新青区一中2018-2019学年高三上学期11月月考数学试卷含答案
- 格式:pdf
- 大小:383.40 KB
- 文档页数:7
青岛市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件2. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.3. 已知函数f (x )=m (x﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( ) A .(﹣∞,]B .(﹣∞,) C .(﹣∞,0]D .(﹣∞,0)4. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是( )A . C . D.5. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A. B .(4+π) C. D.6. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()32y f x x =-+的零点个数为( ) A .1 B .2 C .3 D .4 7. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟③报考“卓越”联盟的学生,都没报考“京派”联盟④不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是()A.没有同时报考“华约” 和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟8.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11? B.12? C.13? D.14?9.已知直线mx﹣y+1=0交抛物线y=x2于A、B两点,则△AOB()A.为直角三角形B.为锐角三角形C.为钝角三角形D.前三种形状都有可能10.数列{a n}满足a1=,=﹣1(n∈N*),则a10=()A.B.C.D.11.等比数列{a n}中,a3,a9是方程3x2﹣11x+9=0的两个根,则a6=()A.3 B.C.±D.以上皆非12.平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B.C.4 D.12二、填空题13.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.14.不等式的解集为R ,则实数m 的范围是.15.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .17.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .18.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题19.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]20.设函数f (x )=ae x (x+1)(其中e=2.71828…),g (x )=x 2+bx+2,已知它们在x=0处有相同的切线. (Ⅰ)求函数f (x ),g (x )的解析式;(Ⅱ)求函数f (x )在[t ,t+1](t >﹣3)上的最小值;(Ⅲ)若对∀x ≥﹣2,kf (x )≥g (x )恒成立,求实数k 的取值范围.21.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.22.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.23.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈.24.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.青岛市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.2- 14..15. 0.6 . 16.= .17. 16π18.三、解答题19.(1)13|{<<-x x 或}3>x ;(2). 20.21.⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭⑶222.证明见解析. 23.(本小题满分13分)解:(Ⅰ)2()363(2)f x ax x x ax '=-=-, (1分)①当0a >时,解()0f x '>得2x a >或0x <,解()0f x '<得20x a <<, ∴()f x 的递增区间为(,0)-∞和2(,)a+∞,()f x 的递减区间为2(0,)a . (4分)②当0a =时,()f x 的递增区间为(,0)-∞,递减区间为(0,)+∞. (5分)③当0a <时,解()0f x '>得20x a<<,解()0f x '<得0x >或2x a <∴()f x 的递增区间为2(,0)a ,()f x 的递减区间为2(,)a-∞和(0,)+∞. (7分)(Ⅱ)当2a <-时,由(Ⅰ)知2(,)a -∞上递减,在2(,0)a上递增,在(0,)+∞上递减.∵22240a f a a -⎛⎫=> ⎪⎝⎭,∴()f x 在(,0)-∞没有零点. (9分) ∵()010f =>,11(2)028f a ⎛⎫=+< ⎪⎝⎭,()f x 在(0,)+∞上递减,∴在(0,)+∞上,存在唯一的0x ,使得()00f x =.且01(0,)2x ∈ (12分)综上所述,当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈. (13分)24.。
城区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 命题“0x ∃>,使得a x b +≤”是“a b <”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2. 若复数z=2﹣i ( i为虚数单位),则=( ) A .4+2i B .20+10i C .4﹣2i D.3. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A.B.C.D.4. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]5. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+16. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)7. 复数z 满足z (l ﹣i )=﹣1﹣i ,则|z+1|=( ) A .0B .1C.D .28. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R9. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣1 10.若椭圆+=1的离心率e=,则m 的值为( )A .1B.或C.D .3或 11.在△ABC 中,若a=2bcosC ,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形12.函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)二、填空题班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________13.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .14.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为 .15.某城市近10年居民的年收入x 与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.16.已知f (x )=,若不等式f (x ﹣2)≥f (x )对一切x ∈R 恒成立,则a 的最大值为 .17.若函数63e ()()32ex x bf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.18.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .三、解答题19.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.20.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差.21.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.22.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.23.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.24.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0.(1)求顶点C的坐标;(2)求△ABC的面积.城区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.314..15. 18.216. ﹣ .17.2016 18.30x y -+=三、解答题19. 20. 21.22. 23. 24.。
城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是()A .()1,10B .()1,+∞C .()0,1D .()10,+∞2. A 是圆上固定的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度大于等于半径长度的概率为( )A .B .C .D .3. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( )A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 24. 设函数对一切实数都满足,且方程恰有6个不同的实根,则这()y f x =x (3)(3)f x f x +=-()0f x =6个实根的和为( )A. B. C.D.181290【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.5. 将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .6. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( )A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)7. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为()A .1B .2C .3D .48. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A .B .C .D .9. 设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为()A .8B .4C .1D .10.(文科)要得到的图象,只需将函数的图象( )()2log 2g x x =()2log f x x =A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位11.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________1的半圆,则其侧视图的面积是( )A .B .C .1D .12.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是()A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题二、填空题13.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB最小则直线的方程是 .14.已知线性回归方程=9,则b= .15.三角形中,,则三角形的面积为 .ABC 2,60AB BC C ==∠=oABC 16.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .17.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 . 18.满足tan (x+)≥﹣的x 的集合是 .三、解答题19.如图,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起至△ACP 位置,并使平面PAC ⊥平面ABC .(Ⅰ)求证:AC ⊥PB ;(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值;(Ⅲ)求四面体PABC 体积的最大值.20.(本小题满分12分)已知椭圆,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的C A B 2F P C A B 动点,且的最小值为-2.PA PB u u u r u u u rg (1)求椭圆的标准方程;C (2)若过左焦点的直线交椭圆于两点,求的取值范围.1F C M N 、22F M F N u u u u r u u u u rg 21.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围. 22.已知函数f (x )=log a (x 2+2),若f (5)=3;(1)求a 的值; (2)求的值;(3)解不等式f (x )<f (x+2).23.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.24.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B 【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标()f x 1xy a ⎛⎫= ⎪⎝⎭log a y x =01a <<系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),1a >由图知有两个交点,不符合题意,故选B.(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y fx =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数的图象的()(),y g x y h x ==交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交(),y a y g x ==点个数的图象的交点个数问题.本题的解答就利用了方法③.2. 【答案】B【解析】解:在圆上其他位置任取一点B ,设圆半径为R ,则B 点位置所有情况对应的弧长为圆的周长2πR ,其中满足条件AB 的长度大于等于半径长度的对应的弧长为2πR ,则AB 弦的长度大于等于半径长度的概率P==.故选B .【点评】本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关键. 3. 【答案】A【解析】解:设x <0时,则﹣x >0,因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2,又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A . 4. 【答案】A.【解析】,∴的图象关于直线对称,(3)(3)()(6)f x f x f x f x +=-⇔=-()f x 3x =∴个实根的和为,故选A.63618⋅=5. 【答案】B 【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B .【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力. 6. 【答案】C【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣,令2x ﹣2﹣>0,整理得x 2﹣x ﹣2>0,解得x >2或x <﹣1,结合函数的定义域知,f ′(x )>0的解集为(2,+∞).故选:C . 7. 【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2,故选B . 8. 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确;中间的棱在侧视图中表现为一条对角线,故C 不正确;而对角线的方向应该从左上到右下,故B 不正确故A 选项正确.故选:A .【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键. 9. 【答案】B【解析】解:∵是5a 与5b 的等比中项,∴5a •5b =()2=5,即5a+b =5,则a+b=1,则+=(+)(a+b )=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换. 10.【答案】C 【解析】试题分析:,故向上平移个单位.()2222log 2log 2log 1log g x x x x ==+=+考点:图象平移.11.【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状. 12.【答案】 B【解析】解:∃x ∈R ,x ﹣2>0,即不等式x ﹣2>0有解,∴命题p 是真命题;x <0时,<x 无解,∴命题q 是假命题;∴p ∨q 为真命题,p ∧q 是假命题,¬q 是真命题,p ∨(¬q )是真命题,p ∧(¬q )是真命题;故选:B .【点评】考查真命题,假命题的概念,以及p ∨q ,p ∧q ,¬q 的真假和p ,q 真假的关系. 二、填空题13.【答案】30x y -+=【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距C 22230x y y +--=(0,1)C ()1,2P -,小于圆的半径,所以点在圆内,所以当时,最小,此时()1,2P -AB CP ⊥AB ,由点斜式方程可得,直线的方程为,即.11,1CP k k =-=21y x -=+30x y -+=考点:直线与圆的位置关系的应用.14.【答案】 4 .【解析】解:将代入线性回归方程可得9=1+2b ,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题. 15.【答案】【解析】试题分析:因为中,,,又ABC ∆2,60AB BC C ===︒2sin A=1sin 2A =,即,所以,∴,,.BC AB <A C <30C =︒90B =︒AB BC ⊥12ABCS AB BC ∆=⨯⨯=考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正ab 2b 2a 弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式,,,等等.1sin 2ab C 12ah 1()2a bc r ++4abc R16.【答案】 4 .【解析】解:由题意,设P (4cos θ,2sin θ)则P 到直线的距离为d==,当sin (θ﹣)=1时,d 取得最大值为4,故答案为:4.17.【答案】 5﹣4 .【解析】解:如图,圆C 1关于x 轴的对称圆的圆心坐标A (2,﹣3),半径为1,圆C 2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A 与圆C 2的圆心距减去两个圆的半径和,即:﹣4=5﹣4.故答案为:5﹣4.【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.18.【答案】 [kπ,+kπ),k∈Z .【解析】解:由tan(x+)≥﹣得+kπ≤x+<+kπ,解得kπ≤x<+kπ,故不等式的解集为[kπ,+kπ),k∈Z,故答案为:[kπ,+kπ),k∈Z,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.三、解答题19.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养. 20.【答案】(1);(2).22142x y +=22[2,7)F M F N ∈-u u u u r u u u u r g 【解析】试题解析:(1)根据题意知,即,c a =2212c a =∴,则,22212a b a -=222a b =设,(,)P x y ∵,(,)(,)PA PB a x y a x y =-----u u u r u u u r g g ,2222222221()222a x x a y x a x a =-+=-+-=-∵,∴当时,,a x a -≤≤0x =2min ()22a PA PB =-=-u u u r u u u r g ∴,则.24a =22b =∴椭圆的方程为.C 22142x y +=1111]设,,则,,11(,)M x y 22(,)N x y 12x x +=21224(1)12k x x k -=+∵,,211()F M x y =u u u u r 222()F N x y =u u u u r∴222121212)2(F M F N x x x x k x x =-++++u u u u r u u u u r g2221212(1))22k x x x x k =++-+++222224(1)(1)1)2212k k k k k -=++-+++g .29712k =-+∵,∴.2121k +≥210112k<≤+∴.297[2,7)12k -∈-+综上知,.22[2,7)F M F N ∈-u u u u r u u u u r g 考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.21.【答案】【解析】解:若命题p 是真命题:“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”,则<1,解得1﹣;若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.若p∨q为真,¬p为真,则p为假命题,q为真命题.∴.∴实数m的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…23.【答案】【解析】解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC﹣sinBsinC=cos(B+C)=,∴B+C=,则A=;(2)∵a=2,b+c=4,cosA=﹣,∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,解得:bc=4,则S△ABC=bcsinA=×4×=.【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.24.【答案】【解析】解:(1)=…==5…(2)(lg5)2+2lg2﹣(lg2)2=(lg5+lg2)(lg5﹣lg2)+2lg2…=.… 。
城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .102. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是()A .B .C .D .3. 已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )A .B .C .D .4. 四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3 B . C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.5. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.6. 在正方体中,是线段的中点,若四面体的外接球体积为,1111ABCD A B C D -M 11AC M ABD -36p 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.7. 已知,若不等式对一切恒成立,则的最大值为2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩(2)()f x f x -≥x R ∈a ( )A .B .C .D .716-916-12-14-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为()A .B .C .D .9. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种10.在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .11.设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为()A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)12.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i二、填空题13.【泰州中学2018届高三10月月考】设二次函数(为常数)的导函数为()2f x ax bx c =++,,a b c ,对任意,不等式恒成立,则的最大值为__________.()f x 'x R ∈()()f x f x ≥'222b a c+14.已知数列的前项和为,且满足,(其中,则.}{n a n n S 11a =-12n n a S +=*)n ∈N n S =15.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =16.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .17.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .18.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.三、解答题19.【启东中学2018届高三上学期第一次月考(10月)】设,函数.1a >()()21xf x x ea =+-(1)证明在上仅有一个零点;((2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤-20.选修4﹣5:不等式选讲已知f (x )=|ax+1|(a ∈R ),不等式f (x )≤3的解集为{x|﹣2≤x ≤1}.(Ⅰ)求a 的值;(Ⅱ)若恒成立,求k 的取值范围.21.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.22.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.23.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.24.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:(3x2+)n(n∈N+)的展开式的通项公式为T r+1=•(3x2)n﹣r•2r•x﹣3r=•x2n﹣5r ,令2n﹣5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 2.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B3.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A 的基本事件对应的“几何度量”N (A ),再求出总的基本事件对应的“几何度量”N ,最后根据几何概型的概率公式进行求解. 4. 【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OE PA P OE ⊥ABCD O到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积O 12PC ==可得,解得,故选B .34243316ππ=72PA =5. 【答案】C【解析】根据分层抽样的要求可知在社区抽取户数为.C 2492108180270360180108=⨯=++⨯6. 【答案】C7. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当(如图1)、(如图2)时,不等式不可能恒成立;当时,如图3,直线与0a >0a =0a <2(2)y x =--函数图象相切时,,切点横坐标为,函数图象经过点时,,2y ax x =+916a =-832y ax x =+(2,0)12a =-观察图象可得,选C .12a ≤-8. 【答案】D【解析】解:∵f (x )=y=2x 2﹣e |x|,∴f (﹣x )=2(﹣x )2﹣e |﹣x|=2x 2﹣e |x|,故函数为偶函数,当x=±2时,y=8﹣e 2∈(0,1),故排除A ,B ; 当x ∈[0,2]时,f (x )=y=2x 2﹣e x ,∴f ′(x )=4x ﹣e x =0有解,故函数y=2x 2﹣e |x|在[0,2]不是单调的,故排除C ,故选:D 9. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C . 10.【答案】D 【解析】设的公比为,则,,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D11.【答案】C【解析】解:f (x )=e x +x ﹣4,f (﹣1)=e ﹣1﹣1﹣4<0,f (0)=e 0+0﹣4<0,f (1)=e 1+1﹣4<0,f (2)=e 2+2﹣4>0,f (3)=e 3+3﹣4>0,∵f (1)•f (2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C . 12.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题. 二、填空题13.【答案】2-【解析】试题分析:根据题意易得:,由得:在R()'2f x ax b =+()()'f x f x ≥()220ax b a x c b +-+-≥上恒成立,等价于:,可解得:,则:{ 0a >≤V ()22444b ac a a c a ≤-=-,令,,222222241441c b ac a a a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭1,(0)c t t a =->24422222t y t t t t ==≤=-++++故的最大值为.222b ac +2-考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用14.【答案】13n --【解析】∵,∴,12n n a S +=12n n n S S S +-=∴∴,.13n n S S +=11133n n n S S --=⋅=15.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.5,,6AB VA h AC ===115652032V h h =⨯⨯⨯==4h =考点:几何体的三视图与体积.16.【答案】 1 .【解析】解:在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,所以,则|AC|=1.故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查. 17.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<-考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.18.【答案】120o【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,sin :sin :sin 3:5:7A B C =3,5,7a b ===熟记正弦、余弦定理的公式是解答的关键.三、解答题19.【答案】(1)在上有且只有一个零点(2)证明见解析f x ()∞+∞(﹣,)【解析】试题分析:试题解析:(1),,()()()22211xx f x ex x e x +='=++()0f x ∴'≥在上为增函数.()()21xf x x ea ∴=+-(),-∞+∞,,1a >Q ()010f a ∴=-<又,()1fa a =-=-,即,0,1>∴>Q 0f>由零点存在性定理可知,在上为增函数,且,()f x (),-∞+∞()00f f⋅<在上仅有一个零点。
城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.2. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°3. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 4. 下列函数中,在区间(0,+∞)上为增函数的是( ) A .y=x ﹣1B .y=()x C .y=x+D .y=ln (x+1)5. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)6. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,97. 曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( ) A . e 2 B .2e 2 C .e 2D . e 2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .9. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 10.在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a11.(2011辽宁)设sin (+θ)=,则sin2θ=( )A .﹣B .﹣C .D .12.已知f (x )=,则f (2016)等于( )A .﹣1B .0C .1D .2二、填空题13.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .14.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .15.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .16.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.17.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .18.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.三、解答题19.在△ABC 中,cos2A ﹣3cos (B+C )﹣1=0. (1)求角A 的大小;(2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.20.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.21.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)22.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.23.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.24.已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.2. 【答案】A【解析】解:如图所示,设AB=2,则A (2,0,0),B (2,2,0),B 1(2,2,2),C 1(0,2,2),E (2,1,0),F (2,2,1). ∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF 和BC 1所成的角是60°. 故选:A .【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题.3. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=, 解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质. 4. 【答案】 D【解析】解:①y=x ﹣1在区间(0,+∞)上为减函数,②y=()x是减函数,③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,④y=lnx在区间(0,+∞)上为增函数,∴A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间.5.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.6.【答案】B【解析】1从甲校抽取110× 1 200=60人,1 200+1 000=50人,故x=10,y=7.从乙校抽取110× 1 0001 200+1 0007.【答案】D【解析】解析:依题意得y′=e x,因此曲线y=e x在点A(2,e2)处的切线的斜率等于e2,相应的切线方程是y﹣e2=e2(x﹣2),当x=0时,y=﹣e2即y=0时,x=1,∴切线与坐标轴所围成的三角形的面积为:S=×e2×1=.故选D.8.【答案】A【解析】解:∵z=2﹣i,∴====,∴=10•=4+2i,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.9.【答案】C10.【答案】C【解析】考点:等差数列的通项公式.11.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.12.【答案】D【解析】解:∵f(x)=,∴f(2016)=f(2011)=f(2006)=…=f(1)=f(﹣4)=log24=2,故选:D.【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.二、填空题13.【答案】4+.【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O的半径为3,球O1的半径为1,则,在Rt△OMO1中,OO1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.14.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.15.【答案】1【解析】 【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值. 【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行, ∴,解得 a=1.故答案为 1. 16.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
城区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .2. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .43. 如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于()A .5B .6C .7D .84. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)5. 已知全集,,,则有( )U R ={|239}xA x =<≤{|02}B y y =<≤A . B .C .D .A ØB A B B =I ()R A B ≠∅I ð()R A B R=U ð6. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .37. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A .B .C .D .20152201532015232015228. 如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111]P ABC -A .2对B .3对C .4对D .6对班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 由两个1,两个2,两个3组成的6位数的个数为( )A .45B .90C .120D .36010.(2011辽宁)设sin (+θ)=,则sin2θ=()A .﹣B .﹣C .D .11.函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e )D .(3,4)12.如图,长方形ABCD 的长AD=2x ,宽AB=x (x ≥1),线段MN 的长度为1,端点M 、N 在长方形ABCD 的四边上滑动,当M 、N 沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数y=f (x )的图象大致为()A .B .C .D .二、填空题13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .15.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .16.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 .17.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线上xC y e :=一点,直线经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.20l x y c :++=18.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示. x ﹣1045f (x )1221下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .三、解答题19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v (x)可以达到最大,并求出最大值.(精确到1辆/小时).20.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.21.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF⊥平面DCE;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.22.19.已知函数f(x)=ln.23.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.24.在中,,,.(1)求的值;(2)求的值。
青县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .141012. 设集合A={x|x 2+x ﹣6≤0},集合B 为函数的定义域,则A ∩B=()A .(1,2)B .[1,2]C .[1,2)D .(1,2]3. 已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=( )A .﹣2B .2C .﹣D .4. 若某程序框图如图所示,则输出的n 的值是()A .3B .4C .5D .65. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( )A .1B .2C .3D .46. 不等式≤0的解集是()A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]7. 定义运算,例如.若已知,则=()A .B .C .D .8. 下列判断正确的是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台9. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)10.设等比数列{a n }的公比q=2,前n 项和为S n ,则=()A .2B .4C .D .11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .12.已知全集,,,则有( )U R ={|239}xA x =<≤{|02}B y y =<≤A .B .C .D .A ØB A B B =I ()R A B ≠∅I ð()R A B R=U ð二、填空题13.若等比数列{a n }的前n 项和为S n ,且,则= .14.抛物线y=4x 2的焦点坐标是 .15.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称;②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.16.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答) 17.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .18.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a= .三、解答题19.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。
城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有()A .120个B .480个C .720个D .840个2. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<b B .a <b <1C .1<a <bD .b <1<a 3. (﹣6≤a ≤3)的最大值为()A .9B .C .3D .4. 函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}5. 若命题“p 或q ”为真,“非p ”为真,则()A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假6. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是()A .(0,)B .(0,]C .(,]D .[,1)7. 设公差不为零的等差数列的前项和为,若,则( ){}n a n n S 4232()a a a =+74S a = A .B .C .7D .1474145【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.n 8. (理)已知tan α=2,则=()A .B .C .D .9. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( )A .0B .1C .2D .310.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=()A .30°B .60°C .120°D .150°11.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为()A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为()A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)二、填空题13.(﹣)0+[(﹣2)3]= .14.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .15.已知α为钝角,sin (+α)=,则sin (﹣α)= .16.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .17.在直角梯形分别为的中点,,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===,AB AC 点在以为圆心,为半径的圆弧上变动(如图所示).若,其中,P A AD DE AP ED AF λμ=+u u u v u u u v u u u v,R λμ∈则的取值范围是___________.2λμ-18.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 . 三、解答题19.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列.(1)求数列{a n }的通项公式;(2)若b n =,求数列{b n }的前n 项和S n .20.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0(1)若a=,且p ∧q 为真,求实数x 的取值范围.(2)若p 是q 的充分不必要条件,求实数a 的取值范围. 21.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*n N ∈,p ,为常数),且145x x x ,,成等差数列,求:(1)p q ,的值;(2)数列{}n x 前项和n S 的公式.22.某同学用“五点法”画函数f (x )=Asin (ωx+φ)+B (A >0,ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如表: x x 1x 2x 3ωx+φ0π2πAsin (ωx+φ)+B﹣(Ⅰ)请求出表中的x 1,x 2,x 3的值,并写出函数f (x )的解析式;(Ⅱ)将f (x )的图象向右平移个单位得到函数g (x )的图象,若函数g (x )在区间[0,m](3<m <4)上的图象的最高点和最低点分别为M ,N ,求向量与夹角θ的大小.23.在等比数列{a n }中,a 2=3,a 5=81.(Ⅰ)求a n ;(Ⅱ)设b n=log3a n,求数列{b n}的前n项和S n.24.已知f(α)=,(1)化简f(α);(2)若f(α)=﹣2,求sinαcosα+cos2α的值.城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:要选取5个字母时首先从其它6个字母中选3个有C63种结果,再与“qu“组成的一个元素进行全排列共有C63A44=480,故选B.2.【答案】A【解析】解:由f(x)=e x+x﹣2=0得e x=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出计算y=e x,y=lnx,y=2﹣x的图象如图:∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选:A.【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.3.【答案】B【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f (a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x ≤4且x ≠2,∴函数f (x )的定义域为{x|1<x ≤4且x ≠2}.故选B 5. 【答案】B【解析】解:若命题“p 或q ”为真,则p 真或q 真,若“非p ”为真,则p 为假,∴p 假q 真,故选:B .【点评】本题考查了复合命题的真假的判断,是一道基础题. 6. 【答案】D 【解析】解:由题意设=2x ,则2x+x=2a ,解得x=,故||=,||=,当P 与两焦点F 1,F 2能构成三角形时,由余弦定理可得4c 2=+﹣2×××cos ∠F 1PF 2,由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣cos ∠F 1PF 2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题. 7. 【答案】C.【解析】根据等差数列的性质,,化简得,∴4231112()32(2)a a a a d a d a d =+⇒+=+++1a d =-,故选C.1741767142732a dS d a a d d⋅+===+8. 【答案】D【解析】解:∵tanα=2,∴===.故选D.9.【答案】C【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,可得b的最小值为:2.故选:C.【点评】本题考查集合的基本运算,交集的意义,是基础题.10.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.11.【答案】C【解析】解:如图所示,△BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是.故选C.【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.12.【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.【点评】本题综合考查奇函数定义与它的单调性.二、填空题13.【答案】 .【解析】解:(﹣)0+[(﹣2)3]=1+(﹣2)﹣2=1+=.故答案为:.14.【答案】 (﹣4,0] .【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.15.【答案】 ﹣ .【解析】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.16.【答案】 ∃x0∈R,都有x03<1 .【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R ,都有x03<1”.故答案为:∃x0∈R,都有x03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.-17.【答案】[]1,1【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.18.【答案】 .【解析】解:点(m,0)到直线x﹣y+n=0的距离为d=,∵mn﹣m﹣n=3,∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),∴(m﹣1)+(n﹣1)≥2,∴m+n≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.三、解答题19.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.20.【答案】【解析】解:p:,q:a≤x≤a+1;∴(1)若a=,则q:;∵p∧q为真,∴p,q都为真;∴,∴;∴实数x 的取值范围为;(2)若p 是q 的充分不必要条件,即由p 能得到q ,而由q 得不到p ;∴,∴;∴实数a 的取值范围为.【点评】考查解一元二次不等式,p ∧q 真假和p ,q 真假的关系,以及充分不必要条件的概念.21.【答案】(1)1,1==q p ;(2)2)1(221++-=-n n S n n .考点:等差,等比数列通项公式,数列求和.22.【答案】【解析】解:(Ⅰ)由条件知,,,∴,,∴,.(Ⅱ)∵函数f (x )的图象向右平移个单位得到函数g (x )的图象,∴,∵函数g (x )在区间[0,m](m ∈(3,4))上的图象的最高点和最低点分别为M ,N ,∴最高点为,最低点为,∴,,∴,又0≤θ≤π,∴.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.23.【答案】【解析】解:(Ⅰ)设等比数列{a n}的公比为q,由a2=3,a5=81,得,解得.∴;(Ⅱ)∵,b n=log3a n,∴.则数列{b n}的首项为b1=0,由b n﹣b n﹣1=n﹣1﹣(n﹣2)=1(n≥2),可知数列{b n}是以1为公差的等差数列.∴.【点评】本题考查等比数列的通项公式,考查了等差数列的前n项和公式,是基础的计算题.24.【答案】【解析】解:(1)f(α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)。
新市区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A,若,则实数a 的取值范围是( )A.B.C.D.2. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对3. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A. B. C. D .04. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A .(0,) B .(0,] C.(,] D .[,1)5. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条6. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .417. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 8. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A.B.﹣C.D.﹣9. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3] C .(﹣3,0] D .(﹣3,+∞)10.已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.B.C.D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④B .①⑤C .②⑤D .③⑤12.函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)二、填空题13.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .14.△ABC 中,,BC=3,,则∠C=.15.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .16.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ”的概率为_________. 17.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .18.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.三、解答题19.设函数f (x )=kx 2+2x (k 为实常数)为奇函数,函数g (x )=a f (x )﹣1(a >0且a ≠1).(Ⅰ)求k 的值;(Ⅱ)求g (x )在[﹣1,2]上的最大值;(Ⅲ)当时,g (x )≤t 2﹣2mt+1对所有的x ∈[﹣1,1]及m ∈[﹣1,1]恒成立,求实数t 的取值范围.1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623820.已知函数.(Ⅰ)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;(Ⅱ)求函数f(x)在区间[1,e]上的最小值.21.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.22.已知复数z的共轭复数是,且复数z满足:|z﹣1|=1,z≠0,且z在复平面上对应的点在直线y=x上.求z及z的值.23.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.24.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)﹣f()<2.新市区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.014.15..16.1 ee17.2.18.19 三、解答题19.20.21.22.23.24.。
城区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q2.不等式组在坐标平面内表示的图形的面积等于( ) A.B.C.D.3. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)4. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )5. 数列{a n }满足a 1=,=﹣1(n ∈N *),则a 10=( )A. B.C.D.6. 函数1ln(1)y x=-的定义域为( )A . (,0]-∞B .(0,1)C .(1,)+∞D .(,0)(1,)-∞+∞7. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .k >7B .k >6C .k >5D .k >48. 若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .B .C .D .9. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣10.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或211.用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除12.曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+1二、填空题13.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 .14.若tan θ+=4,则sin2θ= .15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 .16.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .17.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .18.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .三、解答题19.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.20.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.21.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.22.(本小题满分13分)如图,已知椭圆C :22221(0)x y a b a b +=>>C 的左顶点T 为圆心作圆T :222(2)x y r ++=(0r >),设圆T 与椭圆C 交于点M 、N .[_](1)求椭圆C 的方程;(2)求TM TN ⋅的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M 、N 的任意一点,且直线MP ,NP 分别与x 轴交于点R S 、(O 为坐标 原点),求证:OR OS ⋅为定值.【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.23.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.24.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.城区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13. 5 .14..15. 0 .16. 2016 .17. (1,2) .18. {0,1} .三、解答题19.(1)a =12(2)(-∞,-1-1e ].(3)82720.(1)x y 82 ;(2)964.21.22. 23. 24.。
新青区一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是(
)
A .9
B .11
C .13
D .15
2. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足
的x 的范围为(
)
A .(﹣∞,)∪(2,+∞)
B .(,1)∪(1,2)
C .(,1)∪(2,+∞)
D .(0,)∪(2,+∞
)
3. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是(
)
A .10个
B .15个
C .16个
D .18个
4. 函数f (x )=﹣lnx 的零点个数为( )
A .0
B .1
C .2
D .3
5. 与向量=(1,﹣3,2)平行的一个向量的坐标是(
)
A .(,1,1)
B .(﹣1,﹣3,2)
C .(﹣,,﹣1)
D .(,﹣3,﹣2
)
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
6. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )
A .4
B .8
C .10
D .13
7. 在中,、、分别为角
、
、
所对的边,若
,则此三角形的形状一定是
( )
A .等腰直角
B .等腰或直角
C .等腰
D .直角
8. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是(
)
A .f (x )>0
B .f (x )<0
C .f (x )>x
D .f (x )<x
9. 若命题“p ∧q ”为假,且“¬q ”为假,则( )
A .“p ∨q ”为假
B .p 假
C .p 真
D .不能判断q 的真假
10.设函数是定义在上的可导函数,其导函数为,且有,则不等式
)(x f )0,(-∞)('x f 2
')()(2x x xf x f >+的解集为
0)2(4)2014()2014(2>--++f x f x A 、 B 、 C 、 D 、)2012,(--∞)0,2012(-)2016,(--∞)
0,2016(-11.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:
分组[70,80[80,90[90,100[100,110频数34815分组[110,120[120,130
[130,140
[140,150]
频数
15
x
3
2
乙校:
分组[70,80[80,90[90,100[100,110
频数1289分组[110,120[120,130[130,140
[140,150]
频数
10
10
y
3
则x ,y 的值分别为 A 、12,7 B 、 10,7
C 、 10,8
D 、 11,9
12.已知f (x )在R 上是奇函数,且满足f (x+4)=f (x )
,当x ∈(0,2)时,f (x )=2x 2,则f (2015)=(
)A .2
B .﹣2
C .8
D .﹣8
二、填空题
13.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .
14.直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则
20x y t +-=216y x =
A B x O 面积的最大值为
.
OAB ∆【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决
问题的能力.15.函数
的单调递增区间是 .
16.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是
(写出所有你认为正确的命题).
17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两
()2,0,{,0x x x f x x lnx x a
+≤=->个零点,则正实数的值为______.
a 18.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .
三、解答题
19.(本小题满分12分)某市拟定2016年城市建设三项重点工程,该市一大型城建公司准备参加这,,A B C 三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对三项重点工程竞标成功的概率分
,,A B C
别为,,
,已知三项工程都竞标成功的概率为,至少有一项工程竞标成功的概率为.a b 14()a b >12434
(1)求与的值;
a b (2)公司准备对该公司参加三个项目的竞标团队进行奖励,项目竞标成功奖励2万元,项目竞,,A B C A B 标成功奖励4万元,项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
C 【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
20.(本小题满分12分)1111]
已知函数()()1
ln 0f x a x a a x =+≠∈R ,.
(1)若1a =,求函数()f x 的极值和单调区间;
(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.
21.已知抛物线C :x 2=2y 的焦点为F .
(Ⅰ)设抛物线上任一点P (m ,n ).求证:以P 为切点与抛物线相切的方程是mx=y+n ;
(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明.
22.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,
5313a b +=.111]
(1)求{}n a ,{}n b 的通项公式;
(2)求数列{
}n
n
a b 的前项和n S .23.如图1,圆O 的半径为2,AB ,CE 均为该圆的直径,弦CD 垂直平分半径OA ,垂足为F ,沿直径AB 将半圆ACB 所在平面折起,使两个半圆所在的平面互相垂直(如图2)(Ⅰ)求四棱锥C ﹣FDEO 的体积
(Ⅱ)如图2,在劣弧BC 上是否存在一点P (异于B ,C 两点),使得PE ∥平面CDO ?若存在,请加以证明;
若不存在,请说明理由.
24.【常熟中学2018届高三10月阶段性抽测(一)】已知函数有一个零点为4,且满足.
()()()3244f x x a x a b x c =+--++(),,R a b c ∈()01f =(1)求实数和的值;
b c (2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?0x a ()y f x =()()
00,x f x 若存在,求出的值;若不存在,请说明理由;0x (3)讨论函数在上的零点个数.
()()g x f x a =+()0,4
新青区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
题号12345678910
答案C D B
B
C
C
B
A
B
C.
题号1112答案
B
B
二、填空题
13. .
1415. [2,3) . 16.③④17.e 18. .
三、解答题
19.
20.(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,
;(2)()1a e e ⎛
⎫∈-∞-+∞ ⎪⎝
⎭U ,,.21.
22.(1)2,2==q d ;(2)1
23
26-+-=n n n S .23.
24.(1);
(2)答案见解析;(3)当或时,在有两个零点;当1
,14
b c =
=1a <-0a >()g x ()0,410a -≤≤时,在有一个零点.
()g x ()0,4。