山东省潍坊市诸城市七年级下期中数学试卷(有答案)
- 格式:doc
- 大小:261.16 KB
- 文档页数:12
七年级数学下期中试卷含答案解析(山东省潍坊市诸城市)2015-2016学年山东省潍坊市诸城市七年级(下)期中数学试卷一、选择题:本题共12个小题,在每小题给出的四个选项中,只有一个是正确的,每小题3分,共36分 1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是() A. B. C. D. 2.下列四个方程中,是二元一次方程的是() A.x�3=0 B.xy�x=5 C. D.2y�x=5 3.下列各式运算结果为x8的是() A.x4•x4 B.(x4)4 C.x16÷x2 D.x4+x4 4.在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是() A.数形结合思想 B.转化思想 C.分类讨论思想 D.类比思想 5.下列说法:①过一点有且只有一条直线平行于已知直线;②与同一条直线平行的两直线必平行;③与同一条直线相交的两条直线必相交;④在同一平面内,不相交的两条直线叫平行线.不正确的有() A.1个 B.2个 C.3个 D.4个 6.如图,∠1和∠2不是同位角的是()A. B. C. D. 7.已知∠1与∠2为对顶角,∠1=45°,则∠2的补角的度数为() A.35° B.45° C.135° D.145° 8.若ax=4,ay=7,则a2y+x的值为() A.196 B.112 C.56 D.45 9.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是() A.①③ B.②④ C.①③④ D.①②③④ 10.计算(�3a�bc)•(bc�3a)的结果等于() A.bc2�9a2 B.b2c2�3a2 C.9a2�b2c2 D.b2c2�9a2 11.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为() A.110° B.115° C.120° D.130° 12.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付() A.10元 B.11元 C.12元 D.13元二、填空题:本题工5小题,每小题4分,满分20分 13.若∠1=35°21′,则∠1的余角是______. 14.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为______°. 15.如果方程组的解满足x+y=5,则k的值是______. 16.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是______(不允许添加任何辅助线). 17.定义运算a⊗b=a(1�b),下列给出了关于这种运算的几个结论:①2⊗(�2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+b(b⊗b)=2ab;④若a⊗b=0,则a=0或b=1,其中正确结论的序号是______.三、解答题:本题共6小题,共64分,解答应写出必要的文字说明、证明过程或推演步骤 18.计算:(1)(x2y)3(x3y)2 (2)(1�2x)(x2�3x+1)(3)先化简,再求值:2(x�8)(x�5)�(2x�1)(x+2),其中x=3. 19.解下列方程组:(1)(2)(3). 20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数. 21.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,求证:∠CED+∠ACB=180°,请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(______).∴GF∥CD(______)∵GF∥CD(已证)∴∠2=∠BCD______)又∵∠1=∠2(已知)∴∠1=∠BCD(______)∴______(______)∴∠CED+∠ACB=180°(______) 22.某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B 型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由. 23.如图,四边形ABCD是长方形,尺寸如图所示:(1)求阴影部分的面积;(2)若a=30,b=10,c=22,d=9,求阴影部分的面积;(3)若∠1=∠2,那么∠3与∠4有怎样的关系,并说明理由.2015-2016学年山东省潍坊市诸城市七年级(下)期中数学试卷参考答案与试题解析一、选择题:本题共12个小题,在每小题给出的四个选项中,只有一个是正确的,每小题3分,共36分 1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B. C. D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误; B、图中的∠1和∠AOB不是表示同一个角,故本选项错误; C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D. 2.下列四个方程中,是二元一次方程的是() A.x�3=0 B.xy�x=5 C. D.2y�x=5 【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A、x�3=0是一元一次方程,故A错误; B、xy�x=5是二元二次方程,故B错误; C、�y=3是分式方程,故C错误; D、2y�x=5是二元一次方程,故D正确;故选:D. 3.下列各式运算结果为x8的是() A.x4•x4 B.(x4)4 C.x16÷x2 D.x4+x4 【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;合并同类项法则,对各选项计算后利用排除法求解.【解答】解:A、x4•x4=x8,故选项A正确; B、(x4)4=x16,故选项B错误; C、x16÷x2=x14,故选项C错误; D、x4+x4=2x4,故选项D错误;故选A. 4.在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是() A.数形结合思想 B.转化思想 C.分类讨论思想 D.类比思想【考点】解二元一次方程组.【分析】在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,利用了转化的思想达到消元的目的.【解答】解:在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是转化思想,故选B 5.下列说法:①过一点有且只有一条直线平行于已知直线;②与同一条直线平行的两直线必平行;③与同一条直线相交的两条直线必相交;④在同一平面内,不相交的两条直线叫平行线.不正确的有()A.1个 B.2个 C.3个 D.4个【考点】平行线的性质;平行公理及推论.【分析】根据平行线的性质以及平行公理对各小题分析判断即可得解.【解答】解:①应为过直线外一点有且只有一条直线平行于已知直线,故本小题错误;②与同一条直线平行的两直线必平行,正确;③与同一条直线相交的两条直线必相交,错误;④在同一平面内,不相交的两条直线叫平行线,正确.所以,不正确的有2个.故选A. 6.如图,∠1和∠2不是同位角的是()A. B. C. D.【考点】同位角、内错角、同旁内角.【分析】利用同位角的定义,直接分析得出即可.【解答】解:A、∠1和∠2不是同位角,故此选项符合题意; B、∠1和∠2是同位角,故此选项不合题意; C、∠1和∠2是同位角,故此选项不合题意; D、∠1和∠2是同位角,故此选项不合题意;故选:A. 7.已知∠1与∠2为对顶角,∠1=45°,则∠2的补角的度数为() A.35° B.45° C.135° D.145° 【考点】余角和补角;对顶角、邻补角.【分析】根据对顶角、补角的性质,可得∠1=∠2,∠2+∠3=180°,则∠2+∠3=∠1+∠3=180°.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是补角,∴∠2+∠3=180°,等角代换得∠1+∠3=180° ∴∠3=180°�45°=135°,故选C. 8.若ax=4,ay=7,则a2y+x的值为() A.196 B.112 C.56 D.45 【考点】同底数幂的乘法.【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【解答】解:∵ax=4,ay=7,∴a2y+x=(ay)2×ax=72×4=196.故选:A. 9.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是() A.①③ B.②④ C.①③④ D.①②③④ 【考点】平行线的判定.【分析】根据平行线的判定方法可以一一证明①、②、③、④都能判断a∥b.【解答】解:∵∠1=∠2,∴a∥b,故①正确.∵∠3=∠6,∠3=∠5,∴∠5=∠6,∴a∥b,故②正确,∵∠4+∠7=180°,∠4=∠6,∴∠6+∠7=180°,∴a∥b,故③正确,∵∠5+∠8=180°,∠5=∠3,∠8=∠2,∴∠2+∠3=180°,∴a∥b,故④正确,故选D. 10.计算(�3a�bc)•(bc�3a)的结果等于() A.bc2�9a2 B.b2c2�3a2 C.9a2�b2c2D.b2c2�9a2 【考点】平方差公式.【分析】原式利用平方差公式化简即可得到结果.【解答】解:原式=(�3a�bc)(�3a+bc)=9a2�b2c2,故选C 11.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为() A.110° B.115° C.120° D.130° 【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选B. 12.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付() A.10元 B.11元 C.12元 D.13元【考点】二元一次方程组的应用.【分析】设购买1支签字笔应付x元,1本笔记本应付y元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y的值.【解答】解:设购买1支签字笔应付x元,1本笔记本应付y元,根据题意得,解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付8+4=12元,故选:C.二、填空题:本题工5小题,每小题4分,满分20分 13.若∠1=35°21′,则∠1的余角是54°39′.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和为90度计算即可.【解答】解:根据定义,∠1的余角度数是90°�35°21′=54°39′.故答案为54°39′. 14.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为145 °.【考点】平行线的性质.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=55°,∴∠3=90°�∠1=90°�55°=35°,∴∠4=180°�35°=145°,∵直尺的两边互相平行,∴∠2=∠4=145°.故答案为:145. 15.如果方程组的解满足x+y=5,则k的值是 6 .【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入x+y=5求出k的值即可.【解答】解:,①+②得:3(x+y)=3k�3,解得:x+y=k�1,代入x+y=5中得:k�1=5,解得:k=6,故答案为:6 16.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(不允许添加任何辅助线).【考点】平行线的判定.【分析】使AD∥BC判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.【解答】可以添加的条件是∠EAD=∠B,依据同位角相等,两直线平行;或∠DAC=∠C,依据内错角相等,两直线平行;或∠DAB+∠B=180°,依据同旁内角互补,两直线平行.故答案为:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°. 17.定义运算a⊗b=a(1�b),下列给出了关于这种运算的几个结论:①2⊗(�2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+b(b⊗b)=2ab;④若a⊗b=0,则a=0或b=1,其中正确结论的序号是①④.【考点】整式的混合运算.【分析】先根据a⊗b=a(1�b)的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论.【解答】解:①2⊗(�2)=2×(1+2)=6,故本选项正确;②a⊗b=a(1�b),b⊗a=b(1�a),不一定相等,故本选项错误;③若a+b=0,则(a⊗a)+b(b⊗b)=a(1�a)+b2(1�b)=a�a2+b2�b3=a�b3;故本选项错误;④若a⊗b=a(1�b)=0,则a=0或1�b=0,即a=0或b=1,故本选项正确;正确结论的序号是①④.故答案为:①④.三、解答题:本题共6小题,共64分,解答应写出必要的文字说明、证明过程或推演步骤 18.计算:(1)(x2y)3(x3y)2 (2)(1�2x)(x2�3x+1)(3)先化简,再求值:2(x�8)(x�5)�(2x�1)(x+2),其中x=3.【考点】整式的混合运算―化简求值;整式的混合运算.【分析】(1)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以单项式法则计算即可得到结果;(2)原式利用多项式乘以多项式法则计算即可得到结果;(3)原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=x6y3•x6y2=x12y5;(2)原式=x2�3x+1�2x3+6x2�2x=7x2�2x3�5x+1;(3)原式=2(x2�13x+40)�(2x2+4x�x�2)=2x2�26x+80�2x2�4x+x+2=�29x+82,当x=3时,原式=�87+82=�5. 19.解下列方程组:(1)(2)(3).【考点】解三元一次方程组.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可.(2)先用加减消元法求出y的值,再用代入消元法求出x的值即可.(3)先用加减消元法求出y的值,再求出z的值,然后用代入消元法求出x的值即可.【解答】解:(1),①×2�②得,5x=14,解得x= ,把x= 代入②得, +4y=24,解得y= ,故方程组的解为.(2),把①化简得:2x+3y=30③,③×3�②×2得:5y=40,解得:y=8,把y=8代入③得:2x+24=30,解得:x=3,故方程组的解为.(3),①+③得:2y=4,解得:y=2,②+③得:3y+2z=8,把y=2代入得:z=1,把y=2,z=1代入①得:x=3,故方程组的解为. 20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得∠BOF的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB ∴∠BOE=45° 又∵∠EOF=60° ∴∠FOB=60°�45°=15° ∵OF平分∠BOC ∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120° 21.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,求证:∠CED+∠ACB=180°,请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(垂直定义).∴GF∥CD (同位角相等,两直线平行)∵GF∥CD(已证)∴∠2=∠BCD 两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠BCD (等量代换)∴DE∥BC(内错角相等,两直线平行)∴∠CED+∠ACB=180°(两直线平行,同旁内角互补)【考点】平行线的判定与性质.【分析】根据同位角相等两直线平行证得GF∥CD,然后根据两直线平行同位角相等得出∠2=∠BCD,根据已知进一步得出∠1=∠BCD,即可证得DE∥BC,得出∠CED+∠ACB=180°.【解答】证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(垂直定义).∴GF∥CD(同位角相等,两直线平行),∵GF∥CD(已证),∴∠2=∠BCD(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠BCD(等量代换),∴DE∥BC(内错角相等,两直线平行)∴∠CED+∠ACB=180°(两直线平行,同旁内角互补),故答案为:垂直定义,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DE∥BC,内错角相等,两直线平行,两直线平行,同旁内角互补. 22.某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.【考点】三元一次方程组的应用.【分析】设购买A型电脑x 台,B型y台,C型z台,分情况讨论当购买A型、B型时,当购买A 型、C型时,当购买C型、B型时分别建立方程组求出其解即可.【解答】解:设购买A型电脑x台,B型y台,C型z台,(1)若购买A型、B型时,由题意,得,解得:,不符合题意,舍去;(2)若购买A型、C型,由题意,得,解得:;(3)当购买C型、B 型时,由题意,得,解得:.故共有两种购买方案:①购买A型5台,C型25台;②购买B型10台,C型20台. 23.如图,四边形ABCD是长方形,尺寸如图所示:(1)求阴影部分的面积;(2)若a=30,b=10,c=22,d=9,求阴影部分的面积;(3)若∠1=∠2,那么∠3与∠4有怎样的关系,并说明理由.【考点】整式的混合运算;平行线的性质.【分析】(1)阴影部分面积等于矩形面积减去两个直角三角形面积,求出即可;(2)把a,b,c,d的值代入计算即可求出值;(3)互余,利用同角的余角相等验证即可.【解答】解:(1)根据题意得:S=ac�(c�a)(a�b)� bc=ac�(ac�bc�a2+ab+bc)= ac+ a2�ab;(2)当a=30,b=10,c=22,d=9时,S=330+450�150=630;(3)∠3+∠4=90°,理由为:∵∠1+∠3=90°,∠1=∠2,∴∠3+∠2=90°,∵∠2=∠4,∴∠3+∠4=90°.。
七年级(下)期中数学试卷一、选择题:本题共12个小题,在每小题给出的四个选项中,只有一个是正确的,每小题3分,共36分1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.2.下列四个方程中,是二元一次方程的是()A.x﹣3=0 B.xy﹣x=5 C. D.2y﹣x=53.下列各式运算结果为x8的是()A.x4•x4B.(x4)4C.x16÷x2D.x4+x44.在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是()A.数形结合思想 B.转化思想 C.分类讨论思想 D.类比思想5.下列说法:①过一点有且只有一条直线平行于已知直线;②与同一条直线平行的两直线必平行;③与同一条直线相交的两条直线必相交;④在同一平面内,不相交的两条直线叫平行线.不正确的有()A.1个 B.2个 C.3个 D.4个6.如图,∠1和∠2不是同位角的是()A.B.C.D.7.已知∠1与∠2为对顶角,∠1=45°,则∠2的补角的度数为()A.35°B.45°C.135°D.145°8.若a x=4,a y=7,则a2y+x的值为()A.196 B.112 C.56 D.459.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③ B.②④ C.①③④D.①②③④10.计算(﹣3a﹣bc)•(bc﹣3a)的结果等于()A.bc2﹣9a2B.b2c2﹣3a2C.9a2﹣b2c2D.b2c2﹣9a211.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°12.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付()A.10元B.11元C.12元D.13元二、填空题:本题工5小题,每小题4分,满分20分13.若∠1=35°21′,则∠1的余角是______.14.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为______°.15.如果方程组的解满足x+y=5,则k的值是______.16.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是______(不允许添加任何辅助线).17.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+b(b⊗b)=2ab;④若a⊗b=0,则a=0或b=1,其中正确结论的序号是______.三、解答题:本题共6小题,共64分,解答应写出必要的文字说明、证明过程或推演步骤18.计算:(1)(x2y)3(x3y)2(2)(1﹣2x)(x2﹣3x+1)(3)先化简,再求值:2(x﹣8)(x﹣5)﹣(2x﹣1)(x+2),其中x=3.19.解下列方程组:(1)(2)(3).20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,求证:∠CED+∠ACB=180°,请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(______).∴GF∥CD(______)∵GF∥CD(已证)∴∠2=∠BCD______)又∵∠1=∠2(已知)∴∠1=∠BCD(______)∴______(______)∴∠CED+∠ACB=180°(______)22.某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.23.如图,四边形ABCD是长方形,尺寸如图所示:(1)求阴影部分的面积;(2)若a=30,b=10,c=22,d=9,求阴影部分的面积;(3)若∠1=∠2,那么∠3与∠4有怎样的关系,并说明理由.参考答案与试题解析一、选择题:本题共12个小题,在每小题给出的四个选项中,只有一个是正确的,每小题3分,共36分1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.2.下列四个方程中,是二元一次方程的是()A.x﹣3=0 B.xy﹣x=5 C. D.2y﹣x=5【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A、x﹣3=0是一元一次方程,故A错误;B、xy﹣x=5是二元二次方程,故B错误;C、﹣y=3是分式方程,故C错误;D、2y﹣x=5是二元一次方程,故D正确;故选:D.3.下列各式运算结果为x8的是()A.x4•x4B.(x4)4C.x16÷x2D.x4+x4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;合并同类项法则,对各选项计算后利用排除法求解.【解答】解:A、x4•x4=x8,故选项A正确;B、(x4)4=x16,故选项B错误;C、x16÷x2=x14,故选项C错误;D、x4+x4=2x4,故选项D错误;故选A.4.在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是()A.数形结合思想 B.转化思想 C.分类讨论思想 D.类比思想【考点】解二元一次方程组.【分析】在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,利用了转化的思想达到消元的目的.【解答】解:在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是转化思想,故选B5.下列说法:①过一点有且只有一条直线平行于已知直线;②与同一条直线平行的两直线必平行;③与同一条直线相交的两条直线必相交;④在同一平面内,不相交的两条直线叫平行线.不正确的有()A.1个 B.2个 C.3个 D.4个【考点】平行线的性质;平行公理及推论.【分析】根据平行线的性质以及平行公理对各小题分析判断即可得解.【解答】解:①应为过直线外一点有且只有一条直线平行于已知直线,故本小题错误;②与同一条直线平行的两直线必平行,正确;③与同一条直线相交的两条直线必相交,错误;④在同一平面内,不相交的两条直线叫平行线,正确.所以,不正确的有2个.故选A.6.如图,∠1和∠2不是同位角的是()A.B.C.D.【考点】同位角、内错角、同旁内角.【分析】利用同位角的定义,直接分析得出即可.【解答】解:A、∠1和∠2不是同位角,故此选项符合题意;B、∠1和∠2是同位角,故此选项不合题意;C、∠1和∠2是同位角,故此选项不合题意;D、∠1和∠2是同位角,故此选项不合题意;故选:A.7.已知∠1与∠2为对顶角,∠1=45°,则∠2的补角的度数为()A.35°B.45°C.135°D.145°【考点】余角和补角;对顶角、邻补角.【分析】根据对顶角、补角的性质,可得∠1=∠2,∠2+∠3=180°,则∠2+∠3=∠1+∠3=180°.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是补角,∴∠2+∠3=180°,等角代换得∠1+∠3=180°∴∠3=180°﹣45°=135°,故选C.8.若a x=4,a y=7,则a2y+x的值为()A.196 B.112 C.56 D.45【考点】同底数幂的乘法.【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【解答】解:∵a x=4,a y=7,∴a2y+x=(a y)2×a x=72×4=196.故选:A.9.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③ B.②④ C.①③④D.①②③④【考点】平行线的判定.【分析】根据平行线的判定方法可以一一证明①、②、③、④都能判断a∥b.【解答】解:∵∠1=∠2,∴a∥b,故①正确.∵∠3=∠6,∠3=∠5,∴∠5=∠6,∴a∥b,故②正确,∵∠4+∠7=180°,∠4=∠6,∴∠6+∠7=180°,∴a∥b,故③正确,∵∠5+∠8=180°,∠5=∠3,∠8=∠2,∴∠2+∠3=180°,∴a∥b,故④正确,故选D.10.计算(﹣3a﹣bc)•(bc﹣3a)的结果等于()A.bc2﹣9a2B.b2c2﹣3a2C.9a2﹣b2c2D.b2c2﹣9a2【考点】平方差公式.【分析】原式利用平方差公式化简即可得到结果.【解答】解:原式=(﹣3a﹣bc)(﹣3a+bc)=9a2﹣b2c2,故选C11.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选B.12.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付()A.10元B.11元C.12元D.13元【考点】二元一次方程组的应用.【分析】设购买1支签字笔应付x元,1本笔记本应付y元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y的值.【解答】解:设购买1支签字笔应付x元,1本笔记本应付y元,根据题意得,解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付8+4=12元,故选:C.二、填空题:本题工5小题,每小题4分,满分20分13.若∠1=35°21′,则∠1的余角是54°39′.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和为90度计算即可.【解答】解:根据定义,∠1的余角度数是90°﹣35°21′=54°39′.故答案为54°39′.14.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为145 °.【考点】平行线的性质.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=55°,∴∠3=90°﹣∠1=90°﹣55°=35°,∴∠4=180°﹣35°=145°,∵直尺的两边互相平行,∴∠2=∠4=145°.故答案为:145.15.如果方程组的解满足x+y=5,则k的值是 6 .【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入x+y=5求出k的值即可.【解答】解:,①+②得:3(x+y)=3k﹣3,解得:x+y=k﹣1,代入x+y=5中得:k﹣1=5,解得:k=6,故答案为:616.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(不允许添加任何辅助线).【考点】平行线的判定.【分析】使AD∥BC判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.【解答】可以添加的条件是∠EAD=∠B,依据同位角相等,两直线平行;或∠DAC=∠C,依据内错角相等,两直线平行;或∠DAB+∠B=180°,依据同旁内角互补,两直线平行.故答案为:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.17.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+b(b⊗b)=2ab;④若a⊗b=0,则a=0或b=1,其中正确结论的序号是①④.【考点】整式的混合运算.【分析】先根据a⊗b=a(1﹣b)的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论.【解答】解:①2⊗(﹣2)=2×(1+2)=6,故本选项正确;②a⊗b=a(1﹣b),b⊗a=b(1﹣a),不一定相等,故本选项错误;③若a+b=0,则(a⊗a)+b(b⊗b)=a(1﹣a)+b2(1﹣b)=a﹣a2+b2﹣b3=a﹣b3;故本选项错误;④若a⊗b=a(1﹣b)=0,则a=0或1﹣b=0,即a=0或b=1,故本选项正确;正确结论的序号是①④.故答案为:①④.三、解答题:本题共6小题,共64分,解答应写出必要的文字说明、证明过程或推演步骤18.计算:(1)(x2y)3(x3y)2(2)(1﹣2x)(x2﹣3x+1)(3)先化简,再求值:2(x﹣8)(x﹣5)﹣(2x﹣1)(x+2),其中x=3.【考点】整式的混合运算—化简求值;整式的混合运算.【分析】(1)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以单项式法则计算即可得到结果;(2)原式利用多项式乘以多项式法则计算即可得到结果;(3)原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=x6y3•x6y2=x12y5;(2)原式=x2﹣3x+1﹣2x3+6x2﹣2x=7x2﹣2x3﹣5x+1;(3)原式=2(x2﹣13x+40)﹣(2x2+4x﹣x﹣2)=2x2﹣26x+80﹣2x2﹣4x+x+2=﹣29x+82,当x=3时,原式=﹣87+82=﹣5.19.解下列方程组:(1)(2)(3).【考点】解三元一次方程组.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可.(2)先用加减消元法求出y的值,再用代入消元法求出x的值即可.(3)先用加减消元法求出y的值,再求出z的值,然后用代入消元法求出x的值即可.【解答】解:(1),①×2﹣②得,5x=14,解得x=,把x=代入②得,+4y=24,解得y=,故方程组的解为.(2),把①化简得:2x+3y=30③,③×3﹣②×2得:5y=40,解得:y=8,把y=8代入③得:2x+24=30,解得:x=3,故方程组的解为.(3),①+③得:2y=4,解得:y=2,②+③得:3y+2z=8,把y=2代入得:z=1,把y=2,z=1代入①得:x=3,故方程组的解为.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°21.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,求证:∠CED+∠ACB=180°,请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(垂直定义).∴GF∥CD(同位角相等,两直线平行)∵GF∥CD(已证)∴∠2=∠BCD 两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠BCD(等量代换)∴DE∥BC (内错角相等,两直线平行)∴∠CED+∠ACB=180°(两直线平行,同旁内角互补)【考点】平行线的判定与性质.【分析】根据同位角相等两直线平行证得GF∥CD,然后根据两直线平行同位角相等得出∠2=∠BCD,根据已知进一步得出∠1=∠BCD,即可证得DE∥BC,得出∠CED+∠ACB=180°.【解答】证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(垂直定义).∴GF∥CD(同位角相等,两直线平行),∵GF∥CD(已证),∴∠2=∠BCD(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠BCD(等量代换),∴DE∥BC(内错角相等,两直线平行)∴∠CED+∠ACB=180°(两直线平行,同旁内角互补),故答案为:垂直定义,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DE∥BC,内错角相等,两直线平行,两直线平行,同旁内角互补.22.某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.【考点】三元一次方程组的应用.【分析】设购买A型电脑x台,B型y台,C型z台,分情况讨论当购买A型、B型时,当购买A型、C型时,当购买C型、B型时分别建立方程组求出其解即可.【解答】解:设购买A型电脑x台,B型y台,C型z台,(1)若购买A型、B型时,由题意,得,解得:,不符合题意,舍去;(2)若购买A型、C型,由题意,得,解得:;(3)当购买C型、B型时,由题意,得,解得:.故共有两种购买方案:①购买A型5台,C型25台;②购买B型10台,C型20台.23.如图,四边形ABCD是长方形,尺寸如图所示:(1)求阴影部分的面积;(2)若a=30,b=10,c=22,d=9,求阴影部分的面积;(3)若∠1=∠2,那么∠3与∠4有怎样的关系,并说明理由.【考点】整式的混合运算;平行线的性质.【分析】(1)阴影部分面积等于矩形面积减去两个直角三角形面积,求出即可;(2)把a,b,c,d的值代入计算即可求出值;(3)互余,利用同角的余角相等验证即可.【解答】解:(1)根据题意得:S=ac﹣(c﹣a)(a﹣b)﹣bc=ac﹣(ac﹣bc﹣a2+ab+bc)=ac+a2﹣ab;(2)当a=30,b=10,c=22,d=9时,S=330+450﹣150=630;(3)∠3+∠4=90°,理由为:∵∠1+∠3=90°,∠1=∠2,∴∠3+∠2=90°,∵∠2=∠4,∴∠3+∠4=90°.2016年9月27日。
2021—2022学年度第二学期期中学业质量监测试题七 年 级 数 学 2022.04注意事项:1.本试题共150分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题,52分)一、选择题(本题共8小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分, 多选、不选、错选均记0分.) 1.如图,直线a ,b 被直线c 所截,下列说法不正确的是 A .∠1与∠2是对顶角 B .∠1与∠4是同位角 C .∠2与∠5是同旁内角 D .∠2与∠4是内错角2.如图,体育课上体育老师测量跳远成绩的依据是A .平行线间的距离相等B .两点之间,线段最短C .两点确定一条直线D .垂线段最短3.一个角的余角与这个角的补角之和为130°,这个角的度数是 A .60° B .70° C .75°D .80°4.()2022202140.25⨯−的值为A. 0.25B.-0.25C.4D.-4 5.下列说法不正确的是A. 一个时钟在它显示8:30时,时针与分针所成的角度是75°;B. 如果两个角是对顶角,那么这两个角相等;C. 用放大镜看一个角,角的度数变大了;D. 若∠A=20°15′,∠B=20°15″,∠C=20.15°,则有∠A >∠C >∠B . 6. 如图,用8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),则每块地砖的长和宽分别为 A .26cm 和6cm B .24cm 和8cm C. 22cm 和10cmD .20cm 和12cm7.如果方程组55ax by bx ay +=⎧⎨−=⎩的解是12x y =⎧⎨=−⎩,则a +b 的值是A .2B .0C .-1D .-28.如图是一款手推车的平面示意图,其中AB ∥CD ,则下列结论正确的是A .∠3=∠1+∠2B .∠3=∠2+2∠1C .∠2+∠3-∠1=180°D .∠1+∠2+∠3=180°二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.) 9.如图,在下列条件中,能判定直线a 与b 平行的是A .∠1=∠2B .∠2=∠3C .∠1=∠5D .∠3+∠4=180°10.下列计算中,结果是6a 的是A. 33a a +B. 32a a ⋅C. 82a a ÷D. ()32a11.如图,将一副三角尺按不同的位置摆放,α∠与β∠一定相等的图形有A B C D12. 如图,已知GF ⊥AB ,∠1=∠2,∠B =∠AGH ,则下列结论正确的有A. GH ∥BCB. ∠D =∠FC. HE 平分∠AHGD. HE ⊥AB第Ⅱ卷(非选择题,98分)三、填空题(本题共4小题,共20分,只要求填写最后结果,每小题填对得5分. ) 13. 如图,用量角器度量∠AOB ,可以读出∠AOB 的度数为 °.14. 如图,直线a ∥b ,则直线a ,b 之间距离是线段 的长度.15. 若a n =b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n ),如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).则log 264的值为 . 16.若4864m n ⨯=,12432m n ÷=,则13m n +的值为 .四、解答题(本题共7小题,共78分.解答应写出必要的文字说明或演算步骤.) 17.(本题满分9分,每小题3分) 计算下列各题:(1)23111222⎛⎫⎛⎫⎛⎫−⨯−⨯− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()25434x y xy ⋅−(3)()()()87x y y x x y −÷−⋅−(结果用幂的形式表示)18.(本题满分10分,每小题5 分) 解下列方程组:(1)25271x y x y −=⎧⎨+=−⎩ (2)()()2443x y x x yy x y +−+−⎧=−=−⎪⎨⎪⎩19.(本题满分10分)如图,O 是直线AB 上一点,90AOE FOD ∠==︒∠,OB 平分COD ∠,25EOF ∠=︒.求:(1)AOD ∠的度数;(2)COF ∠的度数.20.(本题满分11分)已知2()(34)mx n x x +−+的展开式中不含2x 项, 并且x 3的系数为2. (1)求m ,n 的值;(2)在(1)的条件下,若33,,a m b n ==求22()()a b a ab b +−+的值.21.(本题满分12分)如图,点E 、F 、G 分别在线段BC 、AB 、AC 上,且CD ⊥AB ,EF ⊥AB , ∠1+∠2=180°.(1)试判断DG 与BC 的位置关系,并说明理由; (2)若CD 平分∠ACB ,∠CGD =70°,求∠B 的度数.22.(本题满分12分)某厂计划生产A,B两种产品600件,已知两种产品的成本价和销售价如下表:A种产品B种产品成本价(元/件) 2.5 4.5销售价(元/件)36(1)若该厂生产600件A,B两种产品时,恰好用了2300元,求两种产品各生产了多少件?(2)若该厂销售完600件A,B两种产品时,利润恰好是成本价的30%,应如何安排生产?此时利润为多少元?(利润=销售价-成本价)23.(本题满分14分)如图,现有边长分别为a、b的正方形硬纸板A和B、邻边长为a和b(a>b)的长方形硬纸板C若干.(1)活动课上,老师用图①中的1张正方形A、1张正方形B和2张长方形C纸板,排成了如图②中的大正方形.观察图形,由图①和图②可以得到的等式为(用含a,b的代数式表示);(2)小芳想用图①的三种纸板拼一个面积为(a+b)(2a+b)的大长方形,则需要A硬纸板张,B硬纸板张,C硬纸板张(空格处填写数字),并参考图②尝试画出相关的设计图;(3)从这三种硬纸板中选择一些拼出面积为8ab的不同形状的长方形,则这些长方形的周长共有种不同情况;(4)如图③,已知点K为线段MN上的动点,分别以MK、NK为边在MN的两侧作正方形MKED 和正方形NKFG,面积分别记作S1、S2,若MN=8,△MKF的面积为6,利用(1)中得到的结论求S1+S2的值.2021—2022学年度第二学期期中学业质量监测七年级数学答案及评分标准二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分三、填空题(本大题共4小题,共20分,只要求填写最后结果,每小题填对得5分)13.120 ; 14.CD ; 15.6; 16. 13.四、解答题(本大题共7小题,共78分)17.(本题满分9分)解:(1)原式=12312++⎛⎫− ⎪⎝⎭=612⎛⎫− ⎪⎝⎭--------------------------------------2分 =164;----------------------------------3分 (2)原式=()()8251516x yx y ⋅−-------------------------------------2分=131716x y −;-----------------------------------3分(3)原式=()()()78x y x y x y −÷−−⋅−⎡⎤⎣⎦------------------------1分 =()871x y −+−−=()2x y −−.--------------------------------3分 18.(本题满分10分,每小题5分) 解:(1)25271x y x y −=⎧⎨+=−⎩①②由①得:52x y =+③------------------------1分将③代入②得:()25271y y ++=−,解得:1y =−----------------------3分 将1y =−代入③得:3x =所以,原方程组的解为31x y =⎧⎨=−⎩-------------------------------------5分(2)()()3244x y x x x yy y +−+−⎧=⎪⎨⎪⎩−=−②① 方程组可变形为7034x y x y −=⎧⎨−=⎩③④-------------------------------2分④-③得:44y =,解得:1y =----------------------------4分 将1y =代入①解得:7x =所以,原方程组的解为71x y =⎧⎨=⎩----------------------------------5分19. (本题满分10分)解:(1)因为90AOE ∠=︒,25EOF ∠=︒,所以=902565o o o AOF AOE EOF ∠=−−=∠∠,---------------------2分 所以9065155o o o AOD FOD AOF ∠=+=+=∠∠;----------------------4分 (2)因为90BOE FOD ∠==︒∠,所以25BOD EOF ∠==︒∠,-------------------------------6分 因为OB 平分COD ∠,所以250COD BOD ∠==︒∠-------------------------------8分所以9050140o o o COF FOD COD ∠=+=+=∠∠.-------------------10分 20. (本题满分11分)解:(1)(mx +n )(x 2﹣3x +4) =mx 3﹣3mx 2+4mx +nx 2﹣3nx +4n=mx 3+(n ﹣3m )x 2+(4m ﹣3n )x +4n ,---------------------------3分 ∵将(mx +n )(x 2﹣3x +4)乘开的结果不含x 2项,并且x 3的系数为2, ∴m =2,n -3m =0,----------------------------5分 解得:m =2,n =6.---------------------6分 (2)22()()a b a ab b +−+ =322223a a b ab a b ab b ++−−− =33a b −--------------------------9分 ∵3326a m b n ====,∴原式=33a b −=m n −=2-6=-4----------------------11分 21. (本题满分12分)解:(1)DG ∥BC ,------------------------------------1分 理由如下:∵EF ⊥AB ,CD ⊥AB ,∴∠BFE =90°,∠BDC =90°,∴∠BFE =∠BDC , ∴EF ∥CD ,---------------------------------4分 ∴∠2+∠BCD =180°,--------------------------5分 又∵∠1+∠2=180°,∴∠1=∠BCD ,------------------------6分 ∴BC ∥DG ,---------------------------------7分 (2)由(1)知:BC ∥DG ∴∠CGD +∠ACB =180°, ∵∠CGD =70°,∴∠ACB =180°-∠CGD =110°----------------------------9分 又∵CD 平分∠ACB , ∴∠BCD =12∠ACB =55°,-------------------------------11分 ∴∠B =180°-∠BCD -∠BDC =180°-55°-90°=35°.-------------------------12分 22. (本题满分12分)解:(1)设生产了A 种产品x 件,B 种产品y 件, 由题意得:6002.5 4.52300x y x y +=⎧⎨+=⎩, ------------------------------3分解得:=200400x y ⎧⎨=⎩,答:生产了A 种产品200件,B 种产品400件;----------------------------5分 (2)设生产A 种产品m 件,B 种产品n 件,由题意得:()60030.5 1.5 2.5 4.510m n m n m n +=⎧⎪⎨+=+⎪⎩, ----------------------------8分 解得:225375m n =⎧⎨=⎩,-----------------------------10分此时获得的利润为0.5225+1.5375=675⨯⨯(元).---------------------------11分 答:可安排生产A 种产品225件,B 种产品375件,此时利润为675元.---------------------------12分23.(本题满分14分)(1)()2222a b a b ab +=++;--------------------------3分(2)2,1,3;-----------------------------------6分(每空1分)设计图可以为:或---------------------------8分(3)∵8ab 可以分解为:a ,8b ;8a ,b ;2a ,4b ;4a ,2b .∴这些长方形的周长共有4种不同情况. 故答案为:4.-----------------------------------11分(4)设MK =m ,NK =n ,由题意得:m +n =8,mn =6,----------------12分 由(1)知:()2222m n m n mn +=++∴()2222=6424=40m n m n mn +=+−−.---------------------------------14分。
七年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,每一小题选对得3分,不选、选错或选出的代号超过一个的律得0分)1.(3分)如图,∠1和∠2是对顶角的是()A.B.C.D.2.(3分)0.0001的算术平方根是()A.0.1B.+0.1C.0.01D.±0.013.(3分)如图,直线a∥b,∠1=54°,则∠2的度数是()A.54°B.126°C.36°D.136°4.(3分)在平面直角坐标系中,点P(﹣1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°6.(3分)下列命题:①两点确定一条直线;②相等的角是直角;③不相等的角不是内错角;④邻补角是两个互补的角,其中是假命题的是()A.②③B.①④C.②④D.③④7.(3分)如图,AB⊥BC,垂足为B,D为BC上任意一点,则点A到直线BC的距离是()A.线段AB的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度8.(3分)下列实数:﹣8,,,3.14159265,其中,无理数的个数是()A.1个B.2个C.3个D.4个9.(3分)如图,在平面直角坐标系中,圆A经过平移得到圆O,圆A上一点P的坐标为(a,b),经平移后在圆O上的对应点为P′,则P′的坐标是()A.(a﹣4,b+3)B.(a﹣4,b﹣3)C.(a+4,b+3)D.(a+4,b﹣3)10.(3分)如图,A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,按此规律,点A2018的坐标为()A.(504,504)B.(505,﹣504)C.(505,505)D.(﹣505,505)二、填空题(共6小题,每小题3分,共18分,请将结果直接写在答题卷相应位置上)11.(3分)﹣的相反数是.12.(3分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为.13.(3分)若x、y满足+(y﹣1)2=0,则x+y=.14.(3分)小明出家门向南走400m到孝武超市,再从孝武超市向西走300m到中百仓储,若以正东、正北方向为x轴、y轴的正方向,将孝武超市标记为(0,﹣400),则中百仓储的坐标是.15.(3分)如果的小数部分为a,的整数部分为b,求a+b﹣的值.16.(3分)定义:平面内的两条直线l1与l2相交于点O,对于该平面内任意一点M,M点到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,“距离坐标”为(3,4)的点的个数是个.三、解答题(本大题共8小题,满分72分,解等写在答题卷上)17.(8分)计算(1);(2).18.(8分)如图,AB,CD,EF相交于O.(1)写出∠DOF,∠DOA的对顶角;(2)若∠BOD=60°,求∠AOC,∠AOD的度数;19.(8分)如图1,将两块边长均为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形.(1)求出大正方形的面积.(2)求出大正方形的边长,并估计这个边长的值在哪两个相邻的整数之间?20.(8分)如图,AB∥DE,∠B=80°,∠D=125°,求∠C的度数.21.(8分)已知2x+1的平方根是±4,4x﹣8y+2的立方根是﹣2,求﹣10(x+y)的立方根.22.(10分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.23.(10分)如图,长方形OABC中,O为平面直角坐标系的原点,点A,C的坐标分別为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标.(2)若过点C的直线交长方形的OA边干点D,且把长方形OABC的面积分成1:2的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,再向右平移1个单位长度,得到对应线段C′D′,连接DC′,DD′,求△DC'D'的面积.24.(12分)直线MN与直线AB、CD分別相交于点E、F,∠MEB与∠CFM互补(1)如图1,试判断直线AB与直线CD的位置关系,并说明理由.(2)如图2,∠BEF与∠EFD的平分线交于点P,EP的延长线与CD交于点G,H是MN上一点,且GH⊥EG,求证:PF∥GH.(3)如图3,在(2)的条件下,连接PH,K是GH上一点,使∠PHK=∠HPK,作PQ 平分∠EPK,求证:∠HPQ的大小是定值.2017-2018学年湖北省孝感市云梦县七年级(下)期中数学试参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,每一小题选对得3分,不选、选错或选出的代号超过一个的律得0分)1.(3分)如图,∠1和∠2是对顶角的是()A.B.C.D.【分析】根据对顶角的定义,判断解答即可.【解答】解:根据对顶角的定义,选项B的图形符合对顶角的定义.故选:B.【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.2.(3分)0.0001的算术平方根是()A.0.1B.+0.1C.0.01D.±0.01【分析】根据算术平方根的求法可以求出所求数据的算术平方根.【解答】解:=0.01,故选:C.【点评】本题考查算术平方根,解答本题的关键是明确算术平方根的求法.3.(3分)如图,直线a∥b,∠1=54°,则∠2的度数是()A.54°B.126°C.36°D.136°【分析】先根据平行线的性质,求得∠3的度数,再根据邻补角,求得∠2的度数即可.【解答】解:∵a∥b,∴∠1=∠3=54°,∴∠2=180°﹣∠3=180°﹣54°=126°.故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.4.(3分)在平面直角坐标系中,点P(﹣1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣1,﹣5)所在的象限是第三象限.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【分析】根据“两直线平行,同位角相等”可得出∠BCD=∠1=40°,再根据DB⊥BC,得出∠BCD+∠2=90°,通过角的计算即可得出结论.【解答】解:∵AB∥CD,∠1=40°,∴∠BCD=∠1=40°.又∵DB⊥BC,∴∠BCD+∠2=90°,∴∠2=90°﹣40°=50°.故选:C.【点评】本题考查了平行线的性质以及垂直的性质,解题的关键是找出∠BCD=∠1=40°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.6.(3分)下列命题:①两点确定一条直线;②相等的角是直角;③不相等的角不是内错角;④邻补角是两个互补的角,其中是假命题的是()A.②③B.①④C.②④D.③④【分析】根据直角的定义、确定直线的条件、邻补角的定义、内错角的定义进行解答.【解答】解:①两点确定一条直线,是真命题;②相等的角不一定是直角,是假命题;③不相等的角也可能是内错角,是假命题;④邻补角是两个互补的角,是真命题,故选:A.【点评】本题考查了命题与定理的知识,解题的关键是了解直角的定义、确定直线的条件、邻补角的定义、内错角的定义等知识,难度不大.7.(3分)如图,AB⊥BC,垂足为B,D为BC上任意一点,则点A到直线BC的距离是()A.线段AB的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度【分析】根据点到直线的距离的概念判断即可.【解答】解;由图可得:点A到直线BC的距离是线段AB的长度,故选:A.【点评】此题考查点到直线的距离,关键是根据点到直线的距离的概念解答.8.(3分)下列实数:﹣8,,,3.14159265,其中,无理数的个数是()A.1个B.2个C.3个D.4个【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:无理数有一个,故选:A.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.9.(3分)如图,在平面直角坐标系中,圆A经过平移得到圆O,圆A上一点P的坐标为(a,b),经平移后在圆O上的对应点为P′,则P′的坐标是()A.(a﹣4,b+3)B.(a﹣4,b﹣3)C.(a+4,b+3)D.(a+4,b﹣3)【分析】直接利用平移中点的变化规律求解即可.【解答】解:由点A的平移规律可知,此题点的移动规律是(x+4,y﹣3),照此规律计算可知P’的坐标为(a+4,b﹣3).故选:D.【点评】本题考查了坐标与图形的变化﹣平移,解决本题的关键是分别根据已知对应点找到各对应点的横纵坐标之间的变化规律.10.(3分)如图,A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,按此规律,点A2018的坐标为()A.(504,504)B.(505,﹣504)C.(505,505)D.(﹣505,505)【分析】点A2018在平面直角坐标系中的位置,经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2018在第一象限;第一象限的点A2(1,1),A6(2,2),A10(3,3)…观察易得到点的坐标═循环次数+1.【解答】解:由题可知第一象限的点:A2,A6,A10…角标除以4余数为2;第二象限的点:A3,A7,A7…角标除以4余数为3;第三象限的点:A4,A8,A12…角标除以4余数为0;第四象限的点:A5,A9,A13…角标除以4余数为1;由上规律可知:2018÷4=504 (2)∴点A2018在第一象限.又∵点A2(1,1),A6(2,2),A10(3,3)…在第一象限A2(0+1,+1)═A2(1,1);A6(1+1,1+1)═A6(2,2);A10(2+1,2+1)═A10(3,3)…∴A2018(504+1,504+1)═A2018(505,505)即点A2018的坐标为(505,505)故选:C.【点评】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标═循环次数+1或点的坐标═(n为角标)求解.二、填空题(共6小题,每小题3分,共18分,请将结果直接写在答题卷相应位置上)11.(3分)﹣的相反数是﹣.【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣的相反数是﹣(﹣),即﹣.故答案为:﹣.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.12.(3分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为30°.【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠CBE 的度数.【解答】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠CBE的度数为:180°﹣50°﹣100°=30°.故答案为:30°.【点评】此题主要考查了平移的性质以及三角形内角和定理,得出∠CAB=∠EBD=50°是解决问题的关键.13.(3分)若x、y满足+(y﹣1)2=0,则x+y=.【分析】根据非负数的性质列方程求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,2x﹣1=0,y﹣1=0,解得x=,y=1,所以x+y=.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)小明出家门向南走400m到孝武超市,再从孝武超市向西走300m到中百仓储,若以正东、正北方向为x轴、y轴的正方向,将孝武超市标记为(0,﹣400),则中百仓储的坐标是(﹣300,﹣400).【分析】以小明家为坐标原点建立平面直角坐标系,然后写出中百仓储的坐标即可.【解答】解:如图,∵孝武超市标记为(0,﹣400),∴中百仓储的坐标为(﹣300,﹣400).故答案为:(﹣300,﹣400).【点评】本题考查了坐标确定位置,以小明家为坐标原点建立平面直角坐标系是解题的关键,作出图形更形象直观.15.(3分)如果的小数部分为a,的整数部分为b,求a+b﹣的值4.【分析】依据被开放数越大,对应的算术平方根越大估算出与的大小,从而求得a、b的值,然后再进行计算即可.【解答】解:∵4<5<9,∴2<<3.∴a=﹣2.∵36<37<49,∴6<<7.∴b=6.∴a+b﹣=﹣2+6﹣=4.故答案为:4.【点评】本题主要考查的是估算无理数的大小,求得a、b的值是解题的关键.16.(3分)定义:平面内的两条直线l1与l2相交于点O,对于该平面内任意一点M,M点到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,“距离坐标”为(3,4)的点的个数是4个.【分析】根据两条相交直线把平面分成四个部分,在每一个部分内都存在一个满足要求的距离坐标解答.【解答】解:∵直线l1,l2把平面分成四个部分,∴在每一部分内都有一个“距离坐坐标”为(3,4)的点,∴共有4个.故答案为:4【点评】本题是新定义题型,考查了点到直线的距离,点的坐标,读懂题目新定义,是解题的关键.三、解答题(本大题共8小题,满分72分,解等写在答题卷上)17.(8分)计算(1);(2).【分析】(1)直接利用二次根式的加减运算法则化简得出答案;(2)直接利用立方根的性质化简得出答案.【解答】解:(1)原式=+﹣=;(2)原式=﹣=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8分)如图,AB,CD,EF相交于O.(1)写出∠DOF,∠DOA的对顶角;(2)若∠BOD=60°,求∠AOC,∠AOD的度数;【分析】(1)由对顶角的定义可得结论;(2)根据对顶角的性质和邻补角的性质解答即可.【解答】解:(1)∠DOF的对顶角是∠COE∠DOA的对顶角是∠BOC(2)∵∠AOC和∠BOD互为对顶角∴∠AOC=∠BOD=60°又∵∠AOD与∠BOD互补∴∠AOD=180°﹣60°=120°【点评】本题主要考查了邻补角和对顶角的定义及性质,熟练掌握邻补角和对顶角的定义及性质是解答此题的关键.19.(8分)如图1,将两块边长均为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形.(1)求出大正方形的面积.(2)求出大正方形的边长,并估计这个边长的值在哪两个相邻的整数之间?【分析】(1)由于大正方形是由两个小正方形所拼成的,易求得大正方形的面积为18;(2)根据大正方形的面积可得边长为;因此大正方形的边长不是整数,然后估算出的大小,从而求出与相邻的两个整数.【解答】解:(1)∵大正方形的面积等于两个小正方形的面积之和,∴大正方形的面积是32+32=18;(2)设大正方形的边长为x,则x2=18,∵x>0,∴x==3,∵4=<<=5,∴大正方形的边长在整数4和5之间.【点评】本题主要考查了正方形的面积公式以及估算无理数的大小.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.20.(8分)如图,AB∥DE,∠B=80°,∠D=125°,求∠C的度数.【分析】根据两直线平行,内错角相等,同旁内角互补,平行公理进行解答即可.【解答】解:如图,过点C作CF∥DE,则∠DCF+∠CDE=180°,∵∠D=125°,∴∠DCF=180°﹣125°=55°,又∵AB∥DE,∴AB∥CF,∴∠BCF=∠B=80°,∴∠BCD=∠BCF﹣∠DCF=80°﹣55°=25°.【点评】此题考查了平行线的判定与性质,综合应用平行线的判定与性质,求出角的度数是本题的关键.21.(8分)已知2x+1的平方根是±4,4x﹣8y+2的立方根是﹣2,求﹣10(x+y)的立方根.【分析】直接利用平方根的性质得出x的值,再利用立方根的定义得出y的值,进而得出答案.【解答】解:∵2x+1的平方根是±4,∴2x+1=16,∴x=,又∵4x﹣8y+2的立方根是﹣2,∴4x﹣8y+2=﹣8,∴4×﹣8y+2=﹣8,∴y=5,∴﹣10(x+y)=﹣10×(+5)=﹣125,∴﹣10(x+y)的立方根为:=﹣5.【点评】此题主要考查了实数运算,正确把握平方根以及立方根的定义是解题关键.22.(10分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(﹣2,2),行政楼(﹣2,﹣2),大门(0,﹣4),食堂(3,4),图书馆(4,﹣2).【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.23.(10分)如图,长方形OABC中,O为平面直角坐标系的原点,点A,C的坐标分別为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标(3,2).(2)若过点C的直线交长方形的OA边干点D,且把长方形OABC的面积分成1:2的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,再向右平移1个单位长度,得到对应线段C′D′,连接DC′,DD′,求△DC'D'的面积.【分析】(1)根据长方形的性质求出点B的坐标;(2)根据三角形的面积公式、长方形的面积公式计算,得到答案;(3)根据平移的性质分别求出点C′的坐标、点D′的坐标,根据三角形面积计算计算即可.【解答】解:(1)∵四边形OABC是长方形,∴BC=OA=3,BA=OC=2,∴点B的坐标为:(3,2),故答案为:(3,2);(2)设D(x,0),由题意得,×2×x=×2×3,解得,x=2,∴点D的坐标为(2,0);(3)平移后的图形如图所示:由平移的性质可知,点C′的坐标为(1,﹣1),点D′的坐标为(3,﹣3),∴△DC'D'的面积等于梯形的面积减去两个直角三角形的面积=×(1+2)×3﹣×1×1﹣×2×2=2.【点评】本题考查的是平移的性质、三角形的面积计算,掌握平移规律是解题的关键.24.(12分)直线MN与直线AB、CD分別相交于点E、F,∠MEB与∠CFM互补(1)如图1,试判断直线AB与直线CD的位置关系,并说明理由.(2)如图2,∠BEF与∠EFD的平分线交于点P,EP的延长线与CD交于点G,H是MN上一点,且GH⊥EG,求证:PF∥GH.(3)如图3,在(2)的条件下,连接PH,K是GH上一点,使∠PHK=∠HPK,作PQ 平分∠EPK,求证:∠HPQ的大小是定值.【分析】(1)证明∠AEF与∠CFM互补即可解决问题.(2)想办法证明∠EPF=∠HGP即可解决问题.(3)由∠HPQ=∠QPK﹣∠HPK=∠EPK﹣∠FPK=(∠EPK﹣∠FPK)=∠EPF=×90°=45°得证.【解答】解:(1)结论:AB∥CD.理由:∵∠MEB与∠CFM互补,而∠MEB=∠AEF,∴∠AEF与∠CFM互补,∴AB∥CD.(2)∵EG平分∠BEF,∴∠PEF=∠BEF,又∵FP平分∠EFD∴∠EFP=∠EFD,由(1)知AB∥CD,∴∠BEF+∠EFD=180°,∴∠PEF+∠EFP=90°,∴∠EPF=90°,又∵GH⊥EG,∴∠HGP=90°,∴∠EPF=∠HGP,∴PF∥GH.(3)证明:∵∠HPQ=∠QPK﹣∠HPK=∠EPK﹣∠FPK=(∠EPK﹣∠FPK)=∠EPF=×90°=45°得证.【点评】本题考查平行线的判定和性质,余角和补角的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.七年级下学期期中考试数学试题【答案】一、选择题(本大题共6小题,共18分)1.下列各图中,与是对顶角的是A.B. C. D.2. 如图所示,点E 在AC 的延长线上,下列条件中不能判断 BD ∥AC ( )A.B.C.D.3.下列说法不正确的是( )A. 2是4的算术平方根B. 525±=±C.36的平方根6D. 27-的立方根3-4.若点(1,1)P m m +-在x 轴上,则点P 的坐标为( )A .(2,2) B(2,1) C(2,0) D(0,2)5下列是二元一次方程组的是( )A.⎩⎨⎧=-=+15y x y xB. ⎪⎪⎩⎪⎪⎨⎧=+-=-32313223yx y x C.⎩⎨⎧=+=-321z x y x D ⎩⎨⎧=+=-212132xy y x 6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移 动,每次移动一个单位,得到点,,,,那么点为自然数的坐标为( )A .(4n,0) B(2n,1) C(2n,0) D(4n,1)二、填空题(本大题共6小题,共18分)7.如图,表示点P 到直线l 的距离是线段.8.在平面直角坐标系中,将点P (3,3)向左平移4个单位长度,再向上平移2个单位长度得到点P 1的坐标为.9.在,9,4,3,11123--...121221222.014.3,64,π,中有理数有个,无理数有个. 10.若y ky x k +=+2是关于x 、y 的二元一次方程,则k 的值为 .11.已知,x y 10y +=,则y x +=.12.如图,直线l 1∥l 2,∠α=∠β,∠1=38°,则∠2= .三、解答题(本大题共4小题,共24分)13.计算:(1)32332-++(2)23)2(412125.0--+-14.解方程:(1)⎩⎨⎧=-=-63403y x y x七年级下学期期中考试数学试题【答案】一、选择题(本大题共6小题,共18分)1.下列各图中,与是对顶角的是A.B. C. D.3. 如图所示,点E 在AC 的延长线上,下列条件中不能判断 BD ∥AC ( )A.B.C.D.3.下列说法不正确的是( )A. 2是4的算术平方根B. 525±=±C.36的平方根6D. 27-的立方根3-4.若点(1,1)P m m +-在x 轴上,则点P 的坐标为( )A .(2,2) B(2,1) C(2,0) D(0,2)5下列是二元一次方程组的是( )A.⎩⎨⎧=-=+15y x y xB. ⎪⎪⎩⎪⎪⎨⎧=+-=-32313223yx y x C.⎩⎨⎧=+=-321z x y x D ⎩⎨⎧=+=-212132xy y x 6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移 动,每次移动一个单位,得到点,,,,那么点为自然数的坐标为( )A .(4n,0) B(2n,1) C(2n,0) D(4n,1)二、填空题(本大题共6小题,共18分)7.如图,表示点P 到直线l 的距离是线段.8.在平面直角坐标系中,将点P (3,3)向左平移4个单位长度,再向上平移2个单位长度得到点P 1的坐标为.9.在,9,4,3,11123--...121221222.014.3,64,π,中有理数有个,无理数有个. 10.若y ky x k +=+2是关于x 、y 的二元一次方程,则k 的值为 .11.已知,x y 10y +=,则y x +=.12.如图,直线l 1∥l 2,∠α=∠β,∠1=38°,则∠2= .三、解答题(本大题共4小题,共24分)13.计算:(1)32332-++(2)23)2(412125.0--+-14.解方程:(1)⎩⎨⎧=-=-63403y x y x。
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 3/4D. 2√32. 已知x + 2 = 5,则x的值为()A. 3B. 4C. 5D. 63. 如果a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 14. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 3x5. 已知等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 22cmB. 24cmC. 26cmD. 28cm6. 若|a| = 5,则a的值为()A. 5B. -5C. ±5D. 07. 下列各组数中,成等差数列的是()A. 2, 4, 6, 8B. 1, 3, 5, 7C. 1, 4, 9, 16D. 1, 2, 4, 88. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 0或69. 在直角坐标系中,点P(3, 4)关于x轴的对称点是()A. (3, -4)B. (-3, 4)C. (3, -4)或(-3, 4)D. (4, 3)10. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 所有图形二、填空题(每题4分,共40分)11. 若a + b = 7,且a - b = 3,则a的值为______,b的值为______。
12. 2的平方根是______,-2的平方根是______。
13. 已知x^2 - 3x + 2 = 0,则x的值为______。
14. 下列函数中,是二次函数的是______。
15. 在直角坐标系中,点A(2, 3)到原点的距离是______。
16. 若等差数列的首项为2,公差为3,则第10项的值为______。
山东省潍坊市七年级下学期期中数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列方程组中,二元一次方程组是()。
A .B .C .D .2. (2分)下列四个命题中是真命题的是()A . 相等的角是对顶角B . 两条直线被第三条直线所截,同位角相等C . 实数与数轴上的点是一一对应的D . 如果一个数能被2整除,那么它也能被4整除3. (2分) (2018八上·罗湖期末) 如果关于x和y的二元一次方程组的解中的x与y 的值相等,那么a的值为()A . 2B . 一2C . 1D . -14. (2分)如果菲菲将镖随意投中如图所示的长方形木板(由15个小正方形组成,假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为()A .B .C .D .5. (2分)(2017·宝安模拟) 若方程mx+ny=6的两个解是,,则m,n的值为()A .B .C .D .6. (2分)下列四个说法:①射线有一个端点,它能够度量长度;②连接两点之间的直线的长度叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是()A . ①②B . ②③C . ②④D . ③④7. (2分)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A .B .C .D .8. (2分)下列说法中正确的是().A . “打开电视机,正在播放《动物世界》”是必然事件B . 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C . 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D . 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查9. (2分) (2018八上·南宁期中) 平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有()A . 4个B . 8个C . 10个D . 12个10. (2分)(2017·费县模拟) 有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣3|,则其结果恰为2的概率是()A .B .C .D .11. (2分)下列是二元一次方程的是()A . 2x﹣3=3x+1B . xy﹣2=3C . x+y=0D . x2+2y=112. (2分)如图中有四条互相不平行的直线l1,l2,l3,l4所截出的七个角.关于这七个角的度数关系,下列正确的是()A . ∠2=∠4+∠7B . ∠3=∠1+∠6C . ∠1+∠4+∠6=180°D . ∠2+∠3+∠5=360°二、填空题 (共8题;共12分)13. (1分)若,则 =________.14. (1分)(2017·磴口模拟) 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2=________度.15. (5分) (2019七下·绍兴月考) 如果两边与的两边互相平行,且,,则的度数为__.16. (1分)若一次函数y=3x+7的图象与y轴的交点坐标满足二元一次方程﹣2x+my=18,则m的值为________ .17. (1分)(2019·萧山模拟) 如图,直线a∥b,直线a,b被直线c所截若∠1=2∠2,则∠2的度数为________.18. (1分)(2017·玉田模拟) 从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________.19. (1分) (2019七下·长春月考) 某同学家离学校8千米,每天骑自行车上学和放学.有一天上学时顺风,从家到学校共用25分钟,放学时逆风,从学校回家共用时35分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意,列出方程组________.20. (1分)(2017·新吴模拟) 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是________.三、解答题 (共7题;共86分)21. (10分) (2017七下·荔湾期末) 解下列方程组:(1)(2)(1);(2).22. (10分) (2017七下·嘉兴期中) 如图,∠ABD和∠BDC的平分线交于E , BE交CD于点F ,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=25°,求∠BFC的度数.23. (15分) (2014九上·宁波月考) 如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字,现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:记s=x+y.当s<6时,甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?(3)请你利用两个转盘,设计一个公平的游戏规则.24. (10分)(2017·高安模拟) 如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.34x﹣2y a2y﹣x c b备用图34﹣2(1)求x,y的值;(2)在备用图中完成此方阵图.25. (15分) (2017八下·海安期中) 如图,直线OC,BC的函数关系式分别是y1= x和y2=-x+6,两直线的交点为C.(1)求点C的坐标,并直接写出y1>y2时x的范围;(2)在直线y1上找点D,使△DCB的面积是△COB的一半,求点D的坐标;(3)点M(t,0)是轴上的任意一点,过点M作直线l⊥ 轴,分别交直线y1、 y2于点E、F,当E、F 两点间的距离不超过4时,求t的取值范围.26. (15分) (2017八下·路南期末) 小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离 y (千米)和所用的时间 x (小时)之间的函数关系如图所示.(1)小王从乙地返回甲地用了多少小时?(2)求小李出发6小时后距离甲地多远?(3)在甲、乙两地之间有一丙地,小李从去时途经丙地,到返回时路过丙地,共用了2小时50分钟,求甲、丙两地相距多远?27. (11分) (2019七上·方城期末) 知识链接:“转化、化归思想”是数学学习中常用的一种探究新知、解决问题的基本的数学思想方法,通过“转化、化归”通常可以实现化未知为已知,化复杂为简单,从而使问题得以解决.(1)问题背景:已知:△ABC.试说明:∠A+∠B+∠C=180°.问题解决:(填出依据)解:(1)如图①,延长AB到E,过点B作BF∥AC.∵BF∥AC(作图)∴∠1=∠C()∠2=∠A()∵∠2+∠ABC+∠1=180°(平角的定义)∴∠A+∠ABC+∠C=180°(等量代换)小结反思:本题通过添加适当的辅助线,把三角形的三个角之和转化成了一个平角,利用平角的定义,说明了数学上的一个重要结论“三角形的三个内角和等于180°.”(2)类比探究:请同学们参考图②,模仿(1)的解决过程试说明“三角形的三个内角和等于180°”(3)拓展探究:如图③,是一个五边形,请直接写出五边形ABCDE的五个内角之和∠A+∠B+∠C+∠D+∠E=________.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共12分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共86分) 21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、第11 页共11 页。
山东省下学期初中七年级期中考试数学试卷(五四制)时间:120分钟 满分:120分一、选择题(本大题共12小题,每小题3分,共36分。
下列各题所给出的四个答案中,只有一个是正确的,请把正确答案的字母填入表格中) 1、下列四个命题中,真命题是( )A 、“任意四边形内角和为360°”是不可能事件B 、“威海市明天会下雨”是必然事件C 、“预计本题的正确率是95%”表示100位考生中一定有95人做对D 、抛掷一枚质地均匀的硬币,正面朝上的概率是2、在方程①13=+xy x ②x y 3= ③31=+y x ④ 614=+y x ⑤222=+y x ⑥z z y 38=-+中, 二元一次方程有( ) A. 1个 B. 2个 C. 3个 D. 4个3.如图,已知AB∥CD,∠EBA=45°,∠E+∠D 的度数为( )A 、30°B 、60°C 、90°D 、45°4、如图,下列不能判定AB ∥CD 的条件是( ) A.︒=∠+∠180BCD B B.21∠=∠ C.43∠=∠ D.5∠=∠B5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A.201B. 10019C.51D.以上都不对6、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是( ). A 、对顶角 B 、相等但不是对顶角 C 、邻补角 D 、互补但不是邻补角7、已知方程组2024x y x ky -=⎧⎨+=⎩有正整数解,则K 的取值范围是()A 、K>4B 、K ≥4C 、K >-4D 、K ≥-48、两条直线被第三条直线所截,那么同旁内角之间的大小关系是( ) A 、相等 B 、互补 C 、不相等 D 、无法确定 9、已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.4 10、如图所示,∠A,∠1,∠2的大小关系是( )A 、∠A>∠1>∠2B 、∠2>∠1>∠AC 、∠A>∠2>∠1D 、∠2>∠A>∠111、已知()052632=--+++y x y x ,则( )xy= A.12 B.13- C.13 D.13- 12、如图是甲、乙两名选手在一次自行车越野赛中,路程y (千米)随时间x (分)变化的图象(全程),根据图象所提供的信息解答下列问题中正确的个数( )。
2019-2020学年潍坊市潍城区七年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列属于二元一次方程的是()A. xy+2x−y=7B. x2−y2=2C. 4x+1=x−yD. x+y+z=12.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是()A. 0.156×10−5B. 0.156×105C. 1.56×10−6D. 1.56×1063.如图,下列条件中不能判断a//b的是()A. ∠1=∠2B. ∠3+∠4=90°C. ∠2=∠3D. ∠3=∠44.下列计算正确的是()A. B. 2x3−x3=2 C. x2·x3=x6 D. (x3)3=x95.下列为同类项的一组是()A. B.C. 7与D. ab与7a6.下列计算错误的是()A. a2⋅a3=a5B. 2a2+3a2=5a2C. a3÷a2=aD. (3a2b)2=6a4b27.已知a=120x+20,b=120x+19,c=120x+21,那么代数式a2+b2+c2−ab−bc−ac的值是()A. 4B. 3C. 2D. 18.一个长方形的长、宽分别是2x−3、x,则这个长方形的面积为()A. 2x−3B. 2x2−3C. 2x2−3xD. 3x−39. 在①(−1)−1=−1,②π0=1,③(a +b)(−a +b)=−(a +b)2,④3m ×27n 中,正确的等式个数( )A. 1个B. 2个C. 3个D. 4个10. 如图所示,点E 在AC 的延长线上,下列条件中不能判断AC//BD的是( )A. ∠3=∠4B. ∠D =∠DCEC. ∠1=∠2D. ∠D +∠ACD =180°11. 为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( )A. {3x +2y =955x +7y =230B. {2x +3y =955x +7y =230 C. {3x +2y =957x +5y =230 D. {2x +3y =957x +5y =230 12. 如图,l 1//l 2,点O 在直线l 1上,若∠AOB =90°,∠1=35°,则∠2的度数为( )A. 65°B. 55°C. 45°D. 35°二、填空题(本大题共6小题,共18.0分)13. 计算:996×1004= ______ .14. 计算(−3x 2y)2⋅(13xy 2)= ______ ,(45)2014×(−114)2015= ______ ,(π−3.14)0= ______ .15. 关于x ,y 的方程2x −my =−4的一组解是:{x =−1y =2,则m =______. 16. 现有两个直角三角形纸板(一个含45°角,另一个含30°角),如图1叠放.先将含30°角的直角三角形纸板固定不动,再将含45°角的直角三角形纸板绕顶点A 顺时针旋转,使得BC//DE ,如图2所示,则旋转角∠BAD 的度数为______.17. 多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是______ (填上一个你认为正确的即可,不必考虑所有的可能情况.18. 二元一次方程组{2x +y =1x −y =2的解是______ . 三、计算题(本大题共1小题,共9.0分)19. (本题10分)2014年某企业按生活垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付生活和建筑垃圾处理费5200元,从2015年元月起,收费标准上调为:生活垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2014年处理的生活垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过生活垃圾处理量的3倍,则2015年该企业最少需要支付这两种垃圾处理费共多少元?四、解答题(本大题共6小题,共57.0分)20.计算:(1)x4÷x3⋅(−3x)2;(2)2x(2y−x)+(x+y)(x−y).21.(1)已知2a+1的平方根是±5,3a−b−2的算术平方根是4,求a+b−3的立方根.(2)若x、y为实数,且(x−y+1)2与√5x−3y−3互为相反数,求√x2+y2的值.22.计算:(1)(2a−b)(a+2b−3);(2)(x+y+5)(x+y+4).23.推理填空题(一)如图(1)∠1=∠2=∠3,完成说理过程并注明理由;(1)因为∠1=∠2所以______//______(2)因为∠1=∠3所以______//______(______)(二)已知:如图(2),∠1=∠2.求证:∠3+∠4=180°证明:∵∠1=∠2∴a//b∴______=180°(______)又∵∠4=∠5∴∠3+∠4=180°.24.先阅读材料,解答下列问题:我们已经知道,多项式与多项式相乘的法则可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:等式(a+2b)(2a+b)=2a2+5ab+2b2就可以用图形①的面积来表示.(1)请写出图②所表示的代数恒等式______ .(2)画出一个几何图形,使它的面积能表示(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(3)请仿照上述方法写出另一个含a、b的代数恒等式,并画出与之对应的几何图形.25.如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是______三角形;(2)补全下面证明过程:∵OC平分∠AOB∴______=______∵DN//EM∴______=______∴______=______∴______=______【答案与解析】1.答案:C解析:解:A、xy+2x−y=7中xy是二次,不是二元一次方程,故此选项错误;B、x2−y2=2是二元二次方程,故此选项错误;C、4x+1=x−y是二元一次方程,故此选项正确;D、x+y+z=1是三元一次方程,故此选项错误;故选:C.根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程进行分析即可.此题主要考查二元一次方程的概念.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.2.答案:C解析:解:0.00000156=1.56×10−6;故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.答案:D解析:解:A、∠1=∠2可以判定a,b平行,不符合题意;B、∠3+∠4=90°,∠3+∠4+90°=180°,可以判定a,b平行,不符合题意;C、∠2=∠3可以判定a,b平行,不符合题意;D、∠3=∠4不能判断直线a、b平行,符合题意.故选:D.根据平行线的判定定理对各选项进行逐一判断即可.本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.答案:D解析:A、应为x6÷x3=x3,故本选项错误;B、应为2x3−x3=x3,故本选项错误;C、应为x2⋅x3=x5,故本选项错误;D、(x3)3=x9,正确.故选D.5.答案:C解析:本题主要考查的是同类项的定义,根据定义进行判断即可.根据同类项的定义:含字母相同并且相同字母的指数相同.A选项所含字母不同,不是同类项;B相同字母的指数不相同,不是同类项;C都是常数项,所以是同类项;D所含字母不同,不是同类项.故选C.6.答案:D解析:解:A、a2⋅a3是同底数幂的乘法,等于a5,正确,B、2a2+3a2是合并同类项,正确,C、a3÷a2是同底数幂的除法,正确,D、(3a2b)2是积的乘方,应等于9a4b2,故本选项错误.故选:D.根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.本题考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法和除法,需熟练掌握且区分清楚,才不容易出错.7.答案:B解析:解:法一:a2+b2+c2−ab−bc−ac,=a(a−b)+b(b−c)+c(c−a),又由a=120x+20,b=120x+19,c=120x+21,得(a−b)=120x+20−120x−19=1,同理得:(b−c)=−2,(c−a)=1,所以原式=a−2b+c=120x+20−2(120x+19)+120x+21=3.故选B.法二:a2+b2+c2−ab−bc−ac,=12(2a2+2b2+2c2−2ab−2bc−2ac),=12[(a2−2ab+b2)+(a2−2ac+c2)+(b2−2bc+c2)],=12[(a−b)2+(a−c)2+(b−c)2],=12×(1+1+4)=3.故选:B.已知条件中的几个式子有中间变量x,三个式子消去x即可得到:a−b=1,a−c=−1,b−c=−2,用这三个式子表示出已知的式子,即可求值.本题若直接代入求值会很麻烦,为此应根据式子特点选择合适的方法先进行化简整理,化繁为简,从而达到简化计算的效果,对完全平方公式的灵活运用是解题的关键.8.答案:C解析:解:这个长方形的面积为:x(2x−3)=2x2−3x,故选:C.根据长方形的面积公式即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.9.答案:C解析:解:①(−1)−1=−1,正确;②π0=1,正确;③(a+b)(−a+b)=b2−a2,错误;④3m ×27n =3m ×33n =3m+3n ,正确.则正确的等式有3个.故选:C .各式利用零指数幂、负整数指数幂法则,平方差公式,以及幂的乘方与积的乘方运算法则计算得到结果,即可作出判断.此题考查了平方差公式,同底数幂的乘法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则及公式是解本题的关键.10.答案:C解析:解:A 、∵∠3=∠4,∴AC//BD ,故A 选项不合题意;B 、∵∠D =∠DCE ,∴AC//BD ,故B 选项不合题意;C 、∵∠1=∠2,∴AB//CD ,故C 选项符合题意;D 、∵∠D +∠ACD =180°,∴AC//BD ,故D 选项不符合题意.故选C .A 、利用内错角相等两直线平行即可得到AC 与BD 平行;B 、利用内错角相等两直线平行即可得到AC 与BD 平行;C 、利用内错角相等两直线平行即可得到AB 与CD 平行;D 、利用同旁内角互补两直线平行即可得到AC 与BD 平行,此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.11.答案:B解析:解:设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得:{2x +3y =955x +7y =230, 故选:B .根据“购买2个排球和3个实心球共需95元,购买5个排球和7个实心球共需230元”可得. 本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.12.答案:B解析:解:∵l 1//l 2,∠1=35°,∴∠OAB =∠1=35°.∵OA ⊥OB ,∴∠2=∠OBA =90°−∠OAB =55°.故选:B .先根据∠1=35°,l 1//l 2求出∠OAB 的度数,再由OB ⊥OA 即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键. 13.答案:999984解析:解:原式=(1000+4)×(1000−4)=10002−42=1000000−16=999984,故答案为:999984.先变形,再根据平方差公式展开,最后求出即可.本题考查了平方差公式的应用,主要考查学生能否灵活运用平方差公式进行计算.14.答案:3x 5y 4;−54;1解析:解:(−3x 2y)2⋅(13xy 2)=9x 4y 2×13xy 2=3x 5y 4,(45)2014×(−114)2015 =(45)2014×(−114)2014×(−54)=−54; (π−3.14)0=1.故答案为:3x 5y 4,−54,1.直接利用单项式乘以单项式运算法则以及积的乘方运算法则和零指数幂的性质求出即可.此题主要考查了单项式乘以单项式运算法则以及积的乘方运算法则和零指数幂的性质等知识,正确把握运算法则是解题关键.15.答案:1解析:解:把{x =−1y =2代入方程2x −my =−4得:−2−2m =−4, 解得:m =1,故答案为:1.把{x =−1y =2代入方程2x −my =−4得出−2−2m =−4,求出方程的解即可. 本题考查了二元一次方程的解和解一元一次方程,能得出关于m 的一元一次方程是解此题的关键. 16.答案:30°解析:解:如图2中,设AD 交BC 于点J .∵DE//BC ,∴∠AJC =∠D =90°,∴∠BJA =90°,∵∠B =60°,∴∠BAD =90°−60°=30°.故答案为:30°.图2中,设AD 交BC 于点J.证明∠AJB =90°,再利用三角形内角和定理,求解即可.本题考查旋转变换,平行线的性质,三角形内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.答案:4x解析:解:∵4x 2±4x +1=(2x ±1)2,∴加上的单项式可以是±4x .故答案为:4x(答案不唯一).根据完全平方公式的公式结构解答即可.本题考查了完全平方式,熟练掌握完全平方公式的公式结构是解题的关键,开放型题目,答案不唯一.18.答案:{x =1y =−1解析:解:{2x +y =1①x −y =2②, ①+②得:3x =3,解得:x =1,把x =1代入①得:y =−1,则方程组的解为{x =1y =−1. 故答案为:{x =1y =−1. 方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 19.答案:解析:本题考查利用二元一次方程组和一元一次不等式组解决实际问题。
山东省潍坊市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题有10个小题,每小题3分,共30分. (共10题;共30分)1. (3分)(2019·宣城模拟) 下列计算正确是()A . a2•a2=2a4B . (﹣a2)3=a4C . 3a2﹣6a2=﹣3a2D . (a﹣3)2=a2﹣92. (3分)如图所示,下列说法正确的是()A . ∠1和∠2是同位角B . ∠1和∠4是内错角C . ∠1和∠3是内错角D . ∠1和∠3是同旁内角3. (3分)等式(﹣x2﹣y2)()=y4﹣x4成立,括号内应填入下式中的()A . x2﹣y2B . y2﹣x2C . ﹣x2﹣y2D . x2+y24. (3分) (2019七上·安岳月考) 如图所示,把长方形ABCD的斜对角AC等分成6段,以每一段为斜对角线作6个小长方形,若AB=1,BC=2.5,则6个小长方形的周长之和等于()A . 3.5B . 3C . 7D . 55. (3分) (2020七下·泰兴期中) 已知是方程的一个解,则a的值为()A . -1B . -2C . 1D . 26. (3分) (2019七下·南县期末) 若,则的值是()A . 3B . 6C . 9D . 187. (3分) (2020七下·新洲期中) 如图,若,则下列结论正确的是()A .B .C .D .8. (3分)根据“x减去y的差的8倍等于8”的数量关系可列方程()A .B .C .D .9. (3分)(2020·石家庄模拟) 为防止森林火灾的发生,会在森林中设置多个观测点.如图.若起火点在观测台的南偏东的方向上.点表示另一处观测台,若那么起火点在观测台的()A . 南偏东B . 南偏西C . 北偏东D . 北偏西10. (3分) (2019七下·淮滨月考) 若、满足,则的平方根是()A .B .C .D .二、填空题:本题有6个小题,每小题4分,共24分. (共6题;共24分)11. (4分)(2019·沈阳) 二元一次方程组的解是________.12. (4分)如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为________ 度.13. (4分) (2019七下·三原期末) 小张准备将平时的零用钱节约一些储存起来,目前他已存有50元,从现在起他准备每个月存12元,请写出小张的存y款数(元)与从现在开始的月份数x(月)之间的函数关系式________.14. (4分) (2018八上·永定期中) 若x+4y=-1,则2x•16y的值为________.15. (4分) (2019七下·简阳期中) 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=________,∠2=________.16. (4分)学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是________平方米.三、解答题:本题有7小题,共66分. (共7题;共66分)17. (6分) (2017八上·虎林期中) 计算:(1)(2xy2﹣3xy)•2xy;(2)()100×(1 )100×()2013×42014(3) a(a﹣3)+(2﹣a)(2+a)(4) 2x2y•(﹣4xy3z)18. (8分) (2020七下·建邺期末) 解方程组:19. (8分) (2018七上·东莞期中) 先化简再求值:,其中 .20. (10分) (2015七下·卢龙期中) 直线AB∥CD,EF分别交AB、CD于点M、N,NP平分∠MND.(1)如图1,若MR平分∠EMB,则MR∥NP.请你把下面的解答过程补充完整:解:因为AB∥CD(已知)所以∠EMB=∠END(________)因为MR平分∠EMB,NP平分∠MND(已知)所以∠EMR= ∠EMB,∠MNP= ∠MND(角平分线定义)所以∠EMR=∠MNP所以MR∥NP(________)(2)如图2,若MR平分∠AMN,则MR与NP又怎样的位置关系?请在横线上写出你的猜想结论:________;(3)如图3,若MR平分∠BMN,则MR与NP又怎样的位置关系?请说明理由.21. (10分) (2016九下·澧县开学考) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加 m小时,求m的值.22. (12分) (2020七下·常熟期中) 某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)100012001500(1)若全部物资都用甲、乙两种车型来运送,需运费24000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).23. (12分) (2019七下·江阴期中) 如图,已知∠ABC=63°,∠ECB=117°.(1) AB与ED平行吗?为什么?(2)若∠P=∠Q,则∠1与∠2是否相等?说说你的理由.参考答案一、选择题:本大题有10个小题,每小题3分,共30分. (共10题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题:本题有6个小题,每小题4分,共24分. (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题:本题有7小题,共66分. (共7题;共66分)答案:17-1、答案:17-2、答案:17-3、答案:17-4、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。
试卷类型:A2023—2024学年度第二学期期中质量检测七年级数学试题注意事项:1.考试时间120分钟,试卷满分150分;2.答卷前,请将试卷密封线内和答题纸上的项目填涂清楚;3.请在答题纸相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷(选择题共52分)一、单选题(本大题共8小题,共32分.在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,错选、不选均记0分)1.巨噬细胞是人体的“清道夫”,它是由单核细胞演变而来,一直在为我们的身体做清洁工作,其直径可达0.00008米.将0.00008用科学记数法可表示为()A .B .C .D .2.如图,已知OB 是内部的一条射线,下列说法一定正确的是()A .B .C .可以用表示D .与表示同一个角3.下列方程是二元一次方程的是()A .B .C .D .4.如图,从旗杆AB 的顶端A 处向地面拉一条绳子,绳子底端恰好在地面P 处,若旗杆的高度为13.8米,则绳子AP的长度不可能是()40.810-⨯50.810-⨯4810-⨯5810-⨯AOC ∠2AOC BOC ∠=∠BOC AOB∠<∠AOC ∠O ∠1∠AOB ∠20x y -=10xy +=223x x +=8y x=A .16米B .15米C .14米D .13米5.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,,则的值为()A .B .C .D .6.小亮在做“化简,并求时的值”一题时,错将看成了,但结果却和正确答案一样.由此可知k 的值是()A .2B .3C .4D .57.某校预安排若干间宿舍给七年级男寄宿生住,若每间宿舍住6人,则有4人住不下,若每间住7人,则有1间只住2人且空余8间宿舍.设该校七年级男寄宿生有x 人,预安排给七年级男寄宿生的宿舍有y 间,则下列方程组正确的是()A .B .C .D .8.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若,且,则的度数是()A .B .C .D .二、多选题(本大题共4小题,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,错选、多选均记0分)9.如图,下列说法正确的是()140,2120∠=︒∠=︒34∠+∠160︒150︒100︒90︒()()()23263516x k x x x x +⋅+-⋅+++6x =6x =6x =-()647812y x y x +=⎧⎪⎨--+=⎪⎩()64782y x y x -=⎧⎪⎨-+=⎪⎩()64782y x y x +=⎧⎪⎨-+=⎪⎩()647812y x y x-=⎧⎪⎨---=⎪⎩CD BE ∥125∠=︒2∠60︒75︒80︒85︒A .与是对顶角B .与是内错角C .与是同位角D .与是同旁内角10.下列运算正确的是()A .B .C .D .11.解方程组时,下列消元方法正确的是()A .②×3-①,消去xB .①×3+②×2,消去yC .②×2-①×3,消去yD .由②得:,然后代入①中消去x12.如图,的平分线BE 交AC 于点E ,的平分线CD 交AB 于点D ,BE ,CD 相交于点F ,,且于点G ,下列结论中正确的是()A .B .CA 平分C .D .第Ⅱ卷(非选择题共98分)三、填空题(本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分)13.计算:________.14.如图,点O 在直线AB 上,,OE 平分,则的度数为_____°.1∠2∠1∠4∠1∠B ∠4∠D ∠2327a a a a -⋅÷=22(2)(2)222b a b a b ab a ---⋅+=2336(3)27ab a b ---=()122112323nn n n n n a a aa a a a --+⋅-+=-+3216331x y x y +=⎧⎨-=⎩①②313x y =+ABC ∠ACB ∠90,A EG BC ∠=︒∥CG EG ⊥2CEG DCB ∠=∠BCG ∠ADC GCD ∠=∠45DFB ∠=︒109287031︒'-︒'=118,AOC OC OD ∠=︒⊥BOC ∠DOE ∠15.对任意有理数x ,等式总成立,那么________.16.如图,直线,一块三角板ABC ()按如图所示放置.若,则的度数为________°.17.如图,在四边形ABCD 中,,对角线AC ,BD 交于点O ,若三角形AOB 的面积为6,且,则三角形AOD 的面积是_________.18.如图,将一个大长方形ABCD 分割成5个正方形①②③④⑤和1个小长方形⑥,若,则大长方形ABCD 的面积是_______.()()236x x n x mx -+=+-m n =a b ∥60,90A C ∠=︒∠=︒150∠=︒2∠AD BC ∥:1:2AO OC =3,4GF EF ==四、解答题(本题共7小题,满分74分.解答应写出文字说明、证明过程或推演步骤)19.(本题满分8分)计算下列各题:(1);(2).20.(本题满分8分)解下列方程组:(1),(2)21.(本题满分9分)按下列要求画图并填空.如图,P 是的边OB 上一点,(1)过点P 作射线OA 的垂线,垂足为H ;(2)过点P 作射线OB 的垂线,交OA 于点C ;(3)过点P 作直线(点D 在点P 的右侧);(4)与的数量关系是_________.(5)线段PC ,PH ,OC 这三条线段大小关系是________(用“<”号连接),依据是________.22.(本题满分10分)我们知道,一般的数学公式,法则、定义可以正向运用,也可以逆向运用.例如,“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为:;;;其中m ,n 为正整数.结合以上材料解决下列问题.(1)已知,请把a ,b ,c 用“<”连接起来;(2)若,求的值;(3)化简:.23.(本题满分12分)如图,已知射线,连接AB ,点P 是射线AM 上的一个动点(与点A 不重合),BC ,BD 分别平分和,分别交射线AM 于点C ,D.()23155a a b ⎛⎫-⋅- ⎪⎝⎭()()21241x x x -⋅-+-21327x y x y -=⎧⎨+=⎩()111231211x y x y ⎧+=-⎪⎨⎪+-=⎩AOB ∠PD OA ∥HPC ∠DPC ∠m n m n a a a +=⋅()nmn m a a =()m mm a b ab =5544332,3,4a b c ===2,5a b x x ==32a b x +1031001021384⎛⎫⨯⨯ ⎪⎝⎭AM BN ∥ABP ∠PBN ∠(1)当时,求的度数;(2)试判断与之间的数量关系,并说明理由.24.(本题满分13分)已知用2辆A 型车和1辆B 型车载满货物—次可运货10吨;用3辆A 型车和2辆B 型车载满货物一次可运货17吨.某物流公司现有货物35吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,请选出最省钱的租车方案,并求出最少租车费.25.(本题满分14分)已知,直线,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB ,CD 之间,当时,求的度数;(2)如图2,点P 在直线AB ,CD 之间,与的角平分线相交于点K ,写出与之间的数量关系,并说明理由;(3)如图3,点P 落在直线CD 的下方,与的角平分线相交于点K ,与有何数量关系?请说明理由.40A ∠=︒CBD ∠APB ∠ADB ∠AB CD ∥56,24BAP DCP ∠=︒∠=︒APC ∠BAP ∠DCP ∠AKC ∠APC ∠BAP ∠DCP ∠AKC ∠APC ∠2023-2024学年度第二学期期中学情诊断七年级数学试题参考答案及评分标准一、单选题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)题号12345678答案DDADCBAC二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)题号9101112答案ADADABDACD三、填空题(本大题共6小题,每小题4分,共24分.只填写最后结果)13.14.15.16.17.318.99四、解答题(本题共6小题,共74分.请写出必要的文字说明、证明过程或演算步骤)19.解:(本题8分,1、2小题每题4分)(1) 4分(2)6分8分20.解:(本题8分,1、2小题每题4分)(1)①+②得:1分解得:2分将代入①得:3分解得:,所以4分(4)化简方程组得:①×2得:③③-②得: 6分将代入①得:3857︒'59︒12110︒()()23627211525555a a b a a b a b ⎛⎫⎛⎫-⋅-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()()2322124124241x x x x x x x x --+-=-+-+-+⋅322651x x x =-+-+48x =2x =2x =221y -=12y =212x y =⎧⎪⎨=⎪⎩24328x y x y -=-⎧⎨-=⎩①②428x y -=-16x =-16x =-()2164y ⨯--=-解得:7分所以 8分21.解:(本题9分)(1)如图所示 1分(2)如图所示 2分(3)如图所示3分(4)互余5分(5),垂线段最短9分22.解:(本题10分)(1)∵3分∴ 4分(2 6分∵∴原式7分(3)10分23.解:(本题12分)(1)∵∴,1分28y =-6281x y =-=-⎧⎨⎩PH PC OC <<()55511112232a ===44411113(3)81b ===()13331114464c ===a c b <<()()323232a baba b xx x xx +=⋅=⋅2,5a b x x ==3225200=⨯=1031003100102100100211138388444⎛⎫⎛⎫⎛⎫⨯⨯=⨯⨯⨯⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭100310010010021001113883816444⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯=⨯⨯⨯=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,40AM BN A ∠=︒∥180140ABN A ∠=︒-∠=︒∵BC ,BD 分别平分和,∴,3分∴5分(2),7分∵BD 平分,∴,9分∵,∴,∴.12分24.解:(本题13分)(1)设每辆A 型车、B 型车都载满货物一次可以分别运货x 吨、y 吨,根据题意,得,2分解得,3分经检验,方程组的解符合题意.答:1辆A 型车载满货物一次可运3吨,1辆B 型车载满货物一次可运4吨.(2)由(1),得,5分∴,∵a ,b 都是正整数,∴,或,或,∴有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆:8分方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,∴方案一需租金:(元);方案二需租金:(元);方案三需租金:(元). 11分∵12分∴最省钱的租车方案是方案三答:租A 型车1辆,B 型车8辆,最少租车费为1140元.25.解:(本题14分)(1)如图1,过P 作,ABP ∠PBN ∠11,22CBP ABP DBP PBN ∠=∠∠=∠1111140702222CBD CBP DBP ABP PBN ABN ∠=∠+∠=∠+∠=∠=⨯︒=︒2APB ADB ∠=∠PBN ∠2PBN DBN ∠=∠AM BN ∥,APB PBN BDP DBN ∠=∠∠=∠2APB ADB ∠=∠2103217x y x y +=⎧⎨+=⎩34x y =⎧⎨=⎩3435a b +=3543ba -=92a b =⎧⎨=⎩55a b =⎧⎨=⎩ 1 8a b =⎧⎨=⎩910021301160⨯+⨯=510051301150⨯+⨯=110081301140⨯+⨯=116011501140>>PE AB ∥∵,∴,∴, 2分∵∴4分(2).理由如下: 5分如图2,过K 作,∵,∴,∴,∴,过P 作,同理可得,,∵与的角平分线相交于点K ,∴, 8分∴,∴;9分(3).理由如下:10分如图3,过K 作,AB CD ∥PE AB CD ∥∥,APE BAP CPE DCP ∠=∠∠=∠56,24BAP DCP ∠=︒∠=︒562480APC APE CPE BAP DCP ∠=∠+∠=∠+∠=︒+︒=︒2AKC APC ∠=∠KE AB ∥AB CD ∥KE AB CD ∥∥,AKE BAK CKE DCK ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠+∠=∠+∠PF AB ∥APC BAP DCP ∠=∠+∠BAP ∠DCP ∠11,22DCK DCP BAK BAP ∠=∠∠=∠11112222()BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠2AKC APC ∠=∠2AKC APC ∠=∠KE AB ∥∵,∴,∴,∴,…分过P 作同理可得,,12分∵与的角平分线相交于点K ,∴,3分∴,∴.14分AB CD ∥KE AB CD ∥∥,BAK AKE DCK CKE ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠-∠=∠-∠PF AB∥APC BAP DCP ∠=∠-∠BAP ∠DCP ∠11,22BAK BAP DCK DCP ∠=∠∠=∠()11112222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠2AKC APC ∠=∠。
七年级(下)期中数学试卷一、选择题:本题共12个小题,在每小题给出的四个选项中,只有一个是正确的,每小题3分,共36分1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.2.下列四个方程中,是二元一次方程的是()A.x﹣3=0 B.xy﹣x=5 C.D.2y﹣x=53.下列各式运算结果为x8的是()A.x4•x4B.(x4)4C.x16÷x2D.x4+x44.在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是()A.数形结合思想 B.转化思想 C.分类讨论思想 D.类比思想5.下列说法:①过一点有且只有一条直线平行于已知直线;②与同一条直线平行的两直线必平行;③与同一条直线相交的两条直线必相交;④在同一平面内,不相交的两条直线叫平行线.不正确的有()A.1个B.2个C.3个D.4个6.如图,∠1和∠2不是同位角的是()A.B.C.D.7.已知∠1与∠2为对顶角,∠1=45°,则∠2的补角的度数为()A.35°B.45°C.135°D.145°8.若a x=4,a y=7,则a2y+x的值为()A.196 B.112 C.56 D.459.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④ D.①②③④10.计算(﹣3a﹣bc)•(bc﹣3a)的结果等于()A.bc2﹣9a2B.b2c2﹣3a2 C.9a2﹣b2c2 D.b2c2﹣9a211.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°12.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付()A.10元B.11元C.12元D.13元二、填空题:本题工5小题,每小题4分,满分20分13.若∠1=35°21′,则∠1的余角是______.14.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为______°.15.如果方程组的解满足x+y=5,则k的值是______.16.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是______(不允许添加任何辅助线).17.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+b(b⊗b)=2ab;④若a⊗b=0,则a=0或b=1,其中正确结论的序号是______.三、解答题:本题共6小题,共64分,解答应写出必要的文字说明、证明过程或推演步骤18.计算:(1)(x2y)3(x3y)2(2)(1﹣2x)(x2﹣3x+1)(3)先化简,再求值:2(x﹣8)(x﹣5)﹣(2x﹣1)(x+2),其中x=3.19.解下列方程组:(1)(2)(3).20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,求证:∠CED+∠ACB=180°,请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(______).∴GF∥CD(______)∵GF∥CD(已证)∴∠2=∠BCD______)又∵∠1=∠2(已知)∴∠1=∠BCD(______)∴______(______)∴∠CED+∠ACB=180°(______)22.某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.23.如图,四边形ABCD是长方形,尺寸如图所示:(1)求阴影部分的面积;(2)若a=30,b=10,c=22,d=9,求阴影部分的面积;(3)若∠1=∠2,那么∠3与∠4有怎样的关系,并说明理由.参考答案与试题解析一、选择题:本题共12个小题,在每小题给出的四个选项中,只有一个是正确的,每小题3分,共36分1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.2.下列四个方程中,是二元一次方程的是()A.x﹣3=0 B.xy﹣x=5 C.D.2y﹣x=5【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A、x﹣3=0是一元一次方程,故A错误;B、xy﹣x=5是二元二次方程,故B错误;C、﹣y=3是分式方程,故C错误;D、2y﹣x=5是二元一次方程,故D正确;故选:D.3.下列各式运算结果为x8的是()A.x4•x4B.(x4)4C.x16÷x2D.x4+x4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;合并同类项法则,对各选项计算后利用排除法求解.【解答】解:A、x4•x4=x8,故选项A正确;B、(x4)4=x16,故选项B错误;C、x16÷x2=x14,故选项C错误;D、x4+x4=2x4,故选项D错误;故选A.4.在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是()A.数形结合思想 B.转化思想 C.分类讨论思想 D.类比思想【考点】解二元一次方程组.【分析】在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,利用了转化的思想达到消元的目的.【解答】解:在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加减法”将“二元”化为“一元”,这个过程体现的数学思想是转化思想,故选B5.下列说法:①过一点有且只有一条直线平行于已知直线;②与同一条直线平行的两直线必平行;③与同一条直线相交的两条直线必相交;④在同一平面内,不相交的两条直线叫平行线.不正确的有()A.1个B.2个C.3个D.4个【考点】平行线的性质;平行公理及推论.【分析】根据平行线的性质以及平行公理对各小题分析判断即可得解.【解答】解:①应为过直线外一点有且只有一条直线平行于已知直线,故本小题错误;②与同一条直线平行的两直线必平行,正确;③与同一条直线相交的两条直线必相交,错误;④在同一平面内,不相交的两条直线叫平行线,正确.所以,不正确的有2个.故选A.6.如图,∠1和∠2不是同位角的是()A.B.C.D.【考点】同位角、内错角、同旁内角.【分析】利用同位角的定义,直接分析得出即可.【解答】解:A、∠1和∠2不是同位角,故此选项符合题意;B、∠1和∠2是同位角,故此选项不合题意;C、∠1和∠2是同位角,故此选项不合题意;D、∠1和∠2是同位角,故此选项不合题意;故选:A.7.已知∠1与∠2为对顶角,∠1=45°,则∠2的补角的度数为()A.35°B.45°C.135°D.145°【考点】余角和补角;对顶角、邻补角.【分析】根据对顶角、补角的性质,可得∠1=∠2,∠2+∠3=180°,则∠2+∠3=∠1+∠3=180°.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是补角,∴∠2+∠3=180°,等角代换得∠1+∠3=180°∴∠3=180°﹣45°=135°,故选C.8.若a x=4,a y=7,则a2y+x的值为()A.196 B.112 C.56 D.45【考点】同底数幂的乘法.【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【解答】解:∵a x=4,a y=7,∴a2y+x=(a y)2×a x=72×4=196.故选:A.9.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④ D.①②③④【考点】平行线的判定.【分析】根据平行线的判定方法可以一一证明①、②、③、④都能判断a∥b.【解答】解:∵∠1=∠2,∴a∥b,故①正确.∵∠3=∠6,∠3=∠5,∴∠5=∠6,∴a∥b,故②正确,∵∠4+∠7=180°,∠4=∠6,∴∠6+∠7=180°,∴a∥b,故③正确,∵∠5+∠8=180°,∠5=∠3,∠8=∠2,∴∠2+∠3=180°,∴a∥b,故④正确,故选D.10.计算(﹣3a﹣bc)•(bc﹣3a)的结果等于()A.bc2﹣9a2B.b2c2﹣3a2 C.9a2﹣b2c2 D.b2c2﹣9a2【考点】平方差公式.【分析】原式利用平方差公式化简即可得到结果.【解答】解:原式=(﹣3a﹣bc)(﹣3a+bc)=9a2﹣b2c2,故选C11.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选B.12.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付()A.10元B.11元C.12元D.13元【考点】二元一次方程组的应用.【分析】设购买1支签字笔应付x元,1本笔记本应付y元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y的值.【解答】解:设购买1支签字笔应付x元,1本笔记本应付y元,根据题意得,解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付8+4=12元,故选:C.二、填空题:本题工5小题,每小题4分,满分20分13.若∠1=35°21′,则∠1的余角是54°39′.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和为90度计算即可.【解答】解:根据定义,∠1的余角度数是90°﹣35°21′=54°39′.故答案为54°39′.14.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为145°.【考点】平行线的性质.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=55°,∴∠3=90°﹣∠1=90°﹣55°=35°,∴∠4=180°﹣35°=145°,∵直尺的两边互相平行,∴∠2=∠4=145°.故答案为:145.15.如果方程组的解满足x+y=5,则k的值是6.【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入x+y=5求出k的值即可.【解答】解:,①+②得:3(x+y)=3k﹣3,解得:x+y=k﹣1,代入x+y=5中得:k﹣1=5,解得:k=6,故答案为:616.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(不允许添加任何辅助线).【考点】平行线的判定.【分析】使AD∥BC判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.【解答】可以添加的条件是∠EAD=∠B,依据同位角相等,两直线平行;或∠DAC=∠C,依据内错角相等,两直线平行;或∠DAB+∠B=180°,依据同旁内角互补,两直线平行.故答案为:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.17.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+b(b⊗b)=2ab;④若a⊗b=0,则a=0或b=1,其中正确结论的序号是①④.【考点】整式的混合运算.【分析】先根据a⊗b=a(1﹣b)的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论.【解答】解:①2⊗(﹣2)=2×(1+2)=6,故本选项正确;②a⊗b=a(1﹣b),b⊗a=b(1﹣a),不一定相等,故本选项错误;③若a+b=0,则(a⊗a)+b(b⊗b)=a(1﹣a)+b2(1﹣b)=a﹣a2+b2﹣b3=a﹣b3;故本选项错误;④若a⊗b=a(1﹣b)=0,则a=0或1﹣b=0,即a=0或b=1,故本选项正确;正确结论的序号是①④.故答案为:①④.三、解答题:本题共6小题,共64分,解答应写出必要的文字说明、证明过程或推演步骤18.计算:(1)(x2y)3(x3y)2(2)(1﹣2x)(x2﹣3x+1)(3)先化简,再求值:2(x﹣8)(x﹣5)﹣(2x﹣1)(x+2),其中x=3.【考点】整式的混合运算—化简求值;整式的混合运算.【分析】(1)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以单项式法则计算即可得到结果;(2)原式利用多项式乘以多项式法则计算即可得到结果;(3)原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=x6y3•x6y2=x12y5;(2)原式=x2﹣3x+1﹣2x3+6x2﹣2x=7x2﹣2x3﹣5x+1;(3)原式=2(x2﹣13x+40)﹣(2x2+4x﹣x﹣2)=2x2﹣26x+80﹣2x2﹣4x+x+2=﹣29x+82,当x=3时,原式=﹣87+82=﹣5.19.解下列方程组:(1)(2)(3).【考点】解三元一次方程组.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可.(2)先用加减消元法求出y的值,再用代入消元法求出x的值即可.(3)先用加减消元法求出y的值,再求出z的值,然后用代入消元法求出x的值即可.【解答】解:(1),①×2﹣②得,5x=14,解得x=,把x=代入②得, +4y=24,解得y=,故方程组的解为.(2),把①化简得:2x+3y=30③,③×3﹣②×2得:5y=40,解得:y=8,把y=8代入③得:2x+24=30,解得:x=3,故方程组的解为.(3),①+③得:2y=4,解得:y=2,②+③得:3y+2z=8,把y=2代入得:z=1,把y=2,z=1代入①得:x=3,故方程组的解为.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°21.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,求证:∠CED+∠ACB=180°,请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(垂直定义).∴GF∥CD(同位角相等,两直线平行)∵GF∥CD(已证)∴∠2=∠BCD两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠BCD(等量代换)∴DE∥BC(内错角相等,两直线平行)∴∠CED+∠ACB=180°(两直线平行,同旁内角互补)【考点】平行线的判定与性质.【分析】根据同位角相等两直线平行证得GF∥CD,然后根据两直线平行同位角相等得出∠2=∠BCD,根据已知进一步得出∠1=∠BCD,即可证得DE∥BC,得出∠CED+∠ACB=180°.【解答】证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)∴∠FGB=∠CDB=90°(垂直定义).∴GF∥CD(同位角相等,两直线平行),∵GF∥CD(已证),∴∠2=∠BCD(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠BCD(等量代换),∴DE∥BC(内错角相等,两直线平行)∴∠CED+∠ACB=180°(两直线平行,同旁内角互补),故答案为:垂直定义,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DE∥BC,内错角相等,两直线平行,两直线平行,同旁内角互补.22.某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.【考点】三元一次方程组的应用.【分析】设购买A型电脑x台,B型y台,C型z台,分情况讨论当购买A型、B型时,当购买A型、C 型时,当购买C型、B型时分别建立方程组求出其解即可.【解答】解:设购买A型电脑x台,B型y台,C型z台,(1)若购买A型、B型时,由题意,得,解得:,不符合题意,舍去;(2)若购买A型、C型,由题意,得,解得:;(3)当购买C型、B型时,由题意,得,解得:.故共有两种购买方案:①购买A型5台,C型25台;②购买B型10台,C型20台.23.如图,四边形ABCD是长方形,尺寸如图所示:(1)求阴影部分的面积;(2)若a=30,b=10,c=22,d=9,求阴影部分的面积;(3)若∠1=∠2,那么∠3与∠4有怎样的关系,并说明理由.【考点】整式的混合运算;平行线的性质.【分析】(1)阴影部分面积等于矩形面积减去两个直角三角形面积,求出即可;(2)把a,b,c,d的值代入计算即可求出值;(3)互余,利用同角的余角相等验证即可.【解答】解:(1)根据题意得:S=ac﹣(c﹣a)(a﹣b)﹣bc=ac﹣(ac﹣bc﹣a2+ab+bc)=ac+a2﹣ab;(2)当a=30,b=10,c=22,d=9时,S=330+450﹣150=630;(3)∠3+∠4=90°,理由为:∵∠1+∠3=90°,∠1=∠2,∴∠3+∠2=90°,∵∠2=∠4,∴∠3+∠4=90°.2016年9月27日。