数字推理小结
- 格式:doc
- 大小:81.50 KB
- 文档页数:4
行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。
通过观察规律,可以将下一个数字或者数字序列进行
推理。
2.数字运算:在数字推理题中,经常出现的是数字的运算关系。
可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。
3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。
4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。
5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。
可以通过这些限制条件进行推理。
6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。
7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。
公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差 d 为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。
如7,11,15,( 19 ) (2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
如7,11,16,22,( 29 )(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
如7,11,13,14,( 14.5 )(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
【例题】7,11,6,12,( 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
【例题】7,11,16,10,3,11,(20 )备考规律二:等比数列及其变式(后一项与除以前一项的倍数 q 为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。
【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。
【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘 2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为 3 的n 次方。
【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。
【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1) “平方数”的数列【例题】1,4,9,16,25,36 ,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】 0,3,8,15,24,(35 )【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有一定规律的。
数字推理技巧总结
数字推理是指通过对数字、数据的分析、比较、推断等方法,得出结论的过程。
在解决问题、做决策、研究数据等方面,数字推理技巧都能起到重要作用。
以下是数字推理技巧的总结:
1. 善于利用比较。
比较是数字推理中最基本的方法之一,通过比较不同数据之间的差异,可以得出结论。
例如,比较两个数据的大小、趋势、变化等。
2. 注意数字间的关系。
在数字推理中,数字间的关系往往比单个数字更重要。
例如,两个数字的差值、倍数、比率等,都能提供更多的信息。
3. 善于使用图表。
图表是数字推理中最常用的工具之一,通过图表能够更直观地展示数据之间的关系,从而更方便地分析和推理。
4. 注意数据的来源和质量。
数据的来源和质量对数字推理的结果有很大的影响,因此,在进行数字推理时,需要注意数据的来源是否可靠,数据是否完整、准确等。
5. 尽可能多地收集数据。
在数字推理中,数据的数量往往比质量更重要,因此,在分析数据时,应尽可能多地收集数据,从而得出更准确的结论。
6. 利用数字模型。
数字模型是数字推理中的一种重要工具,通过建立数字模型,可以更好地理解数据之间的关系,从而得出更准确的结论。
7. 综合分析。
数字推理往往涉及到多个数字、多个数据,因此,
在分析时,需要将这些数据综合起来分析,从而得出更全面、准确的结论。
以上是数字推理技巧的总结,希望对大家有所帮助。
数字推理技巧总结
数字推理是一种基于数字和数学知识的推理方法,通过对数字的组合、转换和计算,得出一些结论或规律。
数字推理技巧是指在数字推理过程中可以使用的一些方法和策略,以下是一些数字推理技巧的总结:
1.观察数字的规律:在数字推理题目中,往往会出现一些数字的规律,例如数列的增长规律、数字的排列顺序等等,要仔细观察这些规律,并将其应用到题目中。
2.利用数据的对称性:在数字推理题目中,往往会出现一些对称的数字或图形,这时可以利用对称性来推导出一些结论。
3.进行逆向推理:有时候可以从题目给出的答案中逆推出一些关键的数字或规律,然后再根据这些数字或规律来推导出正确的答案。
4.应用数学公式:有些数字推理题目中会涉及到一些数学公式,例如平均数、标准差等等,要熟练掌握这些公式,并能够灵活应用。
5.运用逻辑思维:数字推理也涉及到逻辑思维,要善于运用逻辑思维来推导出正确的答案。
6.学会多种解题方法:在数字推理题目中,有时候会有多种解题方法,要学会多种解题方法,并根据实际情况选择合适的方法来解题。
以上是一些数字推理技巧的总结,希望对大家有所帮助。
- 1 -。
数字推理技巧总结
数字推理是一种常见的思考方法,同时也是非常实用的技巧。
以下是一些数字推理的技巧总结:
1. 观察数字之间的关系。
数字可以按照大小、倍数、时间、空间等不同的关系进行比较。
了解数字之间的关系对于进行数字推理很有帮助。
2. 进行变量替换。
将数字转化成不同的变量,有助于更好地理解数字之间的关系。
同时,也可以更直接地运用数字进行推理。
3. 使用辅助工具。
数字推理可以用图表、表格、图像等方式进行辅助。
这些辅助工具可以帮助我们更直观地观察数字之间的关系。
4. 利用数学公式和运算符。
数字推理往往需要进行加减乘除等运算,数学公式和运算符是进行数字推理的常见工具。
5. 细心观察条件。
数字推理往往需要根据条件进行推理解题,因此细心观察条件是十分重要的。
同时,也需要注意条件中的排除性关系等细节问题。
总之,数字推理是一种灵活运用数字的思考方法,需要我们不断练习。
通过观察数字之间的关系,进行变量替换,使用辅助工具,利用数学公式和运算符,以及细心观察条件,我们可以更快、更准确地进行数字推理解题。
数字推理小结及习题质数(在所有比1大的整数中,除了1和它本身以外,不再有别的约2,3,5,7,11,13,17,19……合数(约数除了1和它本身外还有其他)4.6.8.9.10.12.14.15.16.181既不是质数也不是合数平方数列1,4,9,16,25,36,49,64,81……立方数列1,8,27,64,125,216,343……奇数列1,3,5,7,9,11……偶数列2,4,6,8,10,12……自然列0,1,2,3,4,5,6,7,8,9……阶乘0!=1 1!=1 2!=2 3!=6 4!=24 5!=120 6!=720 N!=N*(N-1)*(N-2).....*1"!"表示阶乘符号2的1-10次:2,4,8,16,32,64,128,256,512,10243的1-6次:3,9,27,81,243,7294的1-5次:4,16,64,256,1024,5的1-5次:5,25,125,625,31256的1-4次:6,36,216,12967的1-3次:7,49,3438的1-3次:8,64,5129的1-3次:9,81,729(需要熟记)等差数列这个相对比较基础一般给出的也是5项以上的,一般当我们看见一个数列感到无从下手时不妨做差试试,很多时候都是这样才发现规律的(数字相差不大)括号在中间的趋势递增或递减正负交错的(做差后等比)例1. 13,16,19,22,25,( )例2. 2,3,7,16,32,( )例3. 8,9,17,44,90,( )例4. 15,17,21,29,45,77,( )重点在三级等差,等差变式以及C-A模式例如2 ,5 ,9, 17, 34, 67,125-------------------------递增且增幅较小选择做差做差3,4,8,17,33,581 ,4,9 ,16,2511,12,15,18,27,48,117(C-A模式的)----------------------当我们直接做差没规律时不妨试试隔项做差C-A做差4,6,12,30,90,B/A=1.5,2,2.5,3另外现在两项和三项和的也比较多(这种一般都构成等比,平方,立方数列……)例如当数字比较接近,做差又没有规律时,不妨做和试试4,5,11,14,22,27(两项)做和9 16 25 36 49 为平方数列(这题数字比较小,一般我们看见4,5,11就可以联想到和平方了)1,10,16,38,71,107(三项)三项和27 64 125 216 一般我们看见1 10 16 联想到和为27 验证三项和数差(数跳不大,考虑是做差),但是有些时候直接做差没规律,这时可以考虑隔项规律(做差,做和)还有就是两项和,三项和,现在还有的就是自残的比较多例如1025,1227,2439,2944,3045,( )A.4057 B.5065 C.6348 D.7079做差没有规律观察数字整体特性25-10=45-30=15数字用ABCD表示CD-AB=1511,13,21,30,42,()A68 B74 C80 D7211+(1+1)*1=13 13+(1+3)*2=21 21+(2+1)*3=30 30+(3+0)*4=42 4 2+(4+2)*5=72这题有难度的,大家就当开阔思路了!(12,13,7),(23,31,9),(43,12,10),(37,16,?)A.45B.32C.19D.13前2个数都较第3个数大由4*1+3*2=10联想到再代入验证1*1+2*3=72*3+3*1=94*1+3*2=103*1+7*6=45等比数列,一般都是相邻项有倍数关系,或者相除后构成新数列,还有就是和等差数列混合的。
行测数字推理方法总结行测数字推理方法总结对数字推理题的不同题型做好归纳和解题技巧总结,是解答数字推理题的关键。
下面学编为大家带来行测数字推理方法总结,供各位考生练习。
行测技巧:数字推理的方法与技巧1.数字推理是我国目前所有公务员考试行政能力测试的必考题形之一,主要考察考生对数字和基本数列的敏感程度,也是反映考生基本思维能力的重要手段。
增加这方面的练习也能有效的锻炼考生正确的思维方式,对图形推理和类比推理等一些题型的深度把握也有重要的意义。
今天,我们就来讲一讲,数字推理中应用到的三种思维模式。
2.首先我们要说的是三种思维模式中的第一种,也是最基本的思维模式,那就是横向递推的思维模式。
横向递推的思维模式是指在一组数列中,由数字的前几项,经过一定的线性组合,得到下一项的`思维模式。
举个简单的例子。
5 11 23 47 ( )根据横向递推的思维模式,思考方向是如何从5得到11,会想到乘2再加1,按照这样的思路继续向下推,发现,每一项都是前一项的2倍再加1,于是找出规律,这里应该填95。
3.再举一例。
2 3 5 8 13 ( )这个数列是大家都比较熟悉的一个基本数列,和数列。
这一类数列是前几项加和会得到下一项。
这里应该填8于13的和,21。
我们总结一下横向递推思维模式的解题思路特点,在这种思维模式的指导下,我们总是习惯于在给出数列的本身上去找连续几项之间的线性组合规律,这也是这一思维模式的根本所在。
相较于横向递推思维模式,稍为复杂的就是纵向延伸的思维模式。
他不再是简单的考虑数列本身,而是把数列当中的每一个数,都表示为另外一种形式,从中找到新的规律。
我们一起来看一个例子。
1/9 1 7 36 ( )注意这样一个数列,如果我们把36换成35的话,我们会发现,前后项之间会出现微妙的倍数变化关系,即后向除前项得到数列9 7 5 3,这里可以填上105。
但这里时36的话就没有这样的倍数变化关系了。
那么我们可以用纵向延伸的思维模式,把数列中每一个数字都用另外一种形式来表述,即9-1 80 71 62 53,这里可以填125。
数字推理知识点归纳总结一、数字推理的基本概念数字推理是通过对数字和逻辑推理来解决问题的一种方法。
它包括数字的运算、逻辑关系、数列、概率统计等内容。
数字推理在数学学科中占据着重要的地位,它不仅可以帮助我们解决问题,还可以培养我们的逻辑思维能力。
1.数字的运算数字的运算是数字推理中最基本的内容。
它包括加减乘除以及一些复杂的数学运算。
通过数字的运算,我们可以得出一些数学结论,解决一些实际问题。
例如:如果有一个装满水的容器,里面有2升水,小张往里加了4升水后,容器里面有多少水?答案:容器里面有6升水。
2.逻辑关系逻辑关系是数字推理中非常重要的一个内容。
它指的是数字之间的一些规律和关系。
通过对数字之间的逻辑关系进行分析,我们可以找到一些规律,进而解决问题。
例如:1、3、5、7、9……这个数列中的下一个数是多少?答案:下一个数是11。
3.数列数列是数字推理中非常常见的内容。
它指的是一组数字按照一定的规律排列而成的序列。
通过对数列的规律进行分析,我们可以找到一些数学结论。
例如:1、2、4、8、16……这个数列中的下一个数是多少?答案:下一个数是32。
4.概率统计概率统计是数字推理中的另一个重要内容。
它指的是通过概率和统计的方法解决问题。
通过对数据的概率和统计进行分析,我们可以得出一些结论,解决一些实际问题。
例如:抛掷一枚硬币,正面朝上的概率是多少?答案:正面朝上的概率是0.5。
二、数字推理的解题方法数字推理是一个相对复杂的知识点,为了解决数字推理问题,我们需要掌握一些解题方法。
1.观察规律观察规律是解决数字推理问题的最基本的方法。
通过对数字之间的规律进行观察和分析,我们可以找到一些规律,进而解决问题。
例如:对于一个数列1、4、9、16、25……,我们可以通过观察规律发现,这个数列是每个数的平方,因此下一个数是36。
2.利用数学公式利用数学公式是解决数字推理问题的另一个重要方法。
通过对数学公式的应用,我们可以快速解决一些数字推理问题。
数字推理技巧总结数字推理技巧是一种通过观察数字之间的关系和规律来推断答案的方法。
在解决问题和推理推断过程中,数字推理技巧可以帮助我们更加准确地得出结论。
本文将从数字序列、数学运算、逻辑推理和概率统计等方面总结数字推理技巧。
一、数字序列推理数字序列是数字按一定顺序排列而形成的序列,通过观察数字序列中的规律可以推断出下一个数字或者找出隐藏的规律。
常见的数字序列包括等差数列、等比数列和斐波那契数列等。
1. 等差数列:等差数列是指相邻两个数之间差值相等的数列。
观察数字序列中相邻数字的差值,如果差值相等,则可以判断为等差数列。
根据已知数字序列的首项和公差,可以推算出下一个数字。
2. 等比数列:等比数列是指相邻两个数之间比值相等的数列。
观察数字序列中相邻数字的比值,如果比值相等,则可以判断为等比数列。
根据已知数字序列的首项和公比,可以推算出下一个数字。
3. 斐波那契数列:斐波那契数列是指每个数都是前两个数之和的数列。
观察数字序列中的数字之间的相加关系,如果每个数字都是前两个数字之和,则可以判断为斐波那契数列。
根据已知数字序列的前两个数字,可以推算出下一个数字。
二、数学运算推理数学运算是通过对数字进行加减乘除等运算,推导出结果的过程。
在数学运算推理中,常见的技巧包括逆运算、代入法和重复运算法等。
1. 逆运算:逆运算是指对已知的数学运算进行反向操作,从结果推算出原始的数字。
例如,已知两个数的和,可以通过减去其中一个数,得到另一个数。
2. 代入法:代入法是指将已知的数字代入到数学公式或方程中,通过计算得到结果。
例如,已知一个等式中的一部分数字,可以将这些数字代入到等式中,求解未知的数字。
3. 重复运算法:重复运算法是指通过多次进行相同的数学运算,逐步逼近目标结果。
例如,已知一个数字进行重复的加法运算,每次加上相同的数,直到达到目标结果。
三、逻辑推理逻辑推理是通过观察数字之间的逻辑关系,推断出隐藏的规律或者答案。
在逻辑推理中,常见的技巧包括排除法、归纳法和演绎法等。
仔细观察和分析各数之间的关系,大胆提出假设,迅速将这种假设延伸到下面的数,如果能得到验证,即解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。
(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。
(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;(4)二级等差:相邻数之间的差或比构成了一个等差数列;(5)二级等比数列:相邻数之间的差或比构成一个等比数理;(6)加法规律:前两个数之和等于第三个数,(7)减法规律:前两个数之差等于第三个数(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列(11)A2-B=C这种数列有正负(12)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:2、全是偶数3、奇、偶相间二、排序:题目中的间隔的数字之间有排序规律三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数2、前两数相加再加或者减一个常数等于第三数四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:“空缺项在中间,从两边找规律”2、等差数列:3、二级等差:相减的差值之间是等差数列4、二级等比:相减的差是等比数列5、相减的差为完全平方或开方或其他规律6、相隔数相减呈上述规律:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数2、前一个数乘以一个数加一个常数等于第二个数,N1×m+a=N23、两数相乘的积呈现规律:等差,等比,平方,...六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:2、前一个数的平方是第二个数。
1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一点模式,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3)看各数的大小组合规律,做出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。
4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269 269+17=286286+16=302 ∴下一个数为302+5=307。
7)再复杂一点,如0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。
8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。
而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。
补充:1)中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略如1/2、1/6、1/3、2、6、3、1/22)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉如看到2、5、10、17,就应该想到是1、2、3、4的平方加1如看到0、7、26、63,就要想到是1、2、3、4的立方减1对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立方的数列往往数的跨度比较大,而且间距递增,且递增速度较快3)A^2-B=C因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来如数列5,10,15,85,140,7085如数列5, 6, 19, 17 , 344 , -55如数列5,15,10,215,-115这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看4)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项如数列1,8,9,64,25,216奇数位1、9、25 分别是1、3、5的平方偶数位8、64、216是2、4、6的立方先补充到这儿。
5) 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系如数列:1、2、3、6、12、24由于后面的数呈2倍关系,所以容易造成误解!数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.数字推理题型及讲解按照数字排列的规律, 数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1 5 3 7 ()A .2 B.8 C.9 D.12解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C是奇数2、全是偶数:例题:2 6 4 8 ()A. 1B. 3C. 5D. 10解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。
3、奇、偶相间例题:2 13 4 17 6 ()A.8B. 10C. 19D. 12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C练习:2,1,4,3,(),5 99年考题二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36()A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。
三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,(),14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;练习:6,9,(),24,39 // 1,0,1,1,2,3,5,()2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,()99年考题A.162 B.156 C.148 D.145解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,(),3,-3A.0B.1C.2D.3答案是A解析:6-3=3 3-3=0 3-0=3 0-3=-3提醒您别忘了:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10,15,( )A. 16B.20C.25D.30答案是B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,()A.102B.101C.100D.99 答案是B解析:邻数之间的差值为5、4、3、(2),等差数列,差值为1103-2=101练习:8,8,6,2,()// 1,3,7,13,21,31,()4、二级等比:相减的差是等比数列例题:0,3,9,21,45, ( )相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,( ),29 ---99年考题解析:-1-(-2)=1 ,1-(-1)=2,5-1=4,13-5=8,29-13=16 后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是135、相减的差为完全平方或开方或其他规律例题:1,5,14,30,55,()相邻的数的差为4,9,16,25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38B.42C.46D.51解析:53-50=3 50-47=3 48-45=3 45-3=42 答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,( )前两个数的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2例题:6,14,30,62,( )A.85B.92C.126D.250解析:6×2+2=14 14×2+2=30 30×2+2=62 62×2+2=126,答案为C 练习:28,54,106,210,()3、两数相乘的积呈现规律:等差,等比,平方,...例题:3/2,2/3,3/4,1/3,3/8 ()(99年海关考题)A. 1/6B.2/9C.4/3D.4/9解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/83/8×?=1/16 答案是A六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,(16)2、前一个数的平方是第二个数。
1)直接得出:2,4,16,()解析:前一个数的平方等于第三个数,答案为256。
2)前一个数的平方加减一个数等于第二个数:1,2,5,26,(677)前一个数的平方减1等于第三个数,答案为6773、隐含完全平方数列:1)通过加减化归成完全平方数列:0,3,8,15,24,()前一个数加1分别得到1,4,9,16,25,分别为1,2,3,4,5的平方,答案为6的平方36。
2)通过乘除化归成完全平方数列:3,12,27,48,()3, 12,27,48同除以3,得1,4,9,16,显然,答案为753)间隔加减,得到一个平方数列:例:65,35,17,(),1A.15B.13C.9D.3解析:不难感觉到隐含一个平方数列。
进一步思考发现规律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,所以下一个数应该是2的平方减1等于3,答案是D.练习1:65,35,17,(3 ),1 A.15 B.13 C.9 D.3练习2:0,2,8,18,(24 )A.24 B.32 C.36 D.52(99考题)八、开方:技巧:把不包括根号的数(有理数),根号外的数,都变成根号内的数,寻找根号内的数之间的规律:是存在序列规律,还是存在前后生成的规律。
九、立方:1、立方数列:例题:1,8,27,64,()解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125。
2、立方加减乘除得到的数列:例题:0,7,26,63 ,()解析:前四项分别为1,2,3,4的立方减1,答案为5的立方减1,为124。
十、特殊规律的数列:1、前一个数的组成部分生成第二个数的组成部分:例题:1,1/2,2/3,3/5,5/8,8/13,()答案是:13/21,分母等于前一个数的分子与分母的和,分子等于前一个数的分母。
2、数字升高(或其它排序),幂数降低(或其它规律)。
例题:1,8,9,4,(),1/6A.3 B.2 C.1 D.1/3解析:1,8,9,4,(),1/6依次为1的4次方,2的三次方,3的2次方(平方),4的一次方,(),6的负一次方。
存在1,2,3,4,(),6和4,3,2,1,(),-1两个序列。