第4章一元一次方程以及应用
- 格式:doc
- 大小:953.50 KB
- 文档页数:5
一元一次方程的解法与应用一、一元一次方程的概念1.1 认识一元一次方程:形如ax + b = 0(a、b为常数,a≠0)的方程称为一元一次方程。
1.2 了解一元一次方程的组成:未知数(变量)、系数(a、b)、常数、等号。
1.3 掌握一元一次方程的解:使方程左右两边相等的未知数的值称为方程的解。
二、一元一次方程的解法2.1 公式法:根据一元一次方程的定义,可得方程的解为x = -b/a。
2.2 移项法:将方程中的常数项移到等号另一边,未知数移到等号另一边,得到x = -b/a。
2.3 因式分解法:将方程转化为两个因式的乘积等于0的形式,根据零因子定律求解。
三、一元一次方程的应用3.1 实际问题:将实际问题转化为一元一次方程,求解未知数。
3.2 线性方程组:由多个一元一次方程构成的方程组,可通过消元法、代入法等求解。
3.3 函数图像:一元一次方程对应的函数为直线,了解直线的斜率、截距等性质。
3.4 几何问题:利用一元一次方程描述几何图形的位置关系,如直线与坐标轴的交点、两点间的距离等。
四、一元一次方程的巩固练习4.1 编写练习题:设计具有实际意义的一元一次方程,让学生运用解法求解。
4.2 判断题:判断给定的一元一次方程是否正确,解释原因。
4.3 改写方程:将给定的一元一次方程改写为不同形式,如移项、合并同类项等。
五、一元一次方程的拓展知识5.1 方程的解与不等式的关系:一元一次方程的解集可表示为对应不等式的解集。
5.2 一元一次方程的推广:含有未知数的乘积、商的一元一次方程,以及分式方程等。
5.3 方程的解与函数的关系:一元一次方程的解为对应函数的零点。
总结:通过本知识点的学习,学生应掌握一元一次方程的概念、解法、应用以及拓展知识,能够运用一元一次方程解决实际问题,并为后续学习更复杂的方程打下基础。
习题及方法:1.习题:解方程 2x - 5 = 3。
答案:x = 4解题思路:将常数项移到等号右边,未知数项移到等号左边,得到2x = 8,再将方程两边同时除以2得到x = 4。
第4章《一元一次方程》应用题分类:数轴类专项练(四)1.当被研究的问题包含多种可能情况,不能一概而论时,必须将可能出现的所有情况分别讨论得出各种情况下相应的结论,这种处理问题的思维方法称为“分类思想”.例:在数轴上表示数a和﹣2的两点之间的距离是3,求a的值.解:如图,当数a表示的点在﹣2表示的数的左边时,a=﹣2﹣3=﹣5当数a表示的点在﹣2表示的数的右边时,a=﹣2+3=1所以,a=﹣5或1请你仿照以上例题的方法,解决下列问题(写出必要的解题过程)(1)同一平面内已知∠AOB=70°,∠BOC=15°,求∠AOC的度数.(2)已知ab>0,求+的值.(3)小明去商店购买笔记本,某笔记本的标价为每本2.5元,商店搞促销:购买该笔记本10本以下(包括10本)按原价出售,购买10本以上,从第11本开始按标价的50%出售.①若小明购买x本笔记本,需付款多少元?②若小明两次购买该笔记本,第二次买的本数是第一次的两倍,费用却只是第一次的1.8倍,这种情况存在吗?如果存在,请求出两次购买的笔记本数;如果不存在,请说明理由.2.如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s 的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.(1)AC=cm,BC=cm;(2)当t为何值时,AP=PQ;(3)当t为何值时,PQ=1cm.3.如图,M是定长线段AB上一定点,点C在线段AM上,点D在线段BM上,点C、点D分别从点M、点B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值;(2)若点C、D运动时,总有MD=2AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.4.如图,射线OM上有三点A,B,C,满足OA=20cm,AB=60cm,BC=10cm,动点P从O点出发沿OM方向以每秒1cm的速度匀速运动;动点Q从点C出发,在线段CO上向点O匀速运动(点Q运动到点O时,立即停止运动),点P,Q同时出发.(1)当点P与点Q都同时运动到线段AB的中点时,求点Q的运动速度;(2)若点Q运动速度为每秒3cm时,经过多少时间P,Q两点相距70m;(3)当PA=2PB时,点Q运动的位置恰好是线段AB的三等分,求点Q的速度.5.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=cm,OB=cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M 行驶的总路程为cm.6.已知:如图,线段AB=12cm,M是AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿线段BA向左运动,在运动过程中,点C始终在线段AM上,点D始终在线段BM上,点E、F分别是线段AC和MD的中点.(1)当点C、D运动了2s,求EF的长度;(2)若点C、D运动时,总有MD=3AC,求AM的长.7.如图,AB=12cm,点C在线段AB上,AB=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=cm,BC=cm;(2)当t=秒时,点P与点Q第一次重合;当t=秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?8.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s 的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.9.如图所示,线段AB=6cm,C点从P点出发以1cm/s的速度沿AB向左运动,D点从B出发以2cm/s的速度沿AB向左运动(C在线段AP上,D在线段BP上)(1)若C,D运动到任意时刻都有PD=2AC,求出P在AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,若AQ﹣BQ=PQ,求PQ的值;(3)在(1)的条件下,若C,D运动了一段时间后恰有AB=2CD,这时点C停止运动,点D继续在线段PB上运动,M,N分别是CD,PD的中点,求出MN的值.10.如图,C为线段AB的中点,点P从点A出发以acm/s的速度沿AB向点B运动,同时,点Q从点B出发以bcm/s(b<a)的速度沿BA向点A运动,点Q运动的时间为ts,点P与点Q在点D相遇,AB=6CD.(1)求的值;(2)点E为BQ的中点,当t=4(点P,Q在运动的过程中)时,PB=44cm,CE=26cm,求AB长及a值;(3)在(2)的条件下,当点P与点E相遇时,点P停止运动,在点P与点E相遇的时刻,点R从点D出发以3cm/s的速度沿DA向A运动,点P停止运动后,当t为何值时,RQ=PE?参考答案1.解:(1)∵∠AOB=70°,∠BOC=15°,∴当OC在∠AOB内部时,∠AOC=∠AOB﹣∠BOC=55°,当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=85°;(2)∵ab>0,∴当a>0,b>0时,+=+=1+1=2,当a<0,b<0时,+=+=﹣1﹣1=﹣2;(3)①当0≤x≤10时,需付2.5x元,当x>10时,需付款为:10×2.5+(x﹣10)×2.5×50%=1.25x+12.5(元);②当第一次购买10本以下,第二次购买超过10本时,列方程为:10x×1.8=2.5×10+0.5×2.5(2x﹣10),解得:x=0.8(不合题意);当第一次和第二次都超过10本时,列方程为:[2.5×10+0.5×2.5(x﹣10)]×1.8=2.5×10+0.5×2.5(2x﹣10),解得:x=40,则2x=80.答:这种情况存在,第一次购书40本,第二次购书80本.2.解:(1)∵AB=12cm,点C是线段AB上的一点,BC=2AC,∴AC+BC=3AC=AB=12cm,∴AC=4cm,BC=8cm;(2)由题意可知:AP=3t,PQ=4﹣(3t﹣t),则3t=4﹣(3t﹣t),解得:t=.答:当t=时,AP=PQ.(3)∵点P、Q相距的路程为1cm,∴(4+t)﹣3t=1(相遇前)或3t﹣(4+t)=1(第一次相遇后),解得t=或t=,当到达B点时,第一次相遇后点P、Q相距的路程为1cm,3t+4+t=12+12﹣1解得:t=.答:当t为,,时,PQ=1cm.3.解:(1)当点C、D运动了2s时,CM=2cm,BD=4cm,∵AB=10cm,CM=2cm,BD=4cm,∴AC+MD=AB﹣CM﹣BD=10﹣2﹣4=4cm;(2)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM=AB.故答案为;(3)当点N在线段AB上时,如图.∵AN﹣BN=MN,又∵AN﹣AM=MN,∴BN=AM=AB,∴MN=AB,即=;当点N在线段AB的延长线上时,如图.∵AN﹣BN=MN,又∵AN﹣BN=AB,∴MN=AB,即=1.综上所述,=或1.4.解:(1)设点Q的运动速度为xcm/s,根据题意,得=,即50=,解得x=0.8cm/s.(2)∵OA+AB+BC=90cm>70cm,∴分两种情况,①Q在P的右侧,经过时间为=5s.②Q在P的左侧,∵点Q运动到点O时,立即停止运动,∴Q运动的时间为=30s,两者相距70cm时运动的时间为=70s.综合①②得知,经过5秒和70秒的P、Q两点相距70m.(3)PA=2PB,分两种情况,①当点P在A、B两点之间时,∵PA=2PB,∴PA=AB=40cm,此时运动的时间为=60s,∵点Q运动的位置恰好是线段AB的三等分,∴BQ=AB=20cm,或BQ=AB=40cm,点Q的运动速度为=0.5cm/s或cm/s.②当点P在线段AB的延长线上时,∵PA=2PB,∴PA=2AB=120cm,此时运动的时间为=140s,∵点Q运动的位置恰好是线段AB的三等分,∴BQ=AB=20cm,或BQ=AB=40cm,点Q的运动速度为=cm/s或cm/s.综合①②得知,当点P在A、B两点之间时,点Q的运动速度为0.5cm/s或cm/s,;当点P在线段AB的延长线上时,点Q的运动速度为cm/s或cm/s.5.解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x=,∴CO=.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t=,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t=或16s时,2OP﹣OQ=8.②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.6.解:(1)当点C、D运动了2s,MC=2cm,BD=6cm,∴AC+DM=AB﹣MC﹣BD=12﹣2﹣6=4(cm),又∵点E、F分别是线段AC和MD的中点,∴AC=2EC,MD=2MF,∴2EC+2MF=4,即EC+MF=2cm,∴EF=EC+CM+MF=2+2=4 (cm),答:EF的长度为4cm;(2)由MD=3AC可设AC=xcm,MD=3xcm,设运动时间为t秒,则MC=tcm,BD=3tcm,∴AM=x+t(cm),AB=AC+CM+MD+BD=x+t+3x+3t=4x+4t(cm),∵AB=12,∴4x+4t=12,∴x+t=3,即AM=3cm,答:AM的长为3cm.7.解:(1)∵AB=12cm,AB=3BC∴BC=4,AC=8故答案为:8;4.(2)设运动时间为t,则AP=4t,CQ=t,由题意,4t﹣t=8,解得t=;当点P与点Q第二次重合时有:4t﹣12+8+t=12,解得t=.故当t=秒时,点P与点Q第一次重合;当t=秒时,点P与点Q第二次重合.故答案为:;.(3)在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=8+t,解得t=;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12﹣(4t﹣12)]=12﹣(t﹣4),解得t=;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t﹣24)=12﹣(t﹣4),解得t=.故当t为秒时,AP=PQ.8.解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又∵AQ=AP+PQ,∴AP=BQ,∴PQ=AB=4cm;当点Q'在AB的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm.综上所述,PQ=4cm或12cm.9.解:(1)根据C、D的运动速度知:BD=2PC.∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图1:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又∵AQ=AP+PQ,∴AP=BQ,∴PQ=AB=2cm;当点Q'在AB的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=6cm.综上所述,PQ=2cm或6cm.(3)MN的值不变,MN的值是cm.理由:如图2,当C点停止运动时,有CD=AB=3cm,∴AC+BD=AB=3cm,∴AP﹣PC+BD=AB=3cm,∵AP=AB=2cm,PC=1cm,∵M是CD中点,N是PD中点,∴MN=MD﹣ND=CD﹣PD=CP=cm.10.解:(1)∵C为线段AB的中点,AB=6CD,∴AC=BC=AB=3CD.∵点P从点A出发以acm/s的速度沿AB向点B运动,同时,点Q从点B出发以bcm/s (b<a)的速度沿BA向点A运动,点Q运动的时间为ts,点P与点Q在点D相遇,∴AD=at,BD=bt,∴======;(2)∵点E为BQ的中点,∴BE=BQ.当t=4时,PB=AB﹣AP=AB﹣4a=AB﹣8b=44①,CE=BC﹣BE=AB﹣×4b=AB﹣2b=26②,①与②联立,解得AB=60,b=2,则AB=60cm,a=2b=4cm/s;(3)当AB=60cm,a=4cm/s,b=2cm/s,设点P与点E相遇时所用时间为xs,∵AP+BE=AB,∴4x+×2x=60,解得x=12,BP=BE=12.点P与点Q在点D相遇所用时间为:=10(s),此时BD=2×10=20(cm),分两种情况:①R在Q的后面时,如图1.∵BR=BD+DR=20+3(t﹣12)=3t﹣16,∴RQ=BQ﹣BR=2t﹣(3t﹣16)=16﹣t,PE=BE﹣BP=×2t﹣12=t﹣12.∵RQ=PE,∴16﹣t=(t﹣12),解得t=;②R在Q的前面时,如图2.∵BR=BD+DR=20+3(t﹣12)=3t﹣16,∴RQ=BR﹣BQ=3t﹣16﹣2t=t﹣16,PE=BE﹣BP=×2t﹣12=t﹣12.∵RQ=PE,∴t﹣16=(t﹣12),解得t=20.故当t为s或20s时,RQ=PE.。
专题4_一元一次方程及其应用一元一次方程及其应用是初中数学的基础知识之一,它无论在学习上还是实际生活中都具有重要的应用价值。
本文将围绕一元一次方程的概念、解法、应用以及一些实际问题展开讨论。
一、一元一次方程的概念一元一次方程是指其中只包含一个未知数,并且未知数的最高次数为一的方程。
一般形式为ax+b=0,其中a和b是已知数,a≠0。
二、一元一次方程的解法1.移项法:通过变换方程式,将未知数移到等号的一侧,已知数移到等号的另一侧。
例如,对于方程2x+5=13,可以通过移项法得到2x=13-5=8,再除以2得到x=4,从而求得方程的解x=42.消元法:联立两个或多个方程,通过消去一些系数,得到一个只含一个未知数的一元一次方程。
例如,联立方程组{x+2y=5,2x+3y=10},可以通过消元法得到-x+y=-5,再乘以2得到2x-2y=10,联立原方程组得到3y=0,进而求得y=0,再代入方程得到x=5/2,从而求得方程组的解x=5/2,y=0。
三、一元一次方程的应用一元一次方程在实际生活中的应用十分广泛,以下是一些常见的应用领域:1.商品质量问题:如果已知一种商品的质量为x千克,每件商品的质量比前一件多1/4千克,总共有10件商品,那么可以通过建立方程10x=总质量来求得总质量。
2.速度与时间问题:速度等于路程除以时间,如果已知辆车以30km/h的速度行驶2小时,求其行驶的总路程,可以通过建立方程30*2=总路程来求得总路程。
3.比例问题:比例可以用一元一次方程来表示,例如已知甲乙两个数的比例为4:3,而甲的值为12,可以通过建立方程4x=12来求得乙的值x,进而求得甲乙两个数的具体值。
四、一元一次方程的实际问题1.甲乙两个数的比例为4:3,但甲的值比乙大3,求甲、乙的具体数值。
解:设乙的值为x,则甲的值为x+3、根据比例关系,可以建立方程4/(x+3)=3/x,通过变换方程解得x=6/5,从而可以求得甲的值为9/5,乙的值为6/52.辆车从A点和B点之间的距离是90千米,其中从A点到B点的距离是从B点到A点距离的3倍加上3千米,求A点到B点的距离。
一元一次方程及其应用(人工智能Assistance身份声明:以下文章内容纯属自然语言处理生成,没有人工智能参与修改。
)2023年了,一元一次方程依然扮演着重要的角色,影响着我们的生活。
本文将从简单的概念入手,旨在向大家介绍一元一次方程及其应用。
一、一元一次方程的定义一元一次方程,指只有一个未知数,且未知数的最高次数为一的方程。
其一般形式可以表示为:Ax + B = 0(其中,A和B是已知数,x是未知数)。
二、解一元一次方程的方法解一元一次方程需要通过相应的运算方法,将未知数x解出来,具体方法如下:1. 移项法:将Ax和B分别在等式两边交换位置,得到x = -B/A。
2. 定比分法:将等式两边的各项都乘以相同的比值,使得形式化简后得到x = -B/A。
3. 等式法:将等式两边分别加入一项,使等式成立后可以解出x。
三、一元一次方程的应用一元一次方程的应用非常广泛,涉及到生活中的各个方面。
下面就为大家介绍几个常见的应用:1. 财务预算财务预算中,需要对不同因素进行定量分析和预测。
一元一次方程可以帮助我们计算好不同因素之间的关系,从而提前做好预算和规划。
2. 人口增长在人口增长方面,一元一次方程可以用来计算不同因素对人口数量的影响,如生育率、死亡率、移民率等等。
通过方程的分析和预测,可做出更准确的预测并合理规划措施。
3. 工程设计工程设计中,需要考虑各种因素之间的关系,以及它们对工程的影响。
通过一元一次方程的分析,可以更好地把握工程设计的效果和可行性,从而提高工程的质量。
四、总结一元一次方程虽然在数学中只是一个较为简单的概念,但却应用广泛。
无论是财务预算、人口增长、还是工程设计等领域,都需要用到一元一次方程来分析和预测问题。
因此,我们必须学好它,掌握相关的解法和应用,以更好地应用于我们的生活当中。
一元一次方程与应用一元一次方程在实际生活中有着广泛的应用。
例如,在经济学中,一元一次方程可以用来描述供求关系;在物理学中,一元一次方程可以用来描述运动物体的速度和位置关系;在化学学中,一元一次方程可以用来描述物质的反应过程。
首先,假设小明和小红两人一起去超市买水果,小明买了苹果和橙子,一共花了15元,小红买了橙子和香蕉,一共花了10元。
假设苹果的单价为x元,橙子的单价为y元,香蕉的单价为z元。
根据题目要求,可以得到以下两个方程:x+y=15(1)y+z=10(2)这就是一个含有三个未知数的一元一次方程组,可以通过解方程组的方法求解。
我们可以先通过消元法来解这个方程组。
将方程(2)的两边同时减去x,得到:y+z-x=10-x然后将上述结果代入方程(1)中,得到:x+(10-x)=15化简后得到:10=15显然,上述方程没有解。
这说明题目中存在矛盾或错误,需要检查题目是否有误。
在此例中,可能是因为消费总额15元和10元不符合实际情况。
在另一个例子中,我们可以考虑汽车的行驶速度与行驶时间之间的关系。
假设一辆汽车以常速v km/h行驶,行驶时间为t小时。
那么,行驶的距离d可以用行驶速度和时间的乘积表示。
根据题目要求,行驶的距离为120 km。
根据上述关系,我们可以得到以下方程:v*t=120(3)这就是一个含有两个未知数的一元一次方程,可以通过解方程的方法求解。
由于方程(3)中只有一个未知数,我们可以通过代入法解方程。
将t用120/v替换,得到:v*(120/v)=120化简后得到:v^2=120再将上述结果开根号,得到:v=√120这就得到了汽车的行驶速度,可以通过计算得到具体的数值。
通过以上两个例子,我们可以看到一元一次方程在实际生活中的应用。
它可以描述经济学、物理学和化学学等领域中的问题,帮助我们理解和解决实际问题。
七年级数学上册第四章一元一次方程 4.3 用一元一次方程解决问题怎样灵活应用方程的解求字母的值?素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第四章一元一次方程4.3 用一元一次方程解决问题怎样灵活应用方程的解求字母的值?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第四章一元一次方程4.3 用一元一次方程解决问题怎样灵活应用方程的解求字母的值?素材(新版)苏科版的全部内容。
怎样灵活应用方程的解求字母的值?
难易度:★★★
关键词:方程
答案:
方程的解是满足左右两边相等的未知数的值,将解代入方程,方程两边相等,从而得到关于另一个字母的一元一次方程,解答即可.
【举一反三】
【举一反三】
典例:若方程3(x+4)-4=2k+1的解是—3,则k的值是()
A。
1 B.—1 C。
0 D。
—
思路导引:一般来讲,解决本题要理解x=-3是方程3(x+4)-4=2k+1的解,说明-3可以代替x 的位置,也就是把原题中的x换成“-3”,得3×(-3+4)—4=2k+1,可求得k=—1。
标准答案:B。
一元一次方程与应用
一、一元一次方程的概念
例如,小明去商场购买一台手机,原价为1500元,商场正在举办打折活动,折扣为30%。
假设小明最终花费的金额为x元,我们可以建立如下一元一次方程:
1500×0.7=x
二、一元一次方程的解法
解一元一次方程的基本步骤是移项和合并同类项。
我们以上面的例子来解释解一元一次方程的过程。
1500×0.7=x
合并左边的项,得:
1050=x
所以小明最终花费的金额为1050元。
三、一元一次方程的应用
例1:小明参加运动会,他参加了100米与200米短跑两个项目,假设小明100米短跑的成绩比200米短跑慢1秒,小明100米短跑的时间为x秒,我们可以建立如下一元一次方程:
x+1=2x
解这个方程得到:
1=x
所以小明100米短跑的时间为1秒。
例2:小明购买水果,苹果的价格是每斤5元,小明购买了x斤苹果,总共花费了20元,我们可以建立如下一元一次方程:
5x=20
合并同类项,得:
x=4
所以小明购买了4斤苹果。
通过以上两个例子,我们可以看到一元一次方程在解决实际问题中的
应用。
它可以帮助我们计算出一些未知的数值,从而解决我们的实际困扰。
在日常生活中,我们经常会遇到一些和等式有关的问题,我们可以通过建
立一元一次方程来解决这些问题。
总之,学习了一元一次方程的概念、解法和应用,我们可以更好地理
解和运用数学知识,解决一些实际问题。
通过这些例子,我们可以发现一
元一次方程在购物、旅行、运动等方面有着广泛的应用,对于我们的生活
有着很大的帮助。
专题4一元一次方程及其应用一、一元一次方程的定义一元一次方程是指只含有一个未知数的一次方程。
一元一次方程的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。
二、解一元一次方程的方法解一元一次方程的常见方法有:等式两边同时加减一个数、等式两边同时乘除一个非零数。
1.等式两边加减一个数:对于方程ax + b = 0,我们可以将b加到等式两边或者减去等式两边,得到ax = -b或者ax = b。
然后,再将方程两边同时除以a,就可以得到x的值。
2.等式两边乘除一个非零数:对于方程ax + b = 0,我们可以将等式两边乘以一个非零数c,得到acx + bc = 0。
然后,再将方程两边同时除以ac,就可以得到x的值。
三、一元一次方程的应用一元一次方程在我们日常生活中有很多应用场景,例如:1.购买物品:假设物品的原价是x元,经过打折后的价格是y元,且折扣为a。
那么我们可以建立以下一元一次方程来求解原价x:x - ax = y通过求解方程,我们就可以得到物品的原价。
2.算术平均数:假设一些班级学生的身高分别是x₁、x₂、x₃、..、xn,其中n是班级学生的总数,而x是班级学生的平均身高。
那么我们可以建立以下一元一次方程来求解平均身高x:(x₁ + x₂ + x₃ + ... + xn) / n = x通过求解方程,我们就可以得到班级学生的平均身高。
3.运动速度:假设人以v的速度行驶t小时,行驶的距离为s。
那么我们可以建立以下一元一次方程来求解速度v:s = vt通过求解方程,我们就可以得到人的速度。
四、例题解析1.问题:小明在商场购买了一件原价100元的衣服,打完折后的价格是80元。
请问,打折的折扣是多少?解答:设折扣为x。
根据题意,我们可以得到以下一元一次方程:100-x*100=80解方程得到x=(100-80)/100=0.2所以,打折的折扣是20%。
2. 问题:班级共有30名学生,他们的体重平均为55kg。
《一元一次方程的应用》讲义一、一元一次方程的基本概念首先,咱们来了解一下啥是一元一次方程。
简单说,一元一次方程就是含有一个未知数,并且这个未知数的次数是 1 的等式。
比如 3x +5 = 17 ,这里只有一个未知数 x ,而且 x 的次数是 1 。
一元一次方程一般的形式是:ax + b = 0 (其中 a 、 b 是常数, a ≠ 0 )。
在解决实际问题时,我们经常需要通过设未知数、找等量关系来列出一元一次方程。
二、一元一次方程在行程问题中的应用行程问题是一元一次方程常见的应用场景之一。
比如说,小明骑自行车以每小时 15 千米的速度去某地,回来时因为逆风,速度变成了每小时 10 千米,去的时候用了 3 小时,问回来用了多长时间?咱们可以设回来用的时间为 x 小时。
去的路程=回来的路程,根据路程=速度×时间,去的时候速度是 15 千米/小时,时间是 3 小时,所以路程是 15×3 = 45 千米。
回来的速度是 10 千米/小时,时间是 x 小时,路程就是 10x 千米。
那么就可以列出方程: 10x = 45 ,解得 x = 45 ,所以回来用了 45 小时。
再比如,甲乙两人同时从 A 、 B 两地相向而行,甲的速度是每小时 8 千米,乙的速度是每小时 6 千米, 3 小时后两人相遇,问 A 、 B 两地相距多远?设 A 、 B 两地相距 x 千米。
甲走的路程+乙走的路程=总路程,甲 3 小时走的路程是 8×3 =24 千米,乙 3 小时走的路程是 6×3 = 18 千米。
方程就是: 24 + 18 = x ,解得 x = 42 千米, A 、 B 两地相距 42 千米。
三、一元一次方程在工程问题中的应用工程问题也是常考的类型。
比如一项工程,甲单独做 10 天完成,乙单独做 15 天完成,两人合作需要几天完成?设两人合作需要 x 天完成。
把这项工程的工作量看成单位“ 1 ”,甲每天的工作效率就是 1/10 ,乙每天的工作效率就是 1/15 。
2011年全国各地100份中考数学试卷分类汇编第4章 一元一次方程以及应用一、选择题1. (2011山东菏泽,7,3分)某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打A .6折B .7折C .8折D .9折 【答案】B2. (2011山东日照,4,3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( )(A )54盏 (B )55盏 (C )56盏 (D )57盏 【答案】B3. (2011甘肃兰州,11,4分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为[来源:学科网]A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 【答案】A4. ( 2011重庆江津, 3,4分)已知3是关于x 的方程2x -a=1的解,则a 的值是( ) A.-5 B.5 C.7 D.2 【答案】B ·5. (2011湖北荆州,6,3分)对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为A .23 B .31 C . 21 D . 21- 【答案】D6.二、填空题1. (2011四川重庆,16,4分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成.乙种盆景由10朵红花、12朵黄花搭配而成.丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了 朵. 【答案】43802. (2011福建泉州,10,4分)已知方程||x 2=,那么方程的解是 .【答案】1222x x ==-,;3. (2011湖南邵阳,13,3分)请写出一个解为x=2的一元一次方程:_____________。
【答案】2x-2=2.(答案不唯一)4. (2011重庆市潼南,15,4分)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交 电费56元,则a = 度.【答案】405. (2011广东湛江15,4分)若2x =是关于x 的方程2310x m +-=的解,则的值为 . 【答案】1-6. (2011湖南湘潭市,13,3分)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为______________. 【答案】50-8x=387. [来源:]三、解答题1. (2011浙江省舟山,21,8分)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程; (2)两座跨海大桥的长度及过桥费见下表:[来源:学科网ZXXK]我省交通部门规定:轿车的高速公路通行费y (元)的计算方法为:5++=b ax y ,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a . 【答案】(1)设舟山与嘉兴两地间的高速公路路程为s 千米,由题意得104 4.5s s -=.解得s =360.答:舟山与嘉兴两地间的高速公路路程为360千米.(2)将x =360-48-36=276,b =100+80=180,y =295.4,代入y =ax +b +5,得295.4=276a +180+5, 解得a=0.4,答:轿车的高速公路里程费是0.4元/千米.2. (2011安徽,16,8分)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.大桥名称 舟山跨海大桥 杭州湾跨海大桥大桥长度 48千米 36千米 过桥费100元80元嘉兴舟山东海【答案】设粗加工的该种山货质量为x kg,根据题意,得x+(3x+2000)=10000.解得x=2000.答:粗加工的该种山货质量为2000 kg.3. (2011福建福州,17(2),8分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?【答案】(2)解:设励东中学植树x棵.依题意,得(23)834x x+-=解得279x=∴2322793555x-=⨯-=答:励东中学植树279棵,海石中学植树555棵.4. (2011山东滨州,20,7分)依据下列解方程0.30.5210.23x x+-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
解:原方程可变形为352123x x+-= (__________________________)去分母,得3(3x+5)=2(2x-1). (__________________________)去括号,得9x+15=4x-2. (____________________________)(____________________),得9x-4x=-15-2. (____________________________) 合并,得5x=-17. (合并同类项)(____________________),得x=175-. (_________________________)【答案】解:原方程可变形为352123x x+-= (__分式的基本性质_________)去分母,得3(3x+5)=2(2x-1). (_____等式性质2________________)去括号,得9x+15=4x-2. (___去括号法则或乘法分配律_________)(______移项_______),得9x-4x=-15-2. (__等式性质1__________)合并,得5x=-17. (合并同类项)(_______系数化为1____),得x=175-. (__等式性质2________)5. (2011浙江台州,20,8分)毕业在即,九年级某班为纪念师生情谊,班委决定花800元班会费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念。
其中送给任课老师的留念册的单价比给同学的单价多8元。
请问这两种不同留念册的单价分别为多少元?【答案】解:设送给任课老师的留念册的单价为x元,根据题意,得:10x+50(x-8)=800解得:x=20 ∴x-8=12答:送给任课老师的留念册的单价为20元,送给任课同学的留念册的单价为12元。
6. (2011浙江省嘉兴,21,10分)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.[来源:Z#xx#](1)求舟山与嘉兴两地间的高速公路路程; (2)两座跨海大桥的长度及过桥费见下表:我省交通部门规定:轿车的高速公路通行费y (元)的计算方法为:5++=b ax y ,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .【答案】(1)设舟山与嘉兴两地间的高速公路路程为s 千米,由题意得104 4.5s s-=.解得s =360.答:舟山与嘉兴两地间的高速公路路程为360千米.[来源:学#科#网][来源:](2)将x =360-48-36=276,b =100+80=180,y =295.4,代入y =ax +b +5,得295.4=276a +180+5, 解得a=0.4,答:轿车的高速公路里程费是0.4元/千米.7. (2011江苏连云港,21,6分)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260km,求提速后的火车速度.(精确到1km/h)【答案】解:设提速后的火车速度是x km /h ,根据题意,得 2.3(x -260)=0.6x ,解得x =352.[来源:学科网]答:提速后的火车速度是352km/h.8. (2011江苏无锡,28,10分)(本题满分10分)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:税 级 现行征税方法草案征税方法[来源:学。
科。
网Z 。
X 。
X 。
K][来源:学科网ZXXK]月应纳税额x 税率 速算扣除数 月应纳税额x 税率 速算扣除数1x ≤ 5005%x ≤ 1 5005%大桥名称 舟山跨海大桥 杭州湾跨海大桥大桥长度 48千米36千米过桥费[来源:学科网ZXXK]100元80元嘉兴舟山东海2 500<x≤200010% 25 1 500<x≤4 500 10% ▲3 2 000<x≤500015% 125 4 500<x≤9 000 20%▲4 5 000<x≤2000020% 375 9 000<x≤35 000 25% 9755 20 000<x≤40 00025% 1375 35 000<x≤55 000 30% 2 725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额。
“速算扣除数”是为了快捷简便计算个人所得税而设定的一个数。
例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2 600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5% + 1500×10% + 600×15% = 265(元) 方法二:用“月应纳税额×适用税率−速算扣除数”计算,即2600×15% − 125 = 265(元)(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1 060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴纳的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?【答案】.解:(1) 75,……………………(1分)525,………………………(3分)(2)设甲的月应纳税所得额为x元,根据题意得20%x− 375 = 1060,…………………(4分)解得x = 7175.∴甲这个月的应纳税所得额是7175元.…………………………………(5分)若按“个税法草案”计算,则他应缴税款为(7175 − 1000)×20% − 525 = 710元.…(6分)(3)设乙的月应纳税所得额为x元,根据题意得20%x− 375 = 25%(x− 1000) − 975,(8分)解得x = 17 000.……………………………………………………………………………(9分)∴乙今年3月所缴税款的具体数额为1700×20% − 375 = 3025元.…………………(10分)。