w&,N = (ala = (2,3) + 2(4,5),2 e R},则M cN =( ) A.{(1,1)} B. {(1,1), (-2,-2)} C. {(-2,-2)} D ①分析:集合M、N分别表示向量集合,先认清这两个向量集合,再找它们的公共向量。
归纳点评解答集合问题,必须弄清题目的要求,正确理解各个集合的含义,再对集合进行简化,借助数轴或韦恩图进而使问题得到解决。
练[、已知集合M={y|y=x2+1, xeR}, N={y|y=x+1, XGR},求MCIN ____ ・练2、设集合|x2 + y2 =l,xe7?,y ,N 二{(x,y)”2_y =wR },则集合M^N中元素的个数为()A.l B.2 C.3 D.4练3:设全集C/={2,3,Q2+2Q —3},A={I2Q —1I,2}, G4二{5},求实数z的值.注意全集与补集的含义,集合中元素的互异性。
例2、已知集合M ={x\\x-a\<l},N ~{x\ X1 ~{a + 3)x +3Q>0,QW R},若M O N = R 求o的值。
分析:去掉绝对值符号的方法(定义法,公式法,平方法, 零点分段法);解分式不等式基本方法:右边化零法,相除化相乘;解一元二次不等式基本方法:分解因式法等.练4、若全集厶R, / (工)、g (x)均为兀的二次函数,P={xl/*(x)<0}, e={xlg(x)>0},则不等式组;/(%)< 0的解集可用卩、0表示为_______ .[g⑴ <0o r_1练5:设集合4 = {则1兀—°1<2},3 = {兀1土「<1},若4匸3,x+2求实数d的取值范围例3、已知h>0,设命题甲:两个实数a,b满足la-bl<2h,命题乙:两个实数a,b满足la-ll<h且la・blvh,那么()A.甲是乙的充分条件,但不是乙的必要条件B.甲是乙的必要条件,但不是乙的充分条件C.甲是乙的充要条件D.甲不是乙的充分条件,也不是乙的必要条件归纳点评解答此类问题应理清概念,熟练地运用绝对值不等式性质,注意到转化的等价性。
高考数学第二轮专题复习系列(1)-- 集合与简易逻辑一、大纲解读集合部分的考点主要是集合之间的关系和集合的交并补运算,重点掌握集合的表示法和用图示法表示集合之间的关系;简易逻辑部分的考点主要是逻辑联结词、四种命题和充要条件,重点掌握充要条件和含有逻辑联结词的复合命题.二、高考预测根据考试大纲的要求,结合2008年高考的命题情况,我们可以预测2009年集合与简易逻辑部分在选择、填空和解答题中都有涉及,高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用、判断命题的真假、四种命题的关系、充要条件的判定等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.三、高考风向标集合是每年高考的必考内容,主要从两个方面考查:一方面,考查对集合概念的认识和理解,如对集合中涉及的特定字母和符号、元素与集合间的关系,集合与集合间的比较;另一方面,考查对集合的知识应用以及利用集合解决问题的能力.简易逻辑主要是考查命题与命题间的逻辑关系以及判断、推理能力,其中对于充要条件的考查方式非常灵活,其试题内容多结合其他章节的内容来命制.下面结合2008年高考试题,对集合与简易逻辑这部分内容的考点加以透析:考点一 对集合中有关概念的考查例1 (2008广东卷文1)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员},集合C ={参加北京奥运会比赛的女运动员},则下列关系正确的是 ( )A .A ⊆B B .B ⊆C C .A ∩B =CD .B ∪C =A 分析:本例主要考查子集的概念及集合的运算.解析:易知选D .点评:本题是典型的送分题,对于子集的概念,一定要从元素的角度进行理解.集合与集合间的关系,寻根溯源还是元素间的关系.考点二 对集合性质及运算的考查例2.(2008 湖南卷文1)已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}4,6M N =B .M N U =C .U M N C u = )(D .N N M C u = )( 分析:本题主要考查集合的并、交、补的运算以及集合间关系的应用.解析:由{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,故选B .点评:对集合的子、交、并、补等运算,常借助于文氏图来分析、理解.高中数学中一般考查数集和点集这两类集合,数集应多结合对应的数轴来理解,点集则多结合对应的几何图形或平面直角坐标系来理解.考点三 对与不等式有关集合问题的考查例3.(2008辽宁卷理 1)已知集合{}30,31x M x N x x x ⎧+⎫=<=-⎨⎬-⎩⎭…,则集合{}1x x …为 ( )A .M NB .M NC .()R M N ðD .()R M N ð 分析:本题主要考查集合的运算,同时考查解不等式的知识内容.可先对题目中所给的集合化简,即先解集合所对应的不等式,然后再考虑集合的运算.解析:依题意:{}{}31,3M x x N x x =-<<=-…,∴{|1}M N x x ⋃=<,∴()R M N = ð{}1.x x …故选C .点评:同不等式有关的集合问题是高考命题的热点之一,也是高考常见的命题形式,且多为含参数的不等式问题,需讨论参数的取值范围,主要考查分类讨论的思想,此外,解决集合运算问题还要注意数形结合思想的应用.考点四 对与方程、函数有关的集合问题的考查 例4.(2008陕西卷理2)已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=, {|2}B x x a a A ==∈,,则集合)(B A C U 中元素的个数为 ( )A .1B .2C .3D .4分析:本题集合A 表示方程的解所组成的集合,集合B 表示在集合A 条件下函数的值域,故应先把集合A 、B 求出来,而后再考虑)(B A C U .解析:因为集合{}{}1,2,2,4A B ==,所以{}1,2,4A B = ,所以{}()3,5.U C A B = 故选B .点评:在解决同方程、函数有关的集合问题时,一定要搞清题目中所给的集合是方程的根,或是函数的定义域、值域所组成的集合,也即要看清集合的代表元素,从而恰当简化集合,正确进行集合运算.考点五 对充分条件与必要条件的考查例5.(2008福建卷理2)设集合{|0}1x A x x =<-,{|03}B x x =<<,那么“m ∈A ”是“m ∈B ”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件分析:本题主要考查充分条件和必要条件的应用,需首先对命题进行化简,然后再进行判断. 解析:由01x x <-得01x <<,可知“m A ∈”是“m B ∈”的充分而不必要条件,故选A . 点评:充分条件和必要条件,几乎是每年高考必考内容,且此考点命题范围广泛,形式灵活多样,因此在解答时要特别细心.此考点的解题关键是要分清条件和结论,然后判断是由条件推结论,还是由结论推条件,从而得出条件和结论的关系.从集合的包含关系来判断条件与结论间的逻辑关系常用有如下结论:设p 包含的对象组成集合A ,q 包含的对象组成集合B ,若A ⊂≠B ,则p 是q 的充分不必要条件;若B ⊂≠A ,则p 是q 的必要不充分条件;若A B =,则p 是q 的充要条件;若A ⊂≠B 且B ⊂≠A ,则p 是q 的既不充分也不必要条件. 考点六 对新定义问题的考查例6.(2008江西卷理2)定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为( ) A .0 B .2 C .3 D .6分析:本题为新定义问题,可根据题中所定义的*A B 的定义,求出集合*A B ,而后再进一步求解.解析:由*A B 的定义可得:*{0,2,4}A B =,故选D .点评:近年来,新定义问题也是高考命题的一大亮点,此类问题一般难度不大,需严格根据题中的新定义求解即可,切忌同脑海中已有的概念或定义相混淆. 四 扫雷先锋易错点一:集合的概念【例1】已知集合M=,,,,}13|{}3|{Z n n x x N Z n n x x ∈+==∈=}13|{Z n n x x P ∈-==,,且P c N b M a ∈∈∈,,,设c b a d +-=,则( )A .M d ∈B .N d ∈C .P d ∈D .P M d ∈【分析】三个集合都是整数集的子集,集合M 中的整数都能被3整除,集合N 中的整数被3整除余数是1,集合P 中的整数被3整除余数是2.三个集合中的整数n ,在进行c b a d +-=的运算时,n 只代表整数的意思.考生可能忽视了集合元素的无序性,认为三个集合中的n 必须是同一个值.【解析】 ()331313()2311d n l s n l s n l s N =--+-=-+-=-+-+∈,选B .【点评】集合{}3,M x x n n Z ==∈中的n 可以用任何一个字母表示,只要这个字母是整数就可,即{}{}{}(){}3,3,3,31,x x n n Z x x k k Z x x t t Z x x n n Z =∈==∈===∈==+∈ 等,这就是集合中的元素无序性的体现,这和数列中的项有确切的位置是不同的. 易错点二 集合的运算【例2】已知向量()(){}|1,23,4,M a a R λλ==+∈ ,()(){}|2,24,5,N a a R λλ==--+∈ ,则=N M ( )A.(){}1,1B.()(){}2,2,1,1--C.(){}2,2--D.Φ【分析】集合()(){},,4,32,1|R a a M ∈+==λλ ()(){},,5,42,2|R a a N ∈+--==λλ 均是坐标形式的向量的集合,两个集合中的λ并非同一个值.两个集合的代表元素均是有序实数对.【解析】令1212342245λλ+=--+(,)(,)(,)(,)得方程组 12121324124252λλλλ+=-+⎧⎨+=-+⎩…………()…………()解得1210λλ=-⎧⎨=⎩,故=N M (){}2,2--.选C. 【点评】本题的两个集合实际上是以向量的形式给出的两条直线上的点的集合,如集合M中,如果我们设(),a x y = ,则有1324x y λλ=+⎧⎨=+⎩(这实际上是直线的参数方程),消掉λ得4320x y -+=,我们所求的是这两条直线的交点坐标.本题易出错的地方是将两个集合中的λ误认为是同一个值,而那样的λ是不存在的,从而选D.易错点三:逻辑连接词【例3】已知命题p :函数0.5()log (3)f x x =-定义域为(,3)-∞;命题q :若0k <,则函数()k h x x=在(0,)+∞上是减函数.则下列结论中错误的是_______. ①.命题“p 且q ”为真;②.命题“p 或非q ”为假;③.命题“p 或q ”为假;④.命题“非p 且非q ”为假. 【分析】本题既涉及函数的知识又涉及命题真假的判断.可能出错的地方,一是对函数的性质认识不足,导致对命题,p q 的真假判断出错;二是对含有逻辑连接词的命题真假判断的法则掌握不准确,导致解答失误.【解析】由30x ->,得3x <,所以命题p 为真,所以命题非p 为假.又由0k <,易知函数()k h x x=在(0,)+∞上是增函数,命题q 也为假,所以命题非q 为真.所以命题“p 且q ”为假,命题“p 或非q ”为真,命题“p 或q ”为真,命题“非p 且非q ”为假.故答案为①②③.【点评】解答本题的关键是首先要根据题设条件判断命题p 与命题q 的真假,由此作出命题非p 与非q 的真假,命题p 的真假是通过求函数定义域来判断的,而命题q 的真假是根据反比例函数的增减性来判断的.注意“p 或q 为真的充要条件是p ,q 至少有一真”,“p 且q 为真的充要条件是,p q 同时为真”,“p 和p ⌝一真一假”这些含有逻辑连接词的命题真假的判断法则.易错点五:充要条件【例5】 “1a =”是“函数()||f x x a =-在区间[)1,+∞上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【分析】一是对函数()||f x x a =-认识不清,这个函数实际上是分段函数()()()x a x a f x x a x a -+≤⎧⎪=⎨->⎪⎩,它在(],a -∞上单调递减,在(),a +∞上单调递增;二是对充要条件缺乏明确的判断方法.【解析】函数()||f x x a =-的图象是由()||=f x x 的图象左右平移而得到的,函数()||=f x x 在[)0,+∞上单调递增,只要a 1≤函数()||f x x a =-就在区间[)1,+∞ 上单调递增.由此知“a 1=时函数()||f x x a =-在区间[1, +∞)上为增函数”是真命题,而“函数()||f x x a =-在区间[)1,+∞ 上为增函数时1a =”是假命题.故“1a =”是“函数()||f x x a =-在区间[)1,+∞ 上为增函数” 充分不必要条件.选A .【点评】设原命题为“若p 则q ”.则四种命题的真假和充要条件的关系是:①若原命题为真,则p 是q 的充分条件;②若逆命题为真,则p 是q 的必要条件;③若原命题和逆命题都为真,则p 是q 的充要条件;④若原命题为真而逆命题为假,则p 是q 的充分而不必要条件;⑤若原命题为假而逆命题为真,则p 是q 的必要而不充分条件;⑥若原命题和逆命题都为假,则p 是q 的既不充分也不必要条件.易错点六:量词【例6】命题“对任意的x R ∈,3210x x -+≤”的否定是A .不存在x R ∈,3210x x -+≤B .存在x R ∈,3210x x -+≤C .存在x R ∈,3210x x -+>D .对任意的x R ∈,3210x x -+>【分析】本题是对全称命题的否定,因此否定时既要对全称量词“任意”否定,又为对判断词“≤”进行否定,全称量词“任意”的否定为存在量词“存在”等,判断词“≤”的否定为“>”,可能的错误是“顾此失彼”,忽略了细节.【解析】一个命题的否定其实就是推翻这个命题,要推翻“对任意的x R ∈,3210x x -+≤”,我们只要有一个x ,使3210x x -+>就足够了.即存在x R ∈,3210x x -+>.选C.【点评】许多同学对全称命题的否定是一个特称命题心存疑惑,实际上我们要肯定一个结论,必须对这个结论所包括的所有对象都适合,我们要否定一个结论只要有一个反例就足够了.同时要注意命题的否定是我们推翻这个命题,故我们之否定它的结论,而否命题是命题之间的一种特定的关系,是对一个命题从形式上做的变化,故对否命题我们必须按照其定义,是既否定它的条件也否定它的结论.注意体会下表五 规律总结1.解决集合问题,首先要弄清楚集合中的元素是什么,即元素分析法的掌握.2.弄清集合中元素的本质属性,能化简的要化简;3.抓住集合中元素的3个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化.5.求交集、并集、补集,要充分发挥数轴或文氏图的作用;6.含参数的问题,要有分类讨论的意识,分类讨论时要防止在空集上出问题;7.集合的化简是实施运算的前提,等价转化常是顺利解题的关键.8.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比;9.通常命题“p 或q ”的否定为“p ⌝且q ⌝”、“p 且q ”的否定为“p ⌝或q ⌝”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等;10.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ”的形式;11.判断充要关系的关键是分清条件和结论;12.判断“p 是q 的什么条件”的本质是判断命题“若p ,则q ”及“若q ,则p ”的真假;13.判断充要条件关系的四种方法:①定义法:若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;若p q ⇔,则p 是q 的充要条件。
高三数学复习之集合、逻辑1.集合运算中一定要分清代表元的含义。
已知集合P={y|y=x2,x ∈R}, Q={y|y =2x ,x ∈R}求P ∩Q 。
解析:集合P 、Q 均为函数值域(不要误以为是函数图象,{(x,y )| y=x2,x ∈R}才表示函数图象),P=A={x ︳y=3x+1,y ∈Z},B={y ︳y=3x+1,x ∈Z},求A ∩B 。
2.空集是任何集合的子集,空集是任何非空集合的真子集。
若A={x|x2<a} B={x|x >2}且A ∩B=Φ,求a 的范围(注意A 有可能为Φ)。
解析:当a>0时,集A=(-a ,a ),要使A ∩B=Φ,则a ≤2,得0<a ≤4,当a ≤0时,A=Φ,此时A ∩B=Φ,综上:a ≤4(A=Φ的情况很容易疏漏!)若A={x ∣ax=1},B={x ∣x2=1}且B ∩A=A ,求a 的所有可能的值的集合。
A ∩B=A 等价于A ⊆B3.充要条件可利用集合包含思想判定:若A ⊆B ,则A 是B 充分条件;若A ⊇B ,则A 是B 必要条件;若A ⊆B 且A ⊇B 即A=B ,则A 是B 充要条件。
换言之:由A ⇒B 则称A 是B 的充分条件,此时B 是A 的必要条件;由B ⇒A 则称B 是A 的充分条件,此时A 是B 的必要条件。
有时利用原命题与逆否命题等价,“逆命题”与“否命题”等价转换去判定也很方便。
充要条件的问题要十分细心地去辨析:“哪个命题”是“哪个命题”的充分(必要)条件;注意区分:“甲是乙的充分条件(甲⇒乙)”与“甲的充分条件是乙(乙⇒甲)”。
若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的 ( )(A )充分非必要条件(B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 解析:命题“M a ∈或N a ∈”等价于“a ∈N M ⋃”,显然N M 是N M ⋃的真子集, ∴“M a ∈或N a ∈” 是“N M a ∈”的必要不充分条件。
高考数学第二轮复习 集合与简易逻辑知能目标1. 理解集合、子集、补集、交集、并集的概念. 了解空集和全集的意义. 了解属于、 包含、 相等关系的意义. 掌握有关的术语和符号, 并会用它们正确表示一些简单的集合.2. 理解逻辑连结词“或”“且”“非”的含义. 理解四种命题及其相互关系.掌握充要条件的意义.综合脉络1. 以集合、简易逻辑为中心的综合网络2. 集合中的元素具有确定性、互异性和无序性空集∅是一个特殊的集合, 它不含有元素, 是任一集合的子集, 任一个非空集合的真子集.注意空集∅与集合}0{的区别, 掌握有空集参与的集合运算的性质. 为了使集合的子、交、并、补等关系得到直观、形象的表示而利于运算, 要十分重视数形结合、以形助数的解题方法的运用. 这种方法通常借助数轴、坐标系或韦恩图来进行. 3. 逻辑连接词中的“或”相当于集合中的“并集”;“且”相当于集合中的“交集”;“非”相当于集合在全集中的“补集”.四种命题中研究的是“若p 则q ”形式的命题. 把一个命题改写成若“p 则q ”的形式的关键是找出条件和结论. 一个命题的原命题与其逆否命题同为真假; 原命题的逆命题与否命题互为逆否关系, 也同为真假.有时一个命题的真假不易被判断时. 可以通过判断它的逆否命题的真假, 从而得知原命题的真假.4. 充分条件、必要条件、充要条件与集合的关系(见下表)(一) 典型例题讲解:例1. 已知集合M =} x |x {12=, 集合N =}, x a |x {1=若NM, 那么a 的值为 ( )A. 1B. -1C. 1或-1D. 0, 1或-1例2. 已知集合A =} x 3, , {3-1, B =} 1 2,x {+,是否存在实数x, 使得B ∪C S B =A (其中全集S =R), 若存在, 求出集合A 、B; 若不存在, 请说明理由.例3. 已知p: )x (f1-是x 31)x (f -=的反函数, 且2|)a (f |1<-;q : 集合}0x |x {B },R x ,01x )2a (x |x {A 2>=∈=+++=且∅=⋂B A . 求实数a 的取值范围, 使p, q 中有且只有一个真命题.(二) 专题测试与练习: 一. 选择题1. 设全集是实数集R, M =}R x , x |x {∈+≤21,N =} 4 3, 2, , {1, 则C R M ∩N 等于( )A. } 4 {B. } 4 3, {C. } 4 3, 2, {D. } 4 3, 2, , {12. 已知有下列命题. 其中, 是简单命题的只有 ( )① 12是4和3的公倍数; ② 相似三角形的对应边不一定相等; ③ 三角形中位线平行且等于底边的一半; ④ 等腰三角形的底角相等.A. ①②④B. ①④C. ②④D. ④3. 设A =}x y |)y ,x ({29-=, B =}a x y |)y ,x ({+=. 若A ∩B ∅, 则实数a 满足件 是 ( ) A.| a |≤32 B. | a |≤3 C. -3≤a ≤32 D. 3≤a ≤324. 命题“若b a >, 则8b 8a ->-”的逆否命题是 ( )A. 若b a <, 则8b 8a -<-B. 若8b 8a ->-, 则b a >C. 若b a ≤, 则8b 8a -≤-D. 若8b 8a -≤-, 则b a ≤5. 定义A -B =} B x 且A x |x {∉∈,若M =} 5 4, 3, 2, , {1, N =} 6 3, 2, {,则N -M 等于 ( )A. MB. NC. } 5 4, 1, {D. } 6 {6. 设集合=M }R m ,x ,m x x |x {∈=+-022, 则满足M ∩} 2 1,{=M 的集合的个数是 ( )A. 1B. 2C. 3D. 47. 设集合}3x |x {P },2x |x {M <=>=, 那么“P x M x ∈∈或”是“P M x ⋂∈”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 不充分也不必要条件8. 若集合S =},R x ,y |y {x ∈=3 T =},R x , x y |y {∈-=12则S ∩T 是 ( )A. SB. TC. ∅D. 有限集9. 已知真命题“b a ≥⇒d c >”和“b a <⇔f e ≤”, 那么“d c ≤”是“f e ≤”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 10. 已知集合S =},c b, ,a {若a, b, c 分别是△ABC 的三边长, 那么△ABC 一定不是 ( ) A. 锐角三角形 B.直角三角形 C. 钝角三角形 D. 等腰三角形 二. 填空题11. 若}a , {22∩} a a {} 3 2, 1, 4,a {6622--=-, 则a 的值是 .12. 如果命题“p 或q ”与命题“非p ”都是真命题, 那么q 为 命题.13. 设集合A n =}N n ,m ,m 且x ,x |x {n n ∈+=<<+17221则A 6中各元素之和为 .14. 设A 、B 是非空集合, 定义: }B A x ,B A x |x {B A ⋂∉⋃∈=⨯且, 已知)}0x (,12x 2x y |y {B },x x 2y |x {A 2>-==-==, 则 =⨯B A . 三. 解答题15. 已知命题p: 方程02ax ax 2=-+在]1,1[ -上有解; 命题q: 只有一个实数x 满足:0a 2ax 2x 2≤++. 若命题“p 或q”为假命题, 求实数a 的取值范围.16. 设集合A =} |a x | |x {2<-, B =} 12x 12x |x {<+-若A ⊆B,求实数a 的取值范围.17. 已知R 为全集, A =} x)(3 log |x {212-≥-,B =} 12x|x {≥+5, 求C R A ∩B.18. 记函数1x 3x 2)x (f ++-=的定义域为A, )1a )](x a 2)(1a x lg[()x (g <---=的定义域为B.(1) 求集合A;(2) 若A B ⊆, 求实数a 的取值范围.[参考答案](一) 典型例题 例1: D例2: ⋃B ΘC S B =A , B∴A , 32x =+∴或3x 2x -=+1x ,1x -==⇒(舍去)}3,1,1{A -=∴, }3,1{B =例3: 对p :3x 1)x (f1-=-,所以2|3a 1||)a (f |1<-=- . 若命题p 为真,则有 75<<-a ; 对q :∵}0x |x {B >=且 ∅=⋂B A∴若命题q 为真,则方程01x )2a (x )x (g 2=+++=无解或只有非正根.∴04)2a (2<-+=∆或⎪⎪⎩⎪⎪⎨⎧<+-≥≥∆022a 0)0(g 0, ∴4a ->.∵p, q 中有且只有一个为真命题 ∴ (1) p 真,q 假:则有4a 54a 7a 5-≤<-⎩⎨⎧-≤<<-,即有;(2) p 假,q 真:则有7a 4a 5a 7a ≥⎩⎨⎧->-≤≥,即有或;∴4a 5-≤<-或7a ≥.(二) 专题测试与练习一. 题号 1 2 3 4 5 6 7 8 9 10 答案 BACDDDBAAD二. 填空题11. 2或4 ; 12. 真命题 ; 13. 891 ; 14. }1x 02x |x {B A ≤≤>=⨯或.三. 解答题15. 解:若命题q 为真, 则0a 8a 42=-=∆即有0a =或2a =;若命题p 为真, 则0)1(f )1(f ≤-. 又 0)1(f ≤-Θ ∴0)1(f ≥.即1a ≥.若命题“p 且q ”为真, 则⎩⎨⎧==≥2a 0a 1a 或, 即2a =;故命题“p 或q ”为假,则有2a ≠.16. 解:}3x 2|x {B }.2a x 2a |x {A <<-=+<<-=,1a 022a 32a ,B A ≤≤⇒⎩⎨⎧-≥-≤+∴⊆ Θ 即]1,0[a∈17. 解:}3x 2|x {B },3x 1|x {A ≤<-=<≤-=∴C R }1x 23x |x {B A -<<-==⋂或18. 解:(1 ) 01x 1x 01x )3x (2x 201x 3x 2≥+-⇒≥++-+⇒≥++-1x 1x 1x 0)1x )(1x (-<≥⇒-≠≥+-⇒或且.∴集合}1x 1x |x {A -<≥=或.(2) 0)x a 2)(1a x (>---(a<1)0)a 2x )(1a x (<---⇒. ∵1a <, ∴1a x a 2.1a a 2+<<∴+<.∴不等式的解为1a x a 2+<<.∴集合B}1a x a 2|x {+<<=. ∵A B ⊆, ∴11a 1a 2-≤+≥或, ∴2a 21a -≤≥或.。