当前位置:文档之家› 杭电自动化单片机实验报告

杭电自动化单片机实验报告

杭电自动化单片机实验报告
杭电自动化单片机实验报告

单片机原理与应用及 C51程序设计

实验报告

实验名称:单片机技术实验

实验一继电器控制输出实验

一、实验目的

1.掌握STC12C5A16S2单片机的最基本电路的设计;

2.了解单片机I/O端口的使用方法;

3.了解继电器和蜂鸣器控制电路以及小电压控制大电压的方法。

二、实验要求

1.利用STC12C5A16S2单片机的P1.2、P1.3口作按钮S9和S10输入,P1.0

和P1.1口作开关量输出,并分别控制一个5V的继电器和蜂鸣器。

2.当S9闭合时,P1.0控制继电器闭合并控制灯泡闪亮;当S9断开时,继

电器触电断开,灯泡不亮;

3.当S10闭合时,P1.1控制蜂鸣器闭合并发出声音;当S10断开时,蜂鸣

器不响。

三、电路

四、原理说明

Q1、Q2为9012三极管即PNP型,低电平导通,当S9或S10按下时,相应的IO口拉低,当P1.0或P1.1赋0时即可控制继电器的吸合活着蜂鸣器的发声。

五、程序代码

#include

sbit L1=P1^1;

sbit L2=P1^2;

sbit L3=P1^3;

sbit L0=P1^0;//定义位变量

void delay()

{

int i,j;

for(i=0;i<250;i++)

for(j=0;j<250;j++);//利用系统时钟,定义延时函数

}

void main ()

{

int n=20;

while(1) //不断循环检测

{

if(L2==0) //判断S9输入

{

while(n--)

{

L0=0;

delay();

L0=1;

delay(); //灯泡以2*delay为周期闪亮

}

n=20;

}

if(L3==0) //判断S10闭合

{

while(n--)

{

L1=0;

delay();

L1=1;

delay(); //蜂鸣器以2*delay为周期发声

}

n=20;

}

}

}

实验二 LED轮换点亮实验

一、实验目的

1.掌握STC12C5A16S2单片机的I/O电路设计;

2.学习SN74HC573数据锁存输出方法。

二、实验要求

1.利用SN74HC573对STC12C5A16S2单片机的P0进行扩展,驱动LED

控制输出;

2.编写程序,使P0.0~P0.7上的发光二极管循环点亮;P2.7控制

SN74HC573芯片的使能;

三、电路

四、原理说明

1.数码管低电平有效;

2.SN74HC573芯片,当锁存使能端LE为高时,这些器件的锁存对于

数据是透明的(也就是说输出同步)。当锁存使能变低时,符合建立时

间和保持时间的数据会被锁存。

五、程序代码

#include

void delay()

{

int i,j;

for(i=0;i<500;i++)

for(j=0;j<500;j++);

} //延时函数

void main()

{

unsigned int i=1;

P0=0xfe; //P0初始为1111 11110,也可定义为0000 0001,左移后取反 while(1)

{

i++;

if(i<=8)

P0=P0<<1; //左移一位

P0=P0+1; //末尾补一,从1111 1100变为1111 1101,从而不断循环 if(i>8) //八位循环完毕,进行下一轮初始化

{

i=1;

P0=0xfe;

}

delay(); //延时

}

}

实验三 LED数码管显示实验

一、实验目的

1.了解八段共阴极LED工作动态显示原理;

2.掌握单片机LED工作动态显示的方法。

二、实验要求

1.P0口的2个扩展口作为段控口和位控口,通过使用P

2.6和P2.7

对SN74HC573芯片的使能。并在数码管上显示1~8.

2.完成全部程序和电路调试工作。

三、电路

四、原理说明

1.U9 作为数码管的段选,U7 作为数码管的位选;

2.SN74HC573 锁存芯片使用详见实验六。

3.LED 采用的是七段共阴极数码管,显示器由 8 个发光二极管 LED 组成,其中包括7 个细长型的 LED 和 1 个小数点型的 LED。分别为 a、b、c、d、e、f、g、dp 共 8 段,其中 dp 为小数点。

补充:

数码管的位选:即位置选择的意思,比如1-8个,选择哪一个使能

数码管的段选:即选择数码管的那一段,从而控制输出数字

五、程序设计

#include

sbit duan=P2^6; //定义段控位

sbit wei=P2^7; //定义位控位

unsigned char code table[]= //控制字无规律,建表查询

{

0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f

} ;

void delay()

{

int i,j;

for(i=0;i<5;i++)

for(j=0;j<50;j++);

} //延时

void main()

{

unsigned char m=0x01;//m0000 0001

unsigned char h;

unsigned int n=0;

while(1)

{

h=~m; //m取反

wei=0; //位控位关,段控位开

duan=1;

P0=table[n]; //显示段

wei=1; //锁存段

duan=0;

P0=h;

wei=0; //锁存位

delay();

n++; //在表中依次查询

if(n<=7) //1-8共八个数码管循环使能

{

m=m<<1;//

}

else //循环一遍后则初始化

{

n=0;

m=0x01;

}

}

}

实验四 24小时时钟显示控制实验

一、实验目的

1.掌握定时器工作原理和使用方法;

2.掌握单片机外部中断和定时中断的控制方法;

二、实验要求

1.P0口的2个扩展口作为段控口和位控口,通过使用P

2.6和P2.7对

SN74HC573芯片的使能,设计一个24小时时钟显示控制电路,时间显示时只用左边6个LED数码管;

2.利用INT0按钮作为启动/停止键,INT1按钮作为清0键,并按键采用

中断响应;

3.系统复位时,显示“000000”,当第一次按下启动/停止键时,开始计

时,再按一次时钟停止,再按又从原来时间的基础上继续计时........;

当按下清0键时,停止计时并将时间恢复到“000000”

4.完成全部程序和电路调试工作;

三、电路

四、原理说明

1.U9 作为数码管的段选,U7 作为数码管的位选;

2.SN74HC573芯片,当锁存使能端LE为高时,这些器件的锁存对于数据是透明的(也就是说输出同步)。当锁存使能变低时,符合建立时间和保持时间的数据会被锁存。

五、程序代码

#include

sbit duan=P2^6; //定义段控位,位地址P2.6

sbit wei=P2^7; //定义位控位

unsigned char code table[]= //数码管0~9的段表

{

0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f

} ;

void delay()

{

int i,j;

for(i=0;i<5;i++)

for(j=0;j<50;j++);

} //延时

unsigned int h=0; //hour

unsigned int m=0; //minute

unsigned int s=0; //second

unsigned int flag=0; //判断INT0的标志flag

void main()

{

unsigned int num=0,i;

unsigned int zi[6]={0}; //用于存储时间的时、分、秒的6个数

int k=0x01h,n;

TMOD=0x01; //定时器1工作在方式1(2^16=65536)

TH0=0xD8; //65536-10000=1101 1000 1111 0000B(D8 F0) TL0=0xF0;

EA=1; //开总中断

ET0=1; //定时器1中断允许

EX0=1; //外部中断0、1允许

EX1=1;

IT0=1; //外部中断0、1选择边沿触发

IT1=1;

TR0=0; //开始不启动,按下INT0后启动

while(1)

{

if(s==60) //秒向分进位,并归零

{

s=0;

m++;

}

if(m==60) //分向时进位

{

m=0;

h++;

}

zi[0]=h/10; //存入hour高位

zi[1]=h%10; //存入hour低位

zi[2]=m/10;

zi[3]=m%10;

zi[4]=s/10;

zi[5]=s%10;

for(i=0;i<6;i++) //显示

{

wei=0;

duan=1;

num=zi[i];

P0=table[num]; //显示一位

wei=1;

duan=0;

n=~k;

P0=n;

wei=0;

k=k<<1; //左移取反

If(i==5)

{ k=0x01h;} //位循环使能,共6个

delay();

}

}

}

void time0_int(void) interrupt 1 //定时器1中断函数

{

TH0=0XD8;

TL0=0XF0; //定时工作方式1,需要重新装入初值i++;

if(i==100) //1000ms,second+1

{

i=0;

s++;

}

}

void int0() interrupt 0 //外部中断0函数

{

flag=flag%2;

if(flag==0) TR0=0; //按偶数次,计数暂停

if(flag==1) TR0=1; //按奇数次,计数启动

}

void int1() interrupt 2 //外部中断1函数,清零

{

h=m=s=i=0;

}

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

杭电《过程控制系统》实验报告

实验时间:5月25号 序号: 杭州电子科技大学 自动化学院实验报告 课程名称:自动化仪表与过程控制 实验名称:一阶单容上水箱对象特性测试实验 实验名称:上水箱液位PID整定实验 实验名称:上水箱下水箱液位串级控制实验 指导教师:尚群立 学生姓名:俞超栋 学生学号:09061821

实验一、一阶单容上水箱对象特性测试实验一.实验目的 (1)熟悉单容水箱的数学模型及其阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。二.实验设备 AE2000型过程控制实验装置,PC机,DCS控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: Q2 图1-1、单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法。不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀

h1( t ) h1(∞ ) 0.63h1(∞) 0 T V 2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为: 当t=T 时,则有: h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e -t/T ) 当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。当由实验求得图1-2所示的 阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T ,该时间常数T 也可以通过坐标原点对响应曲线 图 1-2、 阶跃响应曲线

单片机实验报告

PIC单片机原理与应用实验报告 学校: 学院: 班级: 姓名: 学号: 指导教师:

实验一I/O端口实验 一、实验目的 (1)掌握MPLAP IDE集成开发环境的基本操作。 (2)掌握单片机的I/O端口的设计方法。 (3)掌握在线调试器的使用方法。 (4)学会查阅相关数据手册。 二、实验仪器设备 (1)PC机一台; (2)MPLAP IDE开发软件一套; (3)PICkit3在线调试器一套; (4)APP009实验板一块; 三、实验要求 (1)设计发光LED灯闪烁程序,下载调试,验证功能。 (2)设计流水灯程序,或其他花样彩灯程序,下载调试,验证功能。 (3)设计按按键加1计数程序,下载调试,验证功能。 四、实验步骤 (1)连接在线调试器PICkit3、APP009实验板和计算机; (2)打开MPLAP IDE集成开发环境软件,点击Debugger>Select Tools>PICkit 3 选择调试工具; (3)点击Debugger>Settings,在Settings窗口中点击Power栏,选择由PICkit3向实验板供电; (4)完成实现发光LED灯闪烁实验; 程序代码: #include void delay(void); int main() { while(1) { TRISEbits.TRISE0 = 0; //RE0设置为输出(1输入,0输出); https://www.doczj.com/doc/0c15480132.html,TE0 =1; //RE0=1输出高电平+5V,亮灯 delay(); //延时 https://www.doczj.com/doc/0c15480132.html,TE0 =0; //RE0=0输出低电平0V,灭灯 delay(); //延时 } } void delay(void) { long int i; for (i=0;i<65000;i++); } 实验现象:将程序下载到实验板上,运行程序,LED闪烁,通过改变延时函数改变延时时间,进而可以改变LED闪烁的频率。

计算机过程控制实验报告

计算机过程控制实验报告

实验1 单容水箱液位数学模型的测定实验 1、试验方案: 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1 H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成 μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2= 就是水阻。 如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: ) 1()(0 += TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、实验步骤: 1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有 一定开度,其余阀门关闭。 2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪 输出端连到电动调节阀(FV101)控制信号端。 3) 打开A3000-CS 电源,调节阀通电。打开A3000-FS 电源。 4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。 给定值 图1 单容水箱液位数学模型的测定实验

浙工大过程控制实验报告

实验一:系统认识及对象特性测试 一 实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。 二 实验内容 1 熟悉用MCGS 组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。 三 实验设备 1 AE2000B 型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。 四 实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h ,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C ,K=R2为单容对象的放大倍数,R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP ,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h 。电动调节阀的开度op 通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA 的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型 有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op ,近似看成与流量Q1成正比,当电动调节阀的开度op 为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op 的变化,则输出表达式是对应原来输出值得基础上的增量表达的是,用输出测量值数据做阶跃响应曲线,应减去原来的正常输出值。 五、实验步骤 A 、熟悉用MCGS 组态的智能仪表过程控制系统 1、设备的连接和检查

单片机实验报告

单片机实验报告 班级:信科09-3 姓名:王艳辉 学号:08093581 指导老师:陈岱 完成时间:2012年1月8日

实验一 I/O接口P1、P3口实验 一,实验题目 1,用P1口做输出,接八只发光二极管,编写程序,使发光二极管循环点亮。 2,用P3口做输入口,接八个扭子开关,通过P1口在实验箱上LED 灯上输出,编写程序读取开关状态,将此状态,在发光二极管上显示出来。 二,实验目的 1.熟悉使用CPLD实验箱进行单片机实验的方法。 2.设计出符合实验要求的CPLD硬件电路。 3.学习单片机仿真开发软件Keil 51的使用方法。 4.学习MCS-51汇编语言编程方法。 5.学习Pl口的使用方法。 6.学习延时子程序的编写和使用。 三,实验准备 P1和P3口为准双向口,Pl、P3的每一位都能独立地定义为输出线或输入线,作为输入时,必须向锁存器相应位写入“l”,该位才能作为输入。803l中所有口锁存器在复位时均置为“1”,如果后来在口锁存器写入过“0”,在需要时应写入一个“l”使它再成为一个输入。再来看一下延时程序的实现。现常用的有两种方法:一是用定时器中断来实现,一是用指令循环来实现。在系统时间允许的情况下可以采用后一种方法。根据实验系统的工作主频,计算出延时0.1s的

时间常量,编制延时程序: MOV R7, #200 (1) DEl:MOy R6,#X (2) DE2:DJNZ R6,DE2 (3) DJNZ R7,DEl (4) 上面MOV、DJNZ指令均需两个机器周期,所以每执行一条指令需1÷0.256us现求出X值: (X*1/0.256+1/0.256+l/0.256)*200+l/0.256=0.1*10^6。解出X=l26。代入上式可知实际延时约0.100O04s,近似符合要求。 四,实验步骤 (1)打开MAX+PLUSⅡ CPLD实验开发系统。 (2)点击File菜单Project子菜单之Name项,出现Project Name 对话框。为当前的实验选择恰当的路径并创建项目名称”E:\AT8031”。(3)点击File菜单之New项,出现对话框,为选择输入方式,选择Graphic Editor File。出现图形编辑窗口。 (4)双击空白编辑区,出现Enter Symbol 对话框。 (5)从Symbol Libraries项中选择mf子目录(双击),在prim子目录中选择输入脚input 和输出引脚output。 (6)在图形编辑窗口中的左侧点击连线按钮,并完成对电路的连线。(7)在引脚的PIN_NAME处左键双击使之变黑,键入引脚名称。

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

杭电自动化单片机实验报告

单片机原理与应用及 C51程序设计 实验报告 实验名称:单片机技术实验 实验一继电器控制输出实验 一、实验目的 1.掌握STC12C5A16S2单片机的最基本电路的设计; 2.了解单片机I/O端口的使用方法; 3.了解继电器和蜂鸣器控制电路以及小电压控制大电压的方法。

二、实验要求 1.利用STC12C5A16S2单片机的P1.2、P1.3口作按钮S9和S10输入,P1.0 和P1.1口作开关量输出,并分别控制一个5V的继电器和蜂鸣器。 2.当S9闭合时,P1.0控制继电器闭合并控制灯泡闪亮;当S9断开时,继 电器触电断开,灯泡不亮; 3.当S10闭合时,P1.1控制蜂鸣器闭合并发出声音;当S10断开时,蜂鸣 器不响。 三、电路 四、原理说明 Q1、Q2为9012三极管即PNP型,低电平导通,当S9或S10按下时,相应的IO口拉低,当P1.0或P1.1赋0时即可控制继电器的吸合活着蜂鸣器的发声。 五、程序代码 #include sbit L1=P1^1; sbit L2=P1^2; sbit L3=P1^3; sbit L0=P1^0;//定义位变量 void delay() { int i,j; for(i=0;i<250;i++) for(j=0;j<250;j++);//利用系统时钟,定义延时函数 }

void main () { int n=20; while(1) //不断循环检测 { if(L2==0) //判断S9输入 { while(n--) { L0=0; delay(); L0=1; delay(); //灯泡以2*delay为周期闪亮 } n=20; } if(L3==0) //判断S10闭合 { while(n--) { L1=0; delay(); L1=1; delay(); //蜂鸣器以2*delay为周期发声 } n=20; } } } 实验二 LED轮换点亮实验 一、实验目的 1.掌握STC12C5A16S2单片机的I/O电路设计; 2.学习SN74HC573数据锁存输出方法。 二、实验要求 1.利用SN74HC573对STC12C5A16S2单片机的P0进行扩展,驱动LED 控制输出; 2.编写程序,使P0.0~P0.7上的发光二极管循环点亮;P2.7控制 SN74HC573芯片的使能; 三、电路

过程控制工程实验报告

成绩________ 过程控制工程 实验报告 班级:自动化10-2 姓名: 曾鑫 学号:10034080239 指导老师:康珏

实验一液位对象特性测试(计算机控制)实验 一、实验目的 通过实验掌握对象特性的曲线的测量的方法,测量时应注意的问题,对象模型参数的求取方法。 二、实验项目 1.认识实验系统,了解本实验系统中的各个对象。 2.测试上水箱的对象特性。 三、实验设备与仪器 1.水泵Ⅰ 2.变频器 3.压力变送器 4.主回路调节阀

m in y ?——被测量的变化量 m ax y ——被测量的上限值 m in y ——被测量的下限值 2) 一阶对象传递函数 s e s T K G τ-+= 1 00 K ——广义对象放大倍数(用前面公式求得) 0T ——广义对象时间常数(为阶跃响应变化到新稳态值的63.2%所需要的时间) τ——广义对象时滞时间(即响应的纯滞后,直接从图测量出) 五、注意事项 1. 测量前要使系统处于平衡状态下,反应曲线的初始点应是输入信号的开始作阶跃信号的 瞬间,这一段时间必须在记录纸上标出,以便推算出纯滞后时间τ。测量与记录工作必须 2. 所加扰动应是额定值的10%左右。 六、实验说明及操作步骤

1.了解本实验系统中各仪表的名称、基本原理以及功能,掌握其正确的接线与使用方法,以便于在实验中正确、熟练地操作仪表读取数据。熟悉实验装置面板图,做到根据面板上仪表的图形、文字符号找到该仪表。熟悉系统构成和管道的结构,认清电磁阀和手动阀的位置及其作用。 2.将上水箱特性测试(计算机控制)所用实验设备,参照流程图和系统框图接好实验线路。 3.确认接线无误后,接通电源。 4.运行组态王,在工程管理器中启动“上水箱液位测试实验” 阶液位对象。 按钮观察输出曲线。 6.在 会影响系统稳定所需的时间)。 7.改变u(k)输出,给系统输入幅值适宜的正向阶跃信号(阶跃信号在5%-15%之间),使系统的输出信号产生变化,上水箱液位将上升到较高的位置逐渐进入稳态。 8.观察计算机中上水箱液位的正向阶跃响应曲线,直至达到新的平衡为止。 9.改变u(k)输出,给系统输入幅值与正向阶跃相等的一个反向阶跃信号,使系统的输出信号产生变化,上水箱液将下降至较低的位置逐渐进入稳态。 10. 为止。 11.曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表格2-1。 七、实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告 学院:电气学院 专业:自动化 班级:1505 姓名及学号:任杰311508070822 日期:2018.6.3

实验一、单容水箱特性测试 一、 实验目的 1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、 实验设备 1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。 三、 实验原理 图1 单容水箱特性测试结构图 由图 2-1 可知,对象的被控制量为水箱的液位 h ,控制量(输入量)是流入水箱中的流量 Q 1,手动阀 V 1 和 V 2 的开度都为定值,Q 2 为水箱中流出的流量。根据物料平衡关系,在平衡状态时02010=-Q Q (式2-1),动态时,则有dt dV Q Q = -21,(式2-2)式中 V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与 h 的关

系为Adh dV =,即dt dh A dt dV =(式2-3),A 为水箱的底面积。把式(2-3)代入式(2-2)得dt dh A Q Q =-21(式2-4)基于S R h Q =2,S R 为阀2V 的液阻,(式2-4)可改写为dt dh A R h Q S =-1,1KQ h dt dh AR S =+或()()1s 1+=Ts K s Q H (式2-5)式中s AR T =它与水箱的底面积A 和2V 的S R 有关,(式2-5)为单容水箱的传递函数。若令()S R S Q 01=,常数=0R ,则式2-5可表示为()T S KR S R K S R T S T K S H 11/000+-=?+= 对上式取拉氏反变换得()()T t e KR t h /01--=(式2-6),当∞→t 时()0KR h =∞,因而有()0/R h K ∞==输出稳态值/阶跃输入,当T t =时,()() ()∞==-=-h KR e KR T h 632.0632.01010,式2-6表示一阶惯性响应曲线是一单调上升的指数函数如下图2-2所示 当由实验求得图 2-2 所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数 T 。该时间常数 T 也可以通过 坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是 时间常数 T ,由响应曲线求得 K 和 T 后,就能求得单容水箱的传递函 数如式(2-5)所示。 如果对象的阶跃响应曲线为图 2-3,则在此曲线的拐点 D 处作一切线,它与时间轴交于 B 点,与响应稳态值的渐近线交于 A 点。图中OB 即为对象的滞后时间

单片机实验报告

汇编语言程序设计 1)编译后,系统提示:目标越界,改为AJMP后编译通过,将ORG 07FFH 改为0800H, 系统提示:目标越界,这说明AJMP可以在2KB 范围内无条件转移。 2.改为LJMP编译通过,这说明LJMP可以在64KB 范围内无条件转移。 3.将LJMP LP1改为SJMP LP0,机器码为80FC,其中FC为偏移量,它是一个补码,01H~7FH说明向PC(增大√、减小)方向跳,80H~FFH说明向PC(增大、减小√)方向跳,这说明SJMP可以在当前PC值-128B~+127B 范围内无条件转移。 1、X、Y以补码的形式存放在20H、21H中,编写程序实现如下函数: 实验程序: MOV A,20H JZ ZREO JB ACC.7,NEG MOV 21H,#01H SJMP PEND ZREO:MOV 21H,A SJMP PEND NEG:MOV 21H,#0FFH PEND:SJMP$ END 结果记录: 1.将数89H存放于20H中,运行程序,观察到21H单元中的内容为FF; 2.将数05H存放于20H中,运行程序,观察到21H单元中的内容为01; 3.将数00H存放于20H中,运行程序,观察到21H单元中的内容为00; 2、将20H~27H中的压缩BCD码拆为两个单字节BCD码,存放在以2000H为首地址的外部RAM 中。 实验程序: MOV R0,#20H MOV R7,#08H MOV DPTR,#2000H LOOP:ACALL CZ INC R0

INC DPTR DJNZ R7,LOOP SJMP $ CZ:MOV A,@R0 SWAP A ANL A,#0FH MOVX @DPTR,A INC DPTR MOV A,@R0 ANL A,#0FH MOVX @DPTR,A RET END 结果记录: 20H 21H 22H 23H 24H 25H 26H 27H 87H 54H 36H 23 19H 43H 77H 69H 2000H 2002H2004H2006H2008H200AH200CH200EH 07H 04H 06H 03H 09H 03H 07H 09H 2001H 2003H2005H2007H2009H200BH200DH200FH 08H 05H 03H 02H 01H 04H 07H 06H 1、数在计算机中是以补码形式存放的,因此,判断数据的正负,往往采用判断第7 位,是0 则为正数,是1 则为正数 2、实验内容2中JZ ZREO 的机器码为600DH ,其中0DH 为偏移量,当前PC值0004 加上这个偏移量等于0011H ,这正是即将执行的程序的首地址,即标号为ZREO 语句。程序计算器PC的功能是指向下一条指令,因此,跳转语句是依靠偏移量来改变程序计数器PC的值,从而改变程序的流向。 3、分支程序一定要注意分支的语句标号的正确性,每一分支之间必须用跳转(如SJMP)指令分隔,并跳转到相应标号。 4、子程序往往用间址寄存器传递数据,内部RAM用@Ri ,外部RAM用@DPTR ,绝对不能用直接地址。最后以RET 结尾。 5、循环程序往往用寄存器传递数据,用R7控制循环次数,用调用作为循环体,用指令INC 修改地址指针,用指令DJNZ 判断循环结束。 6、执行ACALL前(SP)= 07H ,执行ACALL时,(SP)= 09H ,(08H)= 09H ,(09H)= 00H ,(PC)= 000FH ,PC的值正是子程序的入口地址,而堆栈中这两个单元存放的是断点处PC的值;执行到RET后,(SP)= 07H , 原08H的值弹给(PC)7~0 ,原09H的值弹给(PC)15~8 ,因此,返回断点继续执行主程序。

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

实验报告(单片机实验报告)

1 双字节无符号数加法 例1: 双字节无符号数加法(R0 R1)+(R2 R3) → (R4 R5), R0、 R2、 R4存放16位数的高字节, R1、 R3、 R5存放低字节。已知(R0 R1)=(93h,79h);(R2 R3)=(25h,a4h) 假设其和不超过16位。请编程。 org 0000h Ljmp start org 0050h start: mov R0,#93h mov R1, #79h mov R2,#25h mov R3, #0a4h mov A,R1 ADD A,R3 mov R5,A mov A,R0 ADDC A,R2 mov R4,A ss: jmp ss end 2双字节无符号数减法

例2: 双字节无符号数相减(R0 R1)-(R2 R3) → (R4 R5)。R0、 R2、R4存放16位数的高字节, R1、 R3、 R5存放低字节,已知(R0 R1)=(93h,79h);(R2 R3)=(25h,a4h);请编程。同学自己可以设置被减数与减数数值 org 0000h Ljmp start org 0050h start: mov R0,#93h mov R1,#79h mov R2,#25h mov R3,#0a4h mov A,R1 CLR C SUBB A,R3 mov R5,A mov A,R0 SUBB A,R2 mov R4,A ss: jmp ss end 3双字节数乘以单字节数

例3: 利用单字节乘法指令,进行双字节数乘以单字节数运算。若被乘数为16位无符号数, 地址为M1(30H) 和M1+1(31H)(低位先、高位后), 乘数为8位无符号数, 地址为M2(32H), 积由高位到低位存入R2、 R3和R4三个寄存器中。 30H,31H,32H内容 12H,34H,56H ; org 0000h Ljmp start org 0050h start: mov 30h,#12h mov 31h,#34h mov 32h,#56h mov a,(30h) mov b,(32h) mul ab mov R3,b mov R4,a mov a,(31h) mov b,(32h) mul ab add A,R3 mov R3,A

杭电自动化短学期实验报告-控制系统仿真-2013

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级10062813 学号10061314 学生姓名陆维俊 指导教师王永忠/刘伟峰 完成日期2013年7月6日

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真 1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 锅炉汽水系统图 在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分

别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1) K H S G S W S s T s ==+ (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

单片机实验报告

太原工业学院计算机工程系成绩: 单片机原理及应用 课程实验报告 课程:单片机原理及应用 姓名:冯文颖 专业:计算机科学与技术 学号:132054413 日期:2016年4月20日 太工计算机工程系 计算机原理实验室

实验一:拆字程序实验 实验环境PC机+Win 2007+伟福仿真软件实验日期2016.4.20一.实验内容 1.熟悉51仿真系统,设计并单步调试实现,将R5中一字节数拆分成两位独立的数据,分别存于R6,R7中,将R6,R7中的一位HEX数据转换为输出 2.ASCII编码分析BIN,HEX,BCD,ASCII等不同编码的数学意义及表现形式上的异同 二.理论分析或算法分析 (1)基本要求的描述 在这次实验中,要将R5中存的一字节数拆分成两个独立的数据,主要用到是逻辑运算符中的与功能,进而取得高字节和低字节的数,将R5的数和0f0h进行与取得高字节,和0f0h 与取得低字节的数,进而将它们分别存于R6、R7中。 (2)扩展要求的描述 在扩展要求中,要求将高低字节的数据转换成ASCII码值,首先先运用操作符subb将高低位字节与0Ah进行比较,根据CY的值来判断高低字节的数据是否在0到9之间,若在则在它们的基础上加上30h即可得到其对应的ASCII码值,否则,若在A到F之间,则需要在它们的基础上加37h即可得到它们对应的ASCII码值。 三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等) org 0019h clr c mov r5,#6ah mov a,r5 anl a, #0fh mov r6, a mov a, r5 anl a,#0f0h swap a mov r7,a sjmp $ end Masc1:mov a,r6 add a,#0F6h . mov,a,r6 jnc ad30h add a,#07h ad30h: add a,#30h mov r6,a 1

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

相关主题
文本预览
相关文档 最新文档