函数的性质在数列中的应用
- 格式:ppt
- 大小:466.50 KB
- 文档页数:16
应用函数思想解决数列问题上海市澄衷高级中学 丁志伟数列问题一向是高中数学的重点与难点,除了其自身的一些特殊性质外,从函数角度来看,数列从根本上讲是一种特殊的函数(通常是离散函数)。
所以很多数列问题都可以从函数的角度来考虑,运用函数的概念、性质、图像来解决问题。
所以本文主要说明如何应用函数思想来解决数列问题。
基础知识:用函数的观点理解等差数列、等比数列1.对于等差数列,∵a n =a 1+(n -1)d =dn +(a 1-d ),当d ≠0时,a n 是n 的一次函数,对应的点(n ,a n )是位于直线上的若干个点.当d >0时,函数是增函数,对应的数列是递增数列;同理,d =0时,函数是常数函数,对应的数列是常数列;d <0时,函数是减函数,对应的数列是递减函数.若等差数列的前n 项和为S n ,则S n =pn 2+qn (p 、q ∈R ).当p =0时,{a n }为常数列;当p ≠0时,可用二次函数的方法解决等差数列问题.2.对于等比数列:a n =a 1q n-1.可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列是递增数列;当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是递减数列.当q =1时,是一个常数列.当q <0时,无法判断数列的单调性,它是一个摆动数列.一、运用函数的有关概念解决问题1.运用函数图像上点的坐标的意义来解决问题例1已知等差数列{}n a 的前 m 项和为30,前2m 项和为100,则它的前3m 项和为(C )A 、130B 、170C 、210D 、260分析:等差数列的前n 项和n S =21()22d d n a n +-,可以看成关于 n 的二次函数,则n S n 可以看成关于n 的一次函数. 一次函数图像是一条直线,那么三个点)3,3(),2100,2(),30,(3mS m m m m m m 就在同一条直线上,利用斜率相等,得它的前3m 项和为210. 2.运用复合函数概念解决问题例2、已知122113,,,3n n n n a a a n Z a -*+==∈=求分析:条件21n n a a +=理解为2(1)()f n f n +=,而1122423)1()2()1()(--==⋯⋯=-=-=n n f n f n f n f二 、运用函数图像使数列问题直观化具体化1、利用凸凹函数图像解决问题例3、 某厂2001年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同。
数列与函数的关系与应用知识点总结数列是由一系列按照特定规律排列的数字组成的序列,函数则是将一个集合的数值与另一个集合相关联的规则。
数列和函数在数学中具有重要的作用,广泛应用于各个领域,包括物理、经济、工程等。
本文将总结数列与函数的关系以及它们在实际应用中的重要性。
一、数列与函数的关系1. 数列是函数的一种特殊形式数列可以看作是一种离散的函数,它将正整数集合映射到实数集合。
数列通常用通项公式来表示,其中通项公式是函数关系的一种特殊形式。
例如,斐波那契数列可以表示为f(n) = f(n-1) + f(n-2),其中f(n)为第n个斐波那契数。
2. 函数的图像可以展示数列的规律通过绘制函数的图像,我们可以直观地展示数列中数值的规律。
例如,通过绘制等差数列的图像,可以看出数值之间的等差关系;通过绘制等比数列的图像,可以看出数值之间的等比关系。
函数图像的分析有助于更好地理解数列的性质和规律。
二、数列与函数的应用1. 数列和函数在数学中的应用(1)数列的求和公式求和是数列中常见的操作,数列的求和公式能够帮助我们更快地计算数列的总和。
例如,等差数列的求和公式为Sn = (a1 + an) * n / 2,其中Sn为前n项和,a1为首项,an为末项,n为项数。
(2)数列的递推关系递推关系是数列中的一种重要性质,它用于表示数列中每一项与前面一项的关系。
通过观察数列的递推关系,我们可以预测数列中的其他项。
递推关系的研究有助于理解数列的规律并解决与数列相关的问题。
2. 数列和函数在实际应用中的应用(1)物理学中的运动规律数列和函数在描述物理运动规律时起到重要作用。
例如,在匀速运动中,物体的位置随时间的变化可以表示为一个等差数列;在自由落体运动中,物体的高度随时间的变化可以表示为一个等差数列。
(2)经济学中的增长模型数列和函数在经济学中用于描述经济增长模型。
例如,经济增长模型可以使用等比数列来刻画,其中每一项代表某一时期的经济增长率。
数列与函数的关系在数学中,数列和函数是两个常见概念,它们之间存在着紧密的关联。
本文将详细探讨数列与函数之间的关系,并介绍它们的定义、性质和应用。
一、数列的定义和性质1.1 数列的定义数列是由一串按照一定规律排列的数字所组成的序列。
数列中的每个数字称为项,用通项公式来表示。
通常用{an}或者an表示数列,其中n为项的位置,an为第n个项的值。
1.2 数列的分类根据数列的特点,我们可以将数列分为等差数列、等比数列和一般数列。
1.2.1 等差数列等差数列的相邻项之间的差为常数d,通项公式可以表示为an=a1+(n-1)d,其中a1为首项。
1.2.2 等比数列等比数列的相邻项之间的比值为常数q,通项公式可以表示为an=a1q^(n-1),其中a1为首项。
1.2.3 一般数列一般数列没有固定的递增规律,其通项公式可以根据具体情况来确定。
1.3 数列的性质数列有许多重要的性质,其中包括数列的有界性、单调性、递推关系和求和公式等。
1.3.1 有界性如果数列的所有项都有上界M和下界m,即存在实数M和m,使得对于任意n,都有m≤an≤M,那么称数列是有界的。
1.3.2 单调性如果对于任意n,都有an≤an+1或者an≥an+1,那么称数列是单调的。
1.3.3 递推关系递推关系是用来描述数列中的每一项与前面一项之间的关系。
例如,在等差数列中,相邻项之间的差是常数d,这就是等差数列的递推关系。
1.3.4 求和公式对于一些特定的数列,可以通过求和公式来计算数列的前n项和,例如等差数列和等比数列。
二、函数的定义和性质2.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
数学上常用f(x)来表示函数,其中x称为自变量,f(x)称为函数值。
2.2 函数的分类函数可以根据定义域、值域、增减性以及性质等进行分类。
2.2.1 定义域和值域函数的定义域是自变量取值的范围,值域是函数值的范围。
2.2.2 增减性函数的增减性描述了函数值随自变量增大而增大或减小的趋势。
[]2012.247随着新课程改革的实施与不断创新,近几年来,数列与函数的综合已成为高考命题的重点与热点,两者交融的试题常常作为学生综合能力考查的把关题。
因此,在解决数列问题时,应充利用函数有关知识,以它的概念、图像、性质为纽带,架起函数与数列间的桥梁,揭示它们之间的内在联系,从而有效地解决数列与函数的综合问题。
一、理清数列与函数的关系从函数观点来看,数列是一类定义在正整数集或的有限子集{1,2,…n}上的一些特殊函数,当自变量从小到大依次取值时,a n 即为所对应的一列函数,而数列的通项公式、求和公式也就是相应函数的解析式。
可见,任何数列问题都蕴涵着函数的本质及意义,具有函数的一些固有特征。
特别地,对于等差数列的前n 项求和公式与二次函数联系相当紧密,一般都是按照求二次函数的最值方法来求数列前n 项和的最值问题。
同时,等比数列的通项公式及前n 项求和公式也与我们非常熟悉的指数函数联系相当紧密。
二、巧助函数解析式解决数列问题数列是特殊的函数,由已知的函数解析式巧解数列问题是函数与数列交汇的基本形式体现。
一般地,解决此类问题,主要是要对数列的通项公式及前n 项和公式的特殊函数关系这一概念的理解与分析,进而合理地找到解决问题的主要思路和方法。
例1设函数f (x )=4x4x +2,求和s n =f(12002)+f(22002)+…+f(20012002)。
解析:我们知道,函数f (x )=a xa x +a √具有一个重要特性,即f (1-x )+f (x )=1,因此可利用这一特性解决求和的相关问题。
解:因为f (x )=4x4x +2,所以f (1-x )=41-x41-x +2=44+2·4x =4x4x +2,所以由f (1-x )+f (x )=1可知,有s n =f(12002)+f(22002)+…+f(20012002),①s n =f(20012002)+f(20002002)+…+f(12002)。
数列与函数之间的联系在数学学科中,数列和函数是两个非常重要的概念,它们之间存在着密切的联系。
数列是一组按照一定规律排列的数的集合,而函数则是数与数之间的映射关系。
本文将探讨数列与函数之间的联系,并从数列的生成、函数的定义及数列与函数的应用等方面进行详细论述。
一、数列的生成方法与函数的定义方式数列的生成方法有多种,常见的有等差数列和等比数列。
以等差数列为例,设首项为 a,公差为 d,根据生成规律可得到数列的通项公式为 an = a + (n-1)d,其中 n 表示数列的第 n 项。
不难发现,等差数列的通项公式是一个以 n 为自变量的函数,即 f(n) = a + (n-1)d,其中 f(n) 表示数列的第 n 项。
同样地,等比数列也可以表示为函数的形式。
设首项为 a,公比为 r,根据生成规律可得到数列的通项公式为 an = a * r^(n-1),其中 r^(n-1) 表示 r 的 n-1 次方。
可以看出,等比数列的通项公式同样是一个以 n 为自变量的函数,即 f(n) = a * r^(n-1),其中 f(n) 表示数列的第 n 项。
通过以上分析,我们可以看出数列是函数的一种特殊形式,数列中的每一项可以看作是函数在不同自变量取值下的函数值。
二、数列与函数的应用数列和函数在数学中有着广泛的应用,其中最典型的例子是数列与级数。
级数是数列元素的和,通常用符号∑来表示。
对于一个数列 a1,a2, a3, ...,则级数表示为 S = a1 + a2 + a3 + ...关于级数的求和问题,可以通过将数列转化为函数来解决。
以等差数列为例,将数列的通项公式 f(n) = a1 + (n-1)d 中的 n 替换为 x,则得到函数 f(x) = a1 + (x-1)d。
这样,原本的数列求和问题便可以转化为函数求和的问题,即求函数 f(x) 在一定区间内的积分。
同理,对于等比数列也可以采用类似的方法进行求和。
除了级数之外,数列和函数还在微积分中发挥着重要作用。
利用函数证明数列不等式要证明数列不等式,我们可以利用函数进行证明。
下面我们将对两种不同类型的数列不等式进行探讨。
第一种类型的数列是递增数列。
递增数列是一种严格单调递增的数列。
为了证明递增数列的不等式,我们可以使用函数的性质。
假设我们有一个递增数列 {an},我们可以定义一个函数 f(x) = an,其中 x 是自然数的索引。
由于数列是递增的,所以我们可以得出 f(x) < f(y) ,其中 x < y。
为了证明数列不等式,我们需要证明对于任意的自然数 x 和 y ,都有 an < an+1、我们可以使用函数的导数来对函数进行分析。
假设函数 f(x) 是连续的,我们可以计算出它的导数 f'(x)。
如果对于所有的 x ,有 f'(x) > 0 ,那么说明函数是递增的。
这也意味着数列{an} 中的元素也是递增的。
通过证明函数的导数大于零,我们可以得出数列 {an} 中的元素是递增的,从而证明数列的不等式。
第二种类型的数列是递减数列。
递减数列是一种严格单调递减的数列。
为了证明递减数列的不等式,我们同样可以使用函数的性质。
假设我们有一个递减数列 {an},我们可以定义一个函数 f(x) = an,其中 x 是自然数的索引。
由于数列是递减的,所以我们可以得出 f(x) > f(y) ,其中 x < y。
为了证明数列不等式,我们需要证明对于任意的自然数 x 和 y ,都有 an > an+1、我们可以使用函数的导数来对函数进行分析。
假设函数 f(x) 是连续的,我们可以计算出它的导数 f'(x)。
如果对于所有的 x ,有 f'(x) < 0 ,那么说明函数是递减的。
这也意味着数列{an} 中的元素也是递减的。
通过证明函数的导数小于零,我们可以得出数列 {an} 中的元素是递减的,从而证明数列的不等式。
在使用函数证明数列不等式时,我们需要注意以下几点:1.函数的定义域和应用范围必须与数列的范围一致。
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
数列与函数的相互关系与应用举例数列和函数是数学中两个重要的概念,它们之间存在着密切的相互关系。
数列是按照一定规律排列的一组数,而函数则是将一个自变量映射到一个因变量的规则。
在数学的研究和实际应用中,数列和函数经常会相互转化和应用。
一、数列与函数的转化数列可以看作是函数的一种特殊形式,即自变量为自然数集合。
例如,一个数列{an}可以表示为函数f(n),其中f(n) = an。
这样的转化可以让我们更方便地研究数列的性质和规律。
相反地,函数也可以转化为数列。
例如,给定一个函数f(x),我们可以通过取不同的自变量值,如x=1,x=2,x=3,来得到一组数列{f(1),f(2),f(3)}。
这样的转化可以使我们更好地理解函数的变化趋势和性质。
二、数列与函数的应用举例1. 斐波那契数列与黄金分割斐波那契数列是一个非常有趣的数列,它的定义是:第一项和第二项都为1,从第三项开始,每一项都等于前两项之和。
即数列{1,1,2,3,5,8,13,...}。
斐波那契数列与函数的关系可以通过递归函数来表示:f(n) = f(n-1) + f(n-2),其中f(1)=1,f(2)=1。
这样,我们就可以通过函数的方式来计算斐波那契数列的任意项。
斐波那契数列在自然界中有着广泛的应用,例如在植物的叶子排列、螺旋形状和分支结构中都能看到斐波那契数列的规律。
而斐波那契数列与黄金分割的关系更是引人注目。
黄金分割是指一条线段分为两部分,较长部分与整条线段的比值等于较短部分与较长部分的比值。
而斐波那契数列的相邻两项的比值逐渐接近黄金分割比例1.618。
2. 等差数列与直线函数等差数列是指数列中的相邻两项之差都相等的数列。
例如数列{2,4,6,8,10,...}就是一个等差数列,其中公差为2。
等差数列与直线函数之间有着密切的关系。
如果我们将等差数列的第n项表示为an,公差表示为d,那么可以得到等差数列的通项公式:an = a1 + (n-1)d。