立体图形及平面图形的公式
- 格式:doc
- 大小:21.00 KB
- 文档页数:1
六年级数学图形知识点在六年级数学学习中,图形是一个重要的知识点,通过学习图形可以帮助学生培养观察和分析问题的能力,同时也对几何的理解有所提升。
本文将介绍六年级数学中的几个主要图形知识点,包括平面图形和立体图形。
一、平面图形1. 三角形三角形是由三条线段组成的图形,根据三边的长短可以分为等边三角形、等腰三角形和普通三角形。
学生需要了解三角形的定义、性质以及计算面积的公式。
2. 四边形四边形是由四条线段组成的图形,常见的四边形包括矩形、正方形、平行四边形等。
学生需要了解各种四边形的定义、特点以及计算面积和周长的方法。
3. 圆形圆形是由一条曲线组成的图形,圆上任意两点之间的线段称为弦,从圆心到弦的垂直线段称为弦的高。
学生需要学会计算圆的周长和面积。
4. 多边形多边形是由多条线段组成的图形,根据边的数量可以分为三边形、四边形、五边形等。
学生需要了解多边形的定义、特点以及计算面积和周长的方法。
二、立体图形1. 立方体立方体是一种特殊的长方体,它的六个面都是正方形。
学生需要学会计算立方体的体积和表面积。
2. 正方体正方体是一种特殊的长方体,它的六个面都是正方形。
学生需要学会计算正方体的体积和表面积。
3. 圆柱体圆柱体是一个由一个底面和一个相互平行的顶面连接而成的图形,底面是一个圆,学生需要学会计算圆柱体的体积和表面积。
4. 圆锥体圆锥体是一个由一个底面和一个顶点连接而成的图形,底面是一个圆,学生需要学会计算圆锥体的体积和表面积。
通过学习上述的图形知识点,学生可以更好地理解数学中的几何概念和计算方法,并能够灵活运用在解决实际问题中。
同时,通过练习题的训练,还能提高学生的数学能力和思维能力。
总结起来,六年级数学图形知识点包括平面图形和立体图形两部分内容,其中平面图形包括三角形、四边形、圆形和多边形,立体图形包括立方体、正方体、圆柱体和圆锥体。
通过深入学习这些图形的定义、性质和计算方法,学生能够提高几何思维和解决实际问题的能力,为进一步的数学学习打下坚实的基础。
总结立体图形的知识点一、立体图形的定义立体图形是指有三个维度的图形,它具有长度、宽度和高度。
在数学中,我们所说的立体图形通常是指三维几何图形,它们存在于空间中,具有一定的体积和表面积。
而与之相对应的是平面图形,它只具有长度和宽度,无法展现出立体图形那种立体感。
二、常见的立体图形1. 正方体:正方体是一种每个面都是正方形的立体图形。
它具有六个面、十二条边和八个顶点。
2. 长方体:长方体是一种每个面都是矩形的立体图形。
它也具有六个面、十二条边和八个顶点。
3. 圆柱体:圆柱体由两个平行的并且相等的圆面以及一个侧面围成。
它的侧面是一个矩形,其长度等于两个圆面的周长,宽度等于两个圆面之间的距离。
4. 圆锥体:圆锥体由一个圆锥面和一个圆锥侧面构成。
它的侧面是一个扇形,其面积等于圆锥底面积与母线的乘积除以2。
5. 球体:球体是由无数个半径相等的点构成的图形。
它的表面是完全封闭的,不像其他立体图形有明显的边界。
球体的表面积和体积的计算比较特殊,需要使用一些特殊的公式来得到。
三、计算立体图形的表面积和体积1. 表面积:对于常见的立体图形,我们可以通过公式来计算其表面积。
例如,正方体的表面积就等于六个面积之和,而长方体的表面积也可以用公式2lw + 2lh + 2wh进行计算。
其他立体图形的表面积计算也可以通过相应的公式来完成。
2. 体积:立体图形的体积是指其所围成的空间的大小。
计算立体图形的体积也需要使用相应的公式。
例如,正方体的体积就等于边长的立方,而长方体的体积可以用公式lwh来计算。
其他立体图形的体积计算同样也可以通过相应的公式来完成。
四、立体图形的性质1. 对称性:许多立体图形具有一定的对称性。
例如,正方体在某些对角线上是对称的,长方体也在某些对角线上是对称的。
这种对称性在几何学中是一个重要的性质。
2. 体积与形状的关系:在相同的表面积条件下,立体图形的体积越大,其形状就越扁。
这是由于形状的扁平程度与立体图形的体积具有一定的关系。
高一上学期立体几何知识点一、点、线(直线、射线、线段)、平面1平面的表示方法平行四边形(平面a平面ABCD,平面AC)或三角形二、立体图形的画法斜二测1、x不变、y一半、夹角45度2、斜二测和原图形的面积比为f42直观图2-1直观图的定义:是观察者站在某一点观察一个空间几何体而画出的图形,直观图通常是在平行投影下画出的空间图形。
2-2斜二测法做空间几何体的直观图⑴在已知图形中取互相垂直的轴Ox、Oy,即取/xOy=90°;⑵画直观图时,把它画成对应的轴O‘x‘、O'y,取/x‘O‘y'=45°或135°,它们确定的平面表示水平平面;⑶在坐标系x‘o'y‘中画直观图时,已知图形中平行于数轴的线段保持平行性不变;平行于x轴的线段保持长度不变;平行于y轴的线段长度减半。
结论:采用2斜二测法作出的直观图的面积是原平面图形的—4看不到的线用虚线(或者不画)需要有立体感。
(想垂直就垂直,想在里就在里,想在外就在外。
)三、立体图形之间的关系。
1点和线的位置关系(点在线上,点在线外)2点和面的位置关系(点在面上,点在面外)3线和线的位置关系(平行、相交、异面)4线和面的位置关系(线在面上,线面平行,线面相交(线面垂直))5面和面的位置关系(平行、相交(重合))四、各种角的范围1、异面直线所成的角的取值范围是2、直线与平面所成的角的取值范围是3、斜线与平面所成的角的取值范围4、二面角的大小用它的平面角来度量;取值范围是五、射影定理㈠空间几何体的类型1多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
棱柱多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三六、角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱ABCDEF-A'B‘C‘D‘E'F‘或棱柱A’D.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.斜棱柱直棱称正棱柱平行六面体七、直平行六面体1棱柱的结构特征1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
《从立体图形到平面图形》知识清单一、立体图形的认识我们生活在一个充满各种形状和物体的三维世界中。
立体图形,就是那些具有长度、宽度和高度的物体形状。
常见的立体图形有正方体、长方体、圆柱体、圆锥体和球体等。
正方体,它的六个面都是完全相同的正方形,十二条棱长度相等。
长方体则相对复杂一些,它有六个面,相对的两个面完全相同,而且每个面可能是长方形也可能是正方形。
长方体的十二条棱可以分为三组,每组四条棱长度相等。
圆柱体,有两个底面,都是圆形,而且大小相等,侧面展开是一个长方形。
圆锥体,它有一个圆形底面和一个顶点,侧面展开是一个扇形。
球体,是一个无论从哪个方向看都是圆形的立体图形。
二、平面图形的认识平面图形是指存在于一个平面内的图形,没有厚度。
常见的平面图形有三角形、四边形(包括长方形、正方形、平行四边形、梯形等)、圆形、扇形、多边形等。
三角形,根据角的大小可以分为锐角三角形、直角三角形和钝角三角形;根据边的长度关系,又可以分为等边三角形、等腰三角形。
四边形中的长方形,它的四个角都是直角,对边相等。
正方形不仅四个角是直角,而且四条边都相等。
平行四边形的两组对边分别平行且相等。
梯形则只有一组对边平行。
圆形,是一个由一条封闭曲线围成的图形,圆上任意一点到圆心的距离都相等。
扇形是圆的一部分,由两条半径和一段弧围成。
多边形则是由多条线段首尾顺次连接所围成的封闭图形,如五边形、六边形等。
三、立体图形展开成平面图形很多立体图形都可以通过展开,变成平面图形。
比如正方体展开后,可以得到六个相连的正方形。
长方体展开后,一般可以得到六个长方形(特殊情况下可能有两个正方形)。
圆柱体展开后,侧面是一个长方形,两个底面是圆形。
圆锥体展开后,侧面是一个扇形,底面是一个圆形。
通过将立体图形展开成平面图形,我们可以更清楚地看到它们的构成和特点。
四、平面图形围成立体图形反过来,一些平面图形也可以通过折叠、拼接等方式围成立体图形。
例如,多个三角形可以围成三棱锥,多个长方形可以围成长方体。
立体图形与平面图形教案第一章:立体图形的概念与特征1.1 立方体定义:立方体是一种六个面都是正方形的立体图形。
特征:立方体有六个面,每个面都是正方形,对面的面积相等,有12条边和8个顶点。
1.2 球体定义:球体是一个所有点到球心的距离都相等的立体图形。
特征:球体只有一个面,即球面,没有边界,所有的点到球心的距离都相等。
第二章:平面图形的概念与特征2.1 矩形定义:矩形是一个有四个角都是直角的四边形。
特征:矩有两对相等的对边,对边平行,四个角都是直角。
2.2 三角形定义:三角形是一个有三个边的多边形。
特征:三角形有三条边和三个角,每个角都小于180度,任意两边之和大于第三边。
第三章:立体图形的认识与绘制3.1 立方体的绘制步骤:先画一个正方形,再在正方形的基础上画出三个相同大小的正方形,连接对面的边,形成立方体。
3.2 球体的绘制步骤:以一个中心点为圆心,画出一个圆,以同样的半径在圆的外面再画一个圆,连接圆上的点,形成球体。
第四章:平面图形的认识与绘制4.1 矩形的绘制步骤:先画一个角,画一条线段,再画一个角,再画一条线段,连接两条线段的末端,形成矩形。
4.2 三角形的绘制步骤:先画一个角,画一条线段,再画一个角,再画一条线段,连接两条线段的末端,形成三角形。
第五章:立体图形与平面图形的应用5.1 立体图形在现实生活中的应用举例:箱子、桌子、椅子等都是立体图形的应用。
5.2 平面图形在现实生活中的应用举例:门、窗户、衣物等都是平面图形的应用。
第六章:立体图形的计算与性质6.1 立方体的体积与表面积体积公式:V = a^3 (a为立方体的边长)表面积公式:S = 6a^2性质:立方体的体积和表面积与其边长的关系。
6.2 球体的体积与表面积体积公式:V = (4/3)πr^3 (r为球体的半径)表面积公式:S = 4πr^2性质:球体的体积和表面积与其半径的关系。
第七章:平面图形的计算与性质7.1 矩形的面积与周长面积公式:A = l w (l为矩形的长,w为矩形的宽)周长公式:P = 2(l + w)性质:矩形的面积和周长与其长和宽的关系。
空间形状知识点总结空间形状是我们周围世界中的重要现象之一。
从最简单的几何形状到最复杂的立体结构,空间形状的概念贯穿了整个自然界。
在现代科学的发展中,对空间形状的研究也变得越来越重要。
本文将对空间形状的知识点进行详细总结,包括几何形状的分类、性质和应用,以及立体的特点和相关定理等内容。
一、基本概念1. 空间形状是指在三维空间中所呈现的物体的形态。
它包括平面图形、立体图形和曲面图形等多种形式。
空间形状是几何学研究的重要内容之一。
2. 平面图形是指在二维空间中的图形,它的特点是只有长、宽,没有厚度。
常见的平面图形包括圆、三角形、矩形、正方形、椭圆等。
3. 立体图形是指在三维空间中的图形,它不仅有长、宽,还有厚度。
常见的立体图形包括立方体、长方体、圆柱体、圆锥体、球体等。
4. 曲面图形是指空间中的曲线、曲面。
曲线通常是由空间中的点构成的一条连续的曲线,曲面则是由空间中的曲线构成的一条光滑的曲面。
二、几何形状的分类与性质1. 根据维度的不同,几何形状可以分为二维形状和三维形状。
二维形状只有长和宽两个方向,例如平面图形;三维形状则不仅有长和宽,还有高这个方向,例如立体图形。
2. 根据形状的结构特点,几何形状可以分为规则形状和不规则形状。
规则形状的特点是各个边和角都是相等的,例如正方形、正三角形等;不规则形状则不具备这样的特点。
3. 几何形状有很多性质,例如它们的周长、面积、体积等。
这些性质是用来描述几何形状的特征的,也是几何学研究的重要内容之一。
4. 几何形状还有很多定理和公式,可以用来计算它们的各种性质。
例如,正方形的周长公式为4a,面积公式为a^2;三角形的面积公式为1/2bh等。
三、几何形状的应用1. 在日常生活中,我们常常需要用到几何形状的知识。
比如在装修房屋、设计家具、规划城市等方面,都需要用到几何形状的知识。
2. 在工程领域中,几何形状的知识也是必不可少的。
比如在建筑设计、机械制造、地质勘测等方面,都需要用到几何形状的知识。
立体图形基本知识点归纳立体图形是我们日常生活中经常接触到的一种图形,其具有三个维度:长度、宽度和高度。
在本文中,我们将归纳和总结一些关于立体图形的基本知识点。
让我们逐步思考并了解这些知识。
1.立体图形的定义立体图形是由平面图形按照一定规则和条件延展形成的图形。
它具有三个维度,可以在空间中进行移动和旋转。
2.常见的立体图形常见的立体图形有球体、立方体、圆柱体、圆锥体和棱柱体等。
这些图形在我们的日常生活中随处可见,比如球体可以用来表示地球,立方体可以用来表示一个骰子。
3.立体图形的特点不同的立体图形具有不同的特点。
例如,球体的每个点到球心的距离都相等,立方体的六个面都是相等的正方形。
了解不同立体图形的特点有助于我们更好地理解它们的性质和用途。
4.球体球体是一种由所有点到球心的距离都相等的图形。
它具有无限多的面,其中每个面都是一个圆。
球体的体积计算公式是4/3πr³,其中r是球的半径。
5.立方体立方体是一种具有6个相等正方形面的图形。
它的所有边长相等。
立方体的体积计算公式是边长的立方。
6.圆柱体圆柱体是一种由两个平行且相等的圆底面和一个侧面连接而成的图形。
圆柱体的体积计算公式是πr²h,其中r是底面圆的半径,h是圆柱体的高度。
7.圆锥体圆锥体是一种由一个圆底面和一个侧面连接而成的图形。
圆锥体的体积计算公式是1/3πr²h,其中r是底面圆的半径,h是圆锥体的高度。
8.棱柱体棱柱体是一种由多个平行且相等的正多边形面连接而成的图形。
棱柱体的体积计算公式是底面积乘以高度。
9.立体图形的应用立体图形在我们的日常生活中有许多应用,比如建筑设计、产品设计和游戏开发等。
了解立体图形的特点和计算方法可以帮助我们更好地应用它们。
总结起来,立体图形是由平面图形按照一定规则和条件延展形成的图形,其具有三个维度。
常见的立体图形包括球体、立方体、圆柱体、圆锥体和棱柱体。
了解立体图形的特点和计算方法对我们理解和应用它们具有重要意义。
立体图形的整理与复习教材分析本节课复习内容是在学生掌握了一些线和面的知识及对简单立体图形特征、表面积和体积意义基础上进行的。
通过这部分内容的学习,使学生进一步积累常见几何体体积计算方法的经验,并有利于促进学生进一步提高简单推理的能力,为今后学习立体图形起了举足轻重的作用。
学情分析1.复习内容是在学生掌握了一些线和面的知识及对简单立体图形特征、表面积和体积意义基础上进行的。
通过这部分内容的学习,使学生进一步积累常见几何体体积计算方法的经验,并有利于促进学生进一步提高简单推理的能力,为今后学习立体图形起了举足轻重的作用。
2.学生认知障碍点:学生在学校这部分内容时,缺乏对公式的灵活运用,以及这些公式有什么共同点和不同点,运用这些知识解决生活中的问题时,学生难理解。
教学目标:(一)知识目标:使学生进一步熟悉立体图形体积的计算公式,理解体积公式的推理过程及相互联系。
(二)能力目标:经历运用公式解决实际问题的过程,培养应用数学知识的意识,发展实践能力。
(三)情感目标:在活动过程中,关注每一位学生的发展,使他们获得成功的体验,对学好数学充满自信心。
教学重点和难点:立体图形体积公式的推倒及相互联系。
运用知识解决生活中的问题一、谈话引入师:小学阶段我们学习过很多图形,如果让你把这些图形分成两类的话,你想分成哪两类?生答师板书:平面立体二、整理知识点(一)立体图形中的平面图形1、师:具体说说分别有哪些图形?2、观察图图形之间有着非常密切的联系,比如说你能从立体图形中找到平面图形吗?(板书箭头)或者说想到平面图形吗?(多出示立体图形)生;小组里相互说说师:请一对同位同学来回答。
(这样啊,给大家一些消化时间,先说正方体,能不能介绍的更加具体一些)(同学的发言有两个层次,一个是直接看到的,另一个是想像得到的。
从圆锥中想象得到扇形)3、展开图照这样你还能想象到什么图形?生:师:说的是否完整,你能否想象的到,(多出示)这个长方形跟原来的圆柱体有什么关系?生:师:刚才还有同学说还有可能是正方形的,如果展开是正方形的说明什么?生:师:猜猜看如果这个圆柱体侧面展开图是正方形的,那它大概长什么样的?(是像小胖那样矮矮胖胖的,还是高高瘦瘦的)师多演示。
高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。
(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。
2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。
3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。
(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。
2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。
(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。
2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。
3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。
(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。
2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。
(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。
2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。
(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。
当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。
2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。
图形与几何(一)图形的认识、测量量的计量一、长度单位是用来测量物体的长度的。
常用的长度单位有千米、米、分米、厘米、毫米。
二、长度单位:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米1米=100厘米 1米=1000毫米三、面积单位是用来测量物体的表面或平面图形的大小的。
常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。
边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。
边长1000米的正方形土地,面积是1平方千米。
六、面积单位:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米七、体积单位是用来测量物体所占空间的大小的。
常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升九、常用的质量单位有:吨、千克、克。
十、质量单位:1吨=1000千克 1千克=1000克十一、常用的时间单位有:世纪、年、季度、月、旬、日、时、分、秒。
十二、时间单位:(60)1世纪=100年 1年=12个月 1年=4个季 1个季度=3个月 1个月=3旬大月=31天小月=30天平年二月=28天闰年二月=29天 1天=24小时1小时=60分 1分=60秒十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:千米:km 米:m 分米:dm 厘米:cm 毫米:mm 吨:t 千克:kg 克:g 升:l 毫升:ml平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理l⊥α<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥ABCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥PABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥SABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥DABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥DABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E ,C ,D 1,F 四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.2 2B.32C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).典例12:如图,在四棱锥P ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .[证明](1)连接EC ,因为AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点,所以FH ∥PD ,因为FH ⊄平面PAD ,PD ⊂平面PAD ,所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点,所以OH ∥AD ,因为OH ⊄平面PAD ,AD ⊂平面PAD .所以OH ∥平面P AD .又FH ∩OH =H ,所以平面OHF ∥平面PAD .又因为GH ⊂平面OHF ,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥AECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC ,∴EN ∥平面ABC ,又M ,N 分别为BD ,DC 中点,∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC ,∴MN ∥平面ABC ,又MN ∩EN =N ,∴平面EMN ∥平面ABC .(2)连接DH ,取CH 中点G ,连接NG ,则NG ∥DH ,由(1)知EN ∥平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,又△BCD 是边长为2的等边三角形,∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =3,又N 为CD 中点,∴NG 又AC =AB =3,BC =2,∴S △ABC =12·|BC |·|AH |=22,∴V E ABC =V N ABC =13·S △ABC ·|NG |=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABC A 1B 1C 1中,底面ABC 是边长为2的正三角形,M 为棱BC 的中点,BB 1=3,AB 1=10,∠CBB 1=60°.(1)求证:AM ⊥平面BCC 1B 1;(2)求斜三棱柱ABC A 1B 1C 1的体积.[解](1)证明:如图,连接B 1M ,因为底面ABC 是边长为2的正三角形,且M 为棱BC 的中点,所以AM ⊥BC ,且AM =3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7,所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21,所以AM ⊥B 1M .又因为B 1M ∩BC =M ,所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC A 1B 1C 1的体积为V ,则V =3VB 1ABC =3VA B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°×3=92.所以斜三棱柱ABCA1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥PABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,P A,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面P AE⊥平面STRQ;②若AB=1,求三棱锥QBCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE ∩AE =E ,所以RQ ⊥平面PAE .所以平面P AE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点,∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q BCT 的体积V =13×334×32=38.十六、求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为.2[如图,过点P 作⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2=(3)2-12= 2.](2)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCDA1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=2sin30°=4.在Rt△ACC1中,CC1=42-(22+22)=22,∴V长方体=AB×BC×CC1=2×2×22=82.](2)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.①求证:AD⊥BC;②求异面直线BC与MD所成角的余弦值;③求直线CD与平面ABD所成角的正弦值.[解]①证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3.又因为平面ABC ⊥平面,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =34.所以,直线CD 与平面ABD 所成角的正弦值为34.十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥P ABCD 中,△PAD 是等腰直角三角形,且∠APD =90°,∠ABC =90°,AB ∥CD ,AB =2CD =2BC =8,平面PAD ⊥平面ABCD ,M 是PC 的三等分点(靠近C 点处).(1)求证:平面MBD ⊥平面P AD ;(2)求三棱锥D MAB 的体积.[解](1)证明:由题易得BD =AD =42,∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面P AD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD .又∵BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 交AD 于点O (图略),∵平面PAD ⊥平面DAB ,平面PAD ∩平面DAB =AD ,∴PO ⊥平面DAB ,∴点P 到平面DAB 的距离为PO =2 2.∴V D MAB =V M DAB =13S △DAB ·13PO =13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1=3,故DM=2.所以四边形ACGD的面积为4.二十、存在性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.典例20:如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.。
1、距离:从直线外一点到这条直线所垂直线段的长度叫做距离。
2、三角形的内角和等于180°。
3、周长:围成一个图形的所有边长的总和叫做这个图形的周长。
4、面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
5、表面积:一个立体图形所有的面的面积总和,叫做它的表面积。
6、体积:一个立体图形所占空间的大小,叫做它的体积。
7、容积:一个容器所能容纳物体体积的多少叫做该容器的容积。
8、角的计量单位是"度",用符号"°"表示。
9、角的大小要看两条边叉开的大小,叉开的越大,角越大。
角的大小与角的两边画出的长短没有关系。
10、平行线间的距离都相等。
11、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合。
这个图形叫做轴对称图形。
12、对称轴:这条直线叫做对称轴。
13、两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
4、关于几何的一些操作知识1、画一个角的步骤如下:⑴画一条射线,使量角器的中心和射线的端点重合,零刻度线和射线重合;⑵在量角器所取刻度线的地方点一个点;⑶以画出的射线的端点为端点,通过刚画的点,再画一条射线。
2、垂线的画法: 1)过直线上一点画这条直线的垂线。
2)过直线外一点画这条直线的垂线。
3、画平行线的步骤是:⑴固定三角板,沿一条直角边先画一条直线;⑵用直尺紧靠三角板的另一条直线边,固定直尺然后平移三角板;⑶再沿一条直角边画出另一条直线4、例:画一个长是2.5厘米,宽是2厘米的长方形。
画的步骤如下:⑴画一条2.5厘米长的线段;⑵从画出的线段两端,在同侧画两条与这条线段垂直的线段,使它们分别长2厘米。
⑶把这两条线段另外的端点连接起来。
5、圆的画法:⑴分开圆规的两脚,在直线上确定半径:⑵固定圆规有针尖的脚,确定圆心;⑶旋转有铅笔尖的一只脚画出一个圆。
平面图形习题精编一、认真思考,准能填好。
《立体几何》主要公式与定理:
主要公式:(*引申公式)
=
S 直棱柱侧面积
=
S 正棱锥侧 =
=S 正棱台侧 = S =扇形面积 = S =圆柱侧 S =圆锥侧 *S =圆台侧 (找出三者联系)
V =立方体 *=L 立方体对角线长
*=R 立方体外接球 *=R 立方体棱切球 *=R 立方体内切球 (找出三者比例关系)
V =长方体 *=L 长方体对角线长 *=R 长方体外接球
*从长方体对角线的一个端点沿表面到另一个端点的最短距离=
V =柱体 V =锥体 V =台体 (找出三者联系) V =圆柱 V =圆锥 V =圆台 (找出三者联系) S =球 =V 球 (二者有何关系?)
*=h 正四面体 *=S 正四面体 *=V 正四面体 *=R 正四面体内切球 *=R 正四面体外接球 (设正四面体的棱长为a ) 主要定理(立体几何藏宝图):
17、等角定理 18、平行平面截线段成比例定理
19-24、平面的3个基本性质及3个推论(课本35-37页)。
一、线线平行的判断:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
直线和交线平行图②如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
交线平行图③垂直于同一平面的两条直线平行。
直线平行图二、线线垂直的判断:①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
②在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
线线垂直图③若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
三、线面平行的判断:①如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
②两个平面平行,其中一个平面内的直线必平行于另一个平面。
四、面面平行的判断:①一个平面内的两条相交直线分别平行于另一个平面内两相交直线,这两个平面平行。
②垂直于同一条直线的两个平面平行。
五、线面垂直的判断:①如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
④如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
六、面面垂直的判断:一个平面经过另一个平面的垂线,这两个平面互相垂直。
七、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)①异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。
异面直线所成角的范围:0° < α ≤ 90°;注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。
有的还可以通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。
②线面所成的角:斜线与平面所成的角:斜线与它在平面内的射影所成的角。
立体图形及平面图形的公式
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
图形周长面积体积公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长。