系统模型、系统优化及系统仿真的相互关系
- 格式:doc
- 大小:55.00 KB
- 文档页数:5
系统工程学学习总结系统建模与优化的理论与实践系统工程学学习总结——系统建模与优化的理论与实践系统工程学是一门综合性学科,旨在研究和解决复杂系统的设计、开发、运营和优化问题。
在系统工程学的学习过程中,系统建模与优化是一项重要内容,本文将对系统建模与优化的理论与实践进行总结。
一、系统建模系统建模是对待研究对象进行抽象和描绘的过程,旨在找出问题的本质和关键。
它能够帮助我们理解和分析系统的结构、功能和行为,并为系统的优化提供基础。
1. 功能模型功能模型是系统建模中常用的一种方法。
它通过识别和描述系统中各个部分的功能及其相互关系,帮助我们理解系统的整体功能以及子功能之间的依赖关系。
常见的功能模型包括功能流程图和功能树等。
2. 结构模型结构模型主要关注系统中各个组成部分的结构和组织关系。
通过结构模型,我们可以清晰地描述系统中各种组件、模块或对象之间的关系,从而更好地理解系统的内部结构。
常见的结构模型有层次结构图、数据流图等。
3. 行为模型行为模型是描述系统中各个部分的动态行为和相互作用方式的模型。
通过行为模型,我们可以模拟系统中各种状态的变化,分析系统的响应和行为,并发现潜在的问题或优化方案。
常见的行为模型包括状态转换图、时序图等。
二、系统优化系统优化是通过调整系统的各个组成部分、参数或结构,使系统在满足一定约束条件的前提下,达到最优性能或效果。
系统优化不仅依赖于理论的支持,也需要实践中的验证和调整。
1. 数学建模数学建模是系统优化的重要手段之一。
通过建立合适的数学模型,我们可以将复杂的系统问题转化为数学形式,并利用数学工具和方法进行求解和优化。
常用的数学建模方法包括线性规划、动态规划、遗传算法等。
2. 实验设计实验设计是系统优化的另一种重要方式。
通过设计合适的实验方案,我们可以获取系统的观测数据,并利用统计学方法进行分析和优化。
实验设计可以帮助我们验证理论模型的有效性,并找出系统中的潜在问题与改进方向。
3. 模拟与仿真模拟与仿真是系统优化的实践手段之一。
系统建模与仿真课程设计一、课程目标系统建模与仿真课程设计旨在让学生掌握以下知识目标:1. 理解系统建模与仿真的基本概念、原理和方法;2. 学会运用数学和计算机工具进行系统建模与仿真;3. 掌握分析、评估和优化系统模型的能力。
技能目标:1. 能够运用所学知识对实际系统进行建模;2. 独立完成仿真实验,并对结果进行分析;3. 能够针对具体问题提出合理的建模与仿真方案。
情感态度价值观目标:1. 培养学生的团队合作意识,提高沟通与协作能力;2. 激发学生对科学研究的兴趣,培养创新精神和实践能力;3. 增强学生的社会责任感,使其认识到系统建模与仿真在解决实际问题中的价值。
本课程针对高中年级学生,结合学科特点和教学要求,将目标分解为以下具体学习成果:1. 掌握系统建模与仿真的基本概念和原理,能够解释现实生活中的系统现象;2. 学会使用数学和计算机工具进行系统建模与仿真,完成课程项目;3. 能够针对实际问题,运用所学知识进行分析、评估和优化,提出解决方案;4. 培养团队协作能力,提高沟通表达和问题解决能力;5. 增强对科学研究的好奇心和热情,树立正确的价值观。
二、教学内容根据课程目标,本章节教学内容主要包括以下几部分:1. 系统建模与仿真基本概念:介绍系统、建模、仿真的定义及其相互关系,分析系统建模与仿真的分类和特点。
2. 建模方法与仿真技术:讲解常见的建模方法(如数学建模、物理建模等)及仿真技术(如连续仿真、离散事件仿真等),结合实例进行阐述。
3. 建模与仿真工具:介绍常用的建模与仿真软件,如MATLAB、AnyLogic 等,并指导学生如何使用这些工具进行系统建模与仿真。
4. 实践项目:设计具有实际背景的系统建模与仿真项目,要求学生分组合作,运用所学知识完成项目。
教学内容安排如下:第一周:系统建模与仿真基本概念,引导学生了解课程内容,激发学习兴趣。
第二周:建模方法与仿真技术,讲解理论知识,结合实例进行分析。
控制系统数字仿真题库一、填空题1. 定义一个系统时,首先要确定系统的边界;边界确定了系统的范围,边界以外对系统的作用称为系统的输入,系统对边界以为环境的作用称为系统的输出。
2.系统的三大要素为:实体、属性和活动。
3.人们描述系统的常见术语为:实体、属性、事件和活动。
4.人们经常把系统分成四类,它们分别为:连续系统、离散系统、采样数据系统和离散-连续系统。
5、根据系统的属性可以将系统分成两大类:工程系统和非工程系统。
6.根据描述方法不同,离散系统可以分为:离散时间系统和离散事件系统。
7. 系统是指相互联系又相互作用的实体的有机组合。
8.根据模型的表达形式,模型可以分为物理模型和数学模型二大类,其中数学模型根据数学表达形式的不同可分为二种,分别为:静态模型和动态模型。
9、采用一定比例按照真实系统的样子制作的模型称为物理模型,用数学表达式来描述系统内在规律的模型称为数学模型。
10.静态模型的数学表达形式一般是代数方程和逻辑关系表达式等,而动态模型的数学表达形式一般是微分方程和差分方程。
11.系统模型根据描述变量的函数关系可以分类为线性模型和非线性模型。
12 仿真模型的校核是指检验数字仿真模型和数学模型是否一致。
13.仿真模型的验证是指检验数字仿真模型和实际系统是否一致。
14.计算机仿真的三个要素为:系统、模型与计算机。
15.系统仿真的三个基本活动是系统建模、仿真建模和仿真试验。
16.系统仿真根据模型种类的不同可分为:物理仿真、数学仿真和数学-物理混合仿真。
17.根据仿真应用目的的不同,人们经常把计算机仿真应用分为四类,分别为:系统分析、系统设计、理论验证和人员训练。
18.计算机仿真是指将模型在计算机上进行实验的过程。
19. 仿真依据的基本原则是:相似原理。
20. 连续系统仿真中常见的一对矛盾为计算速度和计算精度。
21.保持器是一种将离散时间信号恢复成连续信号的装置。
22.零阶保持器能较好地再现阶跃信号。
系统工程方法论系统工程是一种综合性的工程方法论,它将系统理论、系统分析、系统设计、系统管理等多学科知识融合在一起,以解决复杂系统问题为目标,是一种以系统为研究对象,以系统为分析对象,以系统为设计对象,以系统为管理对象的综合性学科。
系统工程方法论的提出,旨在解决传统工程方法在处理复杂系统问题时所面临的困难和不足,通过系统的思维方式和方法手段,实现对复杂系统的全面、系统性的分析和解决。
系统工程方法论的核心理念是系统思维,它要求工程师在处理问题时要从整体的角度去考虑,而不是局部的角度。
系统工程方法论强调系统的整体性、协同性和综合性,要求工程师在设计和管理系统时,要考虑系统的各个部分之间的相互关系,以及系统与外部环境的相互作用,从而实现系统的高效运行和优化管理。
系统工程方法论的应用范围非常广泛,它可以应用于各种工程领域,如航空航天、电子信息、交通运输、能源环保、军事国防等。
在航空航天领域,系统工程方法论可以帮助工程师设计和管理复杂的飞行器系统,保证飞行器的安全性和可靠性;在电子信息领域,系统工程方法论可以帮助工程师设计和管理复杂的通信系统和网络系统,保证信息的传输和交换的高效和安全;在交通运输领域,系统工程方法论可以帮助工程师设计和管理复杂的交通运输系统,提高交通运输的效率和安全性。
系统工程方法论的核心方法包括系统分析、系统建模、系统仿真、系统优化、系统集成等。
系统分析是系统工程的第一步,它要求工程师对系统的各个部分进行全面的分析,找出系统存在的问题和瓶颈;系统建模是系统工程的重要手段,它要求工程师利用数学模型和计算机模拟技术,对系统进行抽象和描述;系统仿真是系统工程的重要方法,它要求工程师利用仿真软件对系统进行模拟和验证;系统优化是系统工程的重要目标,它要求工程师找出系统的最优解,使系统达到最佳状态;系统集成是系统工程的重要环节,它要求工程师将系统的各个部分有机地结合在一起,实现系统的整体性和协同性。
《系统工程》复习要点1系统概念与系统思想(1)系统基本概念(系统是两个或两个以上相互作用、相互影响的部分组成的具有特定环境、功能和结构的整体),要素、联系(2)功能(系统受环境作用下表现出的功效和能力)(输入、输出)、结构(系统要素之间的组织和秩序)、环境(系统周围的与其相关的因素的集合)(3)系统的6特点(集合性、相关性、层次性、目的性、环境适应性、整体性)2.系统工程基本概念(1)系统工程的研究对象(大规模复杂系统)(2)系统的思想特点⏹系统结构是系统整体效应和系统功能的内在联系;⏹系统功能是系统与环境事件能量、物质和信息之间的变换关系;⏹系统结构是内在作用、功能是外在作用;⏹系统功能是系统内部本身能力的外部表现;⏹结构决定功能,功能决定价值,价值影响生存与发展;⏹系统功能取决于系统的结构与环境;⏹系统和环境之间是相互联系、相互作用、相互变换的。
3.系统工程方法论(1)霍尔三维结构方法:三个维度是什么?(时间维,逻辑维,知识维)系统生命周期七个典型阶段?(策划、方案、研制、生产、安装、运行、更新)逻辑顺序的七个典型步骤?(明确问题、确定目标、系统综合、模型化、最优化、决策、实施计划)(2)切克兰德方法论:工作流程(了解问题意图、根底定义、建立概念模型、比较、寻求改善方案、设计、评价、决策、实施)(3)切克兰德方法论:软系统、无结构问题的特点(难以用准确的语言来描述“可以找到一个有效的方案来达到特定的目的”)、根底定义的概念(将系统的重要特征用结构化的语言来描述,A system to …by …in order to),CATWOE分析六要素(Customer, Actor, Transformation, Waltonschauung, Owner, Environment)(4)霍尔三维结构和切克兰德方法论不同点,要理解(霍尔)哪种方法更适合研究“硬”系统?(切克兰德)哪种方法更适合研究“软”系统?4. 系统分析(1)系统分析的定义和6要素(问题现状、目的和目标、模型、评价、方案、决策者)(2)系统分析的程序(初步分析(明确问题、确定目标、问题综合),规范分析(模型化,系统优化,系统仿真),综合分析(评价、决策))(3)系统分析的特点5. 初步分析(1)工作内容(2)Triz:技术矛盾(两个工程参数的矛盾)、39工程参数、矛盾矩阵(描述所有的技术矛盾,通过以往的例证提供相应的发明原理)的概念6.系统模型(1)规范分析包括哪三项工作内容?(2)模型:定义(现实问题和系统的代替物)、特征(系统部分的抽象、只考虑和要分析问题相关的因素)(3)模型化:一般原则(现实性和可操作性)、意义(提供了脱离现实系统的推理和计算基础、快速方便经济可重复)、局限性(要拿回现实重新试验)7. 系统结构模型(1)系统结构模型的三种表示方式(最重要的是矩阵表达方式)(2)二元关系:概念、传递性、强连接关系(3)邻接矩阵、可达矩阵(4) 可达矩阵上的集合分析:可达集、先行集、共同集、起始集、终止集(5)ISM:区域划分、级位划分、提取骨架矩阵(又细分为3步、理解越级的二元关系)、会画多级递阶有向图8. 优化与仿真(1)会根据问题建立动态规划模型,指导如何递推计算及求出结果(2)离散事件系统系统仿真的基本概念:实体、属性、状态、事件、活动、进程(3)事件、活动、进程三者之间的关系(4)仿真模型的验证、校核和确认含义验证(Verification):确定仿真模型本身是否存在语法和逻辑错误;认证(Validation):确定仿真模型是否精确代表理论模型;确认(Accreditation):确定仿真模型是否真实反映实际系统,能否被实际需要和特定目的所接受。
【关键字】系统《建模与仿真》课程教学大纲(Modeling and Simulation)课程编码:学分:2.5总学时:40适用专业:工业工程先修课程:生产计划与控制、工程统计学、工程数学、运筹学、计算机编程技术一、课程的性质、目的和任务《建模与仿真》是面向工程实际的应用型课程,是工业工程系的主导课程之一。
学生通过本课程的学习能够初步运用仿真技术来发现生产系统中的关键问题,并通过改进措施的实现,提高生产能力和生产效率。
本课程的目的是要求学生通过学习、课堂教育和上机训练,能了解如何运用计算机仿真技术模拟生产系统的布置和调度管理。
并熟悉和掌握计算机仿真软件的基本操作和能够实现的功能。
使学生了解计算机仿真的基本步骤。
结合本课程的特点,使学生掌握或提高系统化分析问题和解决问题的能力,为系统化管理生产打下根底。
二、教学基本要求具体在教学过程中要求学生应该达到:1.全面了解本课程的性质与任务、框架内容以及理论和方法;2.掌握仿真的概率统计根底知识。
3.掌握供理论模型建模方法。
4.掌握仿真模型的设计与实现方法。
5.熟练应用建模理论,对排队系统、库存系统、加工制造系统进行建模仿真。
三、教学内容与学时分配离散事件系统仿真是仿真技术的重要领域,在规划论证、方案评估、计划调度、加工制造、产品试验、生产培训、训练模拟、管理决策等方面得到广泛应用。
本课程深入地介绍了离散事件系统建模仿真的理论、方法和技术,突出对理论建模方法和计算机实现技术的讲解,对离散事件系统建模仿真的发展和应用情况做了比较详尽的介绍。
具体教学内容如下:第一章绪论 4学时本章分析了系统和制造系统定义、组成与特点,介绍了系统建模与仿真的基本概念和使用步骤,并给出应用案例。
本章教学目标:本章教学基本要求:了解常用术语及常用的仿真软件,了解仿真技术的的发展状况及应用。
理解系统与制造系统的定义及系统建模与仿真的概念及系统、模型与仿真之间的关系。
掌握制造系统建模与仿真的基本概念及基本步骤。
系统的模型、仿真与优化三者之间的关系宇宙间任何复杂的事物都是由系统构成的,简单的、复杂的;单一的、交织的等。
人类社会文明的进步必然要跟世间的万物发生关系,这也就表明人们会不可避免的跟万物间的系统发生干涉,包括对系统的认识、了解、改造等。
当然,想要改造系统,或者创造一个新生的系统,很多时候并不能理想的去直接与所要干涉的系统工程发生关系,因为有时候所涉及的系统往往过于复杂或者抽象。
因此,通过建立一个可以直观感知,甚至是触碰的系统模型,并在对模型的研究中得出一些对原始系统的结论似乎是一种更为行之有效的办法。
对系统改造的最终目的是为了实现系统的最优化,从而输出最优解。
由于系统的某些实际原因使得不能对系统直接进行研究,因此需要建立系统模型,并通过对模型系统的仿真,从而得出实际系统的最优解。
由此看来:建立合理的系统模型是一切系统活动的前提;对模型系统的仿真是系统研究的手段;而使系统最优化并得出系统的最优解则是这一系列系统活动的最终目的。
系统模型是指以某种确定的形式(如文字、符号、图表、实物、数学公式等),对系统某一方面本质属性的描述。
对系统模型而言:一方面,根据不同的研究目的,可对同一系统可建立不同的系统模型,另一方面,同一系统模型也可代表不同的系统。
系统模型的特征有以下三个:(1)它是现实系统的抽象或模仿;(2)它是由反映系统本质或特征的主要因素构成的;(3)它集中体现了这些主要因素之间的关系。
因此,要想更贴近实际的对一个系统进行研究就必须建立一个合理的系统模型。
系统仿真,就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。
其利用计算机来运行仿真模型,模拟系统的运行状态及其变化的过程,并通过对仿真运行过程的观察和统计,得到被仿真系统的仿真输出参数和基本特性,以此来估计和推断实际系统的真实参数和真实性能。
系统模型
系统模型是指以某种确定的形式(如文字、符号、图表、实物、数学公式等),对系统某一方面本质属性的描述。
一方面,根据不同的研究目的,对同一系统可建立不同的系统模型,例如,根据研究需要,可建立RLC网络系统的传递函数模型或微分方程模型;另一方面,同一系统模型也可代表不同的系统,例如,对系统模型y = kx(k为常量),则:⑴若k为弹簧系数,x为弹簧的伸长量,y为弹簧力大小,则该模型表示一个物理上的弹簧运动系统;⑵若k为直线斜率,x、y分别为任意点的横坐标和纵坐标,则该模型表示一个数学上过原点的直线系统。
系统模型的特征有以下三个:
(1)它是现实系统的抽象或模仿;
(2)它是由反映系统本质或特征的主要因素构成的;
(3)它集中体现了这些主要因素之间的关系。
1. 系统模型的分类
常用的系统模型通常可分为物理模型、文字模型和数学模型三类,其中物理模型与数学模型又可分为若干种,如图所示。
在所有模型中,通常普遍采用数学模型来分析系统工程问题,其原因在于:
(1)它是定量分析的基础;
(2)它是系统预测和决策的工具;
(3)它可变性好,适应性强,分析问题速度快,省时省钱,且便于使用计算机。
2. 系统建模的要求、遵循原则和方法
系统建模的要求可概括为:现实性、简明性、标准化。
系统建模的遵循原则是:⑴切题;⑵模型结构清晰;⑶精度要求适当;⑷尽量使用标准模型。
根据系统对象的不同,则系统建模的方法可分为推理法、实验法、统计分析法、混合法和类似法。
根据系统特性的不同描述,则系统建模的方法可以有状态空间法、结构模型解析法(ISM)以及最小二乘估计法(LKL)等。
其中,最小二乘估计法(LKL)是一种基于工程系统的统计学特征和动态辨识,寻求在小样本数据下克服较大观测误差的参数估计方法,它属于动态建模范畴。
系统优化
所谓的系统优化是指系统在一定的环境条件约束及限制下,使系统过程处在最优的工作状态,或是使目标函数在约束条件下达到最优解(通常指其最大解或是最小解,根据具体问题而定)。
最优化问题及其分类
常见的优化问题如下:
产品设计方面:在满足设计的要求的前提下,保证设计成本最低;
配料方面:保证所配料的质量前提下,使所需费用最低;
交通运输方面:合理选择所行路线,费用最低,或在安全的前提下,如何选择所行路线使运行时间最短;
资源分配方面:资源应得到充分的分配且使效益最大化;
农业方面:根据作物的生长特性,合理的配置资源,使产量最大化;
系统优化的步骤
1、将系统目标与约束条件用数学语言表示出来;
2、找最优解。
传统优化算法与现代优化算法
传统优化算法对于一些比较简单问题的求解一般是可以满足要求的,但对于一些非线性的复杂问题,往往优化时间很长,并且经常不能得到最优解,甚至无法知道所得解同最优解的近似程度,而现代优化算法便可以解决上述问题,现代优化算法是人工智能的一个重要分支,这些算法包括禁忌搜索(tabu search)、模拟退火(simulated annealing)、遗传算法(genetic algorithms)人工神经网络(nearal networks)。
目前常用优化算法
1、经典优化算法,此算法复杂性大,适合解决小规模问题。
2、构造型优化算法,用构造方法可快速建立并解决问题。
3、智能优化算法。
4、混合型算法,将上面算法相结合而成。
系统优化实例
对于系统结构已知的化工系统进行优化,即确定其最优操作参数。
它是化工系统工程的核心内容。
化工过程通常由若干单元组成,这些系统按单元间结合的方式可分为串联(多级)系统和复杂系统。
在串联系统中,前一个单元的输出是后一个单元的输入。
串联系统的例子有多级萃取过程以及级间冷却的多级绝热固定床反应器的操作过程等。
所有其他非串联系统,都称为复杂系统。
例如为了充分利用某种未全部转化的物料,往往有循环回路;同时由于工艺上的需要,在化工流程中还往往会出现支路及并联回路等,这些都是复杂系统。
到目前为止,运用现代控制理论,借助动态规划及离散最小值原理,串联系统的优化问题已经能够解决。
但是对于复杂系统来说,虽然理论上可将任意复杂系统作为一个整体进行优化,但事实上由于决策变量(如控制变量或设计变量)的数目庞大,再加上各个单元之间有着比较复杂的联结关系,复杂系统的优化问题还较难解决,然而这也恰恰是实践上有待解决的迫切问题。
近十年来,随着大系统理论的发展,应用二等级分解法处理复杂化工系统的优化问题受到了人们的重视。
所谓二等级分解法,就是先把一个复杂系统分解为若干规模较小的子系统,第一等级处理各个子系统的局部最优化问题;第二等级为协调中心,它调整某些可调变量(协调变量),在各个子系统之间进行协调,使它们的局部最优解逐次逼近整个系统的最优解。
大系统的分解必须遵循下述原则:即对于第k个子系统而言,若它与其余的子系统互相联系的各变量分别固定在规定数值上,则第k个子系统可单独进行优化处理,称为分解原理。
例如现有一个业已排列好的换热器系统(见图),为使该系统在给定负荷条件下所需总传热面积为最小,需要进行最优设计计算。
此时整个系统可按两个热流体的走向划分成如图所示的两个子系统,协调变量为t1、t2、t3,然后根据前述步骤可实现该系统的优化设计。
设z为各个子系统之间的联结向量(协调向量),ui为第i 个子系统的决策向量。
当取z为有限值时,各个子系统的局部最优解ui就可表示成z的函数ui(z),然后将这个信息送至所谓的协调中心,在那里判断它是否
满足整体最优解的条件。
如果不满足,就在协调中心进行调整,再把修正后的z 值送回到各个子系统。
如此往返,逐次调整,直至趋于系统的最优解。
热交换系统
系统仿真
基本概念
所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。
系统仿真的实质
(1)它是一种对系统问题求数值解的计算技术。
尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。
(2)仿真是一种人为的试验手段。
它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。
这是仿真的主要功能。
(3)仿真可以比较真实地描述系统的运行、演变及其发展过程。
系统仿真的作用
系统仿真的基本方法是建立系统的结构模型和量化分析模型,并将其转换为适合在计算机上编程的仿真模型,然后对模型进行仿真实验。
• 由于连续系统和离散(事件)系统的数学模型有很大差别,所以系统仿真方法
基本上分为两大类,即连续系统仿真方法和离散系统仿真方法。
在以上两类基本方法的基础上,还有一些用于系统(特别是社会经济和管理系统)仿真的特殊而有效的方法,如系统动力学方法、蒙特卡洛法等。
• 系统动力学方法通过建立系统动力学模型(流图等)、利用DYNAMO仿真语言在计算机上实现对真实系统的仿真实验,从而研究系统结构、功能和行为之间的动态关系。
系统模型、系统优化及系统仿真的相互关系系统模型是系统优化和系统仿真的前提,没有系统模型无从谈起系统优化及系统仿真。
一个模型是建立在实际中具体的情况,系统优化及系统仿真是为系统模型服务的,通过系统优化及系统仿真可以在不在实际中具体操作就可以了解系统模型的性能。
系统优化可以在系统仿真中体现出来,通过仿真可以找出问题所在,从而使系统更优化。
系统仿真作为一种人为的试验手段,通过仿真可以真实地描述系统的运行、演变及其发展过程,从而更了解系统。
系统模型、系统优化及系统仿真三者相互结合,会使系统更优化、更贴近实际。