【精品】初一数学应用题及其解析大全
- 格式:pdf
- 大小:19.50 KB
- 文档页数:15
完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
人教版初一数学教材中的实际应用题解析数学是一门实用的学科,通过学习数学可以帮助我们解决现实生活中的问题。
在人教版初一数学教材中,有很多实际应用题,它们旨在让学生将所学的数学知识应用到实际问题中去解决。
本文将对人教版初一数学教材中的实际应用题进行解析,并探讨解题的方法和思路。
首先,我们来看一个常见的实际应用题例子:【例题】小明骑自行车以每小时24千米的速度去买东西,待在商店里10分钟,然后以每小时30千米的速度回家,回家时发现少带了20元,回家的时间比去商店的时间少5分钟,求小明带了多少钱?解析:这是一个典型的速度问题。
我们可以根据已知条件列方程来解决这个问题。
设小明骑自行车去商店的时间为t小时,则回家的时间为t-1/6小时(1/6小时即10分钟)。
根据速度等于路程除以时间的公式可得:24t = 30(t-1/6)化简方程:24t = 30t-56t = 5t = 5/6小明骑车去商店的时间为5/6小时。
根据已知条件可得:24 × (5/6) = 商店距离30 × (5/6-1/6) = 商店距离化简方程得到商店距离为20千米。
设小明带的钱数为x元,根据已知条件可得:x - 20 = 30 × (5/6) × 10化简方程得到x = 100元。
所以小明带了100元。
通过这个例题,我们可以看到,在解决实际应用题时,关键是理清思路,明确已知条件和要求,然后根据题目所给的信息列方程,最后求解方程得出答案。
在人教版初一数学教材中,实际应用题的题型多样,涉及到的知识点广泛。
比如与长度、面积、体积相关的问题,与速度、时间、距离相关的问题,与人数、比例、百分比相关的问题等等。
解决这些问题需要运用到所学的对应知识点,掌握相应的解题方法。
除了掌握解题方法,还需要培养良好的数学思维能力。
解决实际应用题时,需要具备分析问题的能力、抽象问题的能力、建立数学模型的能力等。
同时,注重培养学生的逻辑思维和推理能力,提高解决问题的能力和综合运用数学知识的能力。
列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。
解:(多位数表示) 设后两位数(即十位与个数)为x ,100+x+234=10x+12、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。
解:(多位数表示)设十位数字为x,则百位数字为x+1,个位数字为3x-2100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的和为72,求这两个两位数。
解:(多位数表示)设大的两位数为x ,小的两位数为y大○小y x +⇒1000, 小大○x y 101000+⇒∴⎩⎨⎧=+++=+7232599)101000(21000y x x y y x 4、有一个三位数,各数位上的数字的和是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,则所用到的新数比原数的3倍少39,求这个三位数。
解:(多位数表示) 百 十 个X+5 10-2x x原数=100(x+5)+10(10-2x)+x , 新数=100x+10(10-2x)+x+5∴3[100(x+5)+10(10-2x)+x]-39=100x+10(10-2x)+x+55、两个三位数,它们的和加1得1000,如果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。
解:(多位数表示+已知和)设大三位数=x ,小三位数为999- x.9991000x x -∙=+大小 999-1000x x ∙=+小大 9996(999)10001000x x x x -∴+=-+ 6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。
初一数学上册:一元一次方程解决应用题【利润问题】知识点关键点:进价,售价,标价,利润,利润率,折扣单件利润=标价-进价;销售总额=售价×销售数量;成本=进价×购买数量;总利润=销售总额-成本;利润=成本价×利润率;定价=成本价+利润;售价=定价×折扣。
专项练习【例一】某名牌西装进价是1000元,标价是1500元,某商场要以利润率不低于5%的价格销售,问售货员可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500·x/10-1000)/1000=5%解之得:x=7答:打7折出售该商品。
【例二】某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得:(90%x-250)/250=15.2%解之得:x=320答:商品的标价是320元【例三】脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?解:设此商品利润率为x%,根据题意得:(12000-10000)/10000=x%解之得:x=20答:此商品的利润率为20%。
【例四】商场对某一商品作调价,按原价的8折出售,此时商品的利润率是10%,已知商品标价为1375元,求进价。
解这一题如果还要套用"利润率=(商品售价-商品进价)/商品进价",那么方程的分母上就会出现未知数,变成分式方程,为避免出现这种情况,我们可以把关系式改为"利润率×商品进价=商品售价-商品进价"。
解:设进价为x元,根据题意得:10%x=1375×80%-x解之得:x=1000答:商品进价1000元。
【例五】一商场将每台VCD先按进价提高40%标出销售价,然后再以八五折优惠价出售,结果还赚了228元,那么每台VCD进价多少元?本题只能利用"商品利润=商品售价-商品进价"这一关系式,利润为228元,售价为进价,提高40%后以八五折出售,即(1+40%)·85%x。
初一上册数学应用题大全及答案新人教版一、选择题:本大题共12小题,每小题3分,共36分,请你将认为正确答案前面的代号填入括号内1.﹣22=()A. 1 B.﹣1 C. 4 D.﹣4考点:有理数的乘方.分析:﹣22表示2的2次方的相反数.解答:解:﹣22表示2的2次方的相反数,∴﹣22=﹣4.故选:D.点评:本题主要考查的是有理数的乘方,明确﹣22与(﹣2)2的区别是解题的关键.2.若a与5互为倒数,则a=()A. B.﹣ C.﹣5 D. 5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:由a与5互为倒数,得a= .故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.(3分)(2014 秋•北流市期中)在式子:,m﹣3,﹣13,﹣,2πb2中,单项式有()A. 1个 B. 2个 C. 3个 D. 4个考点:单项式.分析:直接利用单项式的定义得出答案即可.解答:解:,m﹣3,﹣13,﹣,2πb2中,单项式有:﹣13,﹣,2πb2,共3个.故选:C.点评:此题主要考查了单项式,正确把握单项式的定义是解题关键.4.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C. |﹣3|=|3| D.(﹣3)100=3100考点:有理数的乘方;绝对值.分析:根据有理数的乘方分别求出即可得出答案.解答:解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.点评:此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.5.如果2x2y3与x2yn+1是同类项,那么n的值是()A. 1 B. 2 C. 3 D. 4考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出n的值.解答:解:∵2x2y3与x2yn+1是同类项,∴n+1=3,解得:n=2.故选B.点评:此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.( 3分)(2014秋•北流市期中)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500忆美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()A. 1.5×104美元 B. 1.5×105美元C. 1.5×1012 美元 D. 1.5×1013美元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将15000亿用科学记数法表示为:1.5×1012.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列结论正确的是()A.近似数1.230和1.23精确度相同B.近似数79.0精确到个位C.近似数5万和50000精确度相同D.近似数3.1416精确到万分位考点:近似数和有效数字.分析:近似数的有效数字,就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,并且对一个数精确到哪位,就是对这个位后边的数进行四舍五入进行四舍五入.解答:解:A、近似数1.230有效数字有4个,而1.23的有效数字有3个.故该选项错误;B、近似数79.0精确到十分位,它的有效数字是7,9,0共3个.故该选项错误;C、近似数5万精确到万位,50000精确到个位.故该选项错误;D、近似数3.1416精确到万分位.故该选项正确.故选C.点评:本题考查了近似数与有效数字,主要考查了精确度的问题.8.若|x﹣1|+|y+2|=0,则(x+1)(y﹣2)的值为()A.﹣8 B.﹣2 C. 0 D. 8考点:非负数的性质:绝对值.分析:根据绝对值得出x﹣1=0,y+2=0,求出x、y的值,再代入求出即可.解答:解:∵|x﹣1|+|y+2|=0,∴x﹣1=0, y+2=0,∴x=1,y=﹣2,∴(x+1)(y﹣2)=(1+1)×(﹣2﹣2)=﹣8,故选A.点评:本题考查了绝对值,有理数的加法的应用,能求出x、y的值是解此题的关键,难度不大.9.一种金属棒,当温度是20℃时,长为5厘米,温度每升高或降低1℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10℃时金属棒的长度为()A. 5.005厘米 B. 5厘米 C. 4.995厘米 D. 4.895厘米考点:有理数的混合运算.专题:应用题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:5﹣(20﹣10)×0.0005=5﹣0.005=4.995(厘米).则温度为10℃时金属棒的长度为4.995厘米.故选C.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A. a+b>0 B. a﹣b>0 C. ab>0 D.考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置判断出a,b的取值范围,进而可得出结论.解答:解:∵由图可知,a<﹣1<0<b<1,∴a+b<0,故A错误;a﹣b<0,故B错误;ab<0,故C错误;<0,故D正确.故选D.点评:本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.11.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B. 0 C.负数 D.非负数考点:有理数的混合运算.分析:分k>0,k<0及k=0分别进行计算.解答:解:当k>0时,原式=(k+k)÷k=2;当k<0时,原式=(﹣k+k)÷k=0;当k=0时,原式无意义.综上所述,(|k|+k)÷k的结果是非负数.故选D.点评:本题考查的是有理数的混合运算,在解答此题时要注意进行分类讨论.12.四个互不相等的整数a,b,c,d,它们的积为4,则a+b+c+d=()A. 0 B. 1 C. 2 D. 3考点:有理数的乘法;有理数的加法.分析: a,b,c,d为四个互不相等的整数,它们的积为4,首先求得a、b、c、d的值,然后再求得a+b+c+d.解答:解:∵a,b,c,d为四个互不相等的整数,它们的积为4,∴这四个数为﹣1,﹣2,1,2.∴a+b+c+d=﹣1+(﹣2)+1+2=0.故选;A.点评:本题主要考查的是有理数的乘法和加法,根据题意求得a、b、c、d的值是解题的关键.二、填空题.本大题共8小题,每小题3分,满分24分.请将答案直接写在题中的横线上13.﹣5的相反数是 5 .考点:相反数.分析:根据相反数的定义直接求得结果.解答:解:﹣5的相反数是5.故答案为:5.点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.14.﹣4 = ﹣.考点:有理数的除法;有理数的乘法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=﹣4××=﹣.故答案为:﹣.点评:此题考查了有理数的除法,有理数的乘法,熟练掌握运算法则是解本题的关键.15.请写出一个系数为3,次数为4的单项式3x4 .考点:单项式.专题:开放型.分析:根据单项式的概念求解.解答:解:系数为3,次数为4的单项式为:3x4.故答案为:3x4.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.16.三个连续整数中,n是最小的一个,这三个数的和为3n+3 .考点:整式的加减;列代数式.专题:计算题.分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解答:解:根据题意三个连续整数为n,n+1,n+2,则三个数之和为n+n+1+n+2=3n+3.故答案为:3n+3点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.17.若a2+2a=1,则2a2+4a﹣1= 1 .考点:因式分解的应用;代数式求值.分析:先计算2(a2+2a)的值,再计算2a2+4a﹣1.解答:解:∵a2+2a=1,∴2a2+4a﹣1=2(a2+2a)﹣1=1.点评:主要考查了分解因式的实际运用,利用整体代入求解是解题的关键.18.一只蜗牛从原点开始,先向左爬行了4个单位,再向右爬了7个单位到达终点,规定向右为正,那么终点表示的数是 3 .考点:数轴.分析:根据数轴的特点进行解答即可.解答:解:终点表示的数=0+7﹣4=3.故答案为:3.点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.19.若多项式a2+2kab与b2﹣6ab的和不含ab项,则k= 3 .考点:整式的加减.专题:计算题.分析:根据题意列出关系式,合并后根据不含ab项,即可确定出k的值.解答:解:根据题意得:a2+2kab+b2﹣6ab=a2+(2k﹣6)ab+b2,由和不含ab项,得到2k﹣6=0,即k=3,故答案为:3点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有2(n﹣1)米.考点:列代数式.分析:第一棵树与第n棵树之间的间隔有n﹣1个间隔,每个间隔之间是2米,由此求得间隔的米数即可.解答:解:第一棵树与第n棵树之间的间隔有2(n﹣1)米.故答案为:2(n﹣1).点评:此题考查列代数式,求得间隔的个数是解决问题的关键.三、本大题共3小题,每小题4分,满分12分21.计算:22﹣4× +|﹣2|考点:有理数的混合运算.分析:先算乘法,再算加减即可.解答:解:原式=4﹣1+2=5.点评:本题考查的是有理数的混合运算,熟知有理数混合运算顺序是解答此题的关键.22.利用适当的方法计算:﹣4+17+(﹣36)+73.考点:有理数的加法.分析:先去括号,然后计算加法.解答:解:原式=﹣4+17﹣36+73=﹣4﹣36+17+73=﹣40+90=50.点评:本题考查了有理数的加法.同号相加,取相同符号,并把绝对值相加.23.利用适当的方法计算: + .考点:有理数的乘法.分析:逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.解答:解:原式= ×(﹣9﹣18+1)= ×(﹣26)=﹣14.点评:本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.四、本大题共2小题,每小题5分,满分10分24.已知:若a,b互为倒数,c,d互为相反数,e的绝对值为1,求:(ab)2014﹣3(c+d)2015﹣e2014的值.考点:代数式求值;相反数;绝对值;倒数.分析:由倒数、相反数,绝对值的定义可知:ab=1,c+d=0,e=±1,然后代入求值即可.解答:解:由已知得:ad=1,c+d=0,∵|e|=1,∴e=±1.∴e2014=(±1)2014=1∴原式=12014﹣3×0﹣1=0.点评:本题主要考查的是求代数式的值,相反数、倒数、绝对值的定义和性质,掌握互为相反数的两数之和为0、互为倒数的两数之积为1是解题的关键.25.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,把a=﹣1,b=2代入得:6+4=10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、本大题共2小题,每小题5分,满分10分26.已知全国总人口约1.41×109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食?(结果用科学记数法表示)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.解答:解:1.41×109×0.5=0.705×109=7.05×108(kg).答:全国每天大约需要7.05×10 8kg粮食.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.27.某市出租车的收费标准为:不超过2前面的部分,起步价7元,燃油税1元,2千米到5千米的部分,每千米收1.5元,超过5千米的部分,每千米收2.5元,若某人乘坐了x(x大于5)千米的路程,请求出他应该支付的费用(列出式子并化简)考点:列代数式.分析:某人乘坐了x(x>5)千米的路程的收费为W元,则W=不超过2km的费用+2km至5km的费用+超过5前面的费用就可以求出x与W的代数式.解答:解:7+1+3×1.5+2.5(x﹣5)=8+4.5+2.5x﹣12.5.=2.5x(元).答:他应该支付的费用为2.5x元.点评:本题考查了列代数式,解答时表示出应付费用范围划分.六、本大题共1小题,满分9分2 8.学校对七年级女生进行了仰卧起坐的测试,以能做40个为标准,超过的次数用正数表示,不足的次数用负数表示,其中6名女生的成绩如下(单位:个):2 ﹣1 03 ﹣2 1(1)这6名女生共做了多少个仰卧起坐?(2)这6名女生的达标率是多少?(结果精确到百分位)考点:正数和负数.分析:(1)由已知条件直接列出算式即可;(2)根据题意可知达标的有4人,然后用达标人数除以总人数即可.解答:解:(1)40×6+(2﹣1+0+3﹣2+1)=240+3=243(个).答:这6名女生共做了243个仰卧起坐;(2)×100%≈0.67=67%.答:这6名女生的达标率是67%.点评:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.七、本大题共1小题,满分9分29.如图,边长为a的正方形工件,四角各打一个半径为r的圆孔.(1)列式表示阴影部分的面积;(2)当a=15,r=2时,阴影部分的面积是多少?(π取3.14,结果精确到0.1)考点:列代数式;代数式求值.分析:(1)阴影部分面积=正方形的面积﹣四个圆的面积;(2)把a=15,r=2代入(1)所列的代数式中,计算即可.解答:解:(1)阴影部分的面积:a2﹣4πr2;(2)当a=15,r=2时,a2﹣4πr2=152﹣4×3.14×22,=225﹣50.24≈174.8.答:阴影部分的面积是174.8.点评:此题主要考查了列代数式,关键是掌握圆的面积公式和正方形的面积公式.八、本大题共1小题,满分10分30.一振子从A点开始左右水平来回的震动8次后停止,如果规定向右为正,向左为负,这8次震动的记录为(单位:毫米):+10,﹣9,+8,﹣7,+6,﹣5,+5,﹣4.(1)该振子停止震动时在A点哪一侧?距离A点有多远?(2)若该振子震动1毫米需用0.02秒,则完成上述运动共需多少秒?考点:正数和负数.分析:(1)根据有理数的加法,可得答案;(2)根据距离的和乘以单位距离所需的时间,可得总时间.解答:解:(1)10﹣9+8﹣7+6﹣5+5﹣4=1+1+2=4(毫米).答:该振子停止震动时在A点右侧.距离A点有4毫米.(2)(|+10|+|﹣9|+|+8|+|﹣7|+|+6|+|﹣5|+|+5|+|﹣4|)×0.02=54×0.02=1.08(秒).答:完成上述的运动共需1.08秒.点评:本题考查了正数和负数,利用距离的和乘以单位距离所需的时间等于总时间,注意第二问计算的是距离的和.。
初一应用试题及答案一、选择题1. 如果小明每天读书1小时,一周共读了7小时,那么他一个月(假设一个月有4周)会读多少小时?A. 28小时B. 30小时C. 35小时D. 40小时答案:A2. 某班级有40名学生,如果每名学生需要交10元班费,那么总共需要多少钱?A. 400元B. 300元C. 200元D. 100元答案:B二、填空题1. 一个长方形的长是10米,宽是5米,它的面积是________平方米。
答案:502. 如果一个数的平方是81,那么这个数是________。
答案:±9三、解答题1. 某学校计划购买一批图书,每本书的价格是20元。
如果学校计划购买100本,那么总共需要多少钱?解:根据题目,每本书的价格是20元,学校计划购买100本,所以总共需要的钱数为:20元/本× 100本 = 2000元答:总共需要2000元。
2. 李华和张强两人同时从学校出发,李华每分钟走60米,张强每分钟走80米。
如果他们走了10分钟后,张强比李华多走了多少米?解:首先计算两人10分钟内各自走了多少米:李华:60米/分钟× 10分钟 = 600米张强:80米/分钟× 10分钟 = 800米然后计算张强比李华多走的米数:800米 - 600米 = 200米答:张强比李华多走了200米。
结束语:通过以上的试题及答案,同学们可以检验自己对于初一数学应用题的掌握程度。
希望同学们能够通过练习,不断提高自己的解题技巧和数学思维能力。
同时,也希望同学们能够享受数学学习的过程,发现数学的乐趣。
初一必做每日一题——应用题之分段计价问题 【南京名校期末考试数学高频考点】应用题之分段计价问题1. 二十九中2016年期末考试:第20题,第24题,根据题意分段计费,分类讨论思想;2. 一中2016年期末考试:第24题,用一元一次方程解决实际问题;3. 金陵汇文2016年期末考试:第22题,根据题意列方程并解决实际问题。
【典型例题】(二十九中2016年期末考试)24. 某公园门票价格如下表:购买张数1~50张51~100张100张以上每张门票的价格13元11元9元、两个班共104名学生去公园,其中七年级(1)班不足50人,七年级(2)班超过50人.如果某校七年级(1)(2)两个班都以班为单位购票,那么一共应付1240元.(1)问七年级(1)班、(2)班各有学生多少人?(2)如果两个班联合起来,作为一个团体购票,那么可节省多少元?(3)如果七年级(1)班单独组织去游园,作为组织者的你将如何购票才最省钱?【学霸易错点】1. 对于题干中分段计价的理解不透彻,不清楚购买张数对应的价格究竟是所有的都按照优惠后价格进行计算,还是只有超过的部分按照优惠价格进行计算。
2. 学生没注意到题干中每一问之间的区别,各自购票与联合起来购票的区别,单独游园又该怎么解决。
3. 对于第(3)问单独购票时票价的比较时,考虑比较片面。
【破解要诀】1. 找到切入点,购买张数为50时,票价如何计算的,购买张数在50~100的时候,票价又变成了怎样,购买张数大于100时,票价又是如何变化的。
所以只需要根据题干给出信息,确认购买张数是多少即可。
2. 利用两个班级共104名学生来分别设两个班级的人数,再代入进行计算即可。
3. 对于不同区间段的人数和票价一一进行对应,再进行比较,即可找到更省钱的方案。
答案 【典型例题】 (二十九中2016年期末考试)24. 某公园门票价格如下表:购买张数1~50张51~100张100张以上每张门票的价格13元11元9元某校七年级(1)(2)、两个班共104名学生去公园,其中七年级(1)班不足50人,七年级(2)班超过50人.如果两个班都以班为单位购票,那么一共应付1240元.(1)问七年级(1)班、(2)班各有学生多少人?(2)如果两个班联合起来,作为一个团体购票,那么可节省多少元?(3)如果七年级(1)班单独组织去游园,作为组织者的你将如何购票才最省钱?【分析】 (1)分析题干可知,两个班共104名学生,所以可设(1)班人数为x 人,则(2)班人数为104x -人。
1. 考点:多位数的表示+已知差设十位数为X ,则个位数为X+5,依题意得 10X+X+5=X+X+5-9 2. 考点:工程问题设乙还需要X 天完成任务 1)3(1213151=++⨯x 3. 考点:追及与相遇问题① 设快车开出后X 小时与慢车相遇480)1(90140=++x x②设X 小时后 480+(90+140)X=600 ③X 小时后 480+(140-90)X=600 ④X 小时后 (140-90)X=480 ⑤X 小时后 140X=90(X+1)+4804. 错车问题,方法可在车尾或车头各放一人,将错车问题变为两人的追及与相遇问题,设时间为X 秒两车相向:100+150=(10+15)X 两车同向:100+150=15X-10X 两车齐头:100=15xx-10x5. 考点:经济类问题 设X 折出售102200%)101(1600x⨯=+6. 考点:合成比例12125856,8568+=+====K K K KK K ,丙乙设甲::甲:乙:丙7. 考点:已知和设应安排X 人加工大齿轮,则安排85-X 人加工小齿轮)85(1083x x -=⨯8. 考点:流水行船问题h km V h km V /5/10==逆顺设AB 间的距离为x 751010=-+x x 9.考点:变相的相遇问题+已知倍数,()()2516131-613,⨯=+++==x x x v x v 甲乙设10.考点:浓度问题分析 由于已知条件中涉及到合金中含铜的百分数,因此只有增设这两个合金含铜的百分数为参数或与合金含铜的百分数有关的其他量为参数,才能充分利用已知,为列方程创造条件 .解法1 设所切下的合金的重量为x 千克,重12千克的合金的含铜百分数为p ,重8千克的合金的含铜百分数为q(p ≠q),于是有整理得 5(q -p)x=24(q -p).因为p ≠q ,所以q -p ≠0,因此x=4.8,即所切下的合金重4.8千克.11.考点:已知差设甲的速度为X,乙的速度为X+2 6092404082++=-X X 12. 考点:浓度问题 设倒入X 克85%的酒精%75)800(%85%50800X X +=•+⨯13. 考点:工程问题工效⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+125207154乙甲丙甲丙乙 钱 每天⎪⎪⎪⎩⎪⎪⎪⎨⎧÷=+÷=+÷=+762160000433150000522180000丙甲丙乙乙甲14.考点:不定方程甲 乙 原订购 3x x后订购 3x-6 x+6 ∴x ≥2 最后购 3x-6-(6-y) x+6-y=3x+y-12 =x-y+6 ∴y ≤6 ∴3x+y-12=2(x-y+6) ∴x+3y=24 解之∴⎩⎨⎧==舍)(73y x⎩⎨⎧==66y x ⎩⎨⎧==59y x ⎩⎨⎧==412y x ⎩⎨⎧==315y x ⎩⎨⎧==218y x ⎩⎨⎧==921y x ⎩⎨⎧==024y x 15.考点:行程问题最佳方案:将人分为两拨,第一拨先坐车,后走路,第二拨先走路,后坐车,若两拨人同时到,则两拨人走的路程一样,坐车路程也一样 设走路的路程长为Xkm从第一拨人与车分开后开始计时,第一拨人走路时间=车用的时间 6015602155x x x -+-= 16.考点:追及+相遇+相等的量车与车之间的距离=V 车×发车时间间隔 设发车时间间隔为x⎩⎨⎧+=+=)60(25.10)82(10车车车车v x v v x v 17.考点:统筹规则 尽量选用大车,即乙车乙车 甲车 钱数 8辆 3840 7辆 1辆 下略18.时钟问题V 时针=1格/小时,V分针=12格/小时 起始时间4:00∴该题为追及问题,4=(12-1)X 19.考点:相等量为1甲厂年产量占济南市场份数X,乙厂年产量占济南市场份数为Y⎪⎪⎩⎪⎪⎨⎧=+=+31312143Y X Y X 20. 考点:利润问题标价 售价 利润1 0.95 1×(1+60%)-0.95 新成本 0.95×(1+40%) ∴利润率%)401(95.095.0%)601(+-+21. 考点:相遇问题,设人的速度为X,从A 到B 时间4000/X 1240054004000⨯+⨯=X X 22. 考点:行程问题中的比与比例问题,设AB 之间路程为X 甲 乙 丙 乙-丙X X X 200- =240400--X X =24020023.考点:年龄问题,注意差不变,可列表找出其关系式 甲 乙以前 YX 21 现在 X Y 将来 2Y-7 X∴⎪⎩⎪⎨⎧--=--=-XY Y X Y X X Y 7221 24.考点:追 及问题+相等的量(可设为单位1或X)分析:甲第1次追 上乙与甲第2次追 上乙相隔时间为50秒,即甲每50秒追上乙一圈,同理,甲每40秒追上丙一圈,设一圈长度为单位为1,⎪⎪⎩⎪⎪⎨⎧==丙甲乙甲vv v v -401-50120120010501-401-===丙乙v v 因为甲乙丙三人出发点不在一起,初始乙在甲前10×(v 甲-v 乙)=51丙在甲前30×(v 甲-v 丙)=43,∴乙丙相距20115143=-∴乙追丙时间,秒丙乙112012011)-(2011=÷=÷v v 25.考点:分段求值①%144004008001200⨯⎩⎨⎧② 800~400间最高税=3200×14%=448∴280应为800-400之间税 280÷14%=2000元 ∴稿费=800+2000=2800元③ 对,如:某人稿酬4001,则税=4001×11%=440.11元 另一人稿酬4000,税=3200×14%=448元 26.考点:浓度问题+已知和设甲盐水需X 千克,则乙盐水需5-X 千克 40%×X+(5-X)×15%=5×25%27.考点:浓度问题需加水X 千克 等式构成可考虑利用盐=盐建立 600×40%=(600+X )×25%28.考点:行程问题中的比与比例问题 设河宽X 米第一次相遇 甲 乙 和 800 X-800 X—— —— = ——第二次相遇 X+600 2X-600 3X从头算29.考点:行程问题中,本题应将车与人晚点分别考虑 车晚点的时间30分=修车时间-少走一段路时间(往返)人晚点的时间30分=晚出发10分+步行走一段路比车走同一段路多用时间 ∵车速=人速的6倍,设车从学校走到碰见人的地方所用时间为X,人从学校走到碰见车的地方所用时间为6X ∴人:30=10+6X-X ∴X=4 ∴车 30=修车时间-4×2 ∴修车时间=3830.考点:行程问题+比与比例 设AB 间距离=X 速度未提高前甲乙v v x =+99 速度提高前甲乙v v x 222=+ ∴22299⨯+=+x x 31.考点:行程问题中的比与比例+追及+相遇 通信费 队伍 去 1998-x x ——— = ——— 回 x 1998-x 32.考点:画图,时间轴(略) 33.考点:已知倍数,质数 设乙年龄x,甲年龄2x ,丙x+767732677013=+++⇒⎩⎨⎧<=x x x 质数数字和34.考点:行程问题+比与比例 甲 乙x a a -=+100100100 ∴1001001002ax a x -=-= ∴甲快35.考点:行程问题中流水行船+相同的量 设甲乙码头的路程为1⎪⎪⎩⎪⎪⎨⎧-==+==水船逆船水顺vv v bv v v a11 211b a v v -==∴木块水∴木块顺水漂流时间ab baba b a -=-=-21122111 36.考点:))((22y x y x y x +-=-技巧 可设B 与C 的年龄和为M, ∴A-M=16,A 2-M 2=1632 ∴(A-M)(A+M)=1632 ∴A+M=10237.考点:行程问题中的比与比例问题甲乙分乙的时间甲的时间v v x x =+==603560 先解x ,即可求速度比 38.考点:函数极值 利润=【8+2(R-1)】×[60-3(R-1)]初一学生可将R=2,3,4,…,10代入 初二学生可配方求解 39.考点:利润进价 售价 利润 原来 x (1+20%)x 0.2x 现在 (1+25%)x 0.2x ∴m=0.2x ∴利润率=%16%)251(2,0=+xx40.考点:工程问题,重要利用工效甲工效=a 1 乙工效=ab c a b a c -=-1 ∴两人合作天数=c a b ababc a a -+=-+1141.考点:工程问题+不定方程甲+乙+丙=61①甲+丙+戊=103②甲+丙+丁=152③乙+丙+戊=51④该题可将甲、乙、丙、丁均用戊表示,也可等式加减 42.考点:相遇+追及+相等量设等距为单位1,车人车车人v x v v v v 1617241=⎪⎪⎩⎪⎪⎨⎧=-=+ 43.考点:工程问题 乙工效x,甲工效2x 112152253++=+x x x x 44.考点:盈亏问题设人数x 人,任务y 棵树⎪⎩⎪⎨⎧=+=+y x y x 43640%)501(6 45.考点:已知差设乙抽调x,则甲抽调x+1人 46.考点:已知和设实验中学x 人,潞河中学4415-x 4415-x=2x-1347.考点:分段求值15千米⎩⎨⎧=⨯→→元千米元千米2.132.1111110413.2+10>22 ∴不够48.考点:已知和设x 张铁皮作盒身,180-x 张铁皮作盒底 18x=2)180(45x -49.考点:分段求值 设用了x 立方米60×0.8+(x-60)×1.2=0.88x50.考点:欲求路程,已知时间,设速度 设原计划每小时生产x 个零件 13x=12(x+10)+60 51.考点:同上设原计划每小时生产x 个零件 5x=4(x+3)52.考点:工程问题,主要考虑效率,长蜡烛长为x ,短蜡烛长为y长一小时燃10,7y x 短一小时燃 5710673=∴=y x yx 53.考点:行程问题 设甲共行了x 分, 80x+120(x+2)+60=60054.考点:行程问题中的变相的相遇问题 甲的速度x,乙速度x+2 2.5x+2(x+2)=210+1055.考点:欲求路程,已知速度,设时间 设正点到用x 小时 8(x-1)=6(x+1)=路程 56.考点:流水行船设去时用x 小时,返回用5-x (30+6)x=(30-6)(5-x)=路程57.考点:工程问题,一人一小时工效401先安排x 人, 140)2(8404=++x x 58.考点:多位数表示设后两位数(即十位与个数)为x, 100+x+234=10x+159.考点:多位数表示设十位数字为x,则百位数字为x+1,个位数字为3x-2 ∴100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=1171200x+170(70-x)+160(40-x)+150(x-10)=17560 60B 考点:变相的相遇问题 设:甲的速度为x,乙的速度为y⎩⎨⎧=+=+3635365.45,2x y x y 61.考点:错车相遇+比与比例 设,3.,2k v k v ==乙甲190+170=6(2k+3k ) 路程和62.考点:行程问题,注意去时与返回时间一样 设甲的速度为x,乙的速度为y⎩⎨⎧=+=+202220)(2y y x 63.设小王原有书x 本,小张原有书y 本,⎩⎨⎧-=++=-101010)10(5x y x y 64.考点:欲求路程(任务量),已知速度(每人),设时间(多少人) 设人数为x 人, 12x+20=14x-1265.考点:流水行船问题⎪⎪⎩⎪⎪⎨⎧-=+=水船水船vv v v 32433666.考点:火车过桥设火车速度为x ,车长为y⎩⎨⎧-=+=∴yx yx 100040100060 67.考点:已知和设林地面积为x ,耕地面积为180-x 180-x=25%x68.考点:已知和设种茄子x 亩,种西红柿25-x 1700x+1800(25-x )=44000 则获利为2600x+2600(25-x ), 69.考点:已知和设x 天安排作粗加工,15-x 天安排作细加工 6(15-x )+16x=140获利为1000+2000(15-x ) 70.考点:已知和设甲种贷款x 万元,乙种贷款136-x12%x+13%(136-x )=16.84 71.考点:已知和,设甲种商品原单价x 万,乙商品原单价100-x X (1-10%)+(1+5%)(100-x )=100(1+2%) 72.考点:已知和设甲原售价x 元,乙原售价500-x 0.7x+0.9(500-x )=386 73.考点:已知和设甲购进了x 件,乙购进了50-x 件 35x ·20%+20(×50-x )·15%=278 74.考点:利润问题进价 定价 售价 利润 原 x x+48 x+48 48 0.9(x+48)×6-6x=9(x+48-30)-9x 75.考点:已知和+利润甲服装成本x 元,乙服装成本500-x成本 定价 售价 利润甲 x (1+50%)x (1+50%)x ·0.9 (1+50%)x ·0.9- x乙 500-x (1+40%)(500-x) (1+40%)(500-x) ·0.9 (1+40%)(500-x) ·0.9-(500- x)(1+50%)x ·0.9+(1+40%)(500-x) ·0.9=500+157 76.考点:已知倍数设原来下层x 本,上层3x 件 3x-40=x+4077.考点:已知倍数设乙=x ,甲=2x ,丙=2xX+2x+2x=70078.考点:行程问题中的追及问题 慢车每小时行x 千米 5x+30×2=60×5 79.考点:行程问题V 甲=80米/分,V 乙步=40米/分,V 乙骑=120米/分, 设乙借车前步行x 米,则骑车时间60-7-x 60×80=40x+120(60-7-x ) 80.考点:已知倍数设今年儿子x 岁,母亲4x 2(x+20)=4x+2081.设鱼身x 千克,鱼头24+xX=24+x +482.考点:已知和+平均数设男x 人,女生100-x100×64=60 x+70(100- x )83.考点:已知和设损坏了x 箱,未损坏2100-x 箱5(2100-x )-40x=969084.分段求值50千米千米千米2010330301020⎭⎬⎫⎩⎨⎧=÷→→ 85.A:倒推法(9+3)×2=24(24+4)×2=56(56+5)×2=12285.B:平均数 11+7=18,18÷3=6甲 乙 丙(游客)应吃 7米 11米 0米实际吃 6条 6条 6条∴每条鱼6÷6=1元,甲收1元,乙收5元86.考点平均数1.2÷2=0.6元20×0.6=12元87.平均数 设甲拿x 本,乙x+15,丙x+15 平均每人每人应该拿)(1031515+=++++x x x x ∴乙多拿了5本 ,∴一个本价格1.5÷5=0.327÷0.3=90个本88.考点:欲求路程,已知时间,设速度设甲速度x ,乙速度y8(x+y)=7(x+1+y+3)=路程∴x+y=28 ∴路程8×28=22489.考点:相遇问题AB 两地相距x 千米3x=6(75+65)90.考点:行程问题,全是路程比与比例设AB 相距x 千米李明 王华 路程和52 x-52 x 2x-44 3x31344252==-∴x x x 91.考点:容斥原理+等式加减设答对a 、b 、c 三题人数分别为a 、b 、c⎪⎩⎪⎨=+=+2025c b c a ∴a=17,b=12,c=8∴17×20+12×25+8×25总人数=a+b+c-15-2×1=20人92.考点:等式加减3甲+7乙+丙=31543甲+10乙+丙=42093.考点:不定方程中的等式加减+已知和设乙买A 型x 台,则乙买B 型8-x 台,丙买A 型8-x 台,丙买B 型x 台 设A 、B 两种类型单价为A ,BA+B=30000 ①xA+B(8-x)=110000 ②求(8-x)A+Xb=? ③②+③得110000+?=8(A+B )∴?=8×30000-110000=13000094.考点:假设甲、乙、丙三种产品的价值一样∴2A+2B=B+C=2A+C∴C=2B,B=2A∴A 零件价值为“1”,B 零件价值为2,C 零件价值为4,∴所有零件总价值:6的倍数+2×1+2=6K+4而组装一件产品价值为6,∴不论如何安排,剩的零件价值为4,不够组装一个完整产品95.考点盈亏问题蛛蛛x 蜻蜓y 蝉z⎪⎩⎪⎨⎧=++=+=++18202118668z y x z y z y x 96,四个数分别为a ,b ,c ,d⎪⎪⎩⎪⎪⎨⎧=++=++=++=++30292821d c b d c a d b a c b a 97.考点:连等连比设为K ,一件童装时间x ,一条裤子2x ,一件上衣3x∴2x+6 x+12 x=“1” ∴x=201 ∴6 x+20 x+14 x=40 x=2天98.考点:行程问题,去时步行速度为x ,骑车速度为y,⎪⎪⎩⎪⎪⎨=+=+5.42124124yx y x 99.考点:已知倍数设今年子女年龄和为x ,父母今年年龄和为6x,共有y 个子女⎩⎨⎧+=+-=-∴)6(3126)2(1046y x x y x x 100.考点:时钟问题中追及问题V 时针=1格/小时,V 分针=12格/小时起始时间为3:00,∴路程差为3格。
应用题综合练习一.选择题(共14小题)1.(和差倍问题)公务员录用考试是这样统计成绩的,综合成绩=笔试成绩×60%+面试成绩×40%,小红姐姐的笔试成绩是82分,她的竞争对手的笔试成绩是86分,小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多()A.2.4分B.4分 C.5分 D.6分2.(和差倍问题)篮球常规赛比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,今年某队在全部38场比赛中最少得到70分,那么这个队今年胜的场次是()A.6场 B.31场C.32场D.35场3.(和差倍问题)初三某班学生在会议室看录像,每排座位13人,则有1人无处坐,每排14人,则空12个座位,则这间会议室共有座位的排数是()A.12 B.14 C.13 D.154.(比例问题)一个长方形的周长是18cm,若这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,则此正方形的边长是()A.5cm B.6cm C.7cm D.8cm5.(其他问题)一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.25 B.16 C.34 D.616.(行程问题)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时7.(和差倍问题)幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,则小朋友的人数为()A.4个 B.5个 C.10个D.12个8.(工程问题)某地修一条公路,若甲工程队单独承包要80天完成,乙工程队单独承包要120天完成.现在由甲、乙工程队合作承包,完成任务需要()A.48天B.60天C.80天D.100天9.(行程问题)甲、乙两人分别从两地同时出发,若相向而行,则6h相遇;若同向而行,则12h甲追上乙,那么甲的速度是乙的速度的()A.倍 B.倍 C.3倍 D.倍10.(比例问题)小华的年龄与爷爷的年龄之和等于爸爸年龄的2倍,爸爸的年龄是小华年龄的3倍,则爷爷的年龄是小华年龄的()A.4倍 B.5倍 C.6倍 D.7倍11.(其他问题)某年的7月份有5个星期六,并且它们的日期之和为85,则7月4日是()A.星期四B.星期五C.星期六D.星期日12.(比例问题)桌上A,B两个大小相同的量杯内分别装有21mL,23mL的水.现在同时对A,B两个量杯注水,注入的水量之比为2:3,接着又同时倒水,倒出的水量之比为2:3,此时A,B两个量杯的水位高度相等,则B量杯注水前与倒水后相差()A.2mL B.4mL C.6mL D.8mL13.(工程问题)制作一副广告牌,徒弟单独做20天完成,师傅单独做12天完成,现由徒弟单独做4天后,师徒二人合做完成余下的任务,则师傅做了()A.4天 B.5天 C.6天 D.7天14.(工程问题)已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时()A.1天 B.2天 C.3天 D.4天二.解答题(共14小题)15.(其他问题)如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a=元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?16.(行程问题)一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)17.(工程问题)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?18.(行程问题)列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?19.(行程问题)一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?20.(行程问题)甲、乙两地的路程为600km,一辆客车从甲地开往乙地.从甲地到乙地的最高速度是每小时120km,最低速度是每小时60km.(1)这辆客车从甲地开往乙地的最短时间是h,最长时间是h.(2)一辆货车从乙地出发前往甲地,与客车同时出发,客车比货车平均每小时多行驶20km,3h两车相遇,相遇后两车继续行驶,各自到达目的地停止.求两车各自的平均速度.(3)在(2)的条件下,甲、乙两地间有两个加油站A、B,加油站A、B相距200km,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与加油站B的路程.21.(和差倍问题)某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓螺母刚好配套?22.(和差倍问题)某车间有27名工人,每人每天可以生产1500个螺钉或2400个螺母.一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?23.(和差倍问题)为了庆祝中国足球队首次进入世界杯赛,曙光体育器材厂赠送一批足球给希望中学足球队.若足球队每人领一个则少6个球,每两人领一个则余6个球,问这批足球共多少个?小明领到足球后十分高兴,就仔细地研究起足球上的黑白球(如图),结果发现,黑块呈五边形,白色呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?24.(行程问题)如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B的速度为2米/秒(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M出发,A 出发后经过秒与B第一次重合;(2)已知MN=100米,若A、B同时从点M出发,经过秒A与B第一次重合;(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.25.(其他问题)牧场上的草长得一样地密,一样地快.已知70头牛在24天里把草吃完,而30头牛就可吃60天.如果要吃96天,问牛数该是多少?26.(比例问题)某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?27.(比例问题)在水面高度为30cm的圆柱形水桶里浸没着一个圆柱形钢材A 和一个圆锥形钢材B.A与B的底面半径之比为3:2,A的高比B的高多,A 的侧面积为282.6平方厘米.如果取出圆锥形钢材B.桶里的水面下降cm.如果再把圆柱形钢材A垂直露出水面6cm,桶里的水面下降4cm.(1)求圆柱形钢材A的高.(2)圆锥形钢材B的体积为多少?(3)求圆柱形水桶里水的体积.28.(行程问题)甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行40千米,乙车每小时行50千米.两车分别到达B地和A地后,立即返回,返回时,甲车的速度增加二分之一,乙车的速度增加五分之一.已知两车两次相遇处的距离是50千米,则A,B两地的距离为多少千米?29.(销售问题)“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.30.(销售问题)某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元)200≤a<400400≤a<500500≤a<700700≤a<900获奖券金额(元)3060100130根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?31.(销售问题)某商场为提高彩电销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额=基本工资+奖励工资.每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如表1所示.(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲本月的销售额为多少元?(2)我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”.表2是缴纳个人所得税税率表,若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后实际得到的工资为1275元,又知A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,请问销售员乙本月销售A型彩电多少台?32.(销售问题)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?33.(销售问题)某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?应用题综合练习参考答案与试题解析一.选择题(共14小题)1.【解答】解:设小红姐姐要使自己的综合成绩追平竞争对手,她的面试成绩必须比竞争对手多x分,根据题意得:82×60%+40%x=86×60%,解得:x=6.答:小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多6分.故选D.2.【解答】解:设胜了x场,由题意得:2x+(38﹣x)=70,解得x=32.答:这个队今年胜的场次是32场.故选C3.【解答】解:设这间会议室共有座位x排,根据题意得:13x+1=14x﹣12,解得:x=13.答:这间会议室共有座位13排.故选C.4.【解答】解:设正方形的边形为xcm,则长方形的长为(x+1)cm,长方形的宽为(x﹣2)cm,根据题意得:2×[(x+1)+(x﹣2)]=18,解得:x=5.故选A.5.【解答】解:设十位数字为x,则个位数字为7﹣x,由题意得:10x+7﹣x+45=10(7﹣x)+x,解得:x=1,所以个位数为:7﹣x=7﹣1=6,答:这个两位数这16.故选:B.6.【解答】解:设当两车相距100千米时,甲车行驶的时间为x小时,根据题意得:900﹣(110+90)x=100或(110+90)x﹣900=100,解得:x=4或x=5.故选D.7.【解答】解:设小朋友的人数为x个,根据题意得:3x﹣3=2x+2,解得:x=5.故选B.8.【解答】解:设由甲、乙工程队合作承包,完成任务需要x天,根据题意得(+)x=1,解得x=48.答:由甲、乙工程队合作承包,完成任务需要48天.故选A.9.【解答】解:设乙的速度为1,则甲的速度是x,根据题意得6x+6×1=12x﹣12×1,6x+6=12x﹣12,6x=18,x=3,3÷1=3.故选C.10.【解答】解:设小华的年龄为a岁,爷爷的年龄是小华年龄的x倍,则爸爸的年龄为3a岁,爷爷的年龄为ax岁,根据题意得:a+ax=2×3a,即1+x=6,解得:x=5.答:爷爷的年龄是小华年龄的5倍.故选B.11.【解答】解:设7月份第一个星期六的日期为x,根据题意得:5x+7+14+21+28=85,解得:x=3,∴7月4日为星期日.故选D.12.【解答】解:设注入的水量为2x,3x,倒出的水量为2y,3y可得:21+2x﹣2y=23+3x﹣3y,解得:x﹣y=﹣2,所以B量杯注水前与倒水后相差为|3(x﹣y)|=6,故选C13.【解答】解:设师傅做了x天,依题意得:+=1,解得x=6.即:师傅做了6天.故选:C.14.【解答】解:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x ﹣2)天,根据题意得:+=1,解得:x=4.答:完成这项工程共耗时4天.二.解答题(共14小题)15.【解答】解:(1)a=23÷10=2.3(元/m3);(2)2.3×22+(2.3+1.1)×(25﹣22)=50.6+3.4×3=50.6+10.2=60.8(元).答:需交水费60.8元;(3)设该用户实际用水m立方米,由题意,得2.3×22+(2.3+1.1)×(70%m﹣22)=71,解得:m=40.故该用户实际用水40立方米.故答案为:2.3;60.8.16.【解答】解:(1)设这名队员从掉头返校到追上队伍,经过了y小时,根据题意得:50y﹣30y=30××2,解得:y=1.5.答:这名队员从掉头返校到追上队伍,经过了1.5小时.(2)设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意得:40x+30x=7×2.故答案为:40x+30x=7×2.17.【解答】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.18.【解答】解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,依题意有3x(3﹣)+3x=25×2,9x﹣2x+3x=50,10x=50,x=5,3x=15答:甲的速度为15千米/小时,乙的速度为5千米/小时.19.【解答】解:设通讯员需x小时可以追上学生队伍,根据题意得:5(x+)=14x,去括号得:5x+=14x,移项合并得:9x=,解得:x=,则通讯员需小时可以追上学生队伍.20.【解答】解:(1)由题意可得:这辆客车从甲地开往乙地的最短时间是:600÷120=5(h),这辆客车从甲地开往乙地的最长时间是:600÷60=10(h),故答案为:5,10;(2)设货车平均每小时行驶xkm,由题意,得3(x+x+20)=600,解得:x=90,x+20=110,答:货车平均每小时行驶90km,客车平均每小时行驶110km;(3)设客车行驶了yh进入加油站B,两车相遇前,(90+110)y=600﹣200.解得:y=2.110×2=220(km),两车相遇后,(90+110)y=600+200,解得:y=4,110×4=440(km),答:甲地与加油站B的路程是220km或440km.21.【解答】解:设安排生产螺栓x人,则安排生产螺母为(30﹣x)人由题得:答:安排10个人生产螺栓,安排20个人生产螺母能使每天生产的螺栓螺母刚好配套22.【解答】解:设安排x名工人生产螺钉,则安排(27﹣x)名工人生产螺母,根据题意得:2×1500x=2400(27﹣x),解得:x=12,∴27﹣x=15.答:安排12名工人生产螺钉、安排15名工人生产螺母.23.【解答】解:①设这批足球共有x个,则列方程得:x+6=2(x﹣6),解得:x=18.②设白块有y块,则:3y=5×12,解得:y=20.答:足球有18个,白块有20块.24.【解答】解:(1)设A出发后经过x秒与B第一次重合,依题意有(3﹣2)x=5,解得x=5.答:A出发后经过5秒与B第一次重合;(2)设经过y秒A与B第一次重合,依题意有(3+2)x=100×2,解得x=40.答:,经过40秒A与B第一次重合;(3)由于若A、B同时从点M出发,A与B第一次重合共走了2个MN,第二次重合共走了4个MN,可得ME=×2MN=MN,MF=2MN﹣×4MN=MN,依题意有:s﹣s=20,解得s=50.答:s=50米.25.【解答】解:设牧场上原来的草的量是1,每天长出来的草是x,则24天共有草1+24x,60天共有草1+60x,所以,去分母得:30(1+24x)=28(1+60x),∴960x=2,∴x=96天吃完,牛应当是(头).答:如果要吃96天,牛数该是20头.26.【解答】解:∵2300÷﹙1+15%﹚=2000﹙人﹚设去年男生有x人,则女生有﹙2000﹣x﹚人.﹙1+25%﹚x+﹙2000﹣x﹚×﹙1﹣25%﹚=2300,解得x=1600答:去年男女生各有1600人和400人.27.【解答】解:(1)由题意得r A=3acm,r B=2acm,h A=h B,则=,解得h B=,则h A=×=15(cm).故圆柱形钢材A的高是15cm.(2)由题意得:2π×3a×h A=282.6,解得a=1,r A=3,r B=2,圆锥形钢材B的体积:×π×22×=15π=47.1(cm3);故圆锥形钢材B的体积为47.1cm3.(3)水高:30﹣10﹣=(cm3),47.1+π×32×15=471(cm3),圆柱形水桶里水的体积:471÷(10+)×=800.7(cm3).故圆柱形水桶里水的体积是800.7cm3.28.【解答】解:设A,B两地的距离为x千米,依题意有2x﹣[x+x×2]﹣x=50,解得x=450.答:A,B两地的距离为450千米.29.【解答】解:由已知得:将毛竹全部粗加工后销售,则可获利为:1000×52.5=52500(元).故答案为:52500.30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利为:0.5×30×5000+(52.5﹣0.5×30)×100=78750(元).故答案分为:78750.由已知分析存在第三种方案.设粗加工x天,则精加工(30﹣x)天,依题意得:8x+0.5×(30﹣x)=52.5,解得:x=5,30﹣x=25,所以销售后所获利润为:1000×5×8+5000×25×0.5=102500(元).30.【解答】解:(1)优惠额:1000×(1﹣80%)+130=330(元)优惠率:×100%=33%;(2)设购买标价为x元的商品可以得到的优惠率.购买标价为500元与800元之间的商品时,消费金额a在400元与640元之间.①当400≤a<500时,500≤x<625由题意,得:0.2x+60=x解得:x=450但450<500,不合题意,故舍去;②当500≤a≤640时,625≤x≤800由题意,得:0.2x+100=x解得:x=750而625≤750<800,符合题意.答:购买标价为750元的商品可以得到的优惠率.31.【解答】解:(1)当销售额为15000元时,工资总额=200+5000×5%=450元;当销售额为20000元时,工资总额=200+5000×5%+5000×8%=850元.因此450<800<850,设销售员甲该月的销售额为x元,则200+5000×5%+(x﹣15000)×8%=800,解得:x=19375元,故销售员甲该月的销售额为19375元.(2)设销售员乙未交个人所得税前的工资总额为a元,由题意得:a﹣(a﹣800)×5%=1275,解得:a=1300.所以超过20000元部分的销售额为(1300﹣850)÷10%=4500,∴销售员乙的销售总额=20000+4500=24500.设A型彩电销售x台,则B型彩电销售了(21﹣x)台,由题意得:1000x+1500(21﹣x)=24500,解得:x=14.故销售员乙本月销售A型彩电14台.32.【解答】解:(1)设甲的进价为x元/件,则(60﹣x)÷x=50%,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80﹣50)÷50=60%.(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.33.【解答】解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(8﹣4)×500=10000(元);方案二:设生产x天奶片,则生产(4﹣x)天酸奶,根据题意得:x+3(4﹣x)=8,解得:x=2,2天生产酸奶加工的鲜奶是2×3=6吨,则利润为:2×2000+2×3×1200=4000+7200=11200(元),得到第二种方案可以多得1200元的利润.。
初一上册应用题及答案初一上册应用题及答案做初一数学上学期的应用题可以使人的大脑拥有更多的知识;以下是店铺为大家整理的初一数学上册应用题带标准答案,希望你们喜欢。
以下是店铺整理的初一上册应用题及答案,仅供参考,希望能够帮助到大家。
初一上册应用题及答案篇11.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解: 1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的.十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求"两队合作的天数尽可能少",所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能"两队合作的天数尽可能少"。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 ,x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量,(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
初一数学应用题及其解析大全1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为 2.5吨的货车运。
还要运几次才能完?还要运x次才能完29.5-3*4=2.5x17.5=2.5xx=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90*218x=180x=10它的高是10米3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?这9天中平均每天生产x个9x+908=54089x=4500x=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?乙每小时行x千米3(45+x)+17=2723(45+x)=25545+x=85x=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?平均成绩是x分40*87.1+42x=85*823484+42x=697042x=3486x=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒10x=250+55010x=800x=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。
男生分成5组去踢足球,平均每组多少人?平均每组x人5x+80=2005x=160x=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?食堂运来面粉x千克3x-30=1503x=180x=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。
平均每行梨树有多少棵?平均每行梨树有x棵6x-52=206x=72x=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米?高是x米140x=840*2140x=1680x=12高是12米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。
每件大人衣服用 2.4米,每件儿童衣服用布多少米?每件儿童衣服用布x米16x+20*2.4=7216x=72-4816x=24x=1.5每件儿童衣服用布 1.5米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?女儿今年x岁30=6(x-3)6x-18=306x=48x=8女儿今年8岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?需要x时间50x=40x+8010x=80x=8需要8时间14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?苹果x3x+2(x-0.5)=155x=16x=3.2苹果:3.2梨:2.715、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。
甲几小时到达中点?甲x小时到达中点50x=40(x+1)10x=40x=4甲4小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。
如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。
已知甲速度是15千米/时,求乙的速度。
乙的速度x2(x+15)+4x=602x+30+4x=606x=30x=5乙的速度 517.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。
问原来两根绳子各长几米?原来两根绳子各长x米3(x-15)+3=x3x-45+3=x2x=42x=21原来两根绳子各长21米18.某校买来7只篮球和10只足球共付248元。
已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?每只篮球x7x+10x/3=24821x+10x=74431x=744x=24每只篮球:24每只足球:819、运一批货物,一直过去两次租用这两台大货车情况:第一次甲种车2辆,乙种车3辆,运了15.5吨第二次甲种车5辆乙种车6辆运了35吨货物现租用该公司3辆甲种车和5辆乙种车如果按每吨付运费30元问货主应付多少元解:设甲可以装x吨,乙可以装y吨,则2x+3y=15.55x+6y=35得到x=4y=2.5得到(3x+5y)*30=73520、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几?解:原价销售时增加X%(1-10%)*(1+X%)=1X%=11.11%为了使销售总金额不变.销售量要比按原价销售时增加11.11%21、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少?解:设原价为x元(1-10%)x-40=0.5xx=100答:原价为100元22、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克?解:设加盐x克开始纯盐是40*8%克加了x克是40*8%+x盐水是40+x克浓度20%所以(40*8%+x)/(40+x)=20%(3.2+x)/(40+x)=0.23.2+x=8+0.2x0.8x=4.8x=6所以加盐6克23、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元。
问该商贩当初买进多少个鸡蛋?解:设该商贩当初买进X个鸡蛋.根据题意列出方程:(X-12)*0.28-0.24X=11.20.28X-3.36-0.24X=11.20.04X=14.56X=364答:该商贩当初买进364个鸡蛋.24、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?解:设安排生产甲的需要x人,那么生产乙的有(85-x)人因为2个甲种部件和3个乙种部件配一套,所以所以生产的甲部件乘以3才能等于乙部件乘以2的数量16*x*3=10*(85-x)*2解得:x=25生产甲的需要25人,生产乙的需要60人!25、红光电器商行把某种彩电按标价的八折出售,仍可获利20%。
已知这种彩电每台进价2019元。
那么这种彩电每台标价应为多少元?解:设标价为X元.80%X=2019(1+20%)80%X= 2395.2X=299426、某商店把某种商品按标价的8折出售,可获利20%。
若该商品的进价为每件22元,则每件商品的标价为多少元?解::设标价为X元.80%X=22(1+20%)80%X= 26.4X=3327、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒?解:(180+160)/(20+24)=7.28秒28、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,直到甲追到乙为止。
已知狗的速度为15km/h,求此过程中,狗跑的总路程。
解:首先要明确,甲乙的相遇时间等于狗来回跑的时间所以狗的时间=甲乙相遇时间=总路程/甲乙速度和=5km/(5km/h+3km/h)=5/8h所以狗的路程=狗的时间*狗的速度=5/8h*15km/h=75/8km所以甲乙相遇狗走了75/8千米29、一天小红和小亮2人利用温度差测量某山峰的高度,小红在山顶侧的温度是-1度小亮此时在山脚下测得的温度是5度已知该地区的高度每增加100M,气温大约下降0.6度这座山峰的高度是?30、当气温每上升1度时,某种金属丝伸长0.002MM 反之,当温度每下降1度时,金属丝缩短0.002MM。
把15度的金属丝加热到60度,在使它冷却降温到5度,金属丝的长度经历了怎样的变化?最后的长度比原来长度伸长多少?31、一种出租车的收费方式如下:4千米以内10元,4千米至15千米部分每千米加收 1.2元,15千米以上部分每千米加收1.6元,某乘客要乘出租车去50千米处的某地.(1)如果乘客中途不换车要付车费多少元?(2)如果中途乘客换乘一辆出租车,他在何处换比较合算?算出总费用与(1)比较.32、已知开盘是25.35,收盘是27.38,求开盘都收盘上涨的百分比.(27.38-25.35)100%25.358%33、购票人 50人以下 50-100人 100人以上每人门票价 12元 10元 8元现有甲乙两个旅游团,若分别购票,两团应付门票费总计1142元,如合在一起作为一个团体购票,只要门票费864元。
两个旅游团各有几人?【解】因为864>8100,可知两团总人数超过100人,因而两团总人数为8648=108(人).因为10810=1080<1142,10812=1296>1142.所以每个团的人数不会都大于50人,也不会都小于50人,即一个团大于50人,另一个团少于50人.假设两团都大于 50人,则分别付款时,应付10810=1080(元),实际多付了1142-1080=62(元).这是少于50人的旅游团多付的钱.因此,这个旅游团的人数为:62(12-10)=31(人),另一个旅游团人数为108-31=77(人).1,有一只船在水中航行不幸漏水。
当船员发现时船里已经进了一些水,且水仍在匀速进入船内。
若8人淘水,要用5小时淘完;若10人淘水,要用3小时淘完。
现在要求 2.5小时淘完,要用多少人淘水?答案:11个人解:设船的总容积为a,船进水的速度为b,人淘水的速度为c,设要用x人淘水能 2.5小时淘完.8*c*5=1/2*a+5*b (1)10*c*3=1/2*a+3*b (2)x*c*2.5=1/2*a+2.5*b (3)(1)-(2)得到b=5c (4),把b=5c代入(1)(2),然后(1)-(2)得到1/2a=15c (5)把(4)(5)代入(3),最后整理的x=1134、快、慢两辆车从快到慢车,快车行到全程2/3,慢车距终点180千米,两车按原速继续行驶,快到到达终点,慢车行驶了全程6/7,求全程多少米?答案:快车行完全程,慢车走了全程的6/7;同比可知:快车行完全程的2/3时,慢车应走了6/7*2/3(即4/7),还剩余3/7,全程的3/7也就是已知条件180,全程即为180/(3/7)=420!35、某银行建立大学生助学贷款,6年期的贷款年利率为百分之六,贷款利息的百分之五十由国家财政贴补。
某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是多少元?(精确的1元)答案:设他现在可以贷款的数额是x元。