P沟道低导通电阻MOSFET系列
- 格式:doc
- 大小:77.50 KB
- 文档页数:2
MOSFET选型注意事项及应用实例MOSFET的选型基础MOSFET有两大类型:N沟道和P沟道。
在功率系统中,MOSFET可被看成电气开关。
当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。
导通时,电流可经开关从漏极流向源极。
漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。
必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。
如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。
当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。
虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。
作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的MOSFET。
1)沟道的选择。
为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。
在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。
在低压侧开关中,应采用N 沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。
当MOSFET连接到总线及负载接地时,就要用高压侧开关。
通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。
2)电压和电流的选择。
额定电压越大,器件的成本就越高。
根据实践经验,额定电压应当大于干线电压或总线电压。
这样才能提供足够的保护,使MOSFET不会失效。
就选择MOSFET而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。
设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。
不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220V AC 应用为450~600V。
在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件。
脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。
超级结mos与沟槽mos超级结MOSFET(SJ-MOS)和沟槽MOSFET都是MOSFET(金属-氧化物-半导体场效应晶体管)的改进型,它们在结构和工作原理上有一定差异,以下为它们的主要区别:1. 结构特点:超级结MOSFET(SJ-MOS):- SJ-MOS在N层具有柱状P层(P柱层)。
P层和N层交替排列。
- 通过施加VDS,耗尽层在N层中扩展,但其在SJ-MOS中的扩展受到P柱的限制。
- SJ-MOS结构在保持高电压的同时实现了低导通电阻。
沟槽MOSFET:- 沟槽MOSFET的主要特点是具有沟槽结构,沟槽两侧分别为N层和P层。
- 栅极通过沟槽与源极和漏极相连,从而降低了栅极电荷。
- 沟槽MOSFET的制造工艺相较于常规MOSFET更加复杂,主要体现在沟槽的填充外延制造方法上。
2. 工作原理:超级结MOSFET(SJ-MOS):- SJ-MOS在正向导通时,P柱起到降低导通电阻的作用。
- 在反向阻断时,P柱限制了耗尽层的扩展,从而提高了隔离电压。
- SJ-MOS具有低导通电阻、高开关速度、低栅极电荷等优点。
沟槽MOSFET:- 沟槽MOSFET在工作过程中,栅极通过沟槽与源极和漏极相连,形成低电阻通道。
- 沟槽MOSFET在关断状态下,栅极与沟槽之间的氧化层能够有效抑制栅极电压对漏极电流的影响。
- 沟槽MOSFET具有较低的导通电阻和较高的阻断电压。
应用领域:超级结MOSFET(SJ-MOS)和沟槽MOSFET均适用于高压(600V-800V)领域,主要应用于电机驱动系统、逆变器系统和电源管理系统等大功率电源应用。
其中,SJ-MOS在大功率电源应用领域具有较高的效率和可靠性,如太阳能逆变器、电动汽车驱动电源等。
沟槽MOSFET则在常规电源应用中表现出较低的导通电阻和较高的阻断电压,有助于提高系统性能。
总之,超级结MOSFET和沟槽MOSFET都是针对传统MOSFET的优化结构,它们在不同的应用领域具有各自的优势。
正确选择MOSFET四大要素作为电气系统中的基本部件,MOSFET需要工程师深入了解其关键特性及指标,以做出正确选型。
本文讲述正确选择MOSFET的方法,包括确定N/P沟道、确定额定电流、确定热要求、决定开关性能四大步骤,根据RDS(ON)、热性能、雪崩击穿电压及开关性能指标来选择正确的MOSFET。
MOSFET的选择MOSFET有两大类型:N沟道和P沟道。
在功率系统中,MOSFET可被看成电气开关。
当在N沟道MOSFET 的栅极和源极间加上正电压时,其开关导通。
导通时,电流可经开关从漏极流向源极。
漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。
必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。
如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。
当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。
虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。
第一步:选用N沟道还是P沟道为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。
在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。
在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。
当MOSFET连接到总线及负载接地时,就要用高压侧开关。
通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。
要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。
下一步是确定所需的额定电压,或者器件所能承受的最大电压。
额定电压越大,器件的成本就越高。
根据实践经验,额定电压应当大于干线电压或总线电压。
这样才能提供足够的保护,使MOSFET不会失效。
就选择MOSFET 而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。
知道MOSFET能承受的最大电压会随温度而变化这点十分重要。
七步掌握MOS管选型技巧MOS管是电子制造的基本元件,但面对不同封装、不同特性、不同品牌的MOS管时,该如何抉择?有没有省心、省力的遴选方法?下面我们就来看一下老司机是如何做的。
选择到一款正确的MOS管,可以很好地控制生产制造成本,最为重要的是,为产品匹配了一款最恰当的元器件,这在产品未来的使用过程中,将会充分发挥其“螺丝钉”的作用,确保设备得到最高效、最稳定、最持久的应用效果。
那么面对市面上琳琅满目的MOS管,该如何选择呢?下面,我们就分7个步骤来阐述MOS管的选型要求。
首先是确定N、P沟道的选择MOS管有两种结构形式,即N沟道型和P沟道型,结构不一样,使用的电压极性也会不一样,因此,在确定选择哪种产品前,首先需要确定采用N沟道还是P沟道MOS管。
MOS管的两种结构:N沟道型和P沟道型在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。
在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。
当MOS管连接到总线及负载接地时,就要用高压侧开关。
通常会在这个拓扑中采用P 沟道MOS管,这也是出于对电压驱动的考虑。
要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。
第二步是确定电压额定电压越大,器件的成本就越高。
从成本角度考虑,还需要确定所需的额定电压,即器件所能承受的最大电压。
根据实践经验,额定电压应当大于干线电压或总线电压,一般会留出1.2~1.5倍的电压余量,这样才能提供足够的保护,使MOS管不会失效。
就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。
由于MOS管所能承受的最大电压会随温度变化而变化,设计人员必须在整个工作温度范围内测试电压的变化范围。
额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。
此外,设计工程师还需要考虑其他安全因素:如由开关电子设备(常见有电机或变压器)诱发的电压瞬变。
ldmos工作原理LDMOS工作原理。
LDMOS(Laterally Diffused Metal Oxide Semiconductor)是一种常见的功率MOSFET(金属氧化物半导体场效应晶体管),在射频和微波功率放大器中得到广泛应用。
LDMOS器件具有低电阻、高电压和高频特性,因此在无线通信、广播、雷达和其他射频应用中具有重要作用。
本文将介绍LDMOS的工作原理,以便更好地理解其在功率放大器中的应用。
LDMOS的结构。
LDMOS器件通常由N型衬底上的P型沟道和N型扩散层组成。
在P型沟道区域,有一层金属氧化物绝缘层(MOS结构),用于控制沟道中的电子流。
P型沟道和N型扩散层之间的结构使得LDMOS器件具有较高的耐压能力,适合用于高电压应用。
LDMOS的工作原理。
当在LDMOS器件的门极上施加正向电压时,形成的电场使P型沟道中的电子被吸引到N型扩散层,从而形成导通通道。
当信号电压施加在沟道上时,电子将在沟道中形成连续的电流,从而实现信号的放大。
在LDMOS器件中,电子的主要流动路径是沿着P型沟道和N型扩散层的界面。
由于P型沟道的电阻较低,电子在沟道中的移动速度较快,因此LDMOS器件能够实现较高的电流传输能力。
同时,N型扩散层的结构使得LDMOS器件能够承受较高的电压,适合用于功率放大器等高压应用。
LDMOS的优势。
与其他功率MOSFET相比,LDMOS器件具有较低的电阻和较高的耐压能力,适合用于高频、高功率的射频应用。
同时,LDMOS器件的制造工艺成熟,成本相对较低,因此在市场上得到了广泛的应用。
总结。
LDMOS器件是一种常见的功率MOSFET,具有较低的电阻、较高的耐压能力和较高的频率特性。
其工作原理是通过在P型沟道和N型扩散层之间形成导通通道,实现信号的放大。
在射频和微波功率放大器中,LDMOS器件具有重要作用,广泛应用于无线通信、广播、雷达等领域。
通过本文的介绍,相信读者对LDMOS器件的工作原理有了更深入的理解,能够更好地应用于实际工程中。
【产品名称】P沟道MOSFET--AP9435/APM9435/SI9435
【产品类别】集成电路
【市场价】
【本站价】
【产品用途】 P沟道MOSFET
【产品规格】 AP9435/APM9435/SI9435
【生产厂家】
【产品说明】 P沟道MOSFET--AP9435/APM9435/SI9435
简介:
AP9435/APM9435/SI9435是单路增强型的P沟道MOSFET。
每个MOSFET连续电流可达5A. 耐压可达30V。
据有低漏电流,低导通电阻等特点。
典型导通内阻为50mR @ -10v。
均为小型SOP8封装。
封装:SOP-8。
特征:
GS间电压:±25V
GS间漏电流:<100nA
低导通电阻:-10v时典型50mR, -4.5v时典型70mR
DS间耐压:典型35V
DS间漏电流:<1uA
控制启动电压:典型1.4v
DS连续电流:可达5A
内部二级管压降:<1.2V
应用:
DC-DC转换器
锂电池保护板
MP3,MP4,GPS
移动电源
液晶显示器
SI2301是P沟道增强型功率场采用高单元密度的DMOS沟道技术。
这种高密度的工艺特别适用于减小导通电阻。
它适用于低压应用,例如移动电话,笔记本电脑的电源管理和其他电池的电源电路。
这种低损耗需采用小尺寸封装。
用途:笔记本电源管理,便携式设备,电池电源系统,DC/DC转换,负载开关,LCD显示适配器。
MOSFET的简述及工作原理及应用领域解析描述MOSFET(Metal Oxide Semiconductor Field Effect Transistor-金属氧化物半导体场效应晶体管)是一种半导体器件,广泛用于开关目的和电子设备中电子信号的放大。
由于MOSFET的尺寸非常小,因此MOSFET既可以是核心也可以是集成电路,可以在单个芯片中进行设计和制造。
MOSFET器件的引入带来了电子开关领域的变化。
1 什么是MOSFET?MOSFET是具有源极(Source),栅极(Gate),漏极(Drain)和主体(Body)端子的四端子设备。
通常,MOSFET的主体与源极端子连接,从而形成诸如场效应晶体管的三端子器件。
MOSFET通常被认为是晶体管,并且在模拟和数字电路中都使用。
这是MOSFET的基本介绍。
该设备的一般结构如下:场效应晶体管根据上述MOSFET结构,MOSFET的功能取决于沟道宽度中发生的电气变化以及载流子(空穴或电子)的流动。
电荷载流子通过源极端子进入通道,并通过漏极离开。
沟道的宽度由称为栅极的电极上的电压控制,该电极位于源极和漏极之间。
它与极薄的金属氧化物层附近的通道绝缘。
器件中存在的MOS容量是整个操作的关键部分。
带有端子的MOSFETMOSFET可以通过两种方式发挥作用:1)耗尽模式(Depletion Mode)2)增强模式(Enhancement Mode)耗尽模式当栅极端子两端没有电压时,该通道将显示其最大电导。
而当栅极端子两端的电压为正或负时,则沟道电导率会降低。
举例:增强模式当栅极端子两端没有电压时,该器件将不导通。
当栅极端子两端的电压最大时,该器件将显示出增强的导电性。
增强模式2 MOSFET的工作原理MOSFET器件的主要原理是能够控制源极端子和漏极端子之间的电压和电流。
它几乎像一个开关一样工作,并且该设备的功能基于MOS电容器。
MOS电容器是MOSFET的主要部分。